西电电院通信原理大作业
通信原理大作业
通信原理⼤作业通信原理⼤作业2ASK信号传输仿真⼀、选题意义2ASK(⼆进制振幅键控)是⼀种最简单的数字信号的载波传输,通过对2ASK 的仿真可以更好的理解数字调制系统的组成以及各模块的功能。
⼆、仿真实验任务1.掌握2ASK 调制解调原理及其实现⽅法。
2.按照2ASK产⽣模型和解调模型分别产⽣2ASK信号和⾼斯⽩噪声,经过信道传输后进⾏解调。
3.测试2ASK传输信号加⼊噪声后的误码率,分析2ASK传输系统的抗噪声性能;三、仿真原理本实验主要是利⽤MATLAB集成环境下的Simulink仿真平台,设计⼀个2ASK 调制与解调系统.⽤⽰波器观察调制前后的信号波形; ⽤频谱分析模块观察调制前后信号频谱的变化;加上各种噪声源,⽤误码测试模块测量误码率;最后根据运⾏结果和波形来分析该系统性能。
通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。
3.1 2ASK调制与解调原理3.1.1 2ASK调制原理振幅键控是正弦载波的幅度随数字基带信号⽽变化的数字调制。
当数字基带信号为⼆进制时,则为⼆进制振幅键控。
设发送的⼆进制符号序列由0、1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独⽴。
该⼆进制符号序列可表⽰为2()()cos()[()]cos ASK c n s cne t s t w t a g t nT w t==-∑(1)其中:⼆进制振幅键控信号时间波形如图1 所⽰。
由图1 可以看出,2ASK信号的时间波形e2ASK(t)随⼆进制基带信号s(t)通断变化,所以⼜称为通断键控信号(OOK信号)。
图1 ⼆进制振幅键控信号时间波形在⼆进制数字振幅调制中,载波的幅度随着调制信号的变化⽽变化,实现这种调制的⽅式有两种:(1)模拟相乘法:通过相乘器直接将载波和数字信号相乘得到输出信号,这种直接利⽤⼆进制数字信号的振幅来调制正弦载波的⽅式称为模拟相乘法,其电路如图2所⽰。
在该电路中载波信号和⼆进制数字信号同时输⼊到相乘器中完成调制。
西电通院专业教育大作业
西电通院专业教育大作业第一篇:西电通院专业教育大作业《专业教育》(第三学期)课程大作业专业:通信工程班级:学号:姓名:通信工程专业教育 1通信工程专业培养目标及发展通信工程专业培养学生掌握通信工程类专业坚实的基础理论、相关的专业基础和专业知识,能从事通信理论、通信系统、通信设备以及信息系统类的研究、设计、开发、制造、运营和管理的高素质的高级工程技术人才和现代化建设人才。
本专业以数理、外语和通信基本理论为基础。
现有人才培养方案是围绕培养德、智、体全面发展,适应社会主义现代化建设需要,既有扎实的基础理论、较强的计算机和外语应用能力,熟练掌握通信与信息系统、信息处理和通信网络等方面的专业理论和工程技术,又有具备在信息与通信工程领域从事科学研究,工程设计,设备制造、运营和维护和管理工作,并具有一定创新精神和研发能力的高级工程技术人才。
毕业后可从事通信系统、通信工程技术和通信新产品研究开发、调试和运营等工作,也可从事IT及相关专业的科学研究与技术开发工作。
通信工程专业主要研究信号的产生、信息的传输、交换和处理,以及在计算机通信、光纤通信、无线通信、交换与通信网等方面的理论和工程应用问题,培养从事通信工程、电子信息技术及计算机网络系统的研究、制造、开发和应用的高级人才。
受工业影响,我国一些较早成立的工科大学就已开设了电报、电话和有线信号传输等相关专业。
新中国成立后,中国工业亟待发展与更新,中国高等教育的工科教育得到了高度的重视。
由于电报、电话、电台和收音机等通信电子产品高速发展,而人才资源又极度匠乏,促使了新中国最早的通信技术相关本科专业的诞生和发展。
同时,我国开始建设系列部委学校。
期间北京邮电学院、重庆邮电学院、成都电讯工程学院、西北电讯工程学院等一些重要的工科高等学校相继成立和建设,与通信技术相关的本科专业开始在全国招生,为我国自主培养了第一批通信技术人才。
如今随着通信与各种新技术结合的层出不穷,涉及的领域越来越广泛,如电信、网络、家电、金融、医疗、航空、工业等等。
西电通信原理大作业
通信原理大作业班级:021215学号:姓名:一. 第四代移动通信技术综述(4G网络综述)第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。
它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。
第四代移动通信标准比第三代标准具有更多的功能。
第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时,数据采集、远程控制等综合功能。
此外,对全速移动用户能提供150 Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。
他包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统)。
其广带无线局域网(WLAN)能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网(IBCN),他还能提供信息之外的定位定时、数据采集、远程控制等综合功能。
一4G主要技术要求1. 通信速度提高,数据率超过UMTS,上网速率从2 Mb/s提高到100 Mb /s。
2. 以移动数据为主面向Internet大范围覆盖高速移动通信网络,改变了以传统移动电话业务为主设计移动通信网络的设计观念。
3. 采用多天线或分布天线的系统结构及终端形式,支持手机互助功能,采用可穿戴无线电,可下载无线电等新技术。
4. 发射功率比现有移动通信系统降低10~100倍,能够较好地解决电磁干扰问题。
5. 支持更为丰富的移动通信业务,包括高分辨率实时图像业务、会议电视虚拟现实业务等,使用户在任何地方可以获得任何所需的信息服务,且服务质量得到保证。
第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。
二、4G的主要特点1. 通信速度更快由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信给人印象最深刻的特征莫过于它具有更快的无线通信速度。
西安电子科技大学2021春 通信原理(大作业)题目
学习中心/函授站_姓名学号西安电子科技大学网络与继续教育学院2021学年上学期《通信原理》期末考试试题(综合大作业)题号一二三四总分题分10 30 30 30得分考试说明:1、大作业试题于2021年4月23日公布:(1)学生于2021年4月23日至2021年5月9日在线上传大作业答卷;(2)上传时一张图片对应一张A4纸答题纸,要求拍照清晰、上传完整;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院标准答题纸》手写完成,要求字迹工整、卷面干净。
一、选择题(本大题共5小题,每小题2分,共10分)1. 下列调制方式中,属于线性调制方式的有()。
A.AM; B.;FM; C. PM; D. 2FSK。
2. 当基带信号带宽一定时,下面哪一种调制方式所占频带宽度最大()A.SSB; B. VSB; C. AM; D. WBFM。
3. 在相同信噪比的条件下,比较不同调制方式的性能,哪个是正确的()。
A.2FSK优于2PSK; B. 2FSK优于2ASK;C. 2ASK优于2PSK;D. 2DPSK优于2PSK。
4. 在以下通信系统中,需要位同步的通信系统为()。
A.AM调制系统; B. SSB调制系统;C.BPSK调制系统; D. DSB调制系统。
5. 关于PCM与△M,下面哪个描述是正确的。
()A.△M系统中码元速率等于抽样速率; B. △M中可以采用非均匀量化;C.PCM系统中码元速率等于抽样速率; D. PCM系统的量化信噪比高于△M。
二、填空题(本大题共18小题,每空格1分,共30分)6. 数字通信系统的可靠性指标可以用_______来衡量。
7. 在码元速率相同的前提下,八进制码元与四进制码元的信息速率相比,______的更高。
8. 变参信道传输媒介的三个特点是 ①;② ; ③ 。
9. 单边带信号的产生方法有三种:①_____、②_____、③______。
西电通信原理大作业
西安电子科技大学通信原理大作业蜂窝通信网姓名:班级:学号:蜂窝移动通信网通信网是在多点之间传递信息的通信系统。
通信网的基本组成部分是终端设备、通信链路和交换设备,有些通信网中还包含转发设备。
随着时代的发展,通信网也有着多种不同的应用和技术的进步。
其中移动通信网在我们的生活中起到无可取代的作用,蜂窝网是当前最主要的一种移动通信网,主要由基站、移动台、移动交换中心组成,并与固定电话网相连。
第一代蜂窝网采用模拟调制体制,现已淘汰。
第二段蜂窝网采用数字调制体制,以电话通信为主,目前正在广泛使用中。
我国采用的第二代蜂窝网体制主要是GSM。
第三代蜂窝网正在发展中,它应能满足数据传输和多媒体通信的需求,以及全球漫游。
本文主要介绍蜂窝移动通信网及其相关问题1.蜂窝移动通信系统基本概述蜂窝系统也叫“小区制”系统。
是将所有要覆盖的地区划分为若干个小区,每个小区的半径可视用户的分布密度在1~10km左右。
在每个小区设立一个基站为本小区范围内的用户服务。
并可通过小区分裂进一步提高系统容量。
这种系统由移动业务交换中心(MSC)、基站(BS)设备及移动台(MS)(用户设备)以及交换中心至基站的传输线组成。
目前在我国运行的900MHz第一代移动通信系统(TACS)模拟系统和第二代移动通信系统(GSM)数字系统都属于这一类。
就是说移动台的移动交换中心与公共的电话交换网(就是我们平时所说的电话网PSTN)之间相连,移动交换中心负责连接基站之间的通信,通话过程中,移动台(比如手机)与所属基站建立联系,由基站再与移动交换中心连接,最后接入到公共电话网。
通过把地理区域分成一个个称为小区的部分,蜂窝系统就可以在这个区域内提供无线覆盖。
蜂窝无线系统指的是在地理上的服务区域内,移动用户和基站的全体,而不是将一个用户连到一个基站的单个链路。
1当把频谱分为很多信道,每个小区分配一组信道。
从基站到移动台方向称为前向信道,反之为反向信道。
前向和反向信道共同组成了双工蜂窝信道。
西电通原大作业
通信原理大作业班级:021014组员:报告人:指导老师:武斌题目:2ASK信号传输仿真一题目2ASK信号传输仿真:按照2ASK产生模型和解调模型分别产生2ASK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
2ASK信号的解调可以选用包络解调或者相干解调法。
二2ASK简介振幅键控:利用载波的幅度变化来传递数字信号,与频率和初始相位无关。
如图:2ASK产生方法:模拟调制法(用乘法器实现)键控法(用二选一选择器控制开关通断)模拟相乘法数字键控法2ASK解调方法:非相干解调(包络检波法)即整流-低通方式相干解调(同步检波法)即相乘-低通非相干解调方式相干解调方式2ASK功率谱密度特点:由连续谱和离散谱两部分组成信号带宽是基带脉冲波形带宽的2倍三仿真过程及结果(演示)名词解释:AWGN(Additive White Ganssian Noise),加性高斯白噪声,均值为零,方差为噪声功率。
SER(Symbol Error Rate),误符号率、误码率。
即错误码元数/传输总码元数BER( Bit Error Rate),误比特率,即错误比特数/传输总比特数在二进制中,两者相等。
NRZ信号的产生:载波信号:2ASK信号:叠加了加性高斯白噪声的2ASK信号在AWGN信道下,误比特率(BER)与误码率(SER)与信噪比Es/N0的关系,以4-ASK为例:在信噪比EsN0=15dB,调制前与解调后的二进制码元的比较以4-ASK为例:错误码元个数为50个左右。
若以8-ASK方式,错误码元个数为50000左右,基本错了一半。
小结:对于M-ASK方式,M越大,抗噪声能力越弱。
四问题与不足1 没有进行频域分析。
2 没有用Simulink来建模仿真。
五程序附录clcclear allclose all%单极性非归零信号的产生N=20;M=2;x=randint(1,N,M); %产生随机二进制代码gridd=300;t=0:1/gridd:length(x)-1/gridd;for i=1:length(x);if(x(i)==1)for j=1:griddy((i-1)*gridd+j)=1;endelsefor j=1:griddy((i-1)*gridd+j)=0;endendendfigure(1)subplot(2,2,1);plot(t,y);grid on,xlabel('t'),title('NRZ信号波形')axis([0,i,min(y)-0.1,max(y)+0.1]);%2ASK信号的产生carr=sin(2*pi*t);subplot(2,2,2);plot(t,carr);grid on,xlabel('t'),title('载波信号波形')axis([0,i,min(carr)-0.1,max(carr)+0.1]);ask=y.*carr;subplot(2,2,3);plot(t,ask);grid on,xlabel('t'),title('2ASK信号波形')axis([0,i,min(ask)-0.1,max(ask)+0.1]);%高斯白噪声与信号的叠加pask=norm(ask).^2/length(t);snr=20;pn=pask./(10.^(snr./10));n=sqrt(pn)*randn(1,length(t));reask=ask+n;figure(2)subplot(2,1,1);plot(t,ask);grid on,xlabel('t'),title('2ASK信号的波形')axis([0,i,min(ask)-0.1,max(ask)+0.1]);subplot(2,1,2);plot(t,reask);grid on,xlabel('t'),title('叠加了高斯白噪声的ASK信号的波形 ') axis([0,i,min(reask)-0.1,max(reask)+0.1]);%误码率与误比特率与信噪比的关系nsymbol=100000; %每种信噪比下的发送符号数T=1; %符号周期fs=100; %每个符号的采样点数ts=1/fs; %采样时间间隔t=0:ts:T-ts; %时间矢量fc=10; %载波频率c=sqrt(2/T)*cos(2*pi*fc*t); %载波信号M=4; %MASK信号graycode=[0 1 3 2]; %Gray编码规则EsN0=0:15; %信噪比Es/N0,dBsnr1=10.^(EsN0/10); %信噪比的线性值msg=randint(1,nsymbol,M); %消息的M进制数msg1=graycode(msg+1); %Gray编码映射msgmod=pammod(msg1,M).'; %MASK调制tx=msgmod*c;tx1=reshape(tx.',1,length(msgmod)*length(c));spow=norm(tx1).^2/nsymbol; %每个符号的平均功率for indx=1:length(EsN0)sigma=sqrt(spow/(2*snr1(indx))); %噪声功率rx=tx1+sigma*randn(1,length(tx1)); %加入高斯白噪声rx1=reshape(rx,length(c),length(msgmod));y=(c*rx1)/length(c); %相关运算y1=pamdemod(y,M); %MASK调制decmsg=graycode(y1+1); %Gray码逆映射[err,ser(indx)]=symerr(msg,decmsg); %误符号率[err,ber(indx)]=biterr(msg,decmsg,log2(M)); %误比特率endfigure(3)semilogy(EsN0,ber,'-ko',EsN0,ser,'-k*',EsN0,1.5*qfunc(sqr t(0.4*snr1))); % qfunc为Marcum Q函数axis([0,indx,10^-4,1]);title('MASK载波调制信号在AWGN信道下的性能 ')xlabel('Es/N0');ylabel('误比特率和误符号率')legend('误比特率','误符号率','理论误符号率')%信噪比EsN0为15%调制前与调制后的二进制码元比较figure(4)stem(msg,'b*')hold onstem(decmsg,'ro')legend('调制前','调制后')grid on xlabel('t'),title('调制前与调制后的二进制码元比较') axis([0 50 -1 3])SERN=sum((msg-decmsg)~=0) %错误码元个数。
西电电院电磁兼容原理大作业
电磁兼容原理与技术大作业班级:021215学号:0212软件抗干扰技术之单片机软件抗干扰技术随着单片机应用的普及,采用单片机控制的产品与设备日益增多,而某些设备所在的工作环境往往比较恶劣,干扰严重,这些干扰会严重影响设备的正常工作,使其不能正常运行。
因此,为了保证设备能在实际应用中可靠地工作,必须要周密考虑和解决抗干扰的问题。
本文对单片机应用中的软件抗干扰技术作详细介绍,文中所用单片机为MCS51。
一、数字量输入输出中的软件抗干扰数字量输入过程中的干扰,其作用时间较短,因此在采集数字信号时,可多次重复采集,直到若干次采样结果一致时才认为其有效。
例如通过A 价转换器测量各种模拟量时,如果有干扰作用于模拟信号上,就会使A/D 转换结果偏离真实值。
这时如果只采样一次A/D 转换结果,就无法知道其是否真实可靠,而必须进行多次采样,得到一个A/D 转换结果的数据系列,对这一系列数据再作各种数字滤波处理,最后才能得到一个可信度较高的结果值。
本书第八章将给出各种具体的数字滤波算法及程序。
如果对于同一个数据点经多次采样后得到的信号值变化不定,说明此时的干扰特别严重,已经超出允许的范围,应该立即停止采样并给出报警信号。
如果数字信号属于开关量信号,如限位开关、操作按扭等,则不能用多次采样取平均值的方法,而必须每次采样结果绝对一致才行。
这时可编写一个采样子程序,程序中设置有采样成功和采样失败标志,如果对同一开关量信号进行若干次采样,其采样结果完全一致,则成功标志置位;否则失败标志置位。
后续程序可通过判别这些标志来决定程序的流向。
单片机控制的设备对外输出的控制信号很多是以数字量的形式出现的,如各种显示器、步进电机或电磁阀的驱动信号等。
即使是以模拟量输出,也是经过D/A 转换而获得的。
单片机给出一个正确的数据后,由于外部干扰的作用有可能使输出装置得到一个被改变了的错误数据,从而使输出装置发生误动作。
对于数字量输出软件抗干扰最有效的方法是重复输出同一个数据,重复周期应尽量短。
通信原理大作业(1)
16-QAM 基带传输系统 1. 引言随着通信业迅速的发展,传统通信系统的容量已经越来越不能满足当前用户的要求,而可用频谱资源有限,业不能靠无限增加频道数目来解决系统容量问题。
另外,人们亦不能满足通信单一的语音服务,希望能利用移动电话进行图像等多媒体信息的通信。
但由于图像通信比电话需要更大的信道容量。
高效、可靠的数字传输系统对于数字图像通信系统的实现很重要,正交幅度调制QAM 是数字通信中一种经常利用的数字调制技术,尤其是多进制QAM 具有很高的频带利用率,在通信业务日益增多使得频带利用率成为主要矛盾的情况下,正交幅度调制方式是一种比较好的选择。
为了加深对QAM 调制解调数字传输系统的理解,本实验对整个16-QAM 基带传输系统的仿真,结构框图如图1所示:2. QAM 调制解调原理2.1 QAM 调制正交幅度调制QAM 是数字通信中一种经常利用的数字调制技术,尤其是多进制QAM 具有很高的频带利用率,在通信业务日益增多使得频带利用率成为主要矛盾的情况下,正交幅度调制方式是一种比较好的选择。
正交幅度调制(QAM )信号采用了两个正交载波tf t f c c ππ2sin 2cos 和,每一个载波都被一个独立的信息比特序列所调制。
发送信号波形如图2.1.1所示,2sin )(2cos )()(t f t g A t f t g A t u c T ms c T mc m ππ+=M m ,...,2,1=图2.1.1 M=16QAM 信号星座图式中{mc A }和{ms A }是电平集合,这些电平是通过将k 比特序列映射为信号振幅而获得的。
例如一个16位正交幅度调制信号的星座图如下图所示,该星座是通过用M =4PAM 信号对每个正交载波进行振幅调制得到的。
利用PAM 分别调制两个正交载波可得到矩形信号星座。
QAM 可以看成是振幅调制和相位调制的结合。
因此发送的QAM 信号波形可表示为),2cos()()(n c T m mn t f t g A t u θπ+= ,,....,2,11M m = ,,....,2,12Mn = 如果,211kM =,222k M=那么QAM 方法就可以达到以符号速率)(21k k R B +同时发送2221log M M k k =+个二进制数据。
西电通信原理13试题带答案
西安电子科技大学考试时间 120 分钟试题(A)班级学号姓名任课教师一、选择(请将答案填写到下面表格中)(每题2分,共2×10=20分)1、多路信号复用方式中不含以下哪一种?()A. 频分复用B. 时分复用C. 码分复用D. 相分复用2、以下属于全双工通信的是:()A. 广播B. 对讲机C. 电话D.无线寻呼3、根据香农公式可知为了使信道容量趋于无穷大,不可以采取下列措施:( )A、噪声功率为零B、噪声功率谱密度始终为零C、信号发射功率为无穷大D、系统带宽为无穷大4、设某随参信道的最大多径时延差等于2ms,为了防止出现频率选择性衰落,该信道的相关带宽为:()A、500HzB、>500HzC、<500HzD、2KHz5、即使在“0”、“1”不等概率出现情况下,以下哪种码仍然不包含直流成分:( )第1页共6页第2页 共6页A 、AMI 码B 、双极性归零码C 、单极性归零码D 、差分码6、二进制数字基带传输系统的误码率计算公式为:( )A 、()()0/11/0P P P e +=B 、()()()()1/010/10P P P P P e +=C 、()()10P P P e +=D 、()()()()0/111/00P P P P P e +=7、功率利用率最低调制方式是:( )A 、2ASKB 、2FSKC 、2PSKD 、2DPSK8、对二进制频带传输系统而言,下列说法错误的是:( )A 、FSK 、PSK 、DPSK 的抗衰落性能均优于ASK ;B 、ASK 、PSK 、DPSK 的最佳判决门限比FSK 容易设置;C 、接收机的输入信噪比增加,解调的误码率一定下降;D 、ASK 、PSK 、DPSK 的频带利用率均高于FSK 。
9、为了防止ΔM 编码过程的过载现象出现,不可以采取以下哪种措施:( )A 、减小量化台阶B 、增大量化台阶C 、增大采样速率D 、减小采样周期10、按照A 律13折线编码实现PCM 编码时,第7段落的段落码为:( )A 、011B 、110C 、101D 、 111二、填空(每空2分,共2×10=20分)1、 频谱从零频附近开始的信号是 基带信号 。
西电电院通信原理大作业2
通信原理大作业班级: 021215学号:02121441姓名:李雷雷光纤通信技术光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。
光导纤维通信简称光纤通信。
可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
光纤通信具有以下特点: (1)通信容量大、传输距离远。
(2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。
(4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。
(6)无辐射,难于窃听, (7)光缆适应性强,寿命长。
(8)质地脆,机械强度差。
(9)光纤的切断和接续需要一定的工具、设备和技术。
(10)分路、耦合不灵活。
(11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。
就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。
光纤光缆技术光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。
早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。
近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。
其中特别重要的是无水峰的全波窗口。
这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。
通信原理大作业 (2)
通信原理大作业年级2010级班级0210**姓名学号张**专业电子信息工程学院电子工程学院西安电子科技大学2013年6月➢选题一:2FSK信号传输仿真一、题目要求:按照2FSK产生模型和解调模型分别产生2FSK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
2FSK信号的解调可以选用包络解调或者相干解调法。
二、2FSK信号传输介绍数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道因具有带通特性而不能直接传送基带信号。
为了使数字信号在带通系统中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
在接收端,通过解调器把带通信号还原为数字基带信号的过程称为数字解调。
移频键控(FSK)是数据通信中最常用的一种调制方式。
FSK方法简单,易于实现,并且解调不需要恢复本地载波,可以异步传输,抗噪声和抗衰落性能较强。
缺点是占用频带较宽,频带利用不够经济。
FSK主要应用于低中速数据传输,以及衰落信道和频带较宽的信道中。
三、2FSK信号传输实现方法1.调制过程FSK即Frequency Shift Key 叫做移频键控或频移键控。
调制的方法一般有两种,一种叫直接调频法,另一种叫键控法。
所谓直接调频法,就是将输入的基带脉冲去控制一个振荡器的某种参数,而达到改变振荡频率的目的。
键控法就是利用矩形脉冲序列控制的开关电路,对两个不同的独立频率源进行选通。
一般来说,键控法采用两个独立的振荡器,得到的是相位不连续的FSK信号;而且直接调频法f1,f2由同一个谐振电路产生,则得到相位连续的FSK信号。
2FSK信号便是0符号对应于载频f1,1符号对应于载频f2(与f1不同的另一个载频)的一调制波形,而f1与f2的改变是瞬间完成的。
2.解调过程2FSK的常用解调方法是采用相干解调(如下图)。
西电通信原理大作业
西电通信原理大作业一.微波通信技术综述1.1微波通信技术概念微波常指频率在1O00兆赫()以上(波长在30厘米以下)的电磁波,利用微波传播进行的通信称为微波通信微波的传播特性类似于光的传播,一般沿直线传播,绕射能力很弱,一般进行视距内的通信,对于长距离通信可采用接力的方式,为微波接力通信,或称微波中继通信,也可利用对流层传播进行通信,称为对流层散射通信;或利用人造卫星进行转发,即卫星通信1.2微波通信特点1)通信频段的频带宽,传输信息容量大微波频段占用的频带约,而全部长波、中波和短波频段占有的频带总和不足30一套微波中继通信设备可以容纳几千甚至上万条话路同时工作,或传输电视图像信号等宽频带信号2)通信稳定、可靠当通信频率高于时工业干扰、天电干扰及太阳黑子的活动对其影响小由于微波频段频率高,这些干扰对微波通信的影响极小数字微波通信中继站能对数字信号进行再生,使数字微波通信线路噪声不逐站积累,增加了抗于扰性因此,微波通信较稳定和可靠3)接力在进行地面上的远距离通信时,针对微波视距传播特性和传输损耗随距离增加的特性,必须采用接力的方式,发端信号经若干中间站多次转发才能到达收端 4)通信灵活性较大微波中继通信采用中继方式,可以实现地面上的远距离通信,并且可以跨越沼泽、江河、高山等特殊地理环境在遭遇地震、洪水、战争等灾祸时,通信的建立及转移都较容易,这些方面比有线通信具有更大的灵活性 5)天线增益高、方向性强当天线面积给定时,天线增益与工作波长的平方成反比由于微波通信的工作波长短天线尺寸可做得很小,通常做成增益高,方向性强的面式天线这样可以降低微波发信机的输出功率,利用微波天线强的方向性使微波电磁波传播方向对准下一接收站,减少通信中的相互于扰6)投资少、建设快与其他有线通信相比,在通信容量和质量基本相同的条件下,按话路公里计算,微波中继通信线路的建设费用低,建设周期短 7)数字化对于数字微波通信系统来说,是利用微波信道传输数字信号,因为基带信号为数字信号,所以称为数字微波通信系统2.关键技术与发展趋势 2.1关键技术1)编码( ,自适应调制编码)应用于移动通信,根据信道质量来调整编码速率来获得较高的吞吐量无线通信速率较低时,信道估计会比较准确,因此能获得较好效果随着终端移动速度的增加,信道质量估计会跟不上信道的变化,在错误的信道测量下,采用的调制编码方式与实际情况不一致,会对系统容量、误码率,吞吐量等性能指标带来很大的负面影响 2)多天线技术分集接收应用于微波中继系统中,是对抗多径衰落、提高数字微波电路传输质量的重要手段在微波系统中,由于采用多状态调制方式,对频率选择性衰落更敏感,因而分集接收的应用广泛分集改善很大程度上取决于各分集支路的信号之间的不相关性为了对抗多径衰落和降雨衰落的影响,将多个特性不相同的收信信号合成或切换,得到良好信号的技术称为分集技术,在微波中继系统中,常用的分集技术有频率分集、空间分集、角度分集、路由分集应用于移动通信中,它是在发送端和接收端采用多天线传输无线信号的一种技术,属于智能天线的一种技术将用户数据分解为多个并行的数据流,在指定的宽带内由多个发射天线同时刻发射,经过无线信道后,由多个接收天线接收,并根据各个并行数据流的空间特性解调出原来的数据流技术核心是空时信号处理,即利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理技术能提高频谱利用率,在有限的无线频带下传输更高速率的数据业务与其他智能天线技术相比,天线安装和维护成本低;技术在发送端工作时可以不需要信道信息,适用于移动环境中信道估计复杂的情况3)线性功放与自动功率控制射频功率放大器是无线通信系统发射机的主要部件,其内在的非线性会使信号产生失真,并引起邻信道干扰多载波系统,如,比单载波系统对放大器的线性范围要求更高,要求更为严格的线性传输采用功率回退的传统设计方法所得的线性放大器的线性度不高,已无法满足现代无线传输系统越来越严格的线性要求放大器的线性化已成为保证其他高效的无线技术得以应用的重要前提目前射频放大器的线性化技术主要有反馈线性化、前馈线性化和预失真三种技术自动功率控制主要用于补偿功放器件特性随时间改变和无线信道衰落给信号传输带来的影响,使得信号能以合适的功率到达接收机2.2发展趋势当前,光纤通信以其巨大带宽、超低损耗和较低成本而成为干线传输的主要手段,对微波中继通信形成巨大的冲击,而移动通信技术则取得了迅速发展综合分析认为微波通信技术发展趋势主要有以下几个方面 1)向高速大容量发展数字微波中继通信将继续向更高容量发展,采用多状态的调制移动通信则凭借技术开发更快速的宽带互联技术 2)向更高频段发展根据电信主管部门的规划,3以下频段要分配给移动和个人通信,而3-10的频段也已十分拥挤许多数字微波通信设备厂家及时调整发展方向,向10以上的高频段进军 3)向高集成度、微型化方向发展采用微波单片集成、数字专用集成电路等,朝着设备体积更小、重量更轻、功耗更低的方向发展,天线也进一步朝微型化方向发展 4)向智能化、低成本方向发展采用软件无线电技术,使数字微波通信系统成为一个较为通用的平台,能够根据用户的不同要求完成各种功能3.结语光纤通信和移动通信已成为当前通信网的两大主流,形成了完整的产业链,拥有庞大的用户群微波中继系统应用于干线光纤传输的备份和补充,以及其他不适合使用光纤或卫星的场合,因而必不可少由于移动通信网络与互联网的融合,微波频段的移动通信承担了用户的大量无线宽度数据业务,得到迅速发展移动通信仍将在今后很长一段时间内保持业务的高速增长和技术的更新演变是微波通信技术发展的热点目前,微波通信技术在各个行业的应用已经很广泛,在应用中需要注意影响应用的因素,这种技术在应用中已经形成了很大的用户群,承担了大量的数据业务,发展速度非常快,在一段时间内,要保持业务的有效增长,这是微波技术发展的重点过程因此作为光纤通信的补充,微波通信在特殊地段发挥着重要的作用,未来它的前景必将十分广阔二.编程完成3的实现xn=[1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1];% 输入单极性码 yn=xn;% 输出yn初始化=0;% 计数器初始化 k=1:(xn) xn(k)==1=+1; % "1"计数器/2 == (/2) % 奇数个1时输出-1进行极性交替 yn(k)=1; yn(k)=-1;% 3编码=0; % 连零计数器初始化 yh=yn; % 输出初始化=0; % 极性标志初始化为0V=(1(yn));% V脉冲位置记录变量 B=(1(yn));% B脉冲位置记录变量 k=1:(yn)yn(k)==0=+1; % 连“0”个数计数==4 % 如果4连“0” =0; % 计数器清零 yh(k)=1*yh(k-4);% 让的最后一个0改变为与前一个非零符号相同极性的符号V(k)=yh(k); % V脉冲位置记录yh(k)== % 如果当前V符号与前一个V符号的极性相同yh(k)=-1*yh(k); % 则让当前V符号极性反转以满足V符号间相互极性反转要求yh(k-3)=yh(k); % 添加B符号与V符号同极性 B(k-3)=yh(k); % B脉冲位置记录 V(k)=yh(k); % V脉冲位置记录yh(k+1:(yn))=-1*yh(k+1:(yn));% 并让后面的非零符号从V符号开始再交替变化=yh(k); % 记录前一个V符号的极性=0; % 当前输入为“1”则连“0”计数器清零% 编码完成re=[xn'yn'yh'V'B']; % 结果输出: xn 3 V&B符号 % 3解码 =yh; % 3码输入=; % 输出初始化 =0; % 极性标志初始化k=1:(yh) (k) ~= 0==yh(k) % 如果当前码与前一个非零码的极性相同 (k-3:k)=[0 0 0 0];% 则该码判为V码并将*00V清零=(k); % 极性标志=(); % 整流=([xn'-']); % 解码的正确性检验作图(311);([0:(xn)-1]xn);([0 (xn) -2 2]); (312);([0:(xn)-1]yh);([0 (xn) -2 2]); (313);([0:(xn)-1]);([0 (xn) -2 2]);。
西安电子科技大学通信系统实验实验报告
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
有误码:
图1-15有误码的1/3FEC编码示意图
编码前的二进制序列为(MSB-->LSB):
0 0 0 10 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0
1.2
(1)差错控制原理:差错控制方法分类;差错控制编码的生成;校验和纠错的实现。
为什么要进行差错控制?
a.信道传输特性不理想,加性噪声的影响;
b.在已知信噪比情况下达到一定的比特误码率指标;
c.合理设计基带信号,选择调制解调方式,采用时域、频域均衡,使比特误码率尽可能降低。但实际上,在许多通信系统中的比特误码率并不能满足实际的需求。
附加CRC码的信息比特(MSB-->LSB):
00010000 00000000 00010000 00000000 1111111100000000 11111111 00000000
00000000 00000000 10111011 00111000
信道传输正确或产生不可检错误码!此时接收的信息比特为(MSB-->LSB):
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 01 1 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
结论:1/3 FEC码可以检验并纠正一位错码,对于两位以上错码只能检出但无法正确译码。
(4)2/3 FEC
无误码:
图1-16无误码的2/3FEC编码示意图
(3)1/3 FEC
无误码:
图1-13无误码的1/3FEC编码示意图
通信原理大作业 (2).(DOC)
通信原理大作业年级2010级班级0210**姓名学号张**专业电子信息工程学院电子工程学院西安电子科技大学2013年6月选题一:2FSK信号传输仿真一、题目要求:按照2FSK产生模型和解调模型分别产生2FSK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
2FSK信号的解调可以选用包络解调或者相干解调法。
二、2FSK信号传输介绍数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道因具有带通特性而不能直接传送基带信号。
为了使数字信号在带通系统中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
在接收端,通过解调器把带通信号还原为数字基带信号的过程称为数字解调。
移频键控(FSK)是数据通信中最常用的一种调制方式。
FSK方法简单,易于实现,并且解调不需要恢复本地载波,可以异步传输,抗噪声和抗衰落性能较强。
缺点是占用频带较宽,频带利用不够经济。
FSK主要应用于低中速数据传输,以及衰落信道和频带较宽的信道中。
三、2FSK信号传输实现方法1.调制过程FSK即Frequency Shift Key 叫做移频键控或频移键控。
调制的方法一般有两种,一种叫直接调频法,另一种叫键控法。
所谓直接调频法,就是将输入的基带脉冲去控制一个振荡器的某种参数,而达到改变振荡频率的目的。
键控法就是利用矩形脉冲序列控制的开关电路,对两个不同的独立频率源进行选通。
一般来说,键控法采用两个独立的振荡器,得到的是相位不连续的FSK信号;而且直接调频法f1,f2由同一个谐振电路产生,则得到相位连续的FSK信号。
2FSK信号便是0符号对应于载频f1,1符号对应于载频f2(与f1不同的另一个载频)的一调制波形,而f1与f2的改变是瞬间完成的。
2.解调过程2FSK的常用解调方法是采用相干解调(如下图)。
西安电子科技大学通信原理真题答案详解
西安电子科技大学 通信工程学院 考研资料第一部分 通信原理一、填空题 1. 瑞利2. 99.7kbps 【解析】香农公式3. 10 10 01 01 10 10 01 014. ()d 0.5tf K m ττ−∞∫5. 见“通信原理必背”。
6. 2DPSK ;2FSK 。
【解析】有效性最差即频带最宽。
7. 32kHz 【解析】同2007.三.4。
8. 896【解析】12×32+5129. 2【解析】0521d t ==+,∴2t =。
10. 正交频分复用二、简答题1. 见“通信原理必背”。
2. 见“通信原理必背”。
3. ①见“通信原理必背”;②1.001MHz ,0.999MHz 。
4. ①见“通信原理必背”;②存在180 相位模糊,采用2DPSK 。
5. ()()()o S t s t h t =∗,波形如图11-1,()o S t 出现最大值的时刻为T ,最大值为2TA 。
三、综合题1. (1) 见“通信原理必背”;(2)d j 0()e t H K ωω−=;(3) 125【解析】3210W i S −=×,352()2410 3.210W i n N P f −=⋅××=×,DSB 2G =,∴2125o i o iS SN N ==。
2. (1) 见“通信原理必背”;(2)T R ()()G G ωω==;(3) 32进制,107η=。
3. (1) 见“通信原理必背”;(2) 参见2004.三.5(1) (信码不一样,但原理一样)。
4. (1)H 210MHz s f f ==,每个抽样值用8个二进制数字表示,∴信息速率7810bps b R =×。
(2) 传输带宽60MHz ,频带利用率2B/Hz 9η=图 11-12225. (1)[]110100011010101001⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦H PI ;[]100101010110001011⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦G IQ 。
通信原理大作业
通信原理大作业—无线通信的发展历程以及MATLAB实现HDB3码一、无线通信的发展历程移动通信可以说从无线电通信发明之日就产生了。
1897年,M·G·马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里现代移动通信技术的发展始于上世纪20年代,大致经历了五个发展阶段。
第一阶段从上世纪20年代至40年代,为早期发展阶段。
在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。
该系统工作频率为2MHz,到40年代提高到30~40MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。
第二阶段从上世纪40年代中期至60年代初期。
在此期间内,公用移动通信业务开始问世。
1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。
当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。
美国贝尔实验室完成了人工交换系统的接续问题。
这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。
第三阶段从上世纪60年代中期至70年代中期。
在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。
德国也推出了具有相同技术水平的B网。
可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz 频段,实现了自动选频与自动接续。
第四阶段从上世纪70年代中期至80年代中期。
这是移动通信蓬勃发展时期。
1978年底,美国贝尔试验室研制成功先进的移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。
西电通信原理大作业题目
通信原理大作业1、说明在通信原理课程中,介绍了通信系统的基本理论,主要包括信道、基带传输、调制/解调方法等。
为了进一步提高和改善学生对课程基本内容的掌握,进行课程作业方法的改革的试点,设立计算机仿真大作业。
成绩将计入平时成绩。
2、要求参加的同学3~5人一组,选择1~2个题目,协作和共同完成计算机编程和仿真,写出计算机仿真报告。
推荐的计算机仿真环境为MATLAB,也可以选择其它环境。
3、大作业选题(1)信道噪声特性仿真产生信道高斯白噪声,设计信道带通滤波器对高斯白噪声进行滤波,得到窄带高斯噪声。
对信道带通滤波器的输入输出的噪声的时域、频域特性进行统计和分析,画出其时域和频域的图形。
(2)基带传输特性仿真利用理想低通滤波器作为信道,产生基带信号,仿真验证奈氏第一准则的给出的关系。
改变低通滤波器的特性,再次进行仿真,验证存在码间干扰时的基带系统输出,画出眼图进行观察。
加入信道噪声后再观察眼图。
(3)2ASK信号传输仿真按照2ASK产生模型和解调模型分别产生2ASK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
2ASK信号的解调可以选用包络解调或者相干解调法。
(4)2FSK信号传输仿真按照2FSK产生模型和解调模型分别产生2FSK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
2FSK信号的解调可以选用包络解调或者相干解调法。
(5)2PSK信号传输仿真按照2PSK产生模型和解调模型分别产生2PSK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
2PSK信号的解调选用相干解调法。
(6)2DPSK信号传输仿真按照2DPSK产生模型和解调模型分别产生2DPSK信号和高斯白噪声,经过信道传输后进行解调。
对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理大作业班级:学号:姓名:一、大作业第一题移动通信中纠错编码技术的应用和发展摘要:移动通信系统采取了多种行之有效的关键技术来提高系统抗衰落和干扰的能力,纠错编码即是其中一种。
本文主要介绍了在几代移动通信系统中所使用的不同的纠错编码,旨在阐明纠错编码技术的基本原理及其重要作用。
一、引言移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。
尤其是进几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。
虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素, 3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。
因此,人们对新的移动通信技术的研究的热情始终未减。
移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。
但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。
实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。
由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。
为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。
特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。
本文将主要关注在几代移动通信系统中所使用的不同的纠错编码技术,以展示纠错编码在现代数字通信中的重要作用。
二、纠错编码基础知识1948年,香农(Shannon)在他那篇著名的论文《通信的数学理论》中提出并证明了:对于一个信道容量为C的有扰信道,消息源产生信息的速率为R,只要R≤C,则总可以找到一种信道编码和译码方式使编码错误概率P随着码长n的增加,按指数下降到任意小的值,表示为,这里E( R )称为误差指数;若R>C,则不存在编译码方式来实现无误传输。
这一结论为信道编码指出了方向,但它仅是一个存在性定理,并未给出怎样去寻找这种性能优良的码。
近50年来,在信息技术发展和实际需要的不断推动下,人们一直在寻求实现复杂度合理的更优秀的编译码方法,去逼近Shannon理论的理想界限。
令人鼓舞的是,在这个过程中,已经取得了许多伟大的进展,从早期的分组码、代数码,到RS码,到后来的卷积码,以及今天的Turbo ,LDPC码,所能达到的性能和Shannon限间的距离被不断缩小。
这些方法也已经投入到多个领域的商用中,如卫星通信和深空通信,数据存储,数据传输,移动通信,数字音频和视频传输等。
下面,我们将着重关注移动通信系统,特别是数字移动通信系统中,纠错编码技术的应用情况。
三、移动通信中纠错编码的应用和发展如前所述,移动信道的恶劣性使接收信号展现出非常差的错误率(5-10%),迫使译码器在非常低的信噪比下工作。
另一方面,“频带”是移动通信系统宝贵而紧张的资源,尤其是在用户密集的闹市区和室内通信系统里。
为此,对编译码器的设计就提出了较高要求,驱使译码要充分用到所有已知的信号特点,如信道状态信息、级联、交织和软判决等;而且,会占用带宽的信息“冗余”必须谨慎使用。
但同时,数字电路技术的快速发展也提高了复杂度较高的纠错编码的可行性。
1.模拟移动通信系统中数字信令的BCH编码模拟蜂窝系统中,业务信道主要是传输模拟FM电话以及少量模拟信令,因此未应用数字处理技术。
而控制信道均传输数字信令,并进行了数字调制和纠错编码。
以英国系统为例,采用FSK调制,传输速率为8kb/s。
基站采用的是BCH (40,28)编码,汉明距离d =5, 具有纠正2位随机错码的能力。
之后重发5次,以提高抗衰落、抗干扰能力;移动台采用了BCH(48,36)进行纠错编码,汉明距离d =5,可纠正2个随机差错或纠正1个及检测2个差错,然后也是重复5次发送。
上述纠错编码是提高数字信令传输可靠性必需的,也是行之有效的。
2. GSM的FEC编码GSM系统仍是目前使用最广泛的移动通信系统,也是纠错编码最重要的应用之一。
GSM标准的语音和数据业务使用多种FEC编码,包括BCH编码,FIRE码,CRC码(错误检测,码同步和接入,数据信道)。
这些码都作为级联码的外码,我们这里主要侧重于级联码的内码方案,最初用于全速率语音业务信道。
语音编码后的13kb/s信息,一个时隙20ms包括260bit,分成三个敏感类:78bit对错误不敏感类不加编码保护;50bit特别敏感类加3bit奇偶校验,4bit格图终结尾比特,与其余的132bit,一共189bit用(2,1,5)的非系统卷积码进行编码。
所以一共有378bit,加上未编码78bit,一共456bit,每20ms,总的速率为22.8。
再加上相邻另外1个语音编码块的456bit一起,每组各占57bit*2进行(8*114)交织,分布到TDMA的8个突发中,在移动信道中使用GMSK调制。
这些突发里还包括2bit业务/控制标识比特 , 6bit尾比特,8.25bit保护比特,还有26bit 训练序列,提供给接收端的使用Viterbi算法的MMSE均衡器输出每块456软或硬判决值。
如果按GSM标准规定使用了跳频,那么我们可合理将信道视为统计独立的Rayleigh信道。
这种情况下,如果使用CSI和软值,r=1/2的编码可得到3.1dB 的增益。
3.窄带CDMA系统(IS-95)中的FEC编码CDMA系统是个自干扰的系统,因此FEC编码在对抗多用户干扰(MUI)和多径衰落非常重要。
CDMA(IS-95)系统的纠错编码是分别按反向链路和前向链路来进行设计的,主要包括卷积编码、交织、CRC校验等。
现分述如下:前向链路中除导频信道外,同步信道、寻呼信道和前向业务信道中的信息在传输前都要先进行(2,1,9)的卷积编码,卷积码的生成函数为go=(111101011)和g1=(101110001);接着,同步信道的符号流要经过1次重发,然后进行16*8的块交织;业务和寻呼信道的速率为4.8kbps/2.4kbps/1.2kbps符号流,分别进行1/3/7次重发(9.6kbps数据流不必重发),然后再进行24*16的块交织。
反向链路包括业务信道和接入信道,考虑到移动台的信号传播环境,增加编码长度,对信息进行(3,1,9)的卷积码。
其生成函数为:g0=(101101111),g1=(110110011)和g2=(111001001)。
然后,接入信道经过一次重发后,进行32*18交织;反向业务信道以同前向一样的方式进行重发,再进行32*18的交织。
如果整体考虑纠错编码和扩频调制,则可把扩频看作内码,而信道编码视作外码。
以后向链路为例,编码交织后是64阶正交Walsh函数扩频,然后是被周期为2 -1的长码直接序列扩频。
接收端经相干或不相干Rake接受机进行分集接收后,系统码字(信息比特)就可以用相关的最大值或相关矢量的最大值表示。
接着送到解交织器和外部SOVA Viterbi译码器。
4.3G中的Turbo码3G与2G最重要的不同是要提供更高速率、更多形式的数据业务,所以对其中的纠错编码体制提出了更高的要求(数据业务的差错率要小于10 )。
语音和短消息等业务仍然采用与GSM 和CDMA相似的卷积码,而对数据业务3GPP协议中已经确定Turbo码为其纠错编码方案。
Turbo码又叫并行级联卷积码,由Berrou,Glavieux 和Thtimajshima 1993年首次提出。
Turbo码编码器通过交织器把两个递归系统卷积码并行级联,译码器在两个分量码译码器之间进行迭代译码,译码之间传递去掉正反馈的外信息,整个译码过程类似涡轮(turbo)工作,所以又形象的称为Turbo码。
编码器的输出端包括信息位和两个校验位,这样代表编码速率1/3。
轮流删除两个校验位就可以得到码率是1/2的码。
用不同的校验位生成器或者不同的删除方式就可以得到各种不同速率的Turbo码。
伪随机交织器对信息系列进入第二个校验位生成器之前进行了重排列。
迭代译码是Turbo码性能优异的一个关键因素,如上图所示,DEC1和DEC2分量译码器分别采用MAP或者SOVA算法。
MAP(最大后验概率)算法比Viterbi算法在复杂度上多3倍,对于传统卷积码只有0.5dB 的增益,但是在Turbo码译码器中,它对每一比特给出了最大的MAP估计,这一点在低SNR情况下的迭代译码是至关重要的因素。
一般在应用中,都采用对数化的MAP算法,即LOG-MAP算法,将大部分的乘法运算转化为加法运算,既减小了运算复杂度,又便于硬件实现。
参考文献:姚力,杨平,王力民;无线数传中纠错编码的实现[J];实用测试技术;2012年06期。
贺玉成,杨莉,王新梅;纠错码性能仿真中的误码率估计[J];通信学报;2001年09期。
二、大作业第二题:HDB3码的matlab实现Matlab 代码如下:function y=hdb3(x)n=length(x);last_V=-1;last_one=-1;y=zeros(size(x));count=0;for i=1:nif x(i)==1y(i)=-last_one;last_one=y(i);count=0;elsecount=count+1;if count==4count=0;y(i)=-last_V;last_V=y(i);if y(i)*last_one==-1y(i-3)=y(i);endlast_one=y(i);endendendfigure(1);subplot(2,1,1);a=x;i=0:n-1;stairs(i,a);axis([0,n,0,2]);title('原码型');xlabel('x');ylabel('y');grid onsubplot(2,1,2);a=y;i=0:n-1;stairs(i,a);axis([0,n,-2,2]);title('HDB3码型')xlabel('x');ylabel('y');grid onclcclear all;close all;s=[1,1,0,1,0,0,1,0,0,0,0,0,0,1,1,1];g=hdb3(s)运行结果如下:g =Columns 1 through 131 -1 0 1 0 0 -1 1 0 0 1 0 0Columns 14 through 16-1 1 -1。