《数值计算方法》课后题答案(湖南大学-曾金平)

合集下载

数值方法课后习题答案

数值方法课后习题答案

数值方法课后习题答案习题1:插值法给定一组数据点 \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\),使用拉格朗日插值法构造一个多项式 \(P(x)\),使其通过所有给定的数据点。

答案:拉格朗日插值法的多项式 \(P(x)\) 可以表示为:\[ P(x) = \sum_{i=1}^{n} y_i \prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} \]习题2:数值积分使用梯形法则和辛普森法则分别计算定积分 \(\int_{0}^{1} x^2 dx\) 的近似值。

答案:- 梯形法则的近似值:\[ \text{Trapezoidal Rule} \approx \frac{h}{2}(y_0 + 2y_1 +2y_2 + \ldots + y_{n-1}) \]- 辛普森法则的近似值:\[ \text{Simpson's Rule} \approx \frac{h}{3}(y_0 + 4y_1 +2y_2 + 4y_3 + \ldots + y_{n-1}) \]习题3:微分方程数值解考虑常微分方程 \(y' = f(x, y)\),其中 \(f(x, y) = x^2 - y^2\),初始条件 \(y(0) = 1\)。

使用欧拉方法和改进的欧拉方法分别计算\(y(0.1)\) 的近似值。

答案:- 欧拉方法:\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \]- 改进的欧拉方法:\[ y_{n+1} = y_n + \frac{h}{2} \cdot (f(x_n, y_n) + f(x_{n+1}, y_{n+1})) \]习题4:线性方程组的数值解给定线性方程组 \(Ax = b\),其中 \(A\) 是一个 \(n \times n\)的矩阵,\(b\) 是一个 \(n \times 1\) 的向量。

数值计算课后答案1

数值计算课后答案1

习题一解答1.取 3.14 ,3.15 ,22,355作为π的近似值,求各自的绝对误差,相对7113误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理 2 后,可以根据定理 2 更规地解答。

根据定理 2,首先要将数值转化为科学记数形式,然后解答。

解:( 1)绝对误差 :e(x)= π- 3.14 =3.14159265 - 3.14 =0.00159 ≈ 0.0016 。

相对误差:e r ( x)e(x)0.00160.51 10 3x 3.14有效数字:因为π= 3.14159265=0.314159265× 10,3.14 =0.314 ×10, m=1。

而π- 3.14 =3.14159265 - 3.14 =0.00159所以│π- 3.14 │= 0.00159 ≤ 0.005=0.5 ×10-2=11021101 3 22所以, 3.14 作为π的近似值有 3 个有效数字。

( 2)绝对误差 :e(x)= π- 3.15 =3.14159265 - 3.14 =- 0.008407 ≈- 0.0085 。

相对误差:e r ( x)e(x)0.00850.27 10 2x 3.15有效数字:因为π= 3.14159265=0.314159265× 10,3.15 =0.315 ×10, m=1。

而π- 3.15 =3.14159265 - 3.15 =- 0.008407所以│π- 3.15 │= 0.008407 ≤ 0.05=0.5 × 10-1=110 11101 2 22所以, 3.15作为π的近似值有 2 个有效数字。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值计算⽅法习题答案(第⼆版)(绪论)数值分析(p11页)4 试证:对任给初值x 0,0)a >的⽜顿迭代公式112(),0,1,2,......k a k k x x x k +=+= 恒成⽴下列关系式:2112(1)(,0,1,2,....(2)1,2,......k k k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k k x a x x x x +-??-=+==? ??(2)取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+-= +=+2121216 证明:若k x 有n 位有效数字,则n k x -?≤-110218,⽽()k k k k k x x x x x 288821821-=-???? ??+=-+ nn k k x x 2122110215.22104185.28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法.①根据本章中所给出的定理:(设x 的近似数*x 可表⽰为m n a a a x 10......021*?±=,如果*x 具有l 位有效数字,则其相对误差限为()11 **1021--?≤-l a x x x ,其中1a 为*x 中第⼀个⾮零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=??≤--x e x ②第⼆种⽅法直接根据相对误差限的定义式求解对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种⽅法均可得出相对误差限,但第⼀种是对于所有具有n 位有效数字的近似数都成⽴的正确结论,故他对误差限的估计偏⼤,但计算略简单些;⽽第⼆种⽅法给出较好的误差限估计,但计算稍复杂。

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值计算方法与算法第三版课后习题答案

数值计算方法与算法第三版课后习题答案

数值计算方法与算法第三版课后习题答案1. 矩阵乘法问题描述给定两个矩阵A和B,尺寸分别为n×m和m×p,求矩阵A 和矩阵B的乘积矩阵C,尺寸为n×p。

算法实现import numpy as npdef matrix_multiplication(A, B):n, m = A.shapem, p = B.shapeC = np.zeros((n, p))for i in range(n):for j in range(p):for k in range(m):C[i][j] += A[i][k] * B[k][j] return C示例A = np.array([[1, 2], [3, 4]])B = np.array([[5, 6], [7, 8]])C = matrix_multiplication(A, B)print(C)输出结果:[[19. 22.][43. 50.]]2. 数值积分问题描述给定一个函数f(x),以及积分区间[a, b],求函数f(x)在区间[a, b]上的定积分值∫abf(x)dx。

算法实现简单的数值积分算法是采用小梯形法,将区间[a, b]均分成n个子区间,然后计算每个子区间的面积,最后将这些子区间面积相加得到定积分值。

def numerical_integration(f, a, b, n):h = (b - a) / nintegral =0for i in range(n):x1 = a + i * hx2 = a + (i +1) * hintegral += (f(x1) + f(x2)) * h /2 return integral示例import mathf =lambda x: math.sin(x)a =0b = math.pin =100result = numerical_integration(f, a, b, n) print(result)输出结果:1.99983550388744363. 非线性方程求解问题描述给定一个非线性方程f(x) = 0,求方程的根x。

数值计算方法第三版课后习题答案

数值计算方法第三版课后习题答案

习题一解答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,223.1428571430.3142857143107==⨯,m=1。

数值计算方法答案

数值计算方法答案

习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时 444()()'()4()4*2%8%x x x x x xδδδ≈=== 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯ (2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯=0.3456210⨯ 易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A)y =,(B)y =;(3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =(B)y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k kx a x x x x +-⎫⎛-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()k k k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。

《数值计算方法》课后题答案(湖南大学-曾金平)

《数值计算方法》课后题答案(湖南大学-曾金平)

习题一1.设x >0相对误差为2%,4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A )y=,(B )y =; (3)已知1x <<,(A )22sin x y x =,(B )1cos 2xy x-=;(4)(A)9y =(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算课后习题答案-

数值计算课后习题答案-

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

“数值计算方法”习题解答

“数值计算方法”习题解答

“数值计算方法”习题解答配套教材:数值分析简明教程,王能超 编著,高等教育出版社,第二版第二章 数值积分2.1 机械求积和插值求积1、(p.94,习题3)确定下列求积公式中的待定参数,使其代数精度尽量高,并指明求积公式所具有的代数精度: ⎰-++-≈hhh f A f A h f A dx x f )()0()()()1(210;⎰++≈10210)43()21()41()()2(f A f A f A dx x f ;⎰+≈1000)()0(41)()3(x f A f dx x f 。

【解】 (1)令2,,1)(x x x f =时等式精确成立,可列出如下方程组:⎪⎪⎩⎪⎪⎨⎧=+=+-=++)3(32)2(0)1(22020210h A A A A h A A A解得:h A h A A 34,3120===,即:⎰-++-≈h h h f f h f hdx x f )]()0(4)([3)(,可以验证,对3)(x x f =公式亦成立,而对4)(x x f =不成立,故公式(1)具有3次代数精度。

(2)令2,,1)(x x x f =时等式精确成立,可列出如下方程组:⎪⎩⎪⎨⎧=++=++=++)3(1627123)2(232)1(1210210210A A A A A A A A A解得:31,32120-===A A A ,即:])43(2)21()41(2[31)(10⎰+-≈f f f dx x f ,可以验证,对3)(x x f =公式亦成立,而对4)(x x f =不成立,故公式(2)具有3次代数精度。

(3)令x x f ,1)(=时等式精确成立,可解得:⎪⎩⎪⎨⎧==324300x A即:⎰+≈1)32(43)0(41)(f f dx x f ,可以验证,对2)(x x f =公式亦成立,而对3)(x x f =不成立,故公式(3)具有2次代数精度。

2、(p.95,习题6)给定求积节点,43,4110==x x 试构造计算积分⎰=10)(dx x f I 的插值型求积公式,并指明该求积公式的代数精度。

数值计算课后答案3

数值计算课后答案3

习 题 三 解 答1、用高斯消元法解下列方程组。

(1)12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③解:⨯4②+(-)①2,12⨯③+(-)①消去第二、三个方程的1x ,得:1232323231425313222x x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩④⑤⑥ 再由52)4⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:1232332314272184x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩回代,得:36x =-,21x =-,19x = 所以方程组的解为(9,1,6)T x =--注意:①算法要求,不能化简。

化简则不是严格意义上的消元法,在算法设计上就多出了步骤。

实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。

无论是顺序消元法还是选主元素消元法都是这样。

②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。

要通过练习熟悉消元的过程而不是矩阵变换的技术。

矩阵形式错一点就是全错,也不利于检查。

一般形式或分量形式: 12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③ 矩阵形式123213142541207x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭向量形式 123213142541207x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭③必须是方程组到方程组的变形。

三元方程组的消元过程要有三个方程组,不能变形出单一的方程。

④消元顺序12x x →→L ,不能颠倒。

按为支援在方程组中的排列顺序消元也是存储算法的要求。

实际上,不按顺序消元是不规范的选主元素。

⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。

(2)1231231231132323110221x x x x x x x x x --=⎧⎪-++=⎨⎪++=-⎩①②③解:⨯23②+()①11,111⨯③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ⎧--=⎪⎪⎪-=⎨⎪⎪+=-⎪⎩④⑤⑥ 再由2511)5211⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:123233113235235691111111932235252x x x x x x ⎧⎪--=⎪⎪-=⎨⎪⎪=-⎪⎩回代,得:32122310641,,193193193x x x =-==, 所以方程组的解为 41106223(,,)193193193Tx =-2、将矩阵1020011120110011A ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭作LU 分解。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法答案

数值计算方法答案

n i =1
f
( x1 ,
xi x2 ,⋯ ,
xn
)
∂f
( x1 ,
x2 ,⋯ , ∂xi
xn
)
δ
(
xi
)


a ∂S(a, b, C)
b ∂S(a, b, C)
C ∂S(a,b,C)
δ (S(a, b, C)) =
δ (a) +
δ (b) +
δ (C)
S(a,b,C) ∂a
S(a,b,C) ∂b
S(a,b,C) ∂C
内, f (x) =0 有根。
同题(1)的方法可得:(2),(3),(4)的零点附近的含根区间分别为
[0,1]

⎡⎢⎣0,
π 2
⎤ ⎥⎦

[
0,1]
6
2.用二分法求方程 x sin x −1 = 0 在[0, 2] 内的根的近似值并分析误差。
解 : 令 f (x) = x sin x −1 , 则 有 f (0) = −1 < 0 , f (2) = 0.8186 > 0 ,
= 0.123 ×101 × 0.219 ×101 − 1= 0.169 ×101 即 f (x) = 0.167 ×101 , g(x) = 0.169 ×101 而当 x = 2.19 时 x3 − 3x2 + 3x −1的精确值为 1.6852,故 g(x) 的算法较正确。
8.按照公式计算下面的和值(取十进制三位浮点数计算):
x
Байду номын сангаас
x
(4)(A) y = 9 − 80 ,(B) y = 1 9 + 80
解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两

数值计算方法》习题答案

数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值计算方法答案

数值计算方法答案

习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时 444()()'()4()4*2%8%x x x x x xδδδ≈=== 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯ (2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯=0.3456210⨯ 易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A)y =,(B)y =;(3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =(B)y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

am .b1b2
bn
型数的有效数字的结论,易得上面三个数的有效
fl ( fl (0.3197 102 0.2456 101 ) 0.1352)
= fl (0.3443 10 0.1352)
2
=0.3457 10
2
(2)31.97+( 2.456+0.1352)
fl (0.3197 102 fl (0.2456 101 ))
1 ab sin C ,其中 0 C 。 2 2
(a) (b) (C ) 。

n
















( f ( x1 , x2 , , xn ))
i 1
xi f ( x1 , x2 ,
f ( x1 , x2 , , xn ) xi
, xn )
2
x1 1015 x2 1015 x1 x2 2
假定使用十进制三位浮点数计算,问结果是否可靠? 解:使用十进制三位浮点数计算该方程则方程组变为
1 16 16 0.100 10 x1 0.100 10 x2 0.100 10 1 1 1 0.100 10 x1 0.100 10 x2 0.200 10
f ( xk )
-0.1585 0.4962 0.1862 0.015051 -0.0718 -0.02835 -0.00664 0.004208 -0.001216 0.001496 0.001398 -0.000538
12 13 14
1.11376953125 1.114013671875 1.1141357421875
(1) (2)

1
(1) ( - 2) 得1 0 . 1 0
1 0 .61 1 0 x2

6 1
, 即 x2 1 0 . 1 0
. 0 , 把 x2 的值代入 ( 1) 得 x1 0

把 x2 的值代入( 2)得 x1 0.100 101

x1 0.100 101 x1 0.100 101 不满足(2)式,解 不满足(1)式,故在十进制三位浮 1 1 x 2 0.000 10 x 2 0.100 10
( f ( x)) x f '( x) ( x) f ( x) f ( x)
( f ( x)) f ( x) ( f ( x)) x 2
xf '( x)
=
x 2x

( f ( x))
2
=0.5%
5.下面计算 y 的公式哪个算得准确些?为什么?
2
(1)已知 x 1 , ( A) y (2)已知 x 1 , ( A) y
1 ,显然当 x 0 时, ( x) 单调递减, x2
(1.6) 1.390625 ,
( x) 1.3,1.6 。
2 2 3 0.92 1 , 3 x 1.3 1 , (k 0,1, 2, ) 收敛。 2 xk
'( x)
由迭代法收敛定理,对任意初值 x 1.3,1.6 ,迭代格式 xk 1 1 (B) ( x) (1 x2 ) 3 ,则 (1.3) 1.390755416 ,
0.489 1 1 1 1 1 1 1 (2) i 6 5 4 3 2 = 0.001 0.004 0.012 0.037 0.111 0.333 3 3 3 3 3 3 i 6 3 0.489
9.已知三角形面积 S 证明: ( S ) 证 明 :
解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两 个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。故在设计算法 时应尽量避免上述情况发生。 (1) ( A)中两个相近数相减,而( B)中避免了这种情况。故(B)算得准确些。 (2) ( B)中两个相近数相减,而( A)中避免了这种情况。故( A)算得准确些。 (3) ( A)中 sin x 使得误差增大,而( B)中避免了这种情况发生。故( B)算得准确些。 (4) ( A)中两个相近数相减,而( B)中避免了这种情况。故(B)算得准确些。 6.用消元法求解线性代数方程组
点数解该方程用消元法计算结果不可靠。 7.计算函数 f ( x) x 3x 3x 1和 g ( x) (( x 3) x 3) x 1在x 2.19 处的函数值(采用
3 2
3
十进制三位浮点数计算) 。哪个结果较正确? 解: f (2.19) 0.480 10 0.219 10 3 0.480 10 0.657 10 1
bk
2 2 1.5 1.25 1.125 1.125 1.125 1.125 1.1171875 1.1171875 1.115234375 1.1142578125
xk
1 1.5 1.25 1.125 1.0625 1.09375 1.109375 1.1171875 1.11328125 1.115234375 1.1142578125 1.11376953125
习题一
1.设 x >0 相对误差为 2%,求
x , x 4 的相对误差。
解:由自变量的误差对函数值引起误差的公式:
( f ( x))
1
( f ( x)) x f '( x) ( x) 得 f ( x) f ( x)
x时
(1) f ( x)
( x)
x 1 1 ( x ) ' ( x) ( x) *2% 1% ; 2 2 x
4
,则由误差估计式
| x k |
ba 20 4 ,所需迭代次数 k 满足 k 1 10 ,即取 k 13.28 便可,因此取 k 14 。 k 1 2 2
用二分法计算结果列表如下:
k
0 1 2 3 4 5 6 7 8 9 10 11
ak
0 1 1 1 1 1.0625 1.09375 1.109375 1.109375 1.11328125 1.11328125 1.11328125
1 1 1 1
0.105 10 2 0.144 10 2 0.657 101 1
= 0.167 10
1
g (2.19) ((0.81) 0.219 101 3) 0.219 101 1
0.123 101 0.219 101 1 = 0.169 101 1 1 即 f ( x) 0.167 10 , g ( x) 0.169 10 3 2 而当 x 2.19 时 x 3x 3x 1的精确值为 1.6852,故 g ( x) 的算法较正确。
(S )
a b C b sin C (a) a sin C (b) ab cos C (C ) ab sin C ab sin C ab sin C
= (a) (b)
C (C ) tgC
(a) (b) (C )
, 则 f( 由 f ( x) 的连续性知在 x 1,0 0 ) 1 , f (1) -0.4597 ,
5
同题(1)的方法可得: (2 ) , (3 ) , (4)的零点附近的含根区间分别为 0,1 ; 0,
; 0,1 2
2.用二分法求方程 x sin x 1 0 在 0, 2 内的根的近似值并分析误差。 解 : 令
= fl (0.3197 10 0.259110 )
2 1
=0.3456 10
2 2
易见 31.97+2.456+0.1352=0.345612 10 ,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为 1%,测量边长所允许的相对误差限为多 少? 解:设该正方形的边长为 x ,面积为 f ( x) x 2 ,由 ( f ( x)) 解得 ( x)
f( x )
, x s i x n 则 1有
f( 0 )
, 1
0 f (2) 0.8186 0

f '( x) sin x x cos x 0 , x 0, 2
所以函数 f ( x) 在 0,2 上严格单调增且有唯一实根 x 。

本题中求根使得误差不超过 10
3 2
简单迭代法 xk 1 ( xk ) 的收敛性,其中
6
(A) ( x) 1 1/ x ; ( B) ( x) 1 x 2 ; (C) ( x)
2
3
1 x ቤተ መጻሕፍቲ ባይዱ1
解:取 1.5 附近区间 1.3,1.6 来考察。 ( A) ( x ) 1 而 (1.3) 1.59171596 , 因此,当 x 1.3,1.6 时, 又当 x 1.3,1.6 时,
8.按照公式计算下面的和值(取十进制三位浮点数计算) : (1)
3
i 1
6
1
i 6
;(2)
3
i 6
1
1
i

解: (1 )
3
i 1 1
1
i
1 1 1 1 1 1 2 3 4 5 6 = 0.333 0.111 0.037 0.012 0.004 0.001 3 3 3 3 3 3
1.1142578125 1.1142578125 1.1142578125
1.114013671875 1.1141357421875 1.11419677734375
相关文档
最新文档