三角形全等之截长补短(整理)
初二数学 全全等三角形截长补短知识归纳总结附解析
初二数学 全全等三角形截长补短知识归纳总结附解析一、全等三角形截长补短1.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.2.如图,在ABC 中,AB AC =,30ABC ∠<︒,D 是边BC 的中点,以AC 为边作等边三角形ACE ,且ACE △与ABC 在直线AC 的异侧,连接BE 交DA 的延长线于点F ,连接FC 交AE 于点M .(1)求证:FB FC =;(2)求证:FEA FCA ∠=∠;(3)若8FE =,2AD =,求AF 的长.3.阅读题:如图1,OM 平分AOB ∠,以O 为圆心任意长为半径画弧,交射线OA ,OB 于C ,D 两点,在射线OM 上任取一点E (点O 除外),连接CE ,DE ,可证OCE ODE △△≌,请你参考这个作全等的方法,解答下列问题:(1)如图2,在ABC 中,2A B ∠=∠,CD 平分ACB ∠交AB 于点D ,试判断BC 与AC 、AD 之间的数量关系;(2)如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,20AB =,8AD =,求ABC 的面积.4.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.5.如图,△ABC 中,AB=AC ,∠EAF=12∠BAC ,BF ⊥AE 于E 交AF 于点F ,连结 CF .(1)如图 1 所示,当∠EAF 在∠BAC 内部时,求证:EF =BE +CF .(2)如图 2 所示,当∠EAF 的边 AE 、AF 分别在∠BAC 外部、内部时,求证:CF =BF +2BE .6.如图,四边形ABCD 为矩形,F 为对角线BD 上一点,过点F 作FE BD ⊥交AD 于点H ,交BA 的延长线于点E ,连接AF ,当FD FE =时,求证:2AH AB AF +=.7.如图,在正方形ABCD 中,点E 、F 均为中点,连接AF 、DE 交于点P ,连接PC ,证明:2PE PF PC +=.8.如图,在正方形ABCD 中,点F 是CD 的中点,点E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+.9.已知等腰ABC ∆中,AB AC =,点D 在直线AB 上,//DE BC ,交直线AC 于点E ,且BD BC =,CH AB ⊥,垂足为H .(1)当点D 在线段AB 上时,如图1,求证BH DE DH +=;(2)当点D 在线段BA 的延长线上时,如图2;当点D 在线段AB 延长线时,如图3,线段BH ,DE ,DH 又有怎样的数量关系?请直接写出你的猜想,不需要证明. 10.在平行四边形ABCD 中,DE 平分ADC ∠交BC 于点E ,连接AE .点O 是DE 的中点,连接CO 并延长交AD 于点F ,在CF 上取点G ,连接AG .(1)若4tan 3B =,5AB =,6BC =,求ABE △的周长. (2)若60B EAG ∠=∠=︒,求证:AF CG =.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D作DM⊥AB于M,由 CA=CB,90ACB=︒,得ABC是等腰直角三角形,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;(2)如图2,设∠ACB=α,则∠CAB=∠CBA=90°−12α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA =40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB 上截取AK=AC,连接DK,根据全等三角形的性质得到∠ACB=∠AKD=100°,CD=DK,根据等腰三角形的性质得到DH=BH,于是得到结论.【详解】(1)如图1,过D作DM⊥AB于M,∴在ABC中,AC BC=,∴∠ABC=45°,∵∠ACB=90°,AD是角平分线,∴CD=MD,∴∠BDM=∠ABC=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,CD MD AD AD ⎧⎨⎩==, ∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== ∴△CAD ≌△KAD (SAS ),∴∠ACD =∠AKD =α,∴∠BKD =180°−α,∵BK =BD , ∴∠BDK =180°−α,∴在△BDK 中,180°−α+180°−α+90°−12α=180°, ∴α=108°,∴∠ACB =108°;(3)如图3,在AB 上截取AH =AD ,连接DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD =∠CAD =20°,∴∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,由(1)得,△CAD ≌△KAD ,∴∠ACB =∠AKD =100°,CD =DK ,∴∠DKH =80°=∠DHK ,∴DK =DH =CD ,∵∠CBA =40°,∴∠BDH =∠DHK -∠CBA =40°,∴DH =BH ,∴BH =CD ,∵AB =AH +BH ,∴AB =AD +CD .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.2.(1)见解析;(2)见解析;(3)4【分析】(1)利用AD 所在直线是BC 的垂直平分线,点F 在直线AD 上即可得出结论. (2)由ACE △是等边三角形,得AC=AE=AB 推得ABF FEA ∠=∠.易证ABF ≌ACF (SSS ),ABF FCA FEA ∠=∠=∠即可,(3)延长AD 至点P 处,使DP AD ,连接CP .先证直角三角形ADC ≌PDC△(SAS ),推出AC CP CE ==,ACD PCD ∠=∠.再证60EFC EAC ∠=∠=︒.求出,FBD 30FCD ∠=∠=︒.用ACD ∠表示30ECF ACD ∠=︒+∠.而30FCP ACD ∠=︒+∠,得ECF FCP ∠=∠.可证ECF △≌PCF (SAS ),可推得AF EF AP =-即可.【详解】(1)证明:∵AB AC =,D 是边BC 的中点,∴AD 所在直线是BC 的垂直平分线,又∵点F 在直线AD 上∴FB FC =.(2)证明:∵ACE △是等边三角形,∴60EAC ACE ∠=∠=︒,AC AE =.∵AB AC =,∴AB AE =,∴ABF FEA ∠=∠.由(1)可知,FB FC =,又∵AF AF =,AB AC =,∴ABF ≌ACF (SSS ),∴ABF FCA ∠=∠,∴FEA FCA ∠=∠. (3)解:如图,延长AD 至点P 处,使DP AD ,连接CP .∵AB AC =,D 是边BC 的中点,∴90ADC PDC ∠=∠=︒.∵ACE △是等边三角形,∴AC CE =,60EAC ∠=︒.∵AD DP =,ADC PDC ∠=∠,CD CD =,∴ADC ≌PDC △(SAS ),∴AC CP CE ==,ACD PCD ∠=∠.由(2)可知,FEA FCA ∠=∠,∵AMC FME ∠=∠,∴60EFC EAC ∠=∠=︒.由(1)可知,BF CF =, ∴()18060260BFD CFD ∠=∠=︒-︒÷=︒,∴906030FCD ∠=︒-︒=︒.∵FCA FCD ACD ∠=∠-∠,∴30FCA ACD ∠=︒-∠.∵ECF ECA FCA ∠=∠-∠,∴()303030ECF ECA ACD ECA ACD ACD ∠=∠-︒-∠=∠-︒+∠=︒+∠. ∵FCP FCD PCD ∠=∠+∠,∴30FCP ACD ∠=︒+∠,∴ECF FCP ∠=∠.∵FC FC =,CE CP =,∴ECF △≌PCF (SAS ),∴FE FP =,∴2FE FA AP AF AD =+=+,∴2822=4AF EF AD =-=-⨯.【点睛】本题考查线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,掌握线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,会利用引辅助线构造三角形全等转化线与线关系,角与角关系来解决问题.3.(1)BC=AC+AD ;(2)△ABC 的面积为80.【分析】(1)在CB 上截取CE=CA ,则由题意可得AD=DE ,∠CED=∠A ,再结合∠A=2∠B 可得DE=BE ,从而得到BC=AD+AC ;(2)在AB 上截取AE=AD ,连结CE ,过C 作CF ⊥AB 于F 点,由题意可得EC=BC ,从而得到EF 的长度,再由勾股定理根据EC 、EF 的长度求得CF 的长度,最后根据面积公式可以得到解答 .【详解】解:(1)如图,在CB 上截取CE=CA ,则由题意得:△CAD ≌△CED ,∴AD=DE ,∠CED=∠A ,∵∠A=2∠B ,∴∠CED=2∠B ,又∠CED=∠B+∠EDB ,∴∠B+∠EDB=2∠B ,∴∠EDB=∠B ,∴DE=BE ,∴BC=BE+CE=DE+CE=AD+AC ;(2)如图,在AB 上截取AE=AD ,连结CE ,过C 作CF ⊥AB 于F 点,∴由题意可得:△CDA ≌△CEA ,∴EC=CD=BC=10,AE=AD=8,∵CF ⊥AB ,∴EF=FB=208622AB AE --==,∴8CF ==, ∴112088022ABC S AB CF =⨯=⨯⨯=. 【点睛】本题考查三角形全等的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的判定和性质、勾股定理是解题关键.4.(1)见解析;(2)EFAE BF =+;(3)222MN EN FM =+,见解析 【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=, 又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+. (3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠,CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB ∠=∠,∴CFM MCF ∠=∠,∴MC MF =,同理可证:CN EN =,∴在Rt MCN △中,由勾股定理得:22222MN CN CM EN FM =+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键. 5.(1)见解析;(2)见解析【分析】(1)在EF 上截取EH BE =,由“SAS ”可证ACF AHF ∆≅∆,可得CF HF =,可得结论;(2)在BE 的延长线上截取EN BE =,连接AN ,由“SAS ”可证ACF ANF ∆≅∆,可得CF NF =,可得结论.【详解】解:证明:(1)如图,在EF 上截取EH BE =,连接AH ,EB EH =,AE BF ⊥,AB AH ∴=,AB AH =,AE BH ⊥,BAE EAH ∴∠=∠,AB AC =,AC AH ∴=,12EAF BAC ∠==∠ BAE CAF EAF ∴∠+∠=∠,BAE CAF EAH FAH ∴∠+∠=∠+∠,CAF HAF ∴∠=∠,在ACF ∆和AHF ∆中,AC AH CAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ACF AHF SAS ∴∆≅∆,CF HF ∴=,EF EH HF BE CF ∴=+=+;(2)如图,在BE 的延长线上截取EN BE =,连接AN ,AE BF ⊥,BE EN =,AB AC =,AN AB AC ∴==,AN AB =,AE BN ⊥,BAE NAE ∴∠=∠,12EAF BAC ∠==∠ 1(2)2EAF NAE BAC NAE ∴∠+∠=∠+∠ 12FAN CAN ∴∠=∠, FAN CAF ∴∠=∠,在ACF ∆和ANF ∆中,AC AN CAF NAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ACF ANF SAS ∴∆≅∆,CF NF ∴=,2CF BF BE ∴=+.【点睛】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键. 6.见解析【分析】过点F 作FN AF ⊥交AB 的延长线于点N ,先证明()EFN DFA ASA △≌△,可得N DAF ∠=∠,FN AF =,从而可以证明()AHF NBF ASA △≌△,可证得AH BN =,即可得证2AH AB +=.【详解】证明:如图,过点F 作FN AF ⊥交AB 的延长线于点N ,EF DF ⊥,EA AD ⊥,90E ABD ∴∠+∠=︒,90ADF ABD ∠+∠=︒,E ADF ∴∠=∠,90AFN EFD ∠=∠=︒,AFD EFN ∴∠=∠,在EFN 和DFA 中,,,,EFN DFA EF DF E ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EFN DFA ASA ∴△≌△,N DAF ∴∠=∠,FN AF =,又90AFN ∠=︒, 2AN AF ∴=,90AFN EFB ∠=∠=︒,AFH BFN ∴∠=∠,在AHF △和NBF 中,,,,AFH NFB AF NF HAF N ∠=∠⎧⎪=⎨⎪∠=∠⎩()AHF NBF ASA ∴△≌△,AH BN ∴=,2AH AB BN AB AN AF ∴+=+==.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键. 7.见解析【分析】延长DE 至N ,使得EN PF =,连接CN ,先证明()ADF DCE SAS △≌△,可得AFD DEC ∠=∠,即CFP CEN ∠=∠,再通过证明()CEN CFP SAS △≌△,可得CN CP =,ECN PCF ∠=∠,即可证明NCP 是等腰直角三角形,即2PN PE NE PC =+=,从而得证2PE PF PC +=.【详解】证明:如图,延长DE 至N ,使得EN PF =,连接CN ,在正方形ABCD 中, E 、F 分别是BC 、CD 的中点,CE DF ∴=,在ADF 和DCE 中,,90,,AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩()ADF DCE SAS ∴△≌△,AFD DEC ∴∠=∠,CFP CEN ∴∠=∠,在CEN 和CFP 中,,,,CE CF CEN CFP EN PF =⎧⎪∠=∠⎨⎪=⎩()CEN CFP SAS ∴△≌△,CN CP ∴=,ECN PCF ∠=∠,90PCF BCP ∠+∠=︒,90ECN BCP NCP ∴∠+∠=∠=︒,NCP ∴△是等腰直角三角形, 2PN PE NE PC ∴=+=.即2PE PF PC +=.【点睛】本题考查了正方形的性质和全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键.8.见解析【分析】过F 作FH ⊥AE 于H ,得出FH=FD ,然后证明△FHE ≌△FCE ,再通过等价转换可证得AE=EC+CD .【详解】证明:过F 作FH ⊥AE 于H ,如图,∵AF 平分∠DAE ,∠D=90°,FH ⊥AE ,∴∠DAF=∠EAF ,FH=FD ,又∵DF=FC=FH ,FE 为公共边,∴△FHE ≌△FCE (HL ).∴HE=CE .∵AE=AH+HE ,AH=AD=CD ,HE=CE ,∴AE=EC+CD .【点睛】本题考查角平分线的性质,角平分线上的点到角的两边距离相等,也考查了等量代换的思想,属于比较典型的题目.9.(1)见解析;(2)图2:BH DE DH -=;图3:DE BH DH -=【分析】(1)在线段AH 上截取HM=BH ,连接CM ,CD ,证明△DMC ≌△DEC ,即可可得DE=DM 则结论可得;(2)当点D 在线段BA 延长线上时,在BA 的延长线上截取MH=BH ,连接CM ,DC ,由题意可证△BHC ≌△CHM ,可得∠B=∠CMB ,由题意可得∠B=∠AED ,即可证△DMC ≌△DEC ,可得DE=DM ,则可得DH=BH-DE ;当点D 在线段AB 延长线上时,在线段AB 上截取BH=HM ,连接CM ,CD ,由题意可证△BHC ≌△CHM ,可得∠B=∠CMB ,由题意可得∠B=∠AED ,即可证△DMC ≌△DEC ,可得DE=DM ,则可得DE=DH+BH ..【详解】解:(1)证明:在AH 上截取HM BH =,连接CM ,CD .∵CH AB ⊥,HM BH =∴CM BC =.∴B CMB ∠=∠.∵AB AC =∴B ACB ∠=∠.∵//DE BC ,∴ADE B AED ACB ∠=∠=∠=∠,CDE BCD ∠=∠.∴AED BMC ∠=∠.∴DEC DMC ∠=∠.∵BD BC =,∴BDC BCD EDC ∠=∠=∠.∵CD CD =,∴ΔΔCDM CDE ≅.∴DM DE =.∴DE BH DM HM DH +=+=.(2)当点D 在线段BA 延长线上时,DH=BH-DE如图:在BA 的延长线上截取MH=BH ,连接CM ,DC∵AB=AC∠ABC=∠ACB ,∵BD=BC,∴∠BDC=∠DCB∵DE∥BC∠E=∠ACB=∠B=∠EDB∵CH=CH,BH=MH,∠BHC=∠CHM∴△BHC≌△CHM∴∠B=∠M∴∠E=∠M∵∠MDC=∠B+∠DCB,∠EDC=∠BDC+∠EDB ∴∠MDC=∠EDC又∵∠E=∠M,DC=CD∴△DEC≌△DMC∴DE=DM∵DH=MH-DM∴DH=BH-DE当点D在线段AB延长线上时,DE=BH+DH如图在线段AB上截取BH=HM,连接CM,CDBH=HM,CH=CH,∠CHB=∠MHC=90°∴△MHC≌△BHC∴∠ABC=∠BMC∵AB=AC∴∠ABC=∠ACB,∵BD=BC∴∠BDC=∠BCD∵BC∥DE∴∠BCD=∠CDE,∠ACB=∠AED∴∠BDC=∠CDE,∠BMC=∠AED,且CD=CD ∴△CDM≌△CDE∴DE=DM∵DM=DH+HM∴DE=DH+BH.【点睛】本题考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定.添加恰当的辅助线证全等是本题的关键.10.(1)256+;(2)见解析【分析】(1)构建直角三角形,得出AH 、BH ,然后利用角平分线的性质以及平行四边形的性质,进行等量互换,即可得解;(2)首先在AB 上截取BQ BE =,然后判定DOF EOC ≌△△和AEQ GAF ≌△△,进行等量转换,即可得证.【详解】(1)过点A 作AH BC ⊥于点H ,如图所示:4tan 3B ∠=,5AB =, 4AH ∴=,3BH =DE 平分ADC ∠,12∠∠∴=,AD BC ∵∥,13∠∠∴=23∴∠=∠,5DC EC ∴==,1BE ∴=,2EH ∴=,25AE ∴=256ABE C ∴=+△;(2)在AB 上截取BQ BE =,连接EQ ,如图所示:CD CE =,CO DE ⊥,OD DE ∴=①AD BC ∵∥,DFO ECO ∴∠=∠,ADE CED ∠=∠②③由①②③得:DOF EOC ≌△△,DF CE ∴=,又AD BC =,AD DF BC CE ∴-=-,即AF BE =60EAG ∠=︒,60BAE FAG ∴∠+∠=︒,60DFC ∠=︒,60FGA FAG ∴∠+∠=︒,CD=CFBAE FGA ∴∠=∠④又120FAG AQE ∠=∠=︒,EQ AF =⑤⑥由④⑤⑥得:AEQ GAF ≌△△,AQ FG ∴=,又AB CF =,AB AQ CF FG ∴-=-,即BQ CG =,AF CG ∴=.【点睛】此题主要考查利用三角函数值构建直角三角形以及全等三角形的判定与性质,熟练掌握,即可解题.。
八上数学全等三角形做辅助线知识点(自己整理)
数学知识点:1.截长补短法:当题目中出现两条线段之和或两条线段之差等于第三边时,往往联想到截长或补短。
所谓截长,就是指将长的线段截去一段和某条线端相等。
所谓补短,就是将某条较短线段加长使其和长线段相等。
经验:无论截长还是补短,必能推出两个三角形全等。
(其他:当三条线段中有两条平行时,一般将两条线段平移到一条线上。
)2.照猫画虎:(1)在构造三角形过程中,常常把某一三角形固定看做猫,在图形中画一个与它全等的三角形,叫做虎,及照猫画虎。
(2)在实战中,常会遇见一类特殊的图形,采用的方法是把胖子变瘦子或把瘦子变胖子,作为照猫画虎的经典图例。
经常做等腰线来画图。
(3)书面语言叫做割补法。
(其他:这类题目经常做互补的两个角中锐角的等角线或钝角的补角的等角线。
)3.角分线妙用:当题目中出现角分线时,一般可联想到两种方法A.做双垂B.做翻折。
(其他:(1)当出现SSA图例时,不能直接用,可通过做双垂论证。
(2)内对角互补的四边形一般做双垂线或补交线。
)4.旋转90°:(1)当图形中出现具有公共顶点的两个等腰直角三角形时,可必出现一对旋转90°的全等三角形。
(2)当题目中出现两条线段a,b有a⊥b且a=b时,可联想到构造旋转90°的全等三角形。
(3)当图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点旋转到另一位置。
(如等腰直角三角形一般旋转90°,等边三角形旋转60°。
)(其他:1)几何问题中当论证关系时一般考虑两方面A.数量关系B.位置关系。
2)旋转90°的全等三角形的特征是:对应边相等且夹角90°。
3)等腰直角三角形底边上的高等于底边上的一半而一般的三角形没有这个条件(见下图)。
)AB=AC AB=AC(图画的不像),AD=½BC=BD=CD。
5.旋转60°:当图形中出现具有公共顶点的两个等腰三角形时,一般可得到两个旋转角为α的全等三角形,特别的,当出现两个等边三角形时,旋转角α=60°。
三角形全等之截长补短(习题及答案)
三角形全等之截长补短(习题)例题示范例 1:如图,在四边形 ABCD 中, AD∥BC,BD⊥CD 且 BD=CD,∠ DBC=45°.过点 C 作CE⊥ AB 于 E,交对角线 BD 于 F,连结 AF.求证: CF=AB+AF.A DEFB C【思路剖析】题目中出现了线段的和差倍分(所求为一条线段是此外两条线段之和),因此考虑截长补短.① 考虑截长的方法,如下图:A DEFHB C在线段 CF 上截取 CH=AB,连结 DH,只要证明 AF=HF 即可.联合题目条件,先证明△ABD≌△HCD,再证明△ADF≌△HDF ,进而获得 AF=HF ,证明建立.② 考虑补短的方法,如下图:HA DEFB C延伸 BA 交 CD 的延伸线于点 H,只要证明 BH=CF, AH=AF 即可.可联合题目条件,先证明△ CDF ≌△ BDH ,再证明△ ADF ≌△ ADH ,进而获得BH=CF,AH=AF,证明建立.【过程书写】(截长的方法)在线段 CF 上截取 CH=AB,连结 DH.A DEFHB C∵BD⊥CD,BE⊥CE∴∠ BEF=∠ FDC=90°∴∠ EBF+∠ EFB=90°∠FCD+∠DFC=90°∵∠ EFB=∠ DFC∴∠ EBF=∠ FCD在△ ABD 和△ HCD 中,AB HCABD HCDBD CD∴△ ABD≌△ HCD ( SAS)∴AD=HD ,∠ ADB=∠ HDC∵AD∥BC∴∠ ADB=∠DBC=45°∴∠ HDC=45°∴∠ HDF =∠BDC- ∠ HDC=45°∴∠ ADB=∠HDF在△ ADF 和△ HDF 中,AD HDADF HDFDF DF∴△ ADF ≌△ HDF (SAS)∴AF=HF∴CF=CH+HF=AB+AF稳固练习1.如图,在△ ABC 中,∠ BAC=60°,∠ ABC=80°,AD 是∠ BAC 的均分线.求证: AC=AB+BD.AAB D CB D CC2.如图, AC 均分∠ BAD, CE⊥ AB 于 E,∠B+∠D=180°.求证: AE=AD+BE.DA E BCDA E B3.如图,在△ ABC 中,∠ A=100°,∠ABC=40°,BD 是∠ ABC 的均分线,延伸 BD 至 E,使 DE=AD,连结 EC.求证: BC=AB+CE.AEDB CAEDB C。
全等三角形之截长补短法
全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。
(精品)全等三角形——截长补短法
D C B A 全等三角形——截长补短法一、知识梳理:截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……二、典型例题: 例1、如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.及时练习:如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD .例2、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.NEB M A DMDCBA DOECB A及时练习:如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .求证:AE =BC +CE .及时练习:如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C .2k h+ D . h例4、以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NM DCB A ED CBAPQCBA及时练习:如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.三、课堂练习:1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。
三角形全等中的截长补短
截长补短知识目标知识导航如图:要证AB=CD+EF,有以下辅助线的说法B一、【截长】①在AB上截取AH=CD,只需证明BH=EF②在AB上截取AH=EF,只需证明BH=CD③在BA一截取BH=CD,只需证明AH=EF④在BA上截取BH=EF,只需证明AH=CD二、【补短】①延长CD到H使得DH=EF,只需证明CH=AB②延长CD到H使得CH=AB,只需证明DH=EF③延长DC到H使得CH=EF,只需证明DH=AB④延长DC到H使得DH=AB,只需证明CH=EF⑤延长EF到H使得FH=CD,只需证明EH=AB⑥延长EF到H使得EH=AB,只需证明FH=CD⑦延长FE到H使得EH=CD,只需证明FH=AB⑧延长FE到H使得FH=AB,只需证明EH=CD模块一截长补短基本题型题型一“垂直关系”与截长补短例1如图,在△ABC中,∠B=2∠C,AD⊥BC于D,求证:CD=BD+ABA练习如图,△ABC 中,∠BAC =120°,AD ⊥BC 于D ,且AB +BD =DC ,求∠C 的度数.DCBA例2已知等腰△ABC ,AB =AC ,E 是AC 上一点,D 是AB 延长线上一点,且CE =BD ,ED 交BC 于F ,EG ⊥BC 于G ,求证:FG =BF +CG .GFEDCB A练习如图,在四边形ABCD 中,∠A =∠B =∠C =∠D =90°,AB =BC =CD =AD ,若E 是BC 上一点,AF 平分∠EAD ,求证:BE +DF =AE .FEDCBA题型二 角平分线与“截长补短” 例3如图,BD 是△ABC 的角平分线,AB =AC (1)若∠BAC =90°,求证:BC =AB +ADDCBA(2)若∠BAC =108°,求证:BC =AB +CDDCBA(3)若∠BAC =100°,求证:BC =BD +ADDCBA练习如图,BD 是△ABC 的角平分线,AB =AC (1)若BC =AB +AD ,求∠BAC 的度数ABCD(2)若BC =AB +CD ,求∠BAC 的度数ABCD题型三 “等边三角形”与截长补短 例4已知△ABC 为等边三角形,D 是形外一点,若∠ADB =60°,求证:AD +CD =BD .DCBA练习如图,△ABC 是等边三角形,∠ADC =120°,求证:BD =AD +CD .DCBA例5如图,F 是等边△ABC 的边AC 的中点,D 在边BC 上,△DFE 是等边三角形,ED 的延长线交AB 于H ,求证:CF +CE =CD .H FEDCBA练习已知如图,△ABC为等边三角形,AE=AC,BE交AC于D,AF平分∠CAE交BE于F,求证:AF+EF =BF.F EDCBA题型四“线段和相等”与截长补短在△ABC和△A′B′C′中,若AB+AC=A′B′+A′C′,BC=B′C′,∠B=∠B′,求证:△ABC≌△A′B′C′.练习已知△ABC,∠BAC=60°,∠ABC=80°,∠A,∠B的平分线交BC,CA于P,Q,求证:AB+BP=AQ+BQ.Q PCB A模块二 截长补短综合应用例7如图,在△ABC 中,∠CAB =∠CBA =45°,CA =CB ,点E 为BC 的中点,CN ⊥AE 交AB 于N ,连EN ,求证:AE =CN +EN .ENCBA例8如图,等腰Rt △ABC 中,∠BAC =90°,AB =AC ,△ABC 的内部有一条过B 点的射线,过A 点和C 点分别作这条射线的垂线,垂足分别为M ,N ,写出BN --CN 与AM 之间的数量关系,并证明你的结论.第4讲 本讲课后作业A 基础巩固1.如图,已知∠P AB +∠ABC =180°,∠P AB 的平分线与∠CBA 的平分线相交于点E ,连接CE 并延长交AP 于D ,求证:AD +BC =AB .PED CBA2.已知△ABC 中,AC =BC ,AD 平分∠BAC 交BC 于D ,点E 为AB 上一点,且∠EDB =∠B , (1)如图,若∠C =90°,求证:AB =AC +CDEDCBA(2)如图,若∠C =100°,求证:AB =AD +CDDCBA3.如图,四边形ABCD 的对角线AC ,BD 交于点p ,过点P 作直线交AD 于点E ,交BC 于点F ,若PE =PF ,且AP +AE =CP +CF ,求证:P A +PC .PFE D CBA4.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AO 平分∠BAC ,交CD 于O ,E 为AB 上一点,OE ∥BC ,求证:OD +OE =CD .OED CBA5.如图,在四边形ABCD 中,∠A =∠B =∠C =∠D =90°,AB =BC =CD =AD ,若F 是CD 的中点,E 是BC 边上一点,且AF 平分∠DAE ,求证:AE =EC +CD .FEDCBAB 综合训练6.已知△ABC 与△ADE 均为等边三角形,点A ,E 在BC 的同侧(1)如图1,点D 在BC 边上,写出线段AC ,CD ,CE 之间的数量关系,并证明图1EDCBA(2)如图2,点D 在BC 边上的延长线上,其它条件不变,写出线段AC ,CD ,CE 之间的数量关系,并证明图2EDCBA数学故事抛硬币的概率硬币除了可以买东西,也可以用来解决各种争端,据说,遇到不可调解的分岐的时候,为了作出决定,人们的首选是猜拳,其次是抛硬币。
全等三角形-截长补短法
全等三角形-截长补短法全等三角形的截长补短法,这可是初中数学里的一个重要“法宝”。
咱先来说说啥是截长补短法。
简单来讲,就是遇到证明线段之间关系的问题时,如果直接证明有困难,那就通过截取或者延长某条线段,让它们凑成新的相等线段,从而达到证明全等三角形的目的。
给大家举个例子啊。
就说有这么一道题,在三角形 ABC 中,AB >AC ,AD 是角平分线。
让咱们证明 AB AC > BD DC 。
这时候,咱们就可以用截长补短法。
咱们先截长。
在 AB 上截取 AE = AC ,连接 DE 。
因为 AD 是角平分线,所以角 BAD =角 CAD 。
又因为 AD 是公共边,AE = AC ,根据边角边定理,三角形 AED 就全等于三角形 ACD 啦。
这样一来,DC = DE 。
那在三角形 BDE 中,因为 BE = AB AE ,AE = AC ,所以 BE =AB AC 。
又因为 BD DE < BE ,而 DE = DC ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。
再说说补短。
延长 AC 到 F ,使 AF = AB ,连接 DF 。
同样因为AD 是角平分线,所以角 BAD =角 CAD 。
还有公共边 AD ,根据边角边定理,三角形 ABD 就全等于三角形 AFD 。
这样 BD = DF 。
在三角形 CDF 中,CF = AF AC ,AF = AB ,所以 CF = AB AC 。
又因为 DF DC < CF ,DF = BD ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。
还记得我上学那会,刚开始学这截长补短法,那真是一头雾水。
老师在讲台上讲得眉飞色舞,我在下面听得云里雾里。
后来,老师布置了一道作业题,我愣是想了半天也没做出来。
晚上回到家,我坐在台灯下,把教材翻了又翻,笔记看了又看,还是没啥头绪。
我心里那个急啊,感觉自己像个迷路的小羊羔,怎么也找不到走出这片知识迷雾的路。
初中数学全全等三角形截长补短知识归纳总结附解析
初中数学全全等三角形截长补短知识归纳总结附解析一、全等三角形截长补短1.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是.(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,∠EAF=12请给出证明;若不成立,请说明理由.2.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC=60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC= 60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH =120°,且AF=HF,∠HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.3.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.4.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF . (1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.5.问题提出,如图1所示,等边△ABC 内接于⊙O ,点P 是AB 上的任意一点,连结PA ,PB ,PC .线段PA 、PB 、PC 满足怎样的数量关系?(尝试解决)为了解决这个问题,小明给出这样种解题思路:发现存在条件CA=CB ,∠ACB=60°,从而将CP 绕点逆时针旋转60°交PB 延长线于点M ,从而证明△PAC ≌△MBC ,请你完成余下思考,并直接写出答案:PA 、PB 、PC 的数量关系是 ; (自主探索)如图2所示,把原问题中的“等边△ABC”改成“正方形ABCD”,其余条件不变,①PC 与PA ,PB 有怎样的数量关系?请说明理由:②PC+PD 与PA ,PB 的数量关系是 .(直接写出结果)(灵活应用)把原问题中的“等边△ABC”改成“正五边形ABCDE”,其余条件不变,则PC+PD+PE 与PA+PB 的数量关系是 .(直接写出结果)6.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).7.如图,在正方形ABCD 中,点E 、F 均为中点,连接AF 、DE 交于点P ,连接PC ,证明:2PE PF PC +=.8.如图,在等边△ABC 中,BD =CE ,连接AD 、BE 交于点F . (1)求∠AFE 的度数; (2)求证:AC•DF =BD•BF ;(3)连接FC ,若CF ⊥AD 时,求证:BD =12DC .9.如图1,在正方形ABCD 中,点P 为AD 延长线上一点,连接AC 、CP ,过点C 作CF ⊥CP 交于C ,交AB 于点F ,过点B 作BM ⊥CF 于点N ,交AC 于点M . (1)若AP=78AC ,BC=4,求S △ACP ; (2)若CP ﹣BM=2FN ,求证:BC=MC ;(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且A B≠BC ,AC=AP ,取CP 中点E ,连接EB ,交AC 于点O ,猜想:∠AOB 与∠ABM 之间有何数量关系?请说明理由.10.已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,求证:BC =AC +CD .【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析. 【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题. 【详解】 (1)EF =BE +DF , 理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ; 故答案为:EF =BE +DF . (2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG , 在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF , 在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF=BE+DF.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.2.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(AAS),∴CE=BM=BD,由(2)可证△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD.故答案为:HG=CF+BD.【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.3.(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;(2)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;(3)连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】解:(1)EF=BE+DF,证明如下:DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG , ∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ; 故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG , ∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°, ∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF =AE +BF 成立,即EF =2×(45+60)=210(海里). 答:此时两舰艇之间的距离是210海里. 【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF ≌△AGF 是解题的关键. 4.(1)见解析;(2)EF AE BF =+;(3)222MN EN FM =+,见解析【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解; (3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=,又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+. (3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠, CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB ∠=∠,∴CFM MCF ∠=∠,∴MC MF =,同理可证:CN EN =,∴在Rt MCN △中,由勾股定理得:22222MN CN CM EN FM =+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键.5.【尝试解决】PA+PB=PC ;【自主探索】①PC PA =;理由见解析;②1)()PC PD PA PB +=+;【灵活应用】2)()PC PD PE PA PB ++=+.【分析】尝试解决:利用旋转性质证明△PAC ≌△MBC ,得到PA=BM ,得到PM 等于PB 与PA 的和,再证明△PCM 是等边三角形,得到PM 等于PC ,即可得到结果;自主探索:①在PC 上截取QC=PA ,证出△CBQ 全等于△ABP ,得到△PBQ 是等腰直角三角形,PQ 等于PB 倍,即可得到结果;②同①方法,即可得到PD 与PA 和PB 的关系,即可求出PC+PD 与PA 和PB 的关系; 灵活应用:类比(自主探索)中的方法证明PC 与PA 和PB 的关系,再用同样的方法证明PE 与PA 和PB 的关系,构造△CDM 全等于△CBP ,得到PD 与PC 的关系,进一步得到PD 与PA 和PB 的关系,最终求出PD+PE+PC 的和即可得到与PA 和PB 的关系.【详解】尝试解决:PA+PB=PC ;证明:因为∠ACP+∠PCB=60°,∠MCB+∠PCB=60°,∴∠ACP=∠MCB ,又∵CP=CM ,AC=MC ,∴△ACP ≌△BCM ,所以PA=BM ,∠CBM=∠CAP ,∵四边形APBC 内接于圆O ,∴∠CAP+∠CBP=180°,∴∠CBM+∠CBP=180° ,∴P 、B 、M 三点共线,∴△PCM 是等边三角形,∴PM=PC ,∴PC=PM=PB+BM=PB+PA ;自主探索:①PC 与PA 、PB 的数量关系为2PC PA PB =+;理由:截取CQ=PA ,,如图,∵四边形ABCD 是正方形,∴BC=AB ,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵PA=CQ ,∠BCQ=BAP ,BC=AB∴△BCQ ≌△BAP ,∴∠CBQ=∠ABP ,BQ=BP , ∵∠CBQ+∠ABQ=90°,∴90ABP ABQ ∠+∠=︒,∴△PBQ 是等腰直角三角形,∴2PB ,∴2PC CQ PQ PA PB =+=+;②21)()PC PD PA PB +=+证明:在PD 上截取DH=PB ,∵DH=PB ,∠ADH=∠ABP ,AD=AB∴△ADH ≌△ABP∴∠DAH=∠BAP ,AH=AP ,∵∠DAH+∠HAP=90°, ∴∠BAP+∠HAP=90°,∴△HAP 是等腰直角三角形,∴2,∴2PA ,∴21)()PC PD PA PB +=+.灵活应用:52)()PC PD PE PA PB ++=+.证明:在PC 上截取FC=PA ,∵五边形ABCDE 是正五边形,∴BC=AB=CD=DE=AE ,∠ABC=∠EAB=108°,∵PA=CF ,AB=BC ,∠FCB=∠BAP ,∴△BAP ≌△BCF ,∴BF=PB ,∠CBF=∠ABP ,∵∠CBF+∠FBA=108°,∴∠ABP+∠FBA=108°,∴△FBP 是顶角为108°的等腰三角形,∴15+PB , ∴15+PB+PA , 同理可证15+PA+PB , 延长PD 至点M 使DM=PB ,∵∠MDC+∠CDP=180°,∠CDP+∠PBC=180°,∴∠CDM=∠CBP又∵CD=BC ,∴△CDM ≌△CBP∴CM=CP ,∠MCD=∠BCP ,又∵∠PCB+∠PCD=108°,∴∠MCD+∠PCD=108°,∴△MCP 是顶角108°的等腰三角形,∴PM=152+PC , ∴15+PC-PB , ∴PC+PD+PE 15+15+35+15+PB+PA )+152+PA=()()2525PA PB +++=()()25PA PB ++ 【点睛】 本题考查旋转性质、圆的有关性质、圆内接四边形、正五边形有关性质、三角形全等的相关性质和判定,综合性强,难度较大是一道好题,属中考压轴题型.6.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键. 7.见解析延长DE 至N ,使得EN PF =,连接CN ,先证明()ADF DCE SAS △≌△,可得AFD DEC ∠=∠,即CFP CEN ∠=∠,再通过证明()CEN CFP SAS △≌△,可得CN CP =,ECN PCF ∠=∠,即可证明NCP 是等腰直角三角形,即2PN PE NE PC =+=,从而得证2PE PF PC +=.【详解】证明:如图,延长DE 至N ,使得EN PF =,连接CN ,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,CE DF ∴=,在ADF 和DCE 中,,90,,AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩()ADF DCE SAS ∴△≌△,AFD DEC ∴∠=∠,CFP CEN ∴∠=∠,在CEN 和CFP 中,,,,CE CF CEN CFP EN PF =⎧⎪∠=∠⎨⎪=⎩()CEN CFP SAS ∴△≌△,CN CP ∴=,ECN PCF ∠=∠,90PCF BCP ∠+∠=︒,90ECN BCP NCP ∴∠+∠=∠=︒,NCP ∴△是等腰直角三角形,2PN PE NE PC ∴=+=.即2PE PF PC +=.本题考查了正方形的性质和全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键.8.(1)60°;(2)证明见解析;(3)证明见解析【分析】(1)证明△ABD ≌△BCE (SAS ),得出∠BAD =∠CBE ,则∠BFD =∠AFE =∠ABC =60°; (2)证明△ADB ∽△BDF ,得出=AB BD BF DF ,由AB =AC 可得出结论; (3)延长BE 至H ,使FH =AF ,连接AH ,CH ,证明△BAF ≌△CAH (SAS ),得出∠ABF =∠ACH ,CH =BF ,可证明AF ∥CH ,得出1=2BF BD FH CD =,进而即可得出答案. 【详解】解:(1)∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABD =∠BCE =60°,在△ABD 和△BCE 中, ABD BC AB BC BD CE E =⎧=∠∠⎪⎨⎪⎩=,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∵∠ADC =∠CBE+∠BFD =∠BAD+∠ABC ,∴∠BFD =∠AFE =∠ABC =60°;(2)证明:由(1)知∠BAD =∠DBF ,又∵∠ADB =∠BDF ,∴△ADB ∽△BDF ,∴=AB BD BF DF, 又AB =AC , ∴=AC BD BF DF, ∴AC•DF =BD•BF ;(3)证明:延长BE 至H ,使FH =AF ,连接AH ,CH ,由(1)知∠AFE =60°,∠BAD =∠CBE ,∴△AFH 是等边三角形,∴∠FAH =60°,AF =AH ,∴∠BAC =∠FAH =60°,∴∠BAC ﹣∠CAD =∠FAH ﹣∠CAD ,即∠BAF =∠CAH ,在△BAF 和△CAH 中,BAF CA AB AC AF AH H =⎧=∠∠⎪⎨⎪⎩=,∴△BAF ≌△CAH (SAS ),∴∠ABF =∠ACH ,CH =BF ,又∵∠ABC =∠BAC ,∠BAD =∠CBE ,∴∠ABC ﹣∠CBE =∠BAC ﹣∠BAD ,即∠ABF =∠CAF ,∴∠ACH =∠CAF ,∴AF ∥CH ,∵∠AFC =90°,∠AFE =60°,∴CF ⊥CH ,∠CFH =30°,∴FH =2CH ,∴FH =2BF ,∵FD ∥CH , ∴1=2BF BD FH CD =, ∴BD =12DC . 【点睛】本题考查等边三角形的性质、全等三角形的判定及其性质、相似三角形的判定及其性质,解题的关键熟练掌握全等三角形的判定方法和相似三角形的判定方法.9.(1);(2)证明见解析;(3)∠AOB=3∠ABM ,理由见解析.【分析】(1)由正方形的性质得出AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,由勾股定理求出AC ,得出AP ,即可求出S △ACP ;(2)在CF 上截取NG=FN ,连接BG ,则CF ﹣CG=2FN ,证出∠BCF=∠DCP ,由ASA 证明△BCF ≌△DCP ,得出CF=CP ,证出CG=BM ,由SAS 证明△ABM ≌△BCG ,得出∠AMB=∠BGC ,因此∠BMC=∠BGF ,由线段垂直平分线的性质得出BF=BG ,得出∠BFG=∠BGF ,因此∠BMC=∠CBM ,即可得出结论;(3)连接AE ,先证出∠BCA=2∠PAE ,再证明A 、D 、E 、C 四点共圆,由圆周角定理得出∠DCP=∠PAE ,得出∠BCF=∠PAE ,证出∠BCA=2∠ABM ,然后由三角形的外角性质即可得出结论.【详解】解:(1)∵四边形ABC是正方形,∴AD∥BC,AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,∴,∴AP=78AC=78,∴S△ACP=12AP×CD=12×2;(2)在CF上截取NG=FN,连接BG,如图1所示:则CF﹣CG=2FN,∵CF⊥CP,∴∠PCF=90°,∴∠BCF=∠DCP,在△BCF和△DCP中,ABC CDP BC DCBCF DCP∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCF≌△DCP(ASA),∴CF=CP,∵CP﹣BM=2FN,∴CG=BM,∵∠ABC=90°,BM⊥CF,∴∠ABM=∠BCG,∠BFG=∠CBM,在△ABM和△BCG中,AB BCABI CBG BM CG=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△BCG(SAS),∴∠AMB=∠BGC,∴∠BMC=∠BGF,∵GN=FN,BM⊥CF,∴BF=BG,∴∠BFG=∠BGF,∴∠BMC=∠CBM,∴BC=MC;(3)∠AOB=3∠ABM;理由如下:连接AE,如图2所示:∵AC=AP,E是CP的中点,∴AE⊥CP,∠PAE=∠CAE,∵AD∥BC,∴∠BCA=∠PAC=2∠PAE,∵CF⊥CP,∴∠PCF=90°,∴∠BCF=∠DCP,∵∠ADC=∠AEC=90°,∴A、D、E、C四点共圆,∴∠DCP=∠PAE,∴∠BCF=∠PAE,又∵∠ABM=∠BCF,∴∠ABM=∠BCF=∠PAE,∴∠BCA=2∠ABM,∵∠AOB=∠BCF+∠BCA,∴∠AOB=3∠ABM.【点睛】本题是四边形综合题目,考查了正方形的性质、勾股定理、全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线两次证明三角形全等才能得出结论.10.见解析【分析】在线段BC上截取BE=BA,连接DE.则只需证明CD=CE即可.结合角度证明∠CDE=∠CED.【详解】证明:在线段BC上截取BE=BA,连接DE.∵BD平分∠ABC,∴∠ABD=∠EBD1∠ABC.2在△ABD和△EBD中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBD .(SAS ) ∴∠BED =∠A =108°,∠ADB =∠EDB . 又∵AB =AC ,∠A =108°,∠ACB =∠ABC 12=⨯(180°﹣108°)=36°, ∴∠ABD =∠EBD =18°. ∴∠ADB =∠EDB =180°﹣18°﹣108°=54°. ∴∠CDE =180°﹣∠ADB ﹣∠EDB =180°﹣54°﹣54°=72°.∴∠DEC =180°﹣∠DEB =180°﹣108°=72°.∴∠CDE =∠DEC .∴CD =CE .∴BC =BE +EC =AB +CD .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定,添加恰当辅助线是本题的关键.。
三角形全等之截长补短 (整理)
三角形全等之截长补短 (整理)三角形全等之截长补短一、知识点概述截长补短是指在几何题目中,当出现线段和的情况时,可以考虑通过截取一段线段并加上一段等于原线段的线段,将原问题转化为线段等量的问题。
二、例题讲解1.已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.证明:可以通过截长法和补短法两种方法证明。
截长法:在AC上截取AF=AB,连接DF。
在△ABD和△AFD中,根据SAS准则可以得到△ABD≌△AFD,进而得到∠B=∠AFD,BD=FD。
又因为∠B=2∠C,所以∠AFD=2∠C。
因为∠AFD是△DFC的一个外角,所以∠AFD=∠C+∠XXX。
因为∠1=∠2,所以∠XXX∠C,进而得到∠AFD=2∠C=∠B。
因此,根据三角形内角和定理,可以得到∠A=180°-∠B-∠C=∠AFD+∠XXX∠C=2∠C+∠C+∠C=4∠C。
在△ABC中,∠B=2∠C,所以∠A=60°。
在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC (AAS),进而得到AE=AC。
因此,AC=AB+BD。
补短法:延长AB到E,使BE=BD,连接DE。
因为BE=BD,所以∠XXX∠BDE。
因为∠ABD是△XXX的一个外角,所以∠ABD=∠E+∠BDE=2∠E。
因为∠ABD=2∠C,所以∠XXX∠C。
在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC(AAS),进而得到AE=AC。
因此,XXX。
2.如图,在四边形ABCD中,∠A=∠B=90°,点E为AB边上一点,且DE平分∠ADC,CE平分∠BCD.求证:XXX.证明:在△ADE和△BCE中,因为∠A=∠B=90°,所以AD=BC。
因为DE平分∠ADC,CE平分∠BCD,所以∠AED=∠DEC,∠XXX∠XXX。
因为∠AED+∠BCE=180°,所以∠DEC+∠CDE=180°。
三角形全等之截长补短(整理)
三角形全等之截长补短(讲义)一、知识点睛截长补短:题目中出现时,考虑截长补短;截长补短的作用是____________________________________.二、精讲精练A1. 已知:如图,在△ ABC 中,∠ 1=∠2,∠ B=2∠C.12求证: AC=AB+BD.CB DA21CB DA21B D C2.如图,在四边形 ABCD 中,∠ A=∠B=90°,点 E 为 AB 边上一点,且 DE 平分∠ ADC,CE 平分∠ BCD.C 求证: CD=AD+BC.3.已知:如图,在正方形 ABCD 中, AD=AB,∠ B=∠ D=∠ BAD=90°,E,F 分别为 CD, BC 边上的点,且∠ EAF=45°,连接EF.求证: EF=BF+DE.DAEA DEB F C4.已知:如图,在△ ABC 中,∠ ABC=60°,△ ABC 的角平分线 AD,CE 交于点 O.求证: AC=AE+CD.BDEOA CBDEOA C5.已知:如图,在△ ABC 中,∠ A=90°,AB=AC,BD 平分∠ ABC,CE⊥BD 交 BD 的延长线于点E.1求证: CEBD. 2AEDB CAE【参考答案】【知识点睛】线段间的和差倍分;把几条线段间的数量关系转为两条线段的等量关系.【精讲精练】1.补短法:证明:如图,延长 AB 到 E,使∵∠ ABD 是△ BDE 的一个外角∴∠ ABD=∠ E+∠ BDE∵BE=BD∴∠ E=∠BDE∴∠ ABD=2∠E∵∠ ABD=2∠C B∴∠ E=∠C 在△ ADE 和△ ADC 中E BE=BD,连接 DE.A12D CE C1 2AD AD∴△ ADE≌△ ADC(AAS )∴AE=AC∴AC=AB+BE=AB +BD截长法:证明:如图,在 AC 上截取 AF=AB,连接 DF .在△ ABD 和△ AFD 中AAB AF1212F AD AD∴△ ABD≌△ AFD (SAS)B D C∴∠ B=∠AFD, BD=FD∵∠ B=2∠ C∴∠ AFD=2∠C∵∠ AFD 是△ DFC 的一个外角∴∠ AFD=∠ C +∠FDC∴∠ FDC=∠ C∴DF=FC∴BD=FC∴AC=AF+FC=AB+BD2. 证明:如图,在 CD 上截取 CF=CB.∵ CE 平分∠ CBDC ∴∠ 1=∠ 2F 1 2在△ CFE 和△ CBE 中D CF CB3 412CE CE A E B ∴△ CFE≌△ CBE(SAS)∴∠ CFE=∠ B∵∠ B=90°∴∠ CFE=∠ DFE =90 °∵∠ A=90°∴∠ DFE=∠ A∵DE 平分∠ ADC∴∠ 3=∠ 4在△ DEF 和△ DEA 中DFE A34DE DE∴△ DEF ≌△ DEA (AAS )∴ DF=AD ∴ CD=DF+CF=AD+BC3. 证明:如图,延长 FB 到 G ,使 BG=DE ,连接 AG .∵∠ D=∠ABC=90°A D∴∠ ABG=∠ D=90°21 3在△ ABG 和△ ADE 中EAB=AD ABG= DBG=DE G BF C∴△ ABG ≌△ ADE (SAS ) ∴ AG=AE ,∠ 1=∠2∵∠ BAD=90°,∠ EAF=45° ∴∠ 2+∠ 3=45° ∴∠ 1+∠ 3=45° 即∠ GAF=45° ∴∠ GAF=∠ EAF 在△ AGF 和△ AEF 中AG AEGAFEAFAFAF∴△ AGF ≌△ AEF (SAS ) ∴ GF=EF ∵ GF=BF+BG ∴ EF=BF+DE4. 证明:如图,在 AC 上截取 AF=AE ,连接OF . ∵ AD , CE 为△ ABC 的角平分线∴∠ 1=∠ 2,∠ 3=∠ 4B在△ AEO 和△ AFO 中AEAF ED1 2 O 75AOAO1 684∴△ AEO≌△ AFO(SAS)∴∠ 5=∠ 6∵∠ ABC=60°∴∠ 1+∠ 2+∠3+∠4=180∠B=18060=120∴∠ 2+∠ 3=60∴∠ AOC=180° 60=120°∴∠ 5=∠ 6=∠7=∠8=60°在△ OFC 和△ ODC 中∠8∠7OC OC∠3∠4∴△ OFC≌△ ODC(ASA )∴CF=CD∴AC=AF+FC=AE+CD5.证明:如图,延长 CE,交 BA 的延长线于点 F.∵ CE⊥ BD∴∠ BEF=∠BEC=90°F ∵∠ BAC=90°A∴∠ CAF=∠ BAD=90°D E∵∠ 3=∠ 434∴∠ 1=∠ 515在△ BAD 和△ CAF 中B 2C15AB ACBAD CAF∴△ BAD≌△ CAF(ASA )∴BD=CF∵BE 平分∠ ABC∴∠ 1=∠ 2在△ BEF 和△ BEC 中1 2BE BEBEFBEC∴△ BEF≌△ BEC(ASA )∴EF=EC∴ CE= 1 CF2 ∴ CE= 1BD2三角形全等之截长补短每日一题1. ( 4 月 28 日)在△ ABC 中, AD ⊥ BC 于 D ,∠B=2∠C .求证: CD=AB+BD .AB DC2. ( 4 月 29 日)如图,在△ ABC 中, AB>AC ,∠ 1=∠2,P 为 AD 上任意一点,连接 BP ,CP .求证: AB AC>PB PC .A1 2PB DC3.(4 月 30 日)已知:如图,∠ 1=∠2,P 为 BN 上一点,且PD⊥BC 于点 D,∠A+∠C=180°.求证:BD=AB+CD.NAP12B D CA D4. ( 5 月 2 日)如图,在正方形 ABCD 中, E 为 BC 边上任意一点,AF 平分∠ DAE,连接 EF.求证: AE=BE+DF .FB E C【参考答案】1. 证明:如图,在线段DC 上截取 DE=BD,连接 AE.A21B D E C∵AD⊥ BC∴∠ ADB=∠ ADE=90°在△ ABD 和△ AED 中AD ADADB ADEDB DE∴△ ABD≌△ AED(SAS)∴∠ B=∠1,AB=AE∵∠ B=2∠ C∴∠ 1=2∠C∵∠ 1 是△ AEC 的一个外角∴∠ 1=∠ C+∠ 2∴∠ C=∠2∴AE=CE∴CD=CE+ED=AE+BD=AB+BD(如果延长 DB 到点 F,使 BF=AB,连接 AF 也可进行证明)2. 证明:如图,在线段AB 上截取 AE=AC,连接 PE.A1 2PEB D C则AB AC=AB AE=EB在△ AEP 和△ ACP 中AE AC1 2AP AP∴△ AEP≌△ ACP(SAS)∴PE=PC在△ PEB 中, PB PE<EB∴PB PC<EB∴AB AC>PB PC(延长 AC 到点 F,使 AF=AB,连接 PF,也可证明结论)3.证明:如图,在 BC 上截取 BE=BA,连接 PE.NAP1342B E DC在△ ABP 和△ EBP 中BA BE1 2BP BP∴△ ABP≌△ EBP( SAS)∴∠ A=∠3∵∠ A+∠C=180°,∠ 3+∠4=180°∴∠ 4=∠ C∵PD⊥ BC∴∠ PDE=∠ PDC=90°在△ PDE 和△ PDC 中4CPDE PDCPD PD∴△ PDE≌△ PDC(AAS )∴DE=DC∴BD=BE+ED=AB+CD(过点 P 作 PF⊥BA 于 F,也可进行证明)4.证明:如图,延长 EB 到点 G,使 BG=DF ,连接 AG.A D132 45FG B E C∵四边形 ABCD 为正方形∴AB=AD,∠ D=∠ABC=∠BAD=90°∴∠ ABG=∠ D=90°在△ ABG 和△ ADF 中AB ADABG ADFBG DF∴△ ABG≌△ ADF (SAS)∴∠ 1=∠ 2,∠ 5=∠ G∵AF 平分∠ DAE∴∠ 1=∠ 3∵∠ 1+∠ 5=90°∴∠ 3+∠ G=90°∵∠ 1+∠ 3+∠4=90°∴∠ 2+∠ 3+∠4=90°∴∠ 2+∠ 4=∠G∴AE=EG∵EG=BE+BG∴AE=BE+DF三角形全等之截长补短(随堂测试)6.已知:如图,在四边形 ABCD中, BC>AB, AD=DC,∠ C=60°,BD 平分∠ABC.求证: BC=AB+AD.ADB C【参考答案】1.证明略提示:在 BC 上截取 BE=AB,证明△ ABD≌△ EBD,再证明CE=AD.三角形全等之截长补短(作业)1.如图,在△ ABC 中,∠ BAC=60°,∠ ABC=80°, AD 是∠ BAC 的平分线.求证: AC=AB+BD.AB D CAB D CA2.如图, AC 平分∠ BAD,CE⊥AB 于 E,∠B+∠D=180°.求证: AE=AD+BE.D AD A CE B CE B3.如图,在△ ABC 中,∠A=100°,∠ABC=40°,BD 是∠ ABC 的平分线,延长 BD 至 E,使 DE=AD,连接 EC.求证: BC=AB+CE.AEDB CAEDB C4.如图,在梯形 ABCD 中, AD∥BC,CE⊥AB 于 E,△ BDC 为等腰直角三角形,∠ BDC=90°,BD=CD,CE 与 BD 交于 F,连接AF.求证: CF=AB+AF.A DEFB CA DEFB C【参考答案】1.证明略提示:方法一:在 AC 上截取 AE=AB,连接 DE,证明△ ABD≌△ AED,再证明 CE=DE;方法二:延长 AB 到 E,使 BE=BD,证明△ ADE≌△ ADC.2.证明略提示:在 AE 上截取 AF=AD,证明△ CDA≌△ CFA,再证明BE=FE.3.证明略提示:在 BC 上截取 BF=BA,连接 DF ,证明△ ABD≌△ FBD,再证明△ DFC≌△ DEC.4.截长法:证明:如图,在 CF 上截取 CM=BA ,连接DM .∵△ BDC 为等腰直角三角形, BD=CD∴∠ 1=∠ DCB=45°A D∵ CE⊥ AB,∠ BDC=90°7E86∴∠ CEB=∠ BDC=90°23 F∵∠ 2=∠ 34M∴∠ 4=∠ 551C在△ ABD 和△ MCD 中B AB MC45BD CD∴△ ABD≌△ MCD (SAS)∴DA=DM ,∠ 6=∠ 7∵AD∥ BC∴∠ 7=∠ 1=45°∴∠ 6=45°∴∠ 8=45°∴∠ 7=∠ 8在△ ADF 和△ MDF 中DA DM78DF DF∴△ ADF ≌△ MDF (SAS)∴AF=MF=AB+AF补短法:证明:如图,延长 BA 交 CD 的延长线于点 G . ∵△ BDC 为等腰直角三角形∴∠ GDB=∠ BDC= 90°,∠ 5=45° ∵ CE ⊥ AB∴∠ CEB=∠ BDC=90°G∵∠ 1=∠ 2 A 7 D ∴∠ 3=∠ 4E6在△ GBD 和△ FCD 中21FGDB FDC34DB DC5C3B4∴△ GBD ≌△ FCD (ASA ) ∴ BG=CF ,DG=DF ∵ AD ∥ BC ∴∠ 6=∠ 5=45° ∴∠ 7=45° ∴∠ 6=∠ 7在△ GDA 和△ FDA 中DG DF76DA DA∴△ GDA ≌△ FDA (SAS ) ∴ AG=AF ∵ BG=AB+AG ∴ CF=AB+AF。
全等三角形辅助线系列之三---截长补短类辅助线作法大全学习资料
全等三角形辅助线系列之三 与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的 一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短” ,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目典型例题精讲【例1】 如图,在 ABC 中, BAC 60 , AD 是 BAC 的平分线,且 AC AB BD ,求 ABC 的度 数.【解析】法一:如图所示,延长 AB 至E 使BE BD ,连接ED 、EC .由 AC AB BD 知 AE AC ,而 BAC 60,则AEC 为等边三角形.注意到 EADCAD , ADAD :,AE AC ,故AED 也 ACD .从而有DE DC , DEC DCE故 BED BDEDCEDEC 2 DEC .所以 DECDCE 20 ,ABCBECBCE 6020 80 法二:在AC 上取点 E ,使得 AE AB ,则由题意可知CE BD .在ABD 和AED 中,AB AE , BADEAD , AD AD ,则ABD 也AED ,从而BD DE ,进而有 DE CE , ECD EDC ,AED ECD EDC 2 ECD .注意到 ABD AED ,则:ABCACB1 ABC -23ABC — ABC2180BAC 120 ,故 ABC 80【例2】已知ABC中, A 60 , BD、CE分别平分ABC和.ACB, BD、CE交于点O,试判断BE、CD、BC的数量关系,并加以证明. 【解析】BE CD BC ,理由是: :在BC上截取BF BE,连结OF ,利用SAS证得BEO也BFO , / -1 2,•/ A60 ,•BOC190 -2A 120 ,• DOE 120 ,••• A DOE180 , • AEO ADO 180 ,••• 1 3 180••• 2 4 180 1 2, • 3 4,利用AAS证得CDO 也CFO , • CD CF ,•BC BF CF BE CD .【答案】见解析.分别是/ BAC、/ ABC的角平分线,求证:BQ AQ AB BP .【例3】如图,已知在厶ABC内, BAC 60 ,40 , P、Q分别在BC、CA 上,并且AP、BQ【解析】延长AB至D,使BD BP,连DP.在等腰ABPD中,可得BDP 40 ,从而BDP 40 ACP ,△ADP ^△ACP (ASA ),故AD AC又QBC 40 QCB,故BQ QC , BD BP. 从而BQ AQAB BP.【答案】见解析.【解析】延长BA至F,使BF BC,连FD△BDF ^△BDC ( SAS),故DFB DCB , FD DC又AD CD,故在等腰ABFD中,DFB DAF故有BAD BCD 180Q【例4】如图,在四边形ABCD 中,BC BA , AD CD , BD 平分/ ABC,求证: C 180 .AC证:MN MB NC .【解析】延长NC 至E ,使得CE MBDBM 也 DCE .•••DE DM , 1 2.又•1 NDC 60 , • 2+ NDCEND 60在 MDN 与EDN 中,ND ND, MDNEDN60 , DEDMMND 也 END• MN EN NC MB【答案】见解析.••• BDC 是等腰三角形,且BDC 120 , •DBC ••• ABC 是等边三角形.• ABC ACB BAC 60• MBDABCDBCACB DCBDCN在DBM 和DCE 中,BDDC ,MB CEDCB 30DCE 90【例6】如图在△ ABC 中,AB AC , P 为AD 上任意一点, D求证: AB AC PB PC .C【解析】延长AC至F,使AF AB,连PD△ABP^△AFP (SAS)故BP PF由三角形性质知PB PC PF PC < CF AF AC AB AC【答案】见解析.【例7】如图,四边形ABCD中,AB// DC, BE、CE分别平分/ ABC、/ BCD,且点E在AD上.求证:BC AB DC .A【解析】在BC上截取BF AB,连接EF••BE 平分/ABC ,A ABE FBE又••• BE BE ‘•••△ABE 也/E BE (SAS), /• A BFE .TAB//CD, • A D 180•BFE CFE 180 , • D CFE又• DCE FCE , CE 平分/ BCD, CE CE z.ZDCE 也E CE (AAS ) , • CD CF• BC BF CF AB CD【例8】如图,点M为正方形ABCD的边AB上任意一点,MN DM且与/ ABC外角的平分线交于点N,MD与MN有怎样的数量关系?【解析】猜测DM MN •在AD上截取AG AM ,•••DG MB ,•••/ AGM 45•••/DGM / MBN 135,•/ ADM / NMB ,• DGM 也MBN , • DM MN .【答案】见解析.见解析.证:AE BC CE .AB AD , AD丄CD , AB丄BM , BM DFABM也ADFAFD AMB , DAF BAMAB// CDAFD BAF EAF BAE BAE BAMAMB EAM , AE EM BE BM BE DF,使得BM DF,连接AM •EAM【例9】已知:如图, ABCD是正方形,FAD FAE ,求证: BE DF AE .【解析】延长CB至M【例10】如图所示, 已知正方形ABCD中,M为CD的中点,E为MC上一点,且BAE 2 DAM .求B C【解析】分析证明一条线段等于两条线段和的基本方法有两种:(1) 通过添辅助线“构造”一条线段使其为求证中的两条线段之和,再证所构造的线段与求证中那一条线段相等.(2) 通过添辅助线先在求证中长线段上截取与线段中的某一段相等的线段,再证明截剩的部分与线段中的另一段相等•我们用(1)法来证明.【答案】延长AB到F,使BF CE,则由正方形性质知AF AB BF BC CEF面我们利用全等三角形来证明AE AF •为此,连接EF交边BC于G •由于对顶角BGF CGE,所以Rt A BGF 也CGE AAS ,1从而BG GC - BC, FG EG , BG DM2于是Rt A ABG 也Rt A ADM SAS ,1所以BAG DAM BAE EAG , AG 是2【解析】延长DE至F,使得EF BC ,连接AC.-ABC AED180 , AEF AED 180 , / • ABC AEFAB AE,BC EF ,•••△\BC也zAEF •• EF BC,AC AFBC DE CD , • CD DE EF DF•••公DC 也zADF ,••• ADC ADF即AD平分/CDE.EAF的平分线【例11】五边形ABCDE中,AB AE , BC DE CD , ABC AED 180,求证:AD 平分/ CDE •HDMEC【例12】若P 为 ABC 所在平面上一点,且 APB BPC CPA 120,则点P 叫做 ABC 的费马点.(1) 若点P 为锐角 ABC 的费马点,且 ABC 60 , PA 3 , PC 4,则PB 的值为 _________________ (2) 如图,在锐角 ABC 外侧作等边 ACB',连结BB'. 求证:BB'过 ABC 的费马点 P ,且BB ' PA PB PC .【解析】(2)证明:在 BB '上取点P ,使 BPC 120 , 连结AP ,再在PB'上截取PE PC ,连结CE .•/ BPC 120 , ••• EPC 60 , ••• PCE 为正三角形, ••• PC CE , PCE 60 , CEB ' 120 ,•/ ACB '为正三角形, • AC B C , ACB ' 60 , • PCAACE ACE ECB ' 60 , • PCA ECB ',• ACP 也 B'CE , • APC B'CE 120 , PA EB', • APB APC BPC 120 , • P 为ABC 的费马点, • BB'过 ABC 的费马点P , 且 BB ' EB ' PB PE PA PB PC .【答案】见解析.2.3课后复习【作业1】已知,AD平分/ BAC, AC AB BD【解析】延长AB至点E,使AE AC,连接DEAD 平分/ BAC, ••• EAD CADAE AC , AD AD ,•公ED也△CD(SAS), E CAC AB BD , • AE AB BDAE AB BE , • BD BE, …BDE-ABC E BDE ,• ABC 2 E , • ABC2 C .【答案】见解析.【作业2】如图,△ ABC中,AB2AC , AD 平分/ BAC,且AD BD,求证:CD丄AC .C【解析】在AB上取中点F,连接FD .则△ADB是等腰三角形,F是底AB的中点,由三线合一知DF 丄AB,故AFD 90△ADF ^△ADC ( SAS)ACD AFD 90 ,即:CD丄AC【答案】见解析.【作业3】如图所示,ABC是边长为1的正三角形,BDC是顶角为120的等腰三角形,以D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长.【解析】如图所示,延长AC到E使CE BM .在BDM与CDE中,因为BD CD , MBD ECD90 , BM CE ,所以BDM羞? CDE , 故MD ED.因为BDC -120 , MDN60°,所以BDM NDC60 .又因为BDM CDE,所以MDN EDN60在MND与END中,DN DN , MDN EDN60,DM DE , 所以MND也END , 则NE MN,所以AMN的周长为2.【答案】见解析.【作业4】已知:AC平分/ BAD, CE丄AB, B D 180,求证:AE AD BE.【解析】在AE上取F,使EF EB,连接CF••CE 丄AB二CEB CEF 90•EB EF , CE CE ,/•JCEB ^/CEF••• B CFE•B+ D 180 , CFE CFA 180• D CFA••AC 平分/BAD•DAC FAC•/ AC AC•△DC 也/FC (SAS)•AD AF•AE AF FE AD BE【答案】见解析.。
第9讲全等三角形-截长补短(大全)
B
C
A
E F C D
B
变式二:如图,BD=CD, ∠BAC+∠BDC =1800 ,点E、F分别在AB、AC上,若ED 平分∠BEF,FD平分∠EFC. A 求证:EF=BE+CF E F C D
B
变式三:如图,BD=CD, ∠BAC+∠BDC =1800 ,点E、F分别在AB、AC上,若ED 平分∠BEF,EF=BE+CF. A 求证:FD平分∠EFC E F C D
A A
B
D
C
B
D
C
典型方法介绍
2.截长补短法
变式.已知:如图,Δ ABC 中,∠1=∠2, 且AB=AC+CD.求 证:∠C=2∠B.
A j 1 2
B
D
C
AC平分∠DAB,∠ADC+∠B=180°。 求证:CD=CB。
D A C D A C
B
B
如图,BD=CD, ∠ABD= ∠ACD=900 ,点 E、F分别在AB、AC上,若ED平分∠BEF. (1)求证:FD平分∠EFC;
A
E B
D
如图,在△ABC中,AD为BC边 上的中线。 A 求证:AB+AC>2AD B
D
C
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
构造全等三角形之截长补短
构造全等三角形之截长补短之袁州冬雪创作【笔记】截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目(例:EF=DE+BF,CD=2CE)截长:在长边上截取一条与某一短边相同的线段,再证剩下的线段与另外一短边相等.补短:通过延长短边或旋转等方式使两短边拼合到一起.【例1】如下图所示,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.【例2】如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上.求证:BC=AB+CD.【例3】如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,且∠EAF=45,求BE,DF,EF之间的数量关系.【例4】如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.【过关检测】1如图,已知△ABC中,AH⊥BC于H,∠C=35°,∠B=70°,求证AB+BH=HC.2.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ 平分∠ABC交AC于点Q,且AP与BQ相交于点O.求证:AB+BP=BQ+AQ.3.如图,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的双方分别交AB、AC边于M、N两点,毗连MN.探究BM、MN、NC之间的关系,并说明来由.4.已知,AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,保持EF.试猜测线段AD与EF的关系,并证明.【出门测】1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=1BD.22.如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.3.已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.求证:∠BAP+∠BCP=180°4.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,毗连BE 并延长交AC于点F,AF=EF,求证:AC=BE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等之截长补短(讲义)一、知识点睛截长补短:题目中出现__________________________时,考虑截长补短;截长补短的作用是_______________________________________________________________________________________.二、精讲精练1.已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.21DBA21D C BA21DBA2.如图,在四边形ABCD中,∠A=∠B=90°,点E为AB边上一点,且DE平分∠ADC,CE平分∠BCD.求证:CD=AD+BC.3.已知:如图,在正方形ABCD中,AD=AB,∠B=∠D=∠BAD=90°,E,F分别为CD,BC边上的点,且∠EAF=45°,连接EF.求证:EF=BF+DE.EDCB AD A4. 已知:如图,在△ABC 中,∠ABC =60°,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .D BF EDCB A5. 已知:如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .OED CBA求证:CE 21BD .【参考答案】EDCB AEDCAFA C12【知识点睛】 线段间的和差倍分;把几条线段间的数量关系转为两条线段的等量关系. 【精讲精练】 1. 补短法:证明:如图,延长AB 到E ,使BE =BD ,连接DE . ∵∠ABD 是△BDE 的一个外角 ∴∠ABD =∠E +∠BDE ∵BE =BD ∴∠E =∠BDE ∴∠ABD =2∠E ∵∠ABD =2∠C ∴∠E =∠C在△ADE 和△ADC 中12E C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC (AAS ) ∴AE =AC ∴AC =AB +BE=AB +BD 截长法:证明:如图,在AC 上截取AF =AB ,连接DF . 在△ABD 和△AFD 中12AB AF AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△AFD (SAS ) ∴∠B =∠AFD ,BD =FD ∵∠B =2∠C ∴∠AFD =2∠C∵∠AFD 是△DFC 的一个外角 ∴∠AFD =∠C +∠FDC ∴∠FDC =∠C ∴DF =FC ∴BD =FC ∴AC =AF +FCE21DCBA321G CDB A EF =AB +BD2. 证明:如图,在CD 上截取CF =CB .∵CE 平分∠CBD ∴∠1=∠2在△CFE 和△CBE 中12CF CB CE CE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△CBE (SAS ) ∴∠CFE =∠B ∵∠B =90°∴∠CFE =∠DFE =90° ∵∠A =90° ∴∠DFE =∠A ∵DE 平分∠ADC ∴∠3=∠4在△DEF 和△DEA 中34DFE A DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEF ≌△DEA (AAS ) ∴DF =AD ∴CD =DF +CF =AD +BC3. 证明:如图,延长FB 到G ,使BG =DE ,连接AG .∵∠D =∠ABC =90°∴∠ABG =∠D =90° 在△ABG 和△ADE 中AB=AD ABG= D BG=DE ⎧⎪∠∠⎨⎪⎩∴△ABG ≌△ADE (SAS ) ∴AG =AE ,∠1=∠2∵∠BAD =90°,∠EAF =45° ∴∠2+∠3=45° ∴∠1+∠3=45° 即∠GAF =45° ∴∠GAF =∠EAF4321FE D CA87654321FO CDBEA43FED A 在△AGF 和△AEF 中AG AE GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△AGF ≌△AEF (SAS ) ∴GF =EF ∵GF =BF +BG ∴EF =BF +DE4. 证明:如图,在AC 上截取AF =AE ,连接OF .∵AD ,CE 为△ABC 的角平分线∴∠1=∠2,∠3=∠4 在△AEO 和△AFO 中12AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴△AEO ≌△AFO (SAS )∴∠5=∠6 ∵∠ABC =60°∴∠1+∠2+∠3+∠4=180∠B =18060 =120 ∴∠2+∠3=60∴∠AOC =180°60 =120°∴∠5=∠6=∠7=∠8=60° 在△OFC 和△ODC 中8734OC OC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△OFC ≌△ODC (ASA ) ∴CF =CD ∴AC =AF +FC =AE +CD5. 证明:如图,延长CE ,交BA 的延长线于点F .∵CE ⊥BD∴∠BEF =∠BEC =90° ∵∠BAC =90° ∴∠CAF =∠BAD =90°∵∠3=∠4∴∠1=∠5在△BAD 和△CAF 中15AB ACBAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△CAF (ASA ) ∴BD =CF∵BE 平分∠ABC ∴∠1=∠2在△BEF 和△BEC 中12BE BEBEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BEF ≌△BEC (ASA ) ∴EF =EC∴CE =12CF∴CE =12BD三角形全等之截长补短每日一题1. (4月28日)在△ABC 中,AD ⊥BC 于D ,∠B =2∠C .求证:CD =AB +BD .D CB A21A2.(4月29日)如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,连接BP,CP.求证:AB AC>PB PC.3.(4月30日)已知:如图,∠1=∠2,P为BN上一点,且PD⊥BC于点D,∠A+∠C=180°.求证:BD=AB+CD.4.(5月2日)如图,在正方形ABCD中,E为BC边上任意一点,AF平分∠DAE,连接EF.21NPD CADA求证:AE =BE +DF .【参考答案】1. 证明:如图,在线段DC 上截取DE =BD ,连接AE .E21A B D∵AD ⊥BC∴∠ADB =∠ADE =90° 在△ABD 和△AED 中AD AD ADB ADE DB DE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△AED (SAS ) ∴∠B =∠1,AB =AE ∵∠B =2∠C ∴∠1=2∠C∵∠1是△AEC 的一个外角 ∴∠1=∠C +∠2 ∴∠C =∠2 ∴AE =CE∴CD =CE +ED=AE +BD =AB +BD(如果延长DB 到点F ,使BF =AB ,连接AF 也可进行证明) 2. 证明:如图,在线段AB 上截取AE =AC ,连接PE .E A BCDP12则AB AC =ABAE =EB在△AEP 和△ACP 中 12AE AC AP AP =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△ACP (SAS ) ∴PE =PC 在△PEB 中,PB PE <EB∴PBPC <EB ∴AB AC >PB PC(延长AC 到点F ,使AF =AB ,连接PF ,也可证明结论) 3. 证明:如图,在BC 上截取BE =BA ,连接PE .43E21N PD BA在△ABP 和△EBP 中12BA BE BP BP =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△EBP (SAS ) ∴∠A =∠3∵∠A +∠C =180°,∠3+∠4=180° ∴∠4=∠C∴∠PDE =∠PDC =90° 在△PDE 和△PDC 中4C PDE PDC PD PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDE ≌△PDC (AAS ) ∴DE =DC ∴BD =BE +ED=AB +CD(过点P 作PF ⊥BA 于F ,也可进行证明)4. 证明:如图,延长EB 到点G ,使BG =DF ,连接AG .54321G FEDCBA∵四边形ABCD 为正方形 ∴AB =AD ,∠D =∠ABC =∠BAD =90° ∴∠ABG =∠D =90° 在△ABG 和△ADF 中AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADF (SAS ) ∴∠1=∠2,∠5=∠G ∵AF 平分∠DAE ∴∠1=∠3 ∵∠1+∠5=90° ∴∠3+∠G =90° ∵∠1+∠3+∠4=90° ∴∠2+∠3+∠4=90° ∴∠2+∠4=∠G ∴AE =EG ∵EG =BE +BG三角形全等之截长补短(随堂测试)6.已知:如图,在四边形ABCD中,BC>AB,AD=DC,∠C=60°,BD平分∠ABC.求证:BC=AB+AD.AD【参考答案】1.证明略提示:在BC上截取BE=AB,证明△ABD≌△EBD,再证明CE =AD .三角形全等之截长补短(作业)1. 如图,在△ABC 中,∠BAC =60°,∠ABC =80°,AD 是∠BAC 的平分线.求证:AC =AB +BD .AB CD AB CD AB CD2. 如图,AC 平分∠BAD ,CE ⊥AB 于E ,∠B +∠D =180°.求证:AE =AD +BE .CD BAECD E3. 如图,在△ABC 中,∠A =100°,∠ABC =40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE =AD ,连接EC . 求证:BC =AB +CE .EADCEADC4. 如图,在梯形ABCD 中,AD ∥BC ,CE ⊥AB 于E ,△BDC 为等腰直角三角形,∠BDC =90°,BD =CD ,CE 与BD 交于F ,连接AF . 求证:CF =AB +AF .A DECFBA DECFB87654321MAD E CF B【参考答案】1. 证明略提示:方法一:在AC 上截取AE =AB ,连接DE ,证明△ABD ≌△AED , 再证明CE =DE ;方法二:延长AB 到E ,使BE =BD ,证明△ADE ≌△ADC . 2. 证明略提示:在AE 上截取AF =AD ,证明△CDA ≌△CFA ,再证明BE =FE . 3. 证明略提示:在BC 上截取BF =BA ,连接DF ,证明△ABD ≌△FBD , 再证明△DFC ≌△DEC . 4. 截长法:证明:如图,在CF 上截取CM=BA ,连接DM . ∵△BDC 为等腰直角三角形,BD=CD ∴∠1=∠DCB =45° ∵CE ⊥AB ,∠BDC =90° ∴∠CEB =∠BDC =90° ∵∠2=∠3 ∴∠4=∠5在△ABD 和△MCD 中45AB MC BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△MCD (SAS ) ∴DA =DM ,∠6=∠7 ∵AD ∥BC ∴∠7=∠1=45° ∴∠6=45° ∴∠8=45° ∴∠7=∠8在△ADF 和△MDF 中78DA DM DF DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△MDF (SAS ) ∴AF =MF ∴CF =CM+MF=AB+AF 补短法:证明:如图,延长BA 交CD 的延长线于点G . ∵△BDC 为等腰直角三角形 ∴∠GDB =∠BDC=90°,∠5=45° ∵CE ⊥AB∴∠CEB =∠BDC =90° ∵∠1=∠2 ∴∠3=∠4在△GBD 和△FCD 中34GDB FDC DB DC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GBD ≌△FCD (ASA ) ∴BG =CF ,DG =DF ∵AD ∥BC ∴∠6=∠5=45° ∴∠7=45° ∴∠6=∠7在△GDA 和△FDA 中76DG DF DA DA =⎧⎪∠=∠⎨⎪=⎩∴△GDA ≌△FDA (SAS ) ∴AG =AF ∵BG =AB +AG ∴CF =AB +AF1234567G A DE CF B。