八年级上册全等三角形易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册全等三角形易错题(Word 版 含答案)

一、八年级数学轴对称三角形填空题(难)

1.△ABC 与△DEF 是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF 与△ABC 按如图所示的方式叠放在一起,使△ABC 保持不动,△DEF 运动,且满足点E 在边BC 上运动(不与B ,C 重合),边DE 始终经过点A ,EF 与AC 交于点M .在△DEF 运动过程中,若△AEM 能构成等腰三角形,则BE 的长为______.

【答案】363【解析】

【分析】

分若AE =AM 则∠AME =∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;

【详解】

解:①若AE =AM 则∠AME =∠AEM =45°

∵∠C =45°

∴∠AME =∠C

又∵∠AME >∠C

∴这种情况不成立;

②若AE =EM

∵∠B =∠AEM =45°

∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°

∴∠BAE =∠MEC

在△ABE 和△ECM 中,

B BAE CEN

AE EII C ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△ABE ≌△ECM (AAS ),

∴CE =AB 6,

∵AC =BC 2AB =3

∴BE=23﹣6;

③若MA=ME 则∠MAE=∠AEM=45°

∵∠BAC=90°,

∴∠BAE=45°

∴AE平分∠BAC

∵AB=AC,

∴BE=1

BC=3.

2

故答案为23﹣6或3.

【点睛】

本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.

2.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.

【答案】6; 3×22018.

【解析】

【分析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出

a3=4a1,a4=8a1,a5=16a1…进而得出答案.

【详解】

解:如图,

∵△A1B1A2是等边三角形,

∴A1B1=A2B1,∠3=∠4=∠12=60°,

∴∠2=120°,

∵∠MON=30°,

∴∠1=180°-120°-30°=30°,

又∵∠3=60°,

∴∠5=180°-60°-30°=90°,

∵∠MON=∠1=30°,

∴OA1=A1B1=3,

∴A2B1=3,

∵△A2B2A3、△A3B3A4是等边三角形,

∴∠11=∠10=60°,∠13=60°,

∵∠4=∠12=60°,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴∠1=∠6=∠7=30°,∠5=∠8=90°,

∴a2=2a1=6,

a3=4a1,

a4=8a1,

a5=16a1,

以此类推:a2019=22018a1=3×22018

故答案是:6;3×22018.

【点睛】

此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.

3.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.

【答案】14.

【解析】

【分析】

先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.

【详解】

∵BF 平分∠ABC ,

∴∠DBF =∠CBF ,

∵DE ∥BC ,

∴∠CBF =∠DFB ,

∴∠DBF =∠DFB ,

∴BD =DF ,

同理FE =EC ,

∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.

故答案为:14.

【点睛】

此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.

4.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.

【答案】2秒或6秒或14秒

【解析】

【分析】

分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.

【详解】

解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G

∵点B(-8,8),点C(-2,0),

∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm

∴在直角三角形COG中,OC=2cm,CG=BC=10cm,

∴OP=OG= 22

-=,

10246(cm)

当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,

∴EF=EH=6cm

∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),

故答案为:2秒,46秒或14秒.

【点睛】

本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.

5.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.

【答案】72

【解析】

【分析】

按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.

【详解】

解:∵AB=AC,∠BAC=120°

∴∠B=∠C=30°

相关文档
最新文档