2018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第1节二维形式的柯西不等式

合集下载

高中数学 第三讲 3.4排序不等式暑期备课教案 新人教A版选修4-5

高中数学 第三讲 3.4排序不等式暑期备课教案 新人教A版选修4-5
总第(2)课时
课题:书写练习1
课型:新授课
教学目标:1、教会学生正确书写“杏花春雨江南”6个字。2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:
一、小结课堂内容,评价上次作业。
二、讲解新课:
1、检查学生书写姿势和执笔动作(要求做到“三个一”)。2、书写方法是:写一个字看一眼黑板。(老师读,学生读,加深理解。)3、书写教学“杏花春雨江南”6个字。
板书设计:结构特点(6)宝、穷、写、会、奔
我的思考:使学生更好的把握好字的结构,同时在教师的指导下提高学生辨别能力。激励学生更好的书写。
第(5)课时
课题:怎样写好字
课型:复习课
教学目标:1、让学生能够正确认识,端正态度。
教学过程:
一、正确的学书之路
1.临帖
临帖是学习书法的最根本的方法。古往今来,没有一个书法家是不经临习而成功的,没有一个字写得好的人是不经过临帖的。只有临帖,取法唐楷、晋行、汉隶、秦篆等传统的东西,才会有所获。
二、教学新课
1.讲解以宝盖头、穴字头等作为字头的字
(1)教师讲解字头的书写。(2)学生练习书写,教师指导书写。(3教师根据实际情况小结,提出要求。
2.指导书写例字
(1)出示例字:“宝”:首先要控制好字头,摆正位置,下面的“玉”字占格子的一半以上,特别是最后一横宜稍长,使整个字立正。“穷”:下面的力字宜正,不宜写得太小。(其余字略)(2)学生练习,师巡回指导。3、提出注意点三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。
第(1)课时
课题:书法---写字基本知识

高中数学人教A版选修-创新应用教学案第三章

高中数学人教A版选修-创新应用教学案第三章

运用复数加、减运算的几何意义应注意的问题 向量加法、减法运算的平行四边形法则和三角形法则是复数加法、减法几何意义的依 据.利用加法“首尾相接”和减法“指向被减数”的特点,在三角形内可求得第三个向量及 其对应的复数.注意向量 AB―→对应的复数是 zB-zA(终点对应的复数减去起点对应的复数).
练一练 2.复平面内三点 A、B、C,A 点对应的复数为 2+i,向量 量 对应的复数为 3-i,求点 C 对应的复数. 解:∵ 对应的复数为 1+2i, 对应的复数为 3-i, ∴ = - 对应的复数为(3-i)-(1+2i)=2-3i.
6
课下能力提升(九)
学业水平达标练]
题组 1 复数的加、减运算
1.复数(1-i)-(2+i)+3i 等于( ) A.-1+i B.1-i
C.i
D.-i
解析:选 A (1-i)-(2+i)+3i
=(1-2)+(-1-1+3)i=-1+i.
2.若 z1=2+i,z2=3+ai(a∈R),复数 z1+z2 所对应的点在实轴上,则 a=( ) A.-2 B.2 C.-1 D.1
(1)求 表示的复数; (2)求 表示的复数; (3)求 B 点对应的复数. [尝试解答] (1)∵ =- , ∴ 表示的复数为-(3+2i), 即-3-2i.
(2)∵ = - , ∴ 表示的复数为(3+2i)-(-2+4i)=5-2i.
(3)∵ = + = + , ∴ 表示的复数为(3+2i)+(-2+4i)=1+6i. 即 B 点对应的复数为 1+6i.
∴Error! 即Error!
∴z1=2+2i,z2=3-8i, ∴z1-z2=(2+2i)-(3-8i)=-1+10i. 答案:-1+10i
4.计算:(1)(1+2i)+(-2+i)+(-2-i)+(1-2i);

[推荐学习]2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第1节平面直角坐标

[推荐学习]2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第1节平面直角坐标

[核心必知]1.平面直角坐标系 (1)平面直角坐标系的作用通过直角坐标系,平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法解决几何问题的“三部曲”第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.2.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[问题思考]1.用坐标法解决几何问题时,坐标系的建立是否是唯一的?提示:对于同一个问题,可建立不同的坐标系解决,但应使图形上的特殊点尽可能多地落在坐标轴,以便使计算更简单、方便.2.伸缩变换中的系数λ,μ有什么特点?在伸缩变换下,平面直角坐标系是否发生变化?提示:伸缩变换中的系数λ>0,μ>0,在伸缩变换下,平面直角坐标系保持不变,只是对点的坐标进行伸缩变换.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.[精讲详析]解答此题需要结合几何图形的结构特点,建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程.以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).法一:由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).法二:由△ABC是直角三角形可知AC⊥BC,所以k AC·k BC=-1,则yx+a·yx-a=-1(x≠±a),化简得直角顶点C的轨迹方程为x2+y2=a2(x≠±a).法三:由△ABC是直角三角形可知|OC|=|OB|,且点C与点B不重合,所以x2+y2=a(x≠±a),化简得直角顶点C的轨迹方程为x2+y2=a2(x≠±a).求轨迹方程,其实质就是根据题设条件,把几何关系通过“坐标”转化成代数关系,得到对应的方程.(1)求轨迹方程的一般步骤是:建系→设点→列式→化简→检验.(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性.(3)由于观察的角度不同,因此探求关系的方法也不同,解题时要善于从多角度思考问题.1.已知线段AB与CD互相垂直平分于点O,|AB|=8,|CD|=4,动点M满足|MA|·|MB|=|MC|·|MD|,求动点M的轨迹方程.解:以O为原点,分别以直线AB,CD为x轴、y轴建立直角坐标系,则A(-4,0),B(4,0),C(0,2),D(0,-2).设M(x,y)为轨迹上任一点,则|MA|=(x+4)2+y2,|MB|=(x-4)2+y2,|MC|=x2+(y-2)2,|MD|=x2+(y+2)2,∴由|MA|·|MB|=|MC|·|MD|,可得[(x+4)2+y2][(x-4)2+y2]=[x2+(y-2)2][x2+(y+2)2].化简,得y2-x2+6=0.∴点M的轨迹方程为x2-y2=6.已知△ABC中,AB=AC,BD、CE分别为两腰上的高.求证:BD=CE.[精讲详析]本题考查坐标法在几何中的应用.解答本题可通过建立平面直角坐标系,将几何证明问题转化为代数运算问题.如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系. 设B (-a ,0),C (a ,0),A (0,h ).则直线AC 的方程为y =-ha x +h ,即:hx +ay -ah =0.直线AB 的方程为y =ha x +h ,即:hx -ay +ah =0.由点到直线的距离公式:|BD |=|2ah |a 2+h2,|CE |=|2ah |a 2+h2,∴|BD |=|CE |, 即BD =CE .(1)建立适当的直角坐标系,将平面几何问题转化为解析几何问题,即“形”转化为“数”,再回到“形”中,此为坐标法的基本思想,务必熟练掌握.(2)建立坐标系时,要充分利用图形的几何特征.例如,中心对称图形,可利用它的对称中心为坐标原点;轴对称图形,可利用它的对称轴为坐标轴;题设中有直角,可考虑以两直角边所在的直线为坐标轴等.2.已知△ABC 中,BD =CD ,求证:AB 2+AC 2=2(AD 2+BD 2). 证明:以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则D (a +b 2,c 2),∴AD 2+BD 2=(a +b )24+c 24+(a -b )24+c 24=12(a 2+b 2+c 2), AB 2+AC 2=a 2+b 2+c 2. ∴AB 2+AC 2=2(AD 2+BD 2).在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧x ′=13x ,y ′=12y后的图形是什么形状?(1)y 2=2x ;(2)x 2+y 2=1.[精讲详析] 本题考查伸缩变换的应用,解答此题需要先根据伸缩变换求出变换后的方程,然后再判断图形的形状.由伸缩变换⎩⎨⎧x ′=13x ,y ′=12y .可知⎩⎪⎨⎪⎧x =3x ′,y =2y ′.(1)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入y 2=2x ,可得4y ′2=6x ′,即y ′2=32x ′.即伸缩变换之后的图形还是抛物线.(2)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入x 2+y 2=1,得(3x ′)2+(2y ′)2=1,即x ′219+y ′214=1, 即伸缩变换之后的图形为焦点在y 轴上的椭圆.利用坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)求变换后的曲线方程,其实质是从中求出⎩⎨⎧x =1λx ′,y =1μy ′,然后将其代入已知的曲线方程求得关于x ′,y ′的曲线方程.3.将圆锥曲线C 按伸缩变换公式⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 变换后得到双曲线x ′2-y ′2=1,求曲线C 的方程.解:设曲线C 上任意一点P (x ,y ),通过伸缩变换后的对应点为P ′(x ′,y ′), 由⎩⎪⎨⎪⎧3x ′=x ,2y ′=y得⎩⎨⎧x ′=13x ,y ′=12y .代入x ′2-y ′2=1得(x 3)2-(y 2)2=1,即x 29-y 24=1为所求.本课时考点常以解答题(多出现在第(1)小问)的形式考查轨迹方程的求法,湖北高考将圆锥曲线的类型讨论同轨迹方程的求法相结合,以解答题的形式考查,是高考命题的一个新热点.[考题印证](湖北高考改编)设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.[命题立意] 本题考查圆锥曲线的相关知识以及轨迹方程的求法. [解]如图,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0);当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).一、选择题1.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,曲线方程变为( )A .y ′=3cos x ′2 B .y ′=3cos 2x ′C .y ′=13cos x ′2D .y ′=13cos 2x ′解析:选A 由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得⎩⎨⎧x =12x ′,y =13y ′.又∵y =cos x ,∴13y ′=cos x ′2,即y ′=3cos x ′2. 2.直线2x +3y =0经伸缩变换后变为x ′+y ′=0,则该伸缩变换为( )A.⎩⎪⎨⎪⎧x ′=12x ,y ′=3yB.⎩⎪⎨⎪⎧x ′=2x ,y ′=3yC.⎩⎪⎨⎪⎧x ′=2x ,y ′=13yD.⎩⎨⎧x ′=12x ,y ′=13y 解析:选B 设变换为⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0),将其代入方程x ′+y ′=0,得, λx +μy =0.又∵2x +3y =0,∴λ=2,μ=3.即⎩⎪⎨⎪⎧x ′=2x ,y ′=3y .3.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆 D .双曲线 解析:选D 由伸缩变换的意义可得.4.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P 点的坐标为(x ,y ), ∵|P A |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆, 它的面积为4π. 二、填空题5.将点P (2,3)变换为点P ′(1,1)的一个伸缩变换公式为________.解析:设伸缩变换为⎩⎪⎨⎪⎧x ′=hx (h >0)y ′=kx (k >0),由⎩⎪⎨⎪⎧1=2h1=3k,解得⎩⎨⎧h =12,k =13∴⎩⎨⎧x ′=x2,y ′=y 3.答案:⎩⎨⎧x ′=x 2,y ′=y36.将对数曲线y =log 3x 的横坐标伸长到原来的2倍得到的曲线方程为________. 解析:设P (x ,y )为对数曲线y =log 3x 上任意一点,变换后的对应点为P ′(x ′,y ′),由题意知伸缩变换为⎩⎪⎨⎪⎧x ′=2xy ′=y ,∴⎩⎪⎨⎪⎧x =12x ′,y =y ′.代入y =log 3x 得y ′=log 312x ′,即y =log 3x 2.答案:y =log 3x27.把圆x 2+y 2=16沿x 轴方向均匀压缩为椭圆x ′2+y ′216=1,则坐标变换公式是________.解析:设φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),则⎩⎨⎧x =x ′λ,y =y ′μ.代入x 2+y 2=16得x ′216λ2+y ′216μ2=1.∴16λ2=1,16μ2=16. ∴⎩⎪⎨⎪⎧λ=14,μ=1.故⎩⎪⎨⎪⎧x ′=x 4,y ′=y .答案:⎩⎪⎨⎪⎧x ′=x 4,y ′=y8.已知A (2,-1),B (-1,1),O 为坐标原点,动点M ,其中m ,n ∈R ,且2m 2-n 2=2,则M 的轨迹方程为________.解析:设M (x ,y ),则(x ,y )=m (2,-1)+n (-1,1)=(2m -n ,n -m ),∴⎩⎪⎨⎪⎧x =2m -n ,y =n -m .又2m 2-n 2=2,消去m ,n 得x 22-y 2=1.答案:x 22-y 2=1三、解答题9.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足条件的伸缩变换.解:x 2-36y 2-8x +12=0可化为 (x -42)2-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②,可得⎩⎨⎧x ′-2=x -42,y ′=3y ,即⎩⎪⎨⎪⎧x ′=x 2,y ′=3y .所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象.10.在正三角形ABC 内有一动点P ,已知P 到三顶点的距离分别为|P A |,|PB |,|PC |,且满足|P A |2=|PB |2+|PC |2,求点P 的轨迹方程.解:以BC 的中点为原点,BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的直角坐标系,设点P (x ,y ),B (-a ,0),C (a ,0),A (0,3a ),(y >0,a >0)用点的坐标表示等式|P A |2=|PB |2+|PC |2,有x 2+(y -3a )2=(x +a )2+y 2+(x -a )2+y 2,化简得x 2+(y +3a )2=(2a )2,即点P 的轨迹方程为x 2+(y +3a )2=4a 2(y >0).11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解:(1)∴e =33, ∴e 2=c 2a 2=a 2-b 2a 2=13, ∴b 2a 2=23. 又圆x 2+y 2=b 2与直线y =x +2相切,∴b =21+1= 2. ∴b 2=2,a 2=3.因此,a =3,b = 2.(2)由(1)知F 1,F 2两点的坐标分别为(-1,0),(1,0),由题意可设P (1,t ).那么线段PF 1的中点为N (0,t 2). 设M (x ,y ),由于MN ―→=(-x ,t 2-y ), PF 1―→=(-2,-t ),则⎩⎪⎨⎪⎧MN ―→·PF 1―→=2x +t (y -t 2)=0y =t,消去t 得所求轨迹方程为y 2=-4x ,曲线类型为抛物线.。

2018-2019高二数学人教A版选修4-5学案:3.3排序不等式导学案 Word版含解析

2018-2019高二数学人教A版选修4-5学案:3.3排序不等式导学案 Word版含解析

3.3 排序不等式学习目标1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。

二、合作探究思考探究使用排序不等式的关键是什么?名师点拨:1.排序原理的本质含义两组实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小.等号成立的条件是其中至少有一组序列为常数序列.2.排序原理的思想在解答数学问题时常常涉及到一些可以比较大小的量,它们之间并没有预先规定大小顺序,那么在解答问题时,不妨可以把它们按一定顺序排列起来利用排序原理,往往有助于解决问题.3.排序原理的推论对于实数a1,a2,…,a n,设ai1,ai2,…,ai n为其任一个排列,则有a1ai1+a2ai2+…+a n ai n≤a21+a2+…+a2n.4.利用排序不等式求最值的方法利用排序不等式求最值时,先要对待证不等式及已知条件仔细分析,观察不等式的结构,明确两个数组的大小顺序,分清顺序和、乱序和反序和,由于乱序和是不确定的,根据需要写出其中的一个即可.一般最值是顺序和或反序和.5.排序不等式证明不等式的策略(1)利用排序不等式证明不等式时,若已知条件中已给出两组量的大小关系,则需要分析清楚顺序和、乱序和及反序和.利用排序不等式证明即可.(2)若在解答数学问题时,涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序.那么在解答问题时,我们可以利用排序原理将它们按一定顺序排列起来,继而用不等式关系来解题.【例1】某班学生要开联欢会,需要买价格不同的礼品4件,5件及2件,现在选择商品中单价为3元,2元和1元的礼品,问至少要花多少钱?最多要花多少钱?【变式训练1】 设a 1,a 2,a 3为正数,且a 1+a 2+a 3=1,求a1a2a3+a2a3a1+a3a1a2的最小值.【例2】 已知a ,b ,c ∈R +,求证:a12bc +b12ca +c12ab≥a 10+b 10+c 10.【变式训练2】 已知a ,b ,c 都是正数,求证:1a +1b +1c ≤a8+b8+c8a3b3c3.【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【变式训练3】 已知a ,b ,c 为正数,用排序不等式证明:2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ).参考答案二、合作探究探究1:两组实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小.等号成立的条件是其中至少有一组序列为常数序列.探究2:在解答数学问题时常常涉及到一些可以比较大小的量,它们之间并没有预先规定大小顺序,那么在解答问题时,不妨可以把它们按一定顺序排列起来利用排序原理,往往有助于解决问题.探究3:对于实数a 1,a 2,…,a n ,设ai 1,ai 2,…,ai n 为其任一个排列,则有a 1ai 1+a 2ai 2+…+a n ai n ≤a 21+a 2+…+a 2n .探究4:利用排序不等式求最值时,先要对待证不等式及已知条件仔细分析,观察不等式的结构,明确两个数组的大小顺序,分清顺序和、乱序和反序和,由于乱序和是不确定的,根据需要写出其中的一个即可.一般最值是顺序和或反序和.探究5:(1)利用排序不等式证明不等式时,若已知条件中已给出两组量的大小关系,则需要分析清楚顺序和、乱序和及反序和.利用排序不等式证明即可.(2)若在解答数学问题时,涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序.那么在解答问题时,我们可以利用排序原理将它们按一定顺序排列起来,继而用不等式关系来解题.【例1】【解】 由题意可知,(a 1,a 2,a 3)=(2,4,5),(b 1,b 2,b 3)=(1,2,3),则花钱最少为:1×5+2×4+3×2=19(元);花钱最多为:1×2+2×4+3×5=25(元).【变式训练1】解 不妨设a 3>a 1>a 2>0,则1a3<1a1<1a2, 所以a 1a 2<a 2a 3<a 3a 1.设乱序和S =a1a3a3+a1a2a1+a3a2a2=a 1+a 2+a 3=1, 顺序和S ′=a1a2a3+a2a3a1+a3a1a2. 由排序不等式得a1a2a3+a2a3a1+a3a1a2≥a 1+a 2+a 3=1. 所以a1a2a3+a2a3a1+a3a1a2的最小值为1. 【例2】【分析】 观察需证不等式可以发现左、右两边的次数相等.因此,应该进行适当的拼凑,使其成为积的形式.【证明】 不妨设a ≥b ≥c >0,则1bc ≥1ca ≥1ab>0,且a 12≥b 12≥c 12>0. ∴a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ac =a11b +b11c +c11a ≥a11a +b11b +c11c=a 10+b 10+c 10. 【变式训练2】证明 由于a ,b ,c 的对称性,不妨设a ≥b ≥c >0,则1c ≥1b ≥1a. 因而1b3c3≥1c3a3≥1a3b3. 又a 5≥b 5≥c 5,由排序不等式,得a5b3c3+b5c3a3+c5a3b3≥a5c3a3+b5a3b3+c5b3c3=a2c3+b2a3+c2b3.又由不等式性质,知a2≥b2≥c2,1c3≥1b3≥1a3.根据排序不等式,得a2 c3+b2a3+c2b3≥a2a3+b2b3+c2c3=1a+1b+1c.由不等式的传递性知1 a+1b+1c≤a5b3c3+b5c3a3+c5a3b3=a8+b8+c8a3b3c3.【例3】【分析】题中只给出了x>0,但是对于x≥1,x<1并不确定,因此,需要分类讨论.【证明】(1)当x≥1时,1≤x≤x2≤…≤x n,由排序原理知,1·1+x·x+x2·x2+…+x n·x n≥x n·1+x n-1·x+…+1·x n,∴1+x2+x4+…+x2n≥(n+1)x n.①又∵x,x2,…,x n,1为1,x,x2,…,x n的一个排序,于是由排序原理得1·x+x·x2+…+x n-1·x n+1·x n≥1·x n +x·x n-1+…+x n-1·x+x n·1,∴x+x3+…+x2n-1≥nx n.②①+②,得1+x+x2+…+x2n≥(2n+1)x n.(2)当0<x<1时,1>x>x2>…>x n,同理可得.综合(1)与(2),所以当x>0时,1+x+x2+…+x2n≥(2n+1)x n.【变式训练3】证明取两组数a,b,c;a2,b2,c2.不管a,b,c的大小如何,a3+b3+c3都是顺序和,而a2b+b2c+c2a,及a2c+b2a+c2b都是乱序和.因此,a3+b3+c3≥a2b+b2c+c2a,a3+b3+c3≥a2c+b2a+c2b.∴2(a3+b3+c3)≥a2(b+c)+b2(c+a)+c2(a+b).。

教育最新K122018-2019学年高中数学人教A版选修4-5教学案:第三讲本讲知识归纳与达标验收

教育最新K122018-2019学年高中数学人教A版选修4-5教学案:第三讲本讲知识归纳与达标验收

对应学生用书P37 考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验1.(陕西高考)设a ,b ,m ,n ∈R ,且 a 2+b 2=5,ma +nb =5,则 m 2+n 2 的最小值为________.解析:由柯西不等式得(a 2+b 2)(m 2+n 2)≥(ma +nb )2,将已知代入得m 2+n 2≥5⇒ m 2+n 2≥5,当且仅当“a m =bn ”时等号成立.答案: 52.(福建高考)已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3. (2)由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.对应学生用书P37柯西不等式的一般形式为(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a nb n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观、对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.[例1] 已知a ,b ,c ,d 为不全相等的正数,求证: 1a 2+1b 2+1c 2+1d 2>1ab +1bc +1cd +1da. [证明] 由柯西不等式(1a 2+1b 2+1c 2+1d 2)(1b 2+1c 2+1d 2+1a 2)≥(1ab +1bc +1cd +1da )2,于是1a 2+1b 2+1c 2+1d 2≥1ab +1bc +1cd +1da ①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a ⇔b a =c b =d c =ad⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a 2+1b 2+1c 2+1d 2>1ab +1bc +1cd +1da .排序不等式具有自己独特的体现:多个变量的排列与其大小顺序有关,特别是与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往很简捷.[例2] 设a ,b ,c 为实数,求证: a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10. [证明] 由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和得a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c ,再次由排序不等式:反序和≤乱序和得 a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a .②由①②得a 12bc +b 12ca +c 12ab ≥a 10+b 10+c 10.有关不等式问题往往要涉及到对式子或量的范围的限定.其中含有多变量限制条件的最值问题往往难以处理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.[例3] 已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.[解] ∵⎣⎡⎦⎤⎝⎛⎭⎫552+⎝⎛⎭⎫332[(5a )2+(3b )2] ≥⎝⎛⎭⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b 即a =38,b =58时取等号.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.[例4] 已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1的最小值. [解]不妨设0<x 1≤x 2≤…≤x n 则1x 1≥1x 2≥…≥1x n>0 且0<x 21≤x 22≤…≤x 2n .∵1x 2,1 x 3,…,1x n ,1x 1为序列{1x n }的一个排列. 根据排序不等式,得F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1≥x 21·1x 1+x 22·1x 2+…+x 2n ·1x n=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时取等号.即F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2nx 1的最小值为P .对应学生用书P51(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ∈R +且a +b =16,则1a +1b 的最小值是( )A.14 B .18C.116D.12解析:(a +b )⎝⎛⎭⎫1a +1b ≥⎝⎛⎭⎫a ·1a +b ·1b 2=4, ∴1a +1b ≥14. 当且仅当a ·1b =b ×1a ,即a =b =8时取等号. 答案:A2.已知2x +3y +4z =10,则x 2+y 2+z 2取到最小值时的x ,y ,z 的值为( ) A.53,109,56 B.2029,3029,4029C .1,12,13D .1,14,19解析:由柯西不等式得(22+32+42)(x 2+y 2+z 2)≥(2x +3y +4z )2, 即x 2+y 2+z 2≥10029.当且仅当x 2=y 3=z4时,取到最小值,所以联立⎩⎪⎨⎪⎧x 2=y 3=z 4,2x +3y +4z =10可得x =2029,y =3029,z =4029.答案:B3.已知a ,b ,c 为正数且a +b +c =32,则a 2+b 2+b 2+c 2+c 2+a 2的最小值为( ) A .4 B .4 2 C .6D .6 2解析:∵a ,b ,c 为正数. ∴ 2a 2+b 2=1+1a 2+b 2≤a +b .同理 2 b 2+c 2≤b +c , 2 c 2+a 2≤c +a ,相加得 2 (a 2+b 2+b 2+c 2+c 2+a 2)≤2(b +c +a )=62,即a 2+b 2+b 2+c 2+c 2+a 2≤6.当且仅当a =b =c =2时取等号.答案:C4.已知(x -1)2+(y -2)2=4,则3x +4y 的最大值为( ) A .21 B .11 C .18D .28解析:根据柯西不等式得[(x -1)2+(y -2)2][32+42]≥[3(x -1)+4(y -2)]2=(3x +4y -11)2,∴(3x +4y -11)2≤100. 可得3x +4y ≤21,当且仅当x -13=y -24=25时取等号. 答案:A5.已知:a ,b ,c 为正数,则(a +b +c )⎝⎛⎭⎫1a +b +1c 的最小值为( )A .1 B. 3 C .3D .4解析:(a +b +c )⎝ ⎛⎭⎪⎫1a +b +1c=[(a +b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a +b 2+⎝⎛⎭⎫1c 2 ≥⎝ ⎛⎭⎪⎫a +b ·1a +b +c ·1c 2=22=4. 当且仅当a +b =c 时取等号. 答案:D6.函数f (x )=2x -1+6-3x 的最大值为( ) A.15 B.30 C.1230 D .215解析:易知x ∈⎣⎡⎦⎤12,2且f (x )>0, ∴f (x )=2·x -12+3·2-x≤ [(2)2+(3)2]⎣⎡⎦⎤⎝⎛⎭⎫x -122+(2-x )2=5×32=1230. 当且仅当2·2-x =3·x -12,即2(2-x )=3(x -12).即x =1110时等号成立.答案:C7.设a ,b ,c 为正数,a +b +4c =1,则a +b +2c 的最大值是( ) A. 5 B. 3 C .2 3D.32解析:1=a +b +4c =(a )2+(b )2+(2c )2=13[(a )2+(b )2+(2c )2]·(12+12+12) ≥(a +b +2c )2·13,∴(a +b +2c )2≤3.即当且仅当a =b =4c 时等式成立,所求为 3. 答案:B8.函数f (x )=1-cos 2x +cos x ,则f (x )的最大值是( ) A. 3 B. 2 C .1D .2解析:由f (x )=1-cos 2x +cos x ,所以f (x )= 2 sin 2x +cos x ≤(2+1)(sin 2x +cos 2x )= 3.当且仅当cos x =33时取等号. 答案:A9.已知a +b +c =1,且a ,b ,c ∈R +,则2a +b +2b +c +2c +a 的最小值为( )A .1B .3C .6D .9解析:∵a +b +c =1, ∴2a +b +2b +c +2c +a=2(a +b +c )·⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a=[(a +b )+(b +c )+(c +a )]·⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2=9.答案:D10.设c 1,c 2,…,c n 是a 1,a 2,…,a n 的某一排列(a 1,a 2,…,a n 均为正数),则a 1c 1+a 2c 2+…+a nc n的最小值是( ) A.1n B .n C .1D .不能确定解析:不妨设0<a 1≤a 2≤…≤a n ,则1a 1≥1a 2≥…≥1a n ,1c 1,1c 2,…,1c n 是1a 1,1a 2,…,1a n的一个排列,又反序和≤乱序和,所以a 1c 1+a 2c 2+…+a n c n ≥a 1a 1+a 2a 2+…+a na n=n .答案:B二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填写在题中横线上) 11.x ,y ∈R ,若x +y =1,则x 2+y 2的最小值为________.解析:令a =(1,1),b =(x ,y ),则a ·b =x +y =1, 又|a·b |≤|a ||b |, ∴1≤(12+12)2·(x 2+y 2)2=2(x 2+y 2).当且仅当x =y =12时取等号.∴x 2+y 2≥12.答案:1212.已知A ,B ,C 是三角形三个内角的弧度数,则1A +1B +1C 的最小值是________.解析:(A +B +C )⎝⎛⎭⎫1A +1B +1C ≥(1+1+1)2=9,而A +B +C =π,故1A +1B +1C ≥9π,当且仅当A =B =C =π3时,等号成立.答案:9π13.函数y =22-x +2x -3的最大值是________. 解析:y =2×4-2x +2x -3≤[(2)2+1](4-2x +2x -3)= 3.当且仅当x =53时取等号.答案: 314.已知a ,b ,x ,y 均为正数,且1a >1b ,x >y ,则x x +a 与yy +b 的大小关系是________.解析:∵1a >1b ,∴b >a >0.又x >y >0,由排序不等式知,bx >ay .又x x +a -y y +b =bx -ay (x +a )(y +b )>0,∴x x +a >yy +b. 答案:x x +a >yy +b三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知实数a ,b ,c 满足a +2b +c =1,a 2+b 2+c 2=1,求证:-23≤c ≤1. 证明:因为a +2b +c =1,a 2+b 2+c 2=1, 所以a +2b =1-c ,a 2+b 2=1-c 2.由柯西不等式:(12+22)(a 2+b 2)≥(a +2b )2, 5(1-c 2)≥(1-c )2,整理得,3c 2-c -2≤0,解得-23≤c ≤1.∴-23≤c ≤1.16.(本小题满分12分)求函数y =1-sin x +4sin x -1的最大值. 解:由1-sin x ≥0,4sin x -1≥0, 得14≤sin x ≤1, 则y 2=⎝⎛⎭⎫1-sin x +2sin x -142≤(1+4)⎝⎛⎭⎫1-sin x +sin x -14 =154,即y ≤152, 当且仅当4(1-sin x )=sin x -14即sin x =1720时等号成立,所以函数y =1-sin x +4sin x -1的最大值为152. 17.(本小题满分12分)设a ,b ,c ∈R +, 求证:a 2b +c +b 2c +a +c 2a +b≥a +b +c 2.证明:∵[(b +c )+(c +a )+(a +b )]⎝ ⎛⎭⎪⎫a2b +c +b 2c +a +c 2a +b ≥⎝⎛⎭⎪⎫b +c ·a b +c +c +a ·b c +a +a +b ·c a +b 2=(a +b +c )2,即2(a +b +c )⎝ ⎛⎭⎪⎫a 2b +c +b 2c +a +c 2a +b ≥(a +b +c )2.又∵a ,b ,c ∈R +,∴a 2b +c +b 2c +a +c 2a +b≥a +b +c 2.18.(本小题满分12分)(1)已知:a ,b ∈R +,a +b =4,证明:1a +1b≥1;(2)已知: a ,b ,c ∈R +,a +b +c =9,证明:1a +1b +1c ≥1;并类比上面的结论,写出推广后的一般性结论(不需证明).证明:(1)根据柯西不等式: (a +b )⎝⎛⎭⎫1a +1b≥⎝⎛⎭⎫a ·1a +b ·1b 2=4,∵a +b =4, ∴1a +1b≥1. (2)根据柯西不等式: (a +b +c )⎝⎛⎭⎫1a +1b +1c≥⎝⎛⎭⎫a ·1a +b ·1b +c ·1c 2=9,∵a +b +c =9, ∴1a +1b +1c ≥1. 可以推广:若a 1+a 2+…+a n =n 2, 则1a 1+1a 2+…+1a n≥1.小学+初中+高中小学+初中+高中。

人教版2019版高中数学第三讲柯西不等式与排序不等式复习课学案新人教A版选修4_5

人教版2019版高中数学第三讲柯西不等式与排序不等式复习课学案新人教A版选修4_5

第三讲 柯西不等式与排序不等式复习课学习目标 1.梳理本专题主要知识,构建知识网络.2.进一步理解柯西不等式,熟练掌握柯西不等式的各种形式及应用技巧.3.理解排序不等式及应用.4.进一步体会柯西不等式与排序不等式所蕴含的数学思想及方法.1.二维形式的柯西不等式(1)二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2. (2)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.(3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x21+y21+x22+y22≥错误!. 2.一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 2+…+a 2n )(b 21+b 2+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i=kb i (i =1,2,…,n )时,等号成立. 3.排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 是b 1,b 2,…,b n 的任一排列,则a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a nb n .类型一 利用柯西不等式证明不等式例1 已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da .证明 由柯西不等式知,⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2·⎝ ⎛⎭⎪⎫1b2+1c2+1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2,于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da .①等号成立⇔1a 1b =1b 1c =1c 1d =1d1a⇔b a =c b =d c =ad⇔a =b =c =d . 又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da . 反思与感悟 利用柯西不等式证题的技巧(1)柯西不等式的一般形式为(a 21+a 2+…+a 2n )·(b 21+b 2+…+b 2n )≥(a 1b 1+a 2b 2+…+a nb n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观、对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式的证明问题迎刃而解.(2)利用柯西不等式证明其他不等式的关键是构造两组数,并向着柯西不等式的形式进行转化,运用时要注意体会.跟踪训练1 若n 是不小于2的正整数,求证:47<1-12+13-14+…+12n -1-12n <22.证明 1-12+13-14+…+12n -1-12n=⎝ ⎛⎭⎪⎫1+12+13+...+12n -2⎝ ⎛⎭⎪⎫12+14+ (12)=1n +1+1n +2+…+12n, 所以求证式等价于47<1n +1+1n +2+…+12n <22.由柯西不等式,有⎝⎛⎭⎪⎫1n +1+1n +2+…+12n [(n +1)+(n +2)+…+2n ]>n 2,于是1n +1+1n +2+…+12n >错误!=2n 3n +1=23+1n ≥23+12=47,又由柯西不等式,有1n +1+1n +2+…+12n<错误! <n ⎝ ⎛⎭⎪⎫1n -12n =22.综上,47<1-12+13-14+…+12n -1-12n <22.类型二 利用排序不等式证明不等式例2 设A ,B ,C 表示△ABC 的三个内角弧度数,a ,b ,c 表示其对边,求证:aA +bB +cC a +b +c ≥π3. 证明 不妨设0<a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC =aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )·(A +B +C ) =π(a +b +c ),得aA +bB +cC a +b +c ≥π3.引申探究若本例条件不变,求证:aA +bB +cC a +b +c <π2.证明 不妨设0<a ≤b ≤c ,于是A ≤B ≤C . 由0<b +c -a,0<a +b -c,0<a +c -b , 有0<A (b +c -a )+C (a +b -c )+B (a +c -b ) =a (B +C -A )+b (A +C -B )+c (A +B -C ) =a (π-2A )+b (π-2B )+c (π-2C ) =(a +b +c )π-2(aA +bB +cC ). 得aA +bB +cC a +b +c <π2.反思与感悟 利用排序不等式证明不等式的策略(1)在利用排序不等式证明不等式时,首先考虑构造出两个合适的有序数组,并能根据需要进行恰当地组合.这需要结合题目的已知条件及待证不等式的结构特点进行合理选择.(2)根据排序不等式的特点,与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往很简捷.跟踪训练2 设a ,b ,c 为正数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.证明 由a ,b ,c 的对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .①又因为a 11≥b 11≥c 11,1a ≤1b ≤1c ,再次由排序不等式,得a11a +b11b +c11c ≤a11b +b11c +c11a . ②由①②得a12bc +b12ca +c12ab ≥a 10+b 10+c 10.类型三 利用柯西不等式或排序不等式求最值例3 (1)求实数x ,y 的值使得(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值. (1)解 由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1, 即(y -1)2+(x +y -3)2+(2x +y -6)2≥16,当且仅当y -11=3-x -y 2=2x +y -61,即x =52,y =56时,上式取等号.故x =52,y =56.(2)设a 1,a 2,a 3,a 4,a 5是互不相同的正整数,求M =a 1+a222+a332+a442+a552的最小值.解 设b 1,b 2,b 3,b 4,b 5是a 1,a 2,a 3,a 4,a 5的一个排列,且b 1<b 2<b 3<b 4<b 5. 因此b 1≥1,b 2≥2,b 3≥3,b 4≥4,b 5≥5. 又1≥122≥132≥142≥152.由排序不等式,得a 1+a222+a332+a442+a552≥b 1+b222+b332+b442+b552≥1×1+2×122+3×132+4×142+5×152=1+12+13+14+15=13760.即M 的最小值为13760.反思与感悟 利用柯西或排序不等式求最值的技巧(1)有关不等式问题往往要涉及对式子或量的范围的限定,其中含有多变量限制条件的最值问题往往难以处理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易. (2)在利用柯西不等式或排序不等式求最值时,要关注等号成立的条件,不能忽略. 跟踪训练3 已知正数x ,y ,z 满足x +y +z =xyz ,且不等式1x +y +1y +z +1z +x ≤λ恒成立,求λ的取值范围. 解1x +y +1y +z +1z +x ≤12xy +12yz +12zx=12⎝⎛⎭⎪⎫1×zx +y +z+1×xx +y +z+1×y x +y +z≤12错误!12=错误!. 故λ的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.1.函数y =21-x +2x +1的最大值为( ) A. 3 B .- 3 C .-3 D .3答案 D解析 y 2=(2·2-2x +1·2x +1)2≤[(2)2+12][(2-2x)2+(2x +1)2] =3×3=9.∴y ≤3,y 的最大值为3.2.已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,则a 的最大值是( )A .1B .2C .3D .4 答案 B解析 ∵(2b 2+3c 2+6d 2)⎝ ⎛⎭⎪⎫12+13+16≥(b +c +d )2,即2b 2+3c 2+6d 2≥(b +c +d )2. ∴5-a 2≥(3-a )2. 解得1≤a ≤2.验证:当a =2时,等号成立.3.已知2x +3y +4z =10,则x 2+y 2+z 2取到最小值时的x ,y ,z 的值为( ) A.53,109,56 B.2029,3029,4029C .1,12,13D .1,14,19答案 B解析 由柯西不等式得(22+32+42)(x 2+y 2+z 2)≥(2x +3y +4z )2, 即x 2+y 2+z 2≥10029.当且仅当x 2=y 3=z4时,等号成立,所以联立⎩⎪⎨⎪⎧x 2=y 3=z 4,2x +3y +4z =10,可得x =2029,y =3029,z =4029.4.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 不妨设a ≥b ≥c >0, 则1a ≤1b ≤1c,ab ≥ac ≥bc , ∵bc a +ac b +ab c ≥bc c +ac a +abb =a +b +c , ∴bc a +ac b +abc≥a +b +c .1.对于柯西不等式要特别注意其向量形式的几何意义,从柯西不等式的几何意义出发就得到了三角形式的柯西不等式,柯西不等式的一般形式也可以写成向量形式. 2.参数配方法是由旧知识得到的新方法,注意体会此方法的数学思想.3.对于排序不等式要抓住它的本质含义:两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小,注意等号成立条件是其中一序列为常数序列.4.数学建模是数学学习中的一种新形式,它为学生提供了自己学习的空间,有助于学生了解数学在实际生活中的应用,体会数学与日常生活及其他学科的联系.一、选择题1.已知a ,b 是给定的正数,则4a2sin2α+b2cos2α的最小值为( )A .2a 2+b 2B .2abC .(2a +b )2D .4ab答案 C 解析4a2sin2α+b2cos2α=(sin 2α+cos 2α)⎝ ⎛⎭⎪⎫4a2sin2α+b2cos2α≥⎝⎛⎭⎪⎫sin α·2a sin α+cos α·b cos α2=(2a +b )2, 当且仅当sin α·b cos α=cos α·2asin α时,等号成立.故4a2sin2α+b2cos2α的最小值为(2a +b )2.2.已知a ,b ,c 为正数且a +b +c =32,则a2+b2+b2+c2+c2+a2的最小值为( )A .4B .42C .6D .6 2 答案 C解析 ∵a ,b ,c 为正数,∴2a2+b2=1+1a2+b2≥a +b .同理2b2+c2≥b +c ,2c2+a2≥c +a , 相加得2(a2+b2+b2+c2+c2+a2) ≥2(b +c +a )=62,即a2+b2+b2+c2+c2+a2≥6, 当且仅当a =b =c =2时取等号.3.已知(x -1)2+(y -2)2=4,则3x +4y 的最大值为( ) A .21 B .11 C .18 D .28答案 A解析 根据柯西不等式,得[(x -1)2+(y -2)2][32+42]≥[3(x -1)+4(y -2)]2=(3x +4y -11)2, ∴(3x +4y -11)2≤100. 可得3x +4y ≤21,当且仅当x -13=y -24=25时取等号. 4.已知x ,y ,z 是非负实数,若9x 2+12y 2+5z 2=9,则函数u =3x +6y +5z 的最大值是( )A .9B .10C .14D .15 答案 A解析 ∵(3x +6y +5z )2≤[12+(3)2+(5)2]·[(3x )2+(23y )2+(5z )2]=9(9x 2+12y 2+5z 2)=81,当且仅当3x =2y =z 时,等号成立. 故u =3x +6y +5z 的最大值为9.5.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值为( )A .5B .6C .8D .9 答案 D解析 由柯西不等式知,⎝ ⎛⎭⎪⎫1x +2y +3z ⎝ ⎛⎭⎪⎫x +y 2+z 3≥(1+1+1)2=9,因为1x +2y +3z =1,所以x +y 2+z3≥9.即x +y 2+z3的最小值为9.6.设c 1,c 2,…,c n 是a 1,a 2,…,a n 的某一排列(a 1,a 2,…,a n 均为正数),则a1c1+a2c2+…+ancn 的最小值是( ) A .n B.1n C.nD .2n答案 A解析 不妨设a 1≥a 2≥…≥a n >0, 则1a1≤1a2≤…≤1an , 由排序不等式知,a1c1+a2c2+…+an cn ≥a 1·1a1+a 2·1a2+…+a n ·1an =n . 二、填空题7.设a ,b ,c ,d ,m ,n ∈R +,P =ab +cd ,Q =am +nc ·b m +dn,则P ,Q 的大小关系为________. 答案 P ≤Q解析 由柯西不等式得P =am·b m +nc·dn ≤am +nc ·b m +dn=Q ,当且仅当am·dn =nc·bm时,等号成立,∴P ≤Q .8.设x ,y ,z ∈R ,若x 2+y 2+z 2=4,则x -2y +2z 的最小值为________. 答案 -6解析 由柯西不等式,得(x 2+y 2+z 2)[12+(-2)2+22]≥(x -2y +2z )2, 故(x -2y +2z )2≤4×9=36.当且仅当x 1=y -2=z 2=k ,k =±23时,上式取得等号,当k =-23时,x -2y +2z 取得最小值-6.9.已知点P 是边长为23的等边三角形内一点,它到三边的距离分别为x ,y ,z ,则x ,y ,z 所满足的关系式为________,x 2+y 2+z 2的最小值是________.答案 x +y +z =3 3解析 利用三角形面积相等,得 12×23(x +y +z )=34×(23)2, 即x +y +z =3.由(1+1+1)(x 2+y 2+z 2)≥(x +y +z )2=9, 得x 2+y 2+z 2≥3,当且仅当x =y =z =1时取等号.10.若a ,b ,c ∈R ,设x =a 3+b 3+c 3,y =a 2b +b 2c +c 2a ,则x ,y 的大小关系为________. 答案 x ≥y解析 取两组数a ,b ,c ;a 2,b 2,c 2.不管a ,b ,c 的大小顺序如何,a 3+b 3+c 3都是顺序和,a 2b +b 2c +c 2a 都是乱序和,a 3+b 3+c 3≥a 2b +b 2c +c 2a . 三、解答题11.(2018·江苏)若x ,y ,z 为实数,且x +2y +2z =6,求x 2+y 2+z 2的最小值. 解 由柯西不等式,得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2. 因为x +2y +2z =6,所以x 2+y 2+z 2≥4, 当且仅当x 1=y 2=z2时,不等式取等号,此时x =23,y =43,z =43,所以x 2+y 2+z 2的最小值为4.12.已知a ,b ,c 为正数,求证:b2c2+c2a2+a2b2a +b +c ≥abc .证明 考虑到正数a ,b ,c 的对称性,不妨设a ≥b ≥c >0, 则1a ≤1b ≤1c,bc ≤ca ≤ab , 由排序不等式知,顺序和≥乱序和, ∴bc a +ca b +ab c ≥ab b +bc c +ca a , 即b2c2+c2a2+a2b2abc≥a +b +c .∵a,b,c为正数,∴两边同乘以abca+b+c,得b2c2+c2a2+a2b2a+b+c≥abc.13.设a ,b ,c ,d ∈R +,令S =a a +d +b +b b +c +a +c c +d +b +d d +a +c,求证:1<S <2.证明 首先证明b a <b +m a +m(a >b >0,m >0). 因为b a -b +m a +m=错误! =错误!<0,所以S =a a +d +b +b b +c +a +c c +d +b +d d +a +c<错误!+错误!+错误!+错误!=错误!=2,所以S <2.又S >a a +b +d +c +b b +c +a +d +c c +d +b +a+ d d +a +c +b =a +b +c +d a +b +c +d=1, 所以1<S <2.四、探究与拓展14.已知5a 2+3b 2=158,则a 2+2ab +b 2的最大值为________. 答案 1解析 ∵⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332[(5a )2+(3b )2] ≥⎝ ⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2, 当且仅当5a =3b ,即a =38,b =58时取等号. ∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.15.已知a ,b ,c 均为实数,且a +b +c +2-2m =0,a 2+14b 2+19c 2+m -1=0.(1)求证:a 2+14b 2+19c 2≥错误!; (2)求实数m 的取值范围.(1)证明 由柯西不等式得⎣⎢⎡⎦⎥⎤a2+⎝ ⎛⎭⎪⎫12b 2+⎝ ⎛⎭⎪⎫13c 2·(12+22+32)≥(a +b +c )2,当且仅当a =14b =19c 时,等号成立, 即⎝⎛⎭⎪⎫a2+14b2+19c2×14≥(a +b +c )2, ∴a 2+14b 2+19c 2≥错误!. (2)解 由已知得a +b +c =2m -2,a 2+14b 2+19c 2=1-m ,∴由(1)可知,14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,解得-52≤m ≤1. 又∵a 2+14b 2+19c 2=1-m ≥0,∴m ≤1, ∴-52≤m ≤1. 即实数m 的取值范围为⎣⎢⎡⎦⎥⎤-52,1.。

[推荐学习]2018-2019学年高中数学人教A版选修4-5教学案:第三讲三排序不等式

[推荐学习]2018-2019学年高中数学人教A版选修4-5教学案:第三讲三排序不等式

对应学生用书P35 1.顺序和、乱序和、反序和设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,称a 1b 1+a 2b 2+…+a n b n 为这两个实数组的顺序积之和(简称顺序和),称a 1b n +a 2b n-1+…+a n b 1为这两个实数组的反序积之和(简称反序和).称a 1c 1+a 2c 2+…+a n c n 为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序原理,又称为排序不等式) 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,等号成立(反序和等于顺序和)⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .排序原理可简记作:反序和≤乱序和≤顺序和.[说明] 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.对应学生用书P35[例1] 已知a ,b ,c 为正数,且a ≥b ≥c ,求证: a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c. [思路点拨] 分析题目中已明确a ≥b ≥c ,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.[证明] ∵a ≥b >0,于是1a ≤1b ,又c >0,从而1bc ≥1ca ,同理1ca ≥1ab ,从而1bc ≥1ca ≥1ab .又由于顺序和不小于乱序和,故可得 a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3 =b 2c 3+c 2a 3+a 2b 3⎝⎛⎭⎫∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3 ≥c 2c 3+a 2a 3+b 2b 3=1c +1a +1b =1a +1b +1c. 所以原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γ·cos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝⎛⎭⎫0,π2为增函数,y =cos x 在⎝⎛⎭⎫0,π2为减函数, ∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ=12(sin 2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n ≥(2n +1)x n . 证明:∵x ≥1,∴1≤x ≤x 2≤……≤x n . 由排序原理得12+x 2+x 4+…+x 2n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1 即1+x 2+x 4+…+x 2n n ≥(n +1)x n .①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n 的一个排列由排序原理得:1·x +x ·x 2+…+x n -1·x n +x n ·1 ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1 得x +x 3+…+x 2n -1+x n ≥(n +1)x n ② 将①②相加得1+x +x 2+…+x 2n ≥(2n +1)x n .[例2] 在△ABC 中,试证:π3≤aA +bB +cC a +b +c[思路点拨] 可构造△ABC 的边和角的有序数列,应用排序不等式来证明. [证明] 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C ) =π(a +b +c ),得aA +bB +cCa +b +c≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明:由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知 ab ×1c +ac ×1b +bc ×1a≥ab ×1b +ac ×1a +bc ×1c,即所证不等式bc a +ca b +abc ≥a +b +c 成立.4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a 1a 2+a 2a 3+…+a n -1a n.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c 1>1c 2>…>1c n -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a 1a 2+a 2a 3+…+a n -1a n ≥b 1c 1+b 2c 2+…+b n -1c n -1≥12+23+…+n -1n . ∴原不等式成立.对应学生用书P361.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:由排序不等式,顺序和≥乱序和≥反序和知;A ≥C ≥B . 答案:B2.若A =x 21+x 22+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1其中x 1x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >B B .A <BC .A ≥BD .A ≤B解析:依序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n 则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.依排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 22+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.答案:C3.锐角三角形中,设P =a +b +c2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C ,则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=P =a +b +c2.答案:C4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________钱.( )A .76元B .20元C .84元D .96元解析:设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).答案:A5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32;最小值为28.答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s,4 s,3 s,7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB ≥aB +bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B ) =π2(a +b ), ∴aA +bB ≥π4(a +b ).答案:aA +bB ≥π4(a +b )8.设a 1,a 2,a 3为正数,求证:(a 21+a 22+a 23)(a 1+a 2+a 3)≤3a 1a 2a 3.证明:不妨设a 1≥a 2≥a 3>0, 于是1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2,由排序不等式:顺序和≥乱序和,得 a 1a 2a 3+a 3a 1a 2+a 2a 3a 1≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2 =a 3+a 1+a 2,即3a 1a 2a 3≥(a 23+a 22+a 1)2(a 3+a 2+a 1).9.某学校举行投篮比赛,按规则每个班级派三人参赛,第一人投m 分钟,第二人投n 分钟,第三人投p 分钟,某班级三名运动员A ,B ,C 每分钟能投进的次数分别为a ,b ,c ,已知m >n >p ,a >b >c ,如何派三人上场能取得最佳成绩?解:∵m >n >p ,a >b >c ,且由排序不等式知顺序和为最大值, ∴最大值为ma +nb +pc ,此时分数最高, ∴三人上场顺序是A 第一,B 第二,C 第三. 10.设x ,y ,z 为正数,求证: x +y +z ≤x 2+y 22z +y 2+z 22x +z 2+x 22y .证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y ,x 2·1x +y 2·1y +z 2·1z ≤x 2·1y +y 2·1z +z 2·1x , 将上面两式相加得2(x +y +z )≤x 2+y 2z +y 2+z 2x +z 2+x 2y ,于是x +y +z ≤x 2+y 22z +y 2+z 22x +z 2+x 22y .。

【K12教育学习资料】2018-2019学年高中数学人教A版选修4-5教学案

【K12教育学习资料】2018-2019学年高中数学人教A版选修4-5教学案

【K12教育学习资料】2018-2019学年高中数学人教A版选修4-5教学案中小学资料学习永无止境2.绝对值不等式的解法对应学生用书P131.|ax +b |≤c ,|ax +b |≥c (c 0)型不等式的解法只需将ax +b 看成一个整体,即化成|x |≤a ,|x |≥a (a 0)型不等式求解.|ax +b |≤c (c 0)型不等式的解法:先化为-c ≤ax +b ≤c ,再由不等式的性质求出原不等式的解集.不等式|ax +b |≥c (c 0)的解法:先化为ax +b ≥c 或ax +b ≤-c ,再进一步利用不等式性质求出原不等式的解集.2.|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图像求解,体现函数与方程的思想,正确求出函数的零点并画出函数图像(有时需要考查函数的增减性)是解题关键.对应学生用书P13[例1] 解下列不等式:(1)|5x -2|≥8;(2)2≤|x -2|≤4.[思路点拨] 利用|x |a 及|x |a (a 0)型不等式的解法求解.[解] (1)|5x -2|≥8?5x -2≥8或5x -2≤-8?x ≥2或x ≤-65,∴原不等式的解集为??????x |x ≥2或x ≤-65.中小学资料学习永无止境(2)原不等式价于?????|x -2|≥2,|x -2|≤4. 由①得x -2≤-2,或x -2≥2,∴x ≤0,或x ≥4.由②得-4≤x -2≤4,∴-2≤x ≤6.∴原不等式的解集为{x |-2≤x ≤0,或4≤x ≤6}.|ax +b |≥c 和|ax +b |≤c 型不等式的解法:①当c 0时,|ax +b |≥c ?ax +b ≥c 或ax +b ≤-c ,|ax +b |≤c ?-c ≤ax +b ≤c .②当c =0时,|ax +b |≥c 的解集为R ,|ax +b |c 的解集为?. ③当c 0时,|ax +b |≥c 的解集为R ,|ax +b |≤c 的解集为?.1.解下列不等式:(1)|3-2x |9;(2)4<|3x -2|<8;(3)|x 2-3x -4|x +1.解:(1)∵|3-2x |9,∴|2x -3|9.∴-92x -39.即-62x 12.∴-3x 6.∴原不等式的解集为{x |-3x 6}.(2)由4<|3x -2|<8,得????? |3x -2|>4,|3x -2|<8? ????? 3x -2<-4或3x -2>4,-8<3x -2<8???? x <-23或x >2,-2<x <103.。

2017-2018学年高中数学人教A版选修4-5创新应用教学案

2017-2018学年高中数学人教A版选修4-5创新应用教学案

[核心必知]1.二维形式的柯西不等式(1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d )(a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R ); a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ). 2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.3.二维形式的三角不等式(1)x 21+y 21+x 22+y 22x 1,y 1,x 2,y 2∈R ).(2)推论:(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1,x 2,x 3,y 1,y 2,y 3∈R ).[问题思考]1.在二维形式的柯西不等式的代数形式中,取等号的条件可以写成a b =cd 吗?提示:不可以.当b ·d =0时,柯西不等式成立,但a b =cd不成立.2.不等式x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,x2,y1,y2∈R)中,等号成立的条件是什么?提示:当且仅当P1(x1,y1),P2(x2,y2),O(0,0)三点共线,且P1,P2在原点两旁时,等号成立.2·a2+c2≥a+c,设a,b,c为正数,求证:a2+b2+b2+c2+a2+c2≥2(a+b+c).[精讲详析]本题考查柯西不等式的应用.解答本题需要根据不等式的结构,分别使用柯西不等式,然后将各组不等式相加即可.由柯西不等式:a2+b2·12+12≥a+b,即2·a2+b2≥a+b,同理:2·b2+c2≥b+c,2·a2+c2≥a+c,将上面三个同向不等式相加得:2(a2+b2+b2+c2+a2+c2)≥2(a+b+c),∴a2+b2+b2+c2+a2+c2≥2·(a+b+c).——————————————————利用二维柯西不等式的代数形式证题时,要抓住不等式的基本特征:(a2+b2)(c2+d2)≥(ac+bd)2,其中a,b,c,d∈R或(a+b)·(c+d)≥(ac+bd)2,其中a,b,c,d∈R+.1.设a1,a2,a3为正数,求证:a31+a21a2+a1a22+a32+a32+a22a3+a2a23+a33+a33+a23a1+a3a21+a31≥2(a31+a32+a33).证明:因为a31+a21a2+a1a22+a32=(a1+a2)·(a21+a22),由柯西不等式得[(a 1)2+(a 2)2](a 21+a 22)≥(a 1a 1+a 2a 2)2, 于是a 31+a 21a 2+a 1a 22+a 32≥(a 31+a 32)2. 故a 31+a 21a 2+a 1a 22+a 32≥a 31+a 32, 同理a 32+a 22a 3+a 2a 23+a 33≥a 32+a 33, a 33+a 23a 1+a 3a 21+a 31≥a 33+a 31.将以上三个同向不等式相加,即得a 31+a 21a 2+a 1a 22+a 32+a 32+a 22a 3+a 2a 23+a 23+ a 33+a 23a 1+a 3a 21+a 31≥2(a 31+a 32+a 33).设a ,b ,c ,d 是4个不全为零的实数,求证: ab +2bc +cd a 2+b 2+c 2+d2≤ 2+12. [精讲详析] 本题考查柯西不等式的灵活应用,解答本题需要从欲证不等式左边的分子入手,将其进行适当的变形,创造利用柯西不等式的条件. ab +2bc +cd =(ab +cd )+(bc -ad )+(bc +ad )≤2[(ab +cd )2+(bc -ad )2]+(b 2+a 2)(c 2+d 2) =2·(a 2+c 2)(b 2+d 2)+(a 2+b 2)(c 2+d 2) ≤2·(a 2+c 2)+(b 2+d 2)2+(a 2+b 2)+(c 2+d 2)2=2+12(a 2+b 2+c 2+d 2).∴ab +2bc +cd a 2+b 2+c 2+d2≤2+12. ——————————————————利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.2.设a ,b ∈R +,且a +b =2.求证:a 22-a +b 22-b ≥2.证明:根据柯西不等式,有 [(2-a )+(2-b )]⎝⎛⎭⎫a 22-a +b22-b=[(2-a )2+(2-b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a 2-a +2-b ·b 2-b 2=(a +b )2=4.∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. ∴原不等式成立.若3x +4y =2,求x 2+y 2的最小值.[精讲详析] 本题考查柯西不等式的应用.解答本题需要熟知柯西不等式的结构,凑成柯西不等式的结构,然后利用柯西不等式求最值.由柯西不等式得(x 2+y 2)(32+42)≥(3x +4y )2, 25(x 2+y 2)≥4,所以x 2+y 2≥425. 当且仅当x 3=y4时等号成立,由⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4.得⎩⎨⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425.——————————————————利用柯西不等式求最值的方法(1)先变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或为常数的各项,就可以应用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)而有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用的技巧之一.3.如何把一条长为m 的绳子截成2段,各围成一个正方形,使这2个正方形的面积和最小?解:设这2段的长度分别为x ,y ,则x +y =m ,且2个正方形的面积和S =⎝⎛⎭⎫x 42+⎝⎛⎭⎫y 42=116(x 2+y 2).因为(x 2+y 2)(12+12)≥(x +y )2=m 2,等号当且仅当x =y =m 2时成立, 所以x 2+y 2有最小值m 22,从而S 有最小值m 232.把绳子两等分后,这2段所围成的2个正方形的面积和最小.柯西不等式在求最值中的应用是考试的热点.本考题以解答题的形式考查了柯西不等式在求最值中的应用,是高考命题的一个新亮点.[考题印证]已知实数a 、b 、c 、d 满足a 2+b 2=1,c 2+d 2=2,求ac +bd 的最大值. [命题立意] 本题考查柯西不等式在求最值中的应用. [解] ∵a 2+b 2=1,c 2+d 2=2,∴由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2, 得(ac +bd )2≤1×2=2. ∴-2≤ac +bd ≤ 2.当且仅当ad =bc ,即c a =db =2时取最大值 2.∴ac +bd 的最大值为 2.一、选择题1.若a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ]C .[-10,10 ]D .(-5, 5 ] 解析:选A ∵a 2+b 2=10, ∴(a 2+b 2)(12+12)≥(a +b )2, 即20≥(a +b )2, ∴-25≤a +b ≤2 5.2.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536 D.3625解析:选B 2x 2+3y 2=(2x 2+3y 2)⎝⎛⎭⎫12+13·65 ≥65(2x ·22+3y ·33)2=65(x +y )2=65. 3.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是( ) A .P ≤Q B .P <Q C .P ≥Q D .P >Q解析:选A 设m =(ax ,b y ),n =(a ,b ),则|ax +by |=|m·n |≤|m ||n |=(ax )2+(by )2·(a )2+(b )2=ax 2+by 2·a +b = ax 2+by 2,∴(ax +by )2≤ax 2+by 2.即P ≤Q .4.已知p ,q ∈R +,且p 3+q 3=2,则p +q 的最大值为( ) A .2 B .8 C.12D .4解析:选A 设m =(p 32,q 32),n =(p 12,q 12), 则p 2+q 2=p 32p 12+q 32q 12=|m ·n |≤|m |·|n | =p 3+q 3·p +q =2·p +q .又∵(p +q )2≤2(p 2+q 2), ∴(p +q )22≤p 2+q 2≤2p +q .∴(p +q )4≤8(p +q ). ∴p +q ≤2. 二、填空题5.设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +dn,则P 与Q 的大小________.解析:由柯西不等式,得 P =am ·b m+nc ×dn≤(am )2+(nc )2×⎝⎛⎭⎫ b m 2+⎝⎛⎭⎫ d n 2=am +nc ×b m +dn =Q . 答案:P ≤Q6.函数f (x )=x -6+12-x 的最大值为________. 解析:由柯西不等式得(x -6+12-x )2≤(12+12)·[(x -6)2+(12-x )2]=12, ∴x -6+12-x ≤23(当x =9时,“=”成立). 答案:2 37.设xy >0,则⎝⎛⎭⎫x 2+4y 2⎝⎛⎭⎫y 2+1x 2的最小值为________. 解析:原式=⎣⎡⎦⎤x 2+⎝⎛⎭⎫2y 2⎣⎡⎦⎤⎝⎛⎭⎫1x 2+y 2≥⎝⎛⎭⎫x ·1x +2y ·y 2=9. 答案:98.已知a ,b ∈R +,且a +b =1,则(4a +1+4b +1)2的最大值是________. 解析:(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2]=2(4×1+2)=12.答案:12 三、解答题9.已知a 2+b 2=1, x 2+y 2=1,求证:|ax +by |≤1. 证明:由柯西不等式得 (ax +by )2≤(a 2+b 2)(x 2+y 2)=1. 故|ax +by |≤1成立.10.已知实数a 、b 、c 满足a +2b +c =1,a 2+b 2+c 2=1. 求证:-23≤c ≤1.证明:因为a +2b +c =1,a 2+b 2+c 2=1,所以a +2b =1-c ,a 2+b 2=1-c 2. 由柯西不等式得(12+22)(a 2+b 2)≥(a +2b )2, 5(1-c 2)≥(1-c )2, 整理得,3c 2-c -2≤0, 解得-23≤c ≤1.所以-23≤c ≤1.11.若x 2+4y 2=5.求x +y 的最大值及最大值点. 解:由柯西不等式得 [x 2+(2y )2]⎣⎡⎦⎤12+⎝⎛⎭⎫122≥(x +y )2即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x 2+4y 2=5,x =4y , 得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,最大值点为⎝⎛⎭⎫2,12.。

【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆

【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆

第1课时 圆的极坐标方程[核心必知]1.曲线的极坐标方程在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合f (ρ,θ)=0的点都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程圆心为C (a ,0)(a >0)半径为a 的圆的极坐标方程为ρ=2a cos_θ.[问题思考]1.在直角坐标系中,曲线上每一点的坐标一定适合它的方程.那么,在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?提示:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρ=θ,设点P 的一极坐标为(π4,π4),那么点P 适合方程ρ=θ,从而是曲线上的一个点,但点P 的另一个极坐标(π4,9π4)就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.2.圆心在极点,半径为r 的圆的极坐标方程是什么?圆心在点⎝⎛⎭⎫a ,π2处且过极点的圆的方程又是什么?提示:圆心在极点,半径为r 的圆的极坐标方程为ρ=r ;圆心在点(a ,π2)处且过极点的圆的方程为ρ=2a sin_θ(0≤θ≤π).设一个直角三角形的斜边长一定,求直角顶点轨迹的极坐标方程.[精讲详析] 本题考查极坐标方程的求法,解答此题需要根据题目特点建立恰当的极坐标系,然后再求直角顶点的轨迹方程.设直角三角形的斜边为OD ,它的长度是2r ,以O 为极点,OD 所在射线为极轴,建立极坐标系,如图所示:设P (ρ,θ)为轨迹上的一点, 则OP =ρ,∠xOP =θ. 在直角三角形ODP 中, OP =OD ·cos θ,∵OP =ρ,OD =2r ,∴ρ=2r cos θ(ρ≠0,ρ≠2r ). 这就是所求轨迹的方程.(1)求曲线的极坐标方程的步骤如下: ①建立适当的极坐标系.②设P (ρ,θ)是曲线上任一点. ③列出ρ,θ的关系式. ④化简整理.(2)极坐标中的坐标是由长度与角度表示的,因此,建立极坐标方程常常可以在一个三角形中实现,找出这样的三角形便形成了解题的关键.1.设M 是定圆O 内一定点,任作半径OA ,连接MA ,过M 作MP ⊥MA 交OA 于P ,求P 点的轨迹方程.解:以O 为极点,射线OM 为极轴,建立极坐标系,如图. 设定圆O 的半径为r ,OM =a ,P (ρ,θ)是轨迹上任意一点. ∵MP ⊥MA ,∴|MA |2+|MP |2=|P A |2.由余弦定理,可知|MA |2=a 2+r 2-2ar cos θ,|MP |2=a 2+ρ2-2aρcos θ.而|P A |=r -ρ,由此可得a 2+r 2-2ar cos θ+a 2+ρ2-2aρcos θ=(r -ρ)2.整理化简,得ρ=a (a -r cos θ)a cos θ-r.求圆心在(ρ0,θ0),半径为r 的圆的方程. [精讲详析]在圆周上任取一点P (如图) 设其极坐标为(ρ,θ).由余弦定理知:CP 2=OP 2+OC 2-2OP ·OC cos ∠COP ,∴r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).故其极坐标方程为r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,其求解过程同曲线的极坐标方程的求法.(2)特别地,当圆心在极轴上即θ0=0时,方程为r 2=ρ20+ρ2-2ρρ0cos θ;若再有ρ0=r ,则其方程为ρ=2ρ0cos θ=2r cos θ;若ρ0=r ,θ0≠0,则方程为ρ=2r cos(θ-θ0),这几个方程经常用来判断图形的形状和位置.2.在极坐标系中,已知圆C 的圆心为⎝⎛⎭⎫3,π3,半径为3,Q 点在圆周上运动.(1)求圆C 的极坐标方程; (2)若P 是OQ 中点,求P 的轨迹. 解:(1)如图,设Q (ρ,θ)为圆上任意一点,连接DQ 、OQ , 则|OD |=6, ∠DOQ =π3-θ,或∠DOQ =θ-π3,∠DQO =π2.在Rt △ODQ 中,|OQ |=|OD |cos (θ-π3),即ρ=6cos (θ-π3).(2)若P 的极坐标为(ρ,θ),则Q 点的极坐标为(2ρ,θ).∴2ρ=6cos (θ-π3),∴ρ=3cos (θ-π3).∴P 的轨迹是圆.进行直角坐标方程与极坐标方程的互化 (1)y 2=4x ;(2)y 2+x 2-2x -1=0;(3)ρcos 2θ2=1;(4)ρ2cos 2θ=4;(5)ρ=12-cos θ.[精讲详析] 本题考查极坐标与直角坐标的互化公式. (1)将x =ρcos θ,y =ρsin θ代入y 2=4x , 得(ρsin θ)2=4ρcos θ. 化简,得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0, 得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0, 化简,得ρ2-2ρcos θ-1=0. (3)∵ρcos 2θ2=1,∴ρ·1+cos θ2=1,即ρ+ρcos θ=2.∴x 2+y 2+x =2.化简,得y 2=-4(x -1).(4)∵ρ2cos 2θ=4,∴ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (5)∵ρ=12-cos θ,∴2ρ-ρcos θ=1.∴2x 2+y 2-x =1.化简,得3x 2+4y 2-2x -1=0.直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.把极坐标方程ρcos ⎝⎛⎭⎫θ-π6=1化为直角坐标方程.解:由ρcos (θ-π6)=1得32ρcos θ+12ρsin θ=1,将ρcos θ=x ,ρsin θ=y 代入上式,得32x +y2=1, 即3x +y -2=0.利用圆的极坐标方程求圆心、半径,再利用圆心、半径解决问题,是高考命题的重点题型之一.湖南高考以填空题的形式考查了圆的极坐标方程与直角坐标方程的互化,是高考命题的一个新亮点.[考题印证](湖南高考)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.[命题立意] 本题考查将圆的极坐标方程化为直角坐标方程的方法. [解析] ∵ρ=2sin θ, ∴ρ2=2ρsin θ, ∴x 2+y 2=2y ,即曲线C 的直角坐标方程为x 2+y 2-2y =0. 答案:x 2+y 2-2y =0一、选择题1.(北京高考)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.⎝⎛⎭⎫1,π2B.⎝⎛⎭⎫1,-π2C .(1,0)D .(1,π)解析:选B 因为该圆的直角坐标方程为x 2+y 2=-2y ,即为x 2+(y +1)2=1,圆心的直角坐标方程为(0,-1),化为极坐标是(1,-π2).2.极坐标方程ρ=cos ⎝⎛⎭⎫π4-θ所表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆解析:选D ∵ρ=cos (π4-θ)=22cos θ+22sin θ,ρ2=22ρcos θ+22ρsin θ, ∴x 2+y 2=22x +22y ,这个方程表示一个圆. 3.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4 B.7 C .22 D .2 3解析:选C ρ=4sin θ化为普通方程为x 2+(y -2)2=4,点(4,π6)化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为(23)2+(2-2)2-22=2 2.4.(安徽高考)在极坐标系中,点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为( )A .2 B. 4+π29C.1+π29D. 3解析:选D 由⎩⎪⎨⎪⎧x =ρcos θ=2cos π3=1y =ρsin θ=2sin π3=3可知,点(2,π3)的直角坐标为(1,3),圆ρ=2cos θ的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心到点(1,3)的距离为 3.二、填空题5.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,ρ2=x 2+y 2,∴ρ2=2ρsin θ+4ρcos θ⇒x 2+y 2=2y +4x ⇒x 2+y 2-4x -2y =0.答案:x 2+y 2-4x -2y =06.在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =5,则圆C 的极坐标方程为________.解析:将圆心C (2,π3)化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5. 再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5.化简,得ρ2-4ρcos (θ-π3)-1=0,此即为所求的圆C 的极坐标方程.答案:ρ2-4ρcos (θ-π3)-1=07.(天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.解析:圆ρ=4cos θ的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 38.已知曲线C 与曲线ρ=53cos θ-5sin θ关于极轴对称,则曲线C 的极坐标方程是________.解析:曲线ρ=53cos θ-5sin θ=10cos (θ+π6),它关于极轴对称的曲线为ρ=10cos (-θ+π6)=10cos (θ-π6).答案:ρ=10cos (θ-π6)三、解答题 9.如图,在圆心极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点轨迹的极坐标方程,并将其化为直角坐标方程.解:设M (ρ,θ)是轨迹上任意一点,连接OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ得ρ0=8cos θ0, 所以2ρ=8cos θ, 即ρ=4cos θ,故所求轨迹方程是ρ=4cos θ. 因为x =ρcos θ,y =ρsin θ, 由ρ=4cos θ得ρ2=4ρcos θ, 所以x 2+y 2=4x ,即x 2+y 2-4x =0为轨迹的直角坐标方程.10.指出极坐标方程ρ=2cos ⎝⎛⎭⎫θ+π3,ρ=2cos ⎝⎛⎭⎫θ-π3,ρ=2cos θ代表的曲线,并指出它们之间的关系.解:ρ=2cos (θ+π3)是以点(1,-π3)为圆心,半径为1的圆.ρ=2cos (θ-π3)是以点(1,π3)为圆心,半径为1的圆.ρ=2cos θ是以点(1,0)为圆心,半径为1的圆.因此曲线ρ=2cos (θ+π3),可看成曲线ρ=2cos θ绕极点顺时针旋转π3得到的曲线.ρ=2cos (θ-π3)是由曲线ρ=2cos θ绕极点逆时针旋转π3得到的曲线.11.已知半径为R 的定圆O ′外有一定点O ,|OO ′|=a (a >R ),P 为定圆O ′上的动点,以OP 为边作正三角形OPQ (O 、P 、Q 按逆时针方向排列),求Q 点的轨迹的极坐标方程.解:如图所示,以定点O 为极点,射线OO ′为极轴正向建立极坐标系, 则⊙O ′的极坐标方程是ρ2-(2a cos θ)ρ+a 2-R 2=0. 设Q (ρ,θ),则有P (ρ,θ-π3),又P 在⊙O ′上,∴ρ2-[2a cos (θ-π3)]ρ+a 2-R 2=0.即所求Q 点的轨迹方程是:最新K12教育教案试题 ρ2-2aρcos (θ-π3)+a 2-R 2=0.。

【配套K12】2018-2019学年高中数学人教A版选修4-5创新应用教学案:第一讲第1节不等式

【配套K12】2018-2019学年高中数学人教A版选修4-5创新应用教学案:第一讲第1节不等式

第1课时 不等式的基本性质[核心必知]1.实数的大小顺序与实数的运算性质之间的关系 (1)设a ,b ∈R ,则①a >b ⇔a -b >0;②a =b ⇔a -b =0;③a <b ⇔a -b <0. (2)设b ∈(0,+∞),则①a b >1⇔a >b ;②a b =1⇔a =b ;③ab <1⇔a <b . 2.不等式的基本性质[问题思考]1.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx这五个不等式中,恒成立的不等式有哪些? 提示:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,则∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出②④恒成立. 即恒成立的不等式有②④.2.已知三个不等式:ab >0,bc -ad >0,c a -db >0(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题有几个?提示:由已知可组成三个命题.①若ab >0,bc -ad >0,则c a -db >0,此命题正确,只需在不等式bc -ad >0两侧同除以ab ,根据不等式性质,整理即得结论;②若ab >0,c a -d b >0,则bc -ad >0,此命题正确,只需在不等式c a -db >0两侧同乘以ab ,根据不等式性质,整理即得结论;③若c a -db >0,bc -ad >0,则ab >0,此命题正确,因为c a -db >0⇔bc -ad ab >0,又因为bc -ad >0,故ab >0. 即可组成的正确命题有3个.x ∈R ,比较x 3-1与2x 2-2x 的大小.[精讲详析] 本题考查利用作差法比较两个代数式的大小.解答本题需要将作差后的代数式分解因式,然后根据各因式的符号判断x 3-1与2x 2-2x 的大小.(x 3-1)-(2x 2-2x ) =(x 3-x 2)-(x 2-2x +1) =x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1).∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34>0, ∴当x >1时,(x -1)(x 2-x +1)>0.即x 3-1>2x 2-2x ; 当x =1时,(x -1)(x 2-x +1)=0,即x 3-1=2x 2-2x ; 当x <1时,(x -1)(x 2-x +1)<0,即x 3-1<2x 2-2x .(2)在变形中,一般是变形得越彻底越有利于下一步的判断.变形的常用技巧有:因式分解、配方、通分、分母有理化等.(3)在定号中,若为几个因式的积,需每个因式均先定号,当符号不确定时,需进行分类讨论.1.x ∈R ,比较(x +1)⎝⎛⎭⎫x 2+x 2+1与⎝⎛⎭⎫x +12·(x 2+x +1)的大小. 解:因为(x +1)⎝⎛⎭⎫x 2+x 2+1=(x +1)·⎝⎛⎭⎫x 2+x +1-x 2 =(x +1)(x 2+x +1)-x2(x +1),⎝⎛⎭⎫x +12(x 2+x +1)=⎝⎛⎭⎫x +1-12(x 2+x +1)=(x +1)(x 2+x +1)-12(x 2+x +1).∴作差,得(x +1)⎝⎛⎭⎫x 2+12x +1-⎝⎛⎭⎫x +12(x 2+x +1) =(x +1)(x 2+x +1)-x 2(x +1)-(x +1)(x 2+x +1)+12(x 2+x +1)=12(x 2+x +1)-12(x 2+x )=12>0, ∴(x +1)⎝⎛⎭⎫x 2+x 2+1>⎝⎛⎭⎫x +12(x 2+x +1).下列命题中正确的是( )(1)若a >b ,c >b ,则a >c ; (2)若a >b ,则lg ab >0;(3)若a >b ,c >d ,则ac >bd ; (4)若a >b >0,则1a <1b ;(5)若a c >bd,则ad >bc ;(6)若a >b ,c >d ,则a -d >b -c . A .(1)(2) B .(4)(6) C .(3)(6) D .(3)(4)(5)[精讲详析] 本题考查对不等式的性质的理解,解答本题需要利用不等式的性质或利用特殊值逐项判断.(1)错误.因为当取a =4,b =2,c =6时,有a >b ,c >b 成立,但a >c 不成立.(2)错误.因为a 、b 符号不确定,所以无法确定a b >1是否成立,从而无法确定lg ab >0是否成立.(3)错误.此命题当a 、b 、c 、d 均为正数时才正确. (4)正确.因为a >b >0,所以ab >0,两边同乘以1ab ,得1a <1b .(5)错误.只有当cd >0时,结论才成立. (6)正确.因为c >d ,所以-d >-c ,又a >b , 所以a -d >b -c .综上可知(4)(6)正确. 答案:B运用不等式的性质时要注意条件,如倒数法则要求两数同号;两边同乘一个数,不等号方向是否改变要视此数的正负而定;同向不等式可以相加,异向不等式可以相减.2.(广州二模)设a ,b 为正实数,则“a <b ”是“a -1a <b -1b 成立的”( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 解析:选C 若a <b 且a >0,b >0, 则1a >1b ⇒-1a <-1b, ∴a -1a <b -1b .若a -1a <b -1b,且a >0,b >0⇒a 2b -b <ab 2-a ⇒a 2b -ab 2-b +a <0,ab (a -b )+(a -b )<0⇒(a -b )(ab +1)<0⇒a -b <0⇒a <b .已知60<x <84,28<y <33.求(1)x -y 的取值范围; (2)xy的取值范围. [精讲详析] 本题考查不等式性质的灵活应用.解答问题(1)需要先求出-y 的取值范围,然后利用不等式的同向可加性解决;解答问题(2)需要先求出1y 的取值范围,然后利用不等式的有关性质求解.∵28<y <33,∴-33<-y <-28,133<1y <128.又60<x <84,∴27<x -y <56,6033<x y <8428.即2011<xy <3.本题不能直接用x 的范围去减或除y 的范围,应严格利用不等式的基本性质去求得范围,其次在有些题目中,还要注意整体代换的思想,即弄清要求的与已知的“范围”间的联系.如已知20<x +y <30,15<x -y <18,要求2x +3y 的范围,不能分别求出x ,y 的范围,再求2x +3y 的范围,应把已知的“x +y ”“x -y ”视为整体,即2x +3y =52(x +y )-12(x -y ),两范围相加可得2x +3y 的范围.“范围”必须对应某个字母变量或代数式,一旦变化出其他的范围问题,则不能再间接得出,必须“直来直去”,即直接找到要求的量与已知的量间的数量关系,然后去求.3.若已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4.求f (-2)的范围. 解:法一:∵f (x )过原点,∴可设f (x )=ax 2+bx .∴⎩⎪⎨⎪⎧f (1)=a +b ,f (-1)=a -b . ∴⎩⎨⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1). ∵1≤f (-1)≤2,3≤f (1)≤4. ∴6≤f (-2)≤10. 法二:设f (x )=ax 2+bx , 则f (1)=a +b ,f (-1)=a -b .令m (a +b )+n (a -b )=f (-2)=4a -2b ,∴⎩⎪⎨⎪⎧m +n =4,m -n =-2.∴⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,3≤f (1)≤4,∴6≤f (-2)≤10.本课时考点主要考查不等式的性质,全国高考乙卷将不等式的性质及函数的单调性结合命题,是高考命题的一个新亮点.[考题印证](全国乙卷)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a cD.log a c<log b c[命题立意]本题考查不等式性质在比较实数大小中的应用.[解析]选C∵y=xα,α∈(0,1)在(0,+∞)上是增函数,∴当a>b>1,0<c<1时,a c>b c,选项A不正确.∵y=xα,α∈(-1,0)在(0,+∞)上是减函数,∴当a>b>1,0<c<1,即-1<c-1<0时,a c-1<b c-1,即ab c>ba c,选项B不正确.∵a>b>1,∴lg a>lg b>0,∴a lg a>b lg b>0,∴a lg b>blg a.又∵0<c<1,∴lg c<0.∴a lg c lg b<b lg clg a,∴a log b c<b log a c,选项C正确.同理可证log a c>log b c,选项D不正确.一、选择题1.(浙江高考)若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b>1a 成立,因此“0<ab <1”是“a <1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a <1b 或b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a <1b 或b >1a ”的必要条件;即“0<ab <1”是“a <1b 或b >1a”的充分而不必要条件.2.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( ) A .a >b ⇒am 2>bm 2 B.a c >bc ⇒a >bC .a 3>b 3⇒1a <1bD .a 2>b 2⇒a >b解析:选C 对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=⎝⎛⎭⎫a +b 22+34b 2>0恒成立, ∴a -b >0,∴a >b .又∵ab >0,∴1a <1b.∴C 成立;对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b . 3.已知a <0,-1<b <0,那么( )A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D .ab >ab 2>a 解析:选D ab 2-ab =ab (b -1), ∵a <0,-1<b <0,∴b -1<0,ab >0.∴ab 2-ab <0.即ab 2<ab ; 又ab 2-a =a (b 2-1),∵-1<b <0,∴b 2<1,即b 2-1<0.又a <0, ∴ab 2-a >0,即ab 2>a .故ab >ab 2>a .4.如果a ∈R ,且a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a >-a 2>-a B .-a >a 2>-a 2>a C .-a >a 2>a >-a 2 D .a 2>-a >a >-a 2解析:选B ∵a 2+a <0,即a (a +1)<0可得,-1<a <0, ∴-a >a 2>0,∴0>-a 2>a . 综上有-a >a 2>-a 2>a . 二、填空题5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是f (x )________g (x ). 解析:f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f (x )>g (x ).答案:>6.有以下四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 其中能使1a <1b 成立的有________个条件.解析:①∵b >0,∴1b >0.∵a <0,∴1a <0.∴1a <1b. ②∵b <a <0,∴1b >1a. ③∵a >0>b ,∴1a >0,1b <0.∴1a >1b. ④∵a >b >0,∴1a <1b. 综上知,①②④均能使1a <1b成立. 答案:37.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中能推出log b 1b <log a 1b<log a b 成立的条件的序号是________(填所有可能的条件的序号).解析:∵log b 1b =-1,若1<a <b ,则1b <1a<1<b , ∴log a 1b <log a 1a=-1,故条件①不可以; 若0<a <b <1,则b <1<1b <1a. ∴log a b >log a 1b >log a 1a =-1=log b 1b, 故条件②可以;若0<a <1<b ,则0<1b<1, ∴log a 1b>0,log a b <0,条件③不可以. 故应填②.答案:②8.下列命题:①c -a <c -b ⇔a >b ;②a >b >0,c >d >0⇒a d >b c; ③c a <c b,且c >0⇒a >b ; ④n a <n b (n ∈N ,n >1)⇒a <b .其中真命题是________(填序号).解析:①c -a <c -b ⇒-a <-b ⇒a >b .②a >b >0,c >d >0⇒a d >b c>0, ∴ a d > b c. ③c a -c b =c (b -a )ab<0, ∵c >0,∴有⎩⎪⎨⎪⎧b -a >0,ab <0或⎩⎪⎨⎪⎧b -a <0,ab >0.即⎩⎪⎨⎪⎧a <b ,ab <0或⎩⎪⎨⎪⎧a >b ,ab >0.∴③不正确, ④中无论n 为奇数或偶数,均可由n a <n b (n ∈N ,n >1)⇒a <b .∴①②④正确.答案:①②④三、解答题9.已知-π2≤α<β≤π2,求α+β2,α-β2的范围. 解:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 因而两式相加得-π2<α+β2<π2. 又∵-π4<β2≤π4,∴-π4≤-β2<π4. ∴-π2≤α-β2<π2.又∵α<β,∴α-β2<0.∴-π2≤α-β2<0. 即α+β2∈⎝ ⎛⎭⎪⎫-π2,π2,α-β2∈⎣⎢⎡⎭⎪⎫-π2,0. 10.已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a,试比较A ,B ,C ,D 的大小.解:∵-12<a <0,不妨取a =-14,可得 A =1716,B =1516,C =43,D =45,由此猜测C >A >B >D .C -A =11+a -(1+a 2)=-a ⎣⎡⎦⎤⎝⎛⎭⎫a +122+341+a, ∵1+a >0,-a >0,⎝⎛⎭⎫a +122+34>0,∴C >A . ∵A -B =(1+a 2)-(1-a 2)=2a 2>0,∴A >B .∵B -D =1-a 2-11-a =a (a 2-a -1)1-a. =a ⎣⎡⎦⎤⎝⎛⎭⎫a -122-541-a ,∵-12<a <0,∴1-a >0, ⎝⎛⎭⎫a -122-54<⎝⎛⎭⎫-12-122-54<0. ∴B >D .综上,C >A >B >D .11.已知f (x )=ax 2+c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解:由-4≤f (1)≤-1,-1≤f (2)≤5得: ⎩⎪⎨⎪⎧-4≤a +c ≤-1,-1≤4a +c ≤5. 设u =a +c ,v =4a +c ,则有a =v -u 3,c =4u -v 3, ∴f (3)=9a +c =-53u +83v . 又{-4≤u ≤-1,-1≤v ≤5, ∴⎩⎨⎧53≤-53u ≤203,-83≤83v ≤403.∴-1≤-53u +83v ≤20, 即-1≤f (3)≤20.∴f (3)的取值范围为[-1,20].第2课时 基本不等式[核心必知]1.定理1如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.2.定理2(基本不等式)如果a ,b >0a =b 时,等号成立.即:两个正数的算术平均不小于(即大于或等于)它们的几何平均.3.算术平均与几何平均如果a ,b 都是正数,我们就称a +b 2为a ,b a ,b 的几何平均. 4.利用基本不等式求最值对两个正实数x ,y ,(1)如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值;(2)如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值.[问题思考] 1.在基本不等式a +b 2≥ab 中,为什么要求a ,b ∈(0,+∞)? 2此规定a ,b ∈(0,+∞).2.利用基本不等式a +b 2≥ab 求最值的条件是什么? 提示:“一正、二定、三相等”,即:(1)各项或各因式为正;(2)和或积为定值;(3)各项或各因式能取得相等的值.已知a ,b ,c 为正实数,求证:(1)(a +b )(b +c )(c +a )abc≥8; (2)a +b +c ≥ab +bc +ca .[精讲详析] 本题考查基本不等式在证明不等式中的应用,解答本题需要分析不等式的特点,先对a +b ,b +c ,c +a 分别使用基本不等式,再把它们相乘或相加即可.(1)∵a ,b ,c 为正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0,由上面三式相乘可得(a +b )(b +c )(c +a )≥8ab ·bc ·ca =8abc .即(a +b )(b +c )(c +a )abc≥8. (2)∵a ,b ,c 为正实数,∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,由上面三式相加可得(a +b )+(b +c )+(c +a )≥2ab +2bc +2ca .即a +b +c ≥ab +bc +ca .(1)用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形形式进行证明.(2)本题证明过程中多次用到基本不等式,然后利用同向不等式的可加性或可乘性得出所证的不等式,要注意不等式性质的使用条件,对“当且仅当……时取等号”这句话要搞清楚.1.设a ,b ,c ∈R +,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ). 证明:∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥(a +b )2.又a ,b ,c ∈R +, ∴a 2+b 2≥22|a +b |=22(a +b ). 同理:b 2+c 2≥22(b +c ), c 2+a 2≥22(a +c ).三式相加, 得 a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ). 当且仅当a =b =c 时取等号.已知x >0,y >0,且1x +9y=1,求x +y 的最小值. [精讲详析] 本题考查基本不等式的应用,解答本题可灵活使用“1”的代换或对条件进行必要的变形,然后再利用基本不等式求得和的最小值.∵x >0,y >0,1x +9y=1, ∴x +y =⎝⎛⎭⎫1x +9y (x +y ) =y x +9x y+10≥6+10=16. 当且仅当y x =9x y, 又1x +9y=1, 即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16.(1)运用不等式求最大值、最小值,用到两个结论,简述为:“和定积最大”与“积定和最小”.(2)运用定理求最值时:必须做到“一正,二定,三相等”.2.求函数f (x )=-2x 2+x -3x(x >0)的最大值及此时x 的值. 解:f (x )=1-⎝⎛⎭⎫2x +3x . 因为x >0,所以2x +3x≥26, 得-(2x +3x)≤-26,因此f (x )≤1-26, 当且仅当2x =3x ,即x 2=32时, 式子中的等号成立.由于x >0,因而x =62时,等号成立. 因此f (x )max =1-26,此时x =62.某单位决定投资3 200元建一仓库(长方体),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧用砖墙,每米长造价45元,顶部每平方米造价20元.仓库底面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[精讲详析] 本题考查基本不等式的应用,解答此题需要设出铁栅和砖墙的长,然后根据投资费用列出关系式,借助基本不等式即可解决.设铁栅长为x m ,一堵砖墙长为y m ,则有S =xy ,由题意,得40x +2×45y +20xy =3 200,由基本不等式,得3 200≥240x ·90y +20xy=120xy+20xy=120S+20S,∴S+6S≤160,即(S+16)(S-10)≤0.∵S+16>0,∴S-10≤0,从而S≤100.因此S的最大允许值是100 m2,取得此最大值的条件是40x=90y,而xy=100,由此求得x=15,即铁栅的长应是15 m.利用不等式解决实际应用问题时,首先要仔细阅读题目,弄清要解决的实际问题,确定是求什么量的最值;其次,分析题目中给出的条件,建立y的函数表达式y=f(x)(x一般为题目中最后所要求的量);最后,利用不等式的有关知识解题.求解过程中要注意实际问题对变量x的范围制约.3.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.解:(1)设该厂应每隔x天购买一次面粉,其购买量为6x吨,由题意可知,面粉的保管等其他费用为3[6x+6(x-1)+6(x-2)+…+6×1]=9x(x+1),设平均每天所支付的总费用为y1元,则y1=9x(x+1)+900x+1 800×6=900x+9x+10 809≥2 900x·9x+10 809=10 989,当且仅当9x =900x, 即x =10时取等号.即该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉,设该厂利用此优惠条件后,每隔x (x ≥35)天购买一次面粉.平均每天支付的总费用为y 2元,则y 2=1x[9x (x +1)+900]+6×1 800×0.9 =900x+9x +9 729(x ≥35), 令f (x )=x +100x(x ≥35),x 2>x 1≥35, 则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+100x 1-⎝⎛⎭⎫x 2+100x 2 =(x 2-x 1)(100-x 1x 2)x 1x 2. ∵x 2>x 1≥35,∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2),即f (x )=x +100x当x ≥35时为增函数,∴当x =35时,f (x )有最小值,此时y 2≈10 069.7<10 989.∴该厂应接受此优惠条件.本课时经常考查基本不等式在求函数最值中的应用,其中,建立函数模型,利用基本不等式求解最值问题是高考的热点.[考题印证](陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b 2[命题立意] 考查基本不等式的应用,考查应用数学知识解决实际问题的能力.[解析] 选A 设甲、乙两地的距离为S ,则从甲地到乙地所需时间为S a。

2018-2019学年人教版 选修4 第3章 水溶液中的离子平衡教学安排教案

2018-2019学年人教版 选修4 第3章 水溶液中的离子平衡教学安排教案

第三章水溶液中的离子平衡一、教学内容概述本章是选修4《化学反应原理》的第三章,它包含四节内容:第一节弱电解质的电离;第二节水的电离和溶液的酸碱性;第三节盐类的水解;第四节难溶电解质的溶解平衡。

本章内容应用前一章所学化学平衡理论,探讨水溶液中离子间的相互作用,内容比较丰富,理论与实际、知识与技能兼而有之,如电离平衡、水解平衡、沉淀溶解平衡的过程分析,体现了化学理论的指导作用。

pH的应用、盐类水解反应的应用、沉淀转化的应用等,展示了相关知识在生产、生活中的应用价值。

酸碱中和滴定介绍和测定酸碱反应曲线的实验则是学习实验操作技能。

在教学功能上,这一章起着巩固和深化前一章所学知识的作用。

全章4节内容可分为两条知识链:一是与弱电解质相关的电离平衡,包括1-3节,它们在知识的认识水平上是渐进的,前一节是后一节的基础和铺垫;二是沉淀溶解平衡,安排在第4节,它的知识基础是溶解度和化学平衡理论。

从整体上看,本章内容以深入认识水溶液中离子反应的本质为核心问题线索,分别研究了各类物质(弱电解质、水、盐类、难溶电解质)在水溶液中的离子平衡,使学生发现化学平衡、电离程度和溶解度之间的关系,并了解这些原理的应用。

教材内容框架如下:二、本章教学内容在选修模块内容体系中的地位和作用学习“水溶液中的离子平衡”主题的基础是义务教育阶段化学(或科学)、高中阶段必修课程化学1、化学2模块中相关的元素化合物知识,以及本模块中主题2中化学平衡方面的理论知识。

1.物质在水溶液中的行为与化学反应中的能量转化和化学反应限度的关系化学反应原理模块前两个专题分别从化学热力学、动力学的角度介绍了有关化学反应的规律和理论,本专题以前两个专题的理论为基础,选取了最常见、最典型的水溶液体系来引导学生运用所学理论(特别是化学平衡理论)分析物质的行为。

例如,本专题在化学平衡常数的基础上建立水的离子积常数、电离平衡常5.掌握从简单到复杂、从单一研究对象到多个研究对象的复杂体系的研究方法。

2018-2019学年高中数学人教A版选修4-1课件创新应用:第三讲 圆锥曲线性质的探讨

2018-2019学年高中数学人教A版选修4-1课件创新应用:第三讲 圆锥曲线性质的探讨
解析:如果梯形 ABCD 所在平面平行于投影方向,则梯 形 ABCD 在 α 上的射影是一条线段. 如果梯形 ABCD 所在平面不平行于投影方向,则平行线 的射影仍是平行线,不平行的线的射影仍不平行,则梯形 ABCD 在平面 α 上的射影仍是梯形.
答案:一条线段或梯形
3.已知△ABC 的边 BC 在平面 α 内,A 在平面 α 上的射影为 A′(A′不在 BC 上). (1)当∠BAC=90° 时,求证:△A′BC 为钝角三角形; (2)当∠BAC=60° 时, AB、 AC 与平面 α 所成的角分别是 30° 和 45° 时,求 cos∠BA′C.
椭圆 . (1)定理 1:圆柱形物体的斜截口是_______
(2)定理 2:在空间中,取直线 l 为轴,直线 l′与 l 相交于 O 点,夹角为 α,l′围绕 l 旋转得到以 O 为顶点,l′为母线的 圆锥面,任取平面 π,若它与轴 l 的交角为 β(当 π 与 l 平行时, 记 β=0),则
椭圆 . ①β>α,平面 π 与圆锥的交线为_____
图形,叫做这个图形的平行射影.
3.正射影与平行射影的联系与区别 正射影与平行射影的投影光线与投影方向都是平行 的.因此,正射影也是平行射影,不同的是正射影的光线与 投影面垂直.而平行射影的投影光线与投影面斜交.平面图 形的正射影与原投影面积大小相等.而一般平行射影的面积 要小于原投影图形的面积.
4.两个定理
(
)
解析:正射影是平行射影的特例,则选项 A 不正确,选项 B 正确;对同一个图形,当投影线垂直于投影面时,其平行射 影就是正射影,否则不相同,则选项 C 不正确;当投影线 垂直于投影面, 且圆面平行于投影面时, 圆的平行射影是圆, 则选项 D 不正确.

[推荐学习]2018-2019学年高中数学人教A版选修4-5创新应用教学案:第四讲第1节数学归纳法

[推荐学习]2018-2019学年高中数学人教A版选修4-5创新应用教学案:第四讲第1节数学归纳法

[核心必知]1.数学归纳法的概念当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:(1)证明当n=n0时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法.2.数学归纳法的基本过程[问题思考]1.在数学归纳法中,n0一定等于1吗?提示:不一定.n0是适合命题的正整数中的最小值,有时是n0=1或n0=2.有时n0值也比较大,而不一定是从1开始取值.2.数学归纳法的适用范围是什么?提示:数学归纳法的适用范围仅限于与正整数有关的数学命题的证明.3.数学归纳法中的两步的作用是什么?提示:在数学归纳法中的第一步“验证n=n0时,命题成立”,是归纳奠基、是推理证明的基础.第二步是归纳递推,保证了推理的延续性,证明了这一步,就可以断定这个命题对于n 取第一个值n0后面的所有正整数也都成立.用数学归纳法证明:1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n(n∈N+).[精讲详析]本题考查数学归纳法在证明恒等式中的应用,解答本题需要注意等式的左边有2n项,右边有n项,由k到k+1时,左边增加两项,右边增加一项,而且左、右两边的首项不同,因此由“n=k”到“n=k+1”时,要注意项的合并.(1)当n=1时,左边=1-12=1 2,右边=12,命题成立.(2)假设当n=k(k≥1,且k∈N+)时命题成立,即有1-12+13-14+…+12k -1-12k=1k +1+1k +2+…+12k .则当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2, 从而可知,当n =k +1时,命题亦成立. 由(1)(2)可知,命题对一切正整数n 均成立.(1)用数学归纳法证明代数恒等式的关键有两点:一是准确表述n =n 0时命题的形式,二是准确把握由n =k 到n =k +1时,命题结构的变化特点.(2)应用数学归纳法时的常见问题①第一步中的验证,对于有些问题验证的并不是n =1,有时需验证n =2,n =3.②对n =k +1时式子的项数以及n =k 与n =k +1的关系的正确分析是应用数学归纳法成功证明问题的保障.③“假设n =k 时命题成立,利用这一假设证明n =k +1时命题成立”,这是应用数学归纳法证明问题的核心环节,对待这一推导过程决不可含糊不清,推导的步骤要完整、严谨、规范.1.证明12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N +). 证明:(1)当n =1时,左边=12-22=-3, 右边=-1×(2×1+1)=-3, ∴当n =1时,等式成立. (2)假设当n =k 时等式成立,就是12-22+32-42+…+(2k-1)2-(2k)2=-k·(2k+1).当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-[2(k+1)]2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],∴当n=k+1时,等式也成立.根据(1)和(2)可知,等式对任何n∈N+都成立.求证:二项式x2n-y2n(n∈N+)能被x+y整除.[精讲详析]本题考查数学归纳法在证明整除问题中的应用,解答本题需要设法将x2n -y2n进行分解因式得出x+y,由于直接分解有困难,故采用数学归纳法证明.(1)当n=1时,x2-y2=(x+y)(x-y),∴能被x+y整除.(2)假设n=k(k≥1,且k∈N+)时,x2k-y2k能被x+y整除,当n=k+1时,即x2k+2-y2k+2=x2·x2k-x2y2k+x2y2k-y2·y2k=x2(x2k-y2k)+y2k(x2-y2).∵x2k-y2k与x2-y2都能被x+y整除,∴x2(x2k-y2k)+y2k(x2-y2)能被x+y整除.即n=k+1时,x2k+2-y2k+2能被x+y整除.由(1)(2)可知,对任意的正整数n命题均成立.利用数学归纳法证明整除问题时,关键是整理出除数因式与商数因式积的形式,这就往往要涉及到“添项”与“减项”等变形技巧,例如,在本例中,对x 2k +2-y 2k+2进行拼凑,即减去x 2y 2k 再加上x 2y 2k ,然后重新组合,目的是拼凑出n =k 时的归纳假设,剩余部分仍能被x +y 整除.2.求证:n 3+(n +1)3+(n +2)3能被9整除.证明:(1)当n =1时,13+(1+1)3+(1+2)3=36,能被9整除,命题成立. (2)假设n =k 时,命题成立,即 k 3+(k +1)3+(k +2)3能被9整除. 当n =k +1时,(k +1)3+(k +2)3+(k +3)3 =(k +1)3+(k +2)3+k 3+3k 2·3+3k ·32+33 =k 3+(k +1)3+(k +2)3+9(k 2+3k +3).由归纳假设,上式中k 3+(k +1)3+(k +2)3能被9整除,又9(k 2+3k +3)也能被9整除. 故n =k +1时命题也成立.由(1)(2)可知,对任意n ∈N +命题成立.平面上有n (n ≥2,且n ∈N +)条直线,其中任意两条直线不平行,任意三条不过同一点,求证:这n 条直线共有f (n )=n (n -1)2个交点.[精讲详析] 本题考查数学归纳法在证明几何命题中的应用,解答本题应搞清交点随n 的变化而变化的规律,然后采用数学归纳法证明.(1)当n =2时,∵两相交直线只有1个交点, 又f (2)=12×2×(2-1)=1.∴当n =2时,命题成立.(2)假设当n =k (k ≥2且k ∈N +)时命题成立,就是该平面内满足题设的任何k 条直线的交点个数为f (k )=12k (k -1),则当n =k +1时,任取其中一条直线记为l ,如图,剩下的k 条直线为l 1,l 2,…,l k .由归纳假设知,它们之间的交点个数为f (k )=k (k -1)2.由于l 与这k 条直线均相交且任意三条不过同一点,所以直线l 与l 1,l 2,l 3,…,l k 的交点共有k 个.∴f (k +1)=f (k )+k =k (k -1)2+k =k 2+k2=k (k +1)2=(k +1)[(k +1)-1]2. ∴当n =k +1时,命题成立.由(1)(2)可知,命题对一切n ∈N +且n ≥2成立.对于几何问题的证明,可以从有限情形中归纳出一个变化的过程,或者说体会出是怎么变化的,然后再去证明,也可以采用递推的办法,利用数学归纳法证明几何问题时,关键是正确分析由n =k 到n =k +1时几何图形的变化规律.3.证明:凸n 边形的对角线的条数f (n )=12n ·(n -3)(n ≥4).证明:(1)n =4时,f (4)=12·4·(4-3)=2,四边形有两条对角线,命题成立. (2)假设n =k 时命题成立,即凸k 边形的对角线的条数f (k )=12k (k -3)(k ≥4)当n =k +1时,凸k +1边形是在k 边形基础上增加了一边,增加了一个顶点A k +1,增加的对角线条数是顶点A k +1与不相邻顶点连线再加上原k 边形的一边A 1A k ,共增加的对角线条数为(k +1-3)+1=k -1.f (k +1)=12k (k -3)+k -1=12(k 2-k -2)=12(k +1)(k -2)=12(k +1)[(k +1)-3]. 故n =k +1时由(1)、(2)可知,对于n ≥4,n ∈N +公式成立.本课时考点常与数列问题相结合考查数学归纳法的应用,天津高考将数列、数学归纳法相结合,以解答题的形式进行了考查,是高考命题的一个新亮点.[考题印证](天津高考)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N +,证明T n +12=-2a n +10b n (n ∈N +). [命题立意] 本题考查数学归纳法在证明数列问题中的应用.[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n ,n ∈N +. (2)法一:由(1)得T n=2a n+22a n-1+23a n-2+…+2n a1,①2T n=22a n+23a n-1+…+2n a2+2n+1a1.②由②-①,得T n=-2(3n-1)+3×22+3×23+…+3×2n+2n+2=12(1-2n-1)1-2+2n+2-6n+2=10×2n-6n-10.而-2a n+10b n-12=-2(3n-1)+10×2n-12=10×2n-6n-10,故T n+12=-2a n+10b n,n∈N+.法二:(1)当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立;(2)假设当n=k时等式成立,即T k+12=-2a k+10b k,则当n=k+1时有T k+1=a k+1b1+a k b2+a k-1b3+…+a1b k+1=a k+1b1+q(a k b1+a k-1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(-2a k+10b k-12)=2a k+1-4(a k+1-3)+10b k+1-24=-2a k+1+10b k+1-12.即T k+1+12=-2a k+1+10b k+1.因此n=k+1时等式也成立.由(1)和(2),可知对任意n∈N+,T n+12=-2a n+10b n成立.一、选择题1.用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N +)”时,在验证当n=1成立时,左边计算所得的结果是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:选C 由于等式左边当n =1时,幂指数的最大值为1+1=2,∴左边计算结果为1+a +a 2或在等式中左边共有n +2项,∴n =1时,共有3项. 2.用数学归纳法证明:(n +1)(n +2)·… ·(n +n )=2n ×1×3…(2n -1)时,从“k 到k +1”左边需增乘的代数式是( )A .2k +1 B.2k +1k +1C .2(2k +1) D.2k +2k +1解析:选C 当n =k +1时,左边=(k +1+1)(k +1+2)·… ·(k +1+k +1) =(k +1)·(k +2)·(k +3)…(k +k )·(2k +1)(2k +2)k +1=(k +1)(k +2)(k +3)…(k +k )·2(2k +1).3.某个命题与正整数n 有关,如果当n =k (k ∈N +)时命题成立,那么可推得当n =k +1时,命题也成立.现已知当n =5时该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C .当n =4时该命题不成立D .当n =4时该命题成立解析:选C 与“如果当n =k (k ∈N +)时命题成立,那么可推得当n =k +1时命题也成立”等价的命题为“如果当n =k +1时命题不成立,则当n =k (k ∈N +)时,命题也不成立”.故知当n =5时,该命题不成立, 可推得当n =4时该命题不成立,故选C.4.用数学归纳法证明“n 2+n <n +1(n ∈N +)”的过程中的第二步n =k +1时(n =1已验,n =k 已假设成立),这样证明:(k +1)2+(k +1)=k 2+3k +2<k 2+4k +4=(k +1)+1,∴当n =k +1时,命题成立,此种证法( )A .是正确的B .归纳假设写法不正确C .从k 到k +1推理不严密D .从k 到k +1的推理过程未使用归纳假设解析:选D ∵在上面的证明中,当n =k +1时证明过程没有错误,但没有用到当n =k 时的结论,这样就失去假设当n =k 时命题成立的意义,也不能构成一个递推关系,这不是数学归纳法.∴A 、B 、C 都不对,选D. 二、填空题5.设f (n )=1+12+13+…+13n -1(n ∈N +),则f (n +1)-f (n )等于________.解析:因为f (n )=1+12+13+…+13n -1.所以f (n +1)=1+12+13+…+13n -1+13n +13n +1+13n +2.所以f (n +1)-f (n )=13n +13n +1+13n +2.答案:13n +13n +1+13n +26.用数学归纳法证明:“当n 为奇数时,x n +y n 能被x +y 整除”时,在归纳假设中,假设当n =k 时命题成立,那么下一步应证明n =________时命题也成立.解析:两个奇数之间相差2. 答案:k +27.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N +)”的过程中,第二步假设n=k 时等式成立,则当n =k +1时应得到________.解析:∵n =k 时,命题为“1+2+22+…+2k -1=2k -1”, ∴n =k +1时为使用归纳假设,应写成1+2+22+…+2k -1+2k =2k -1+2k ,又考虑到目的,最终应为2k +1-1.答案:1+2+22+…+2k -1+2k =2k +1-1 8.用数学归纳法证明22+32+…+n 2=n (n +1)(2n +1)6-1(n ∈N +,且n >1)时,第一步应验证n =________,当n =k +1时,左边的式子为________.解析:∵n =k 时,命题为“1+2+22+…+2k -1=2k -1”,∴n =k +1时为使用归纳假设,应写成1+2+22+…+2k -1+2k =2k -1+2k ,又考虑到目的,最终应为2k +1-1.答案:1+2+22+…+2k -1+2k =2k +1-1 三、解答题9.用数学归纳法证明:11×2+13×4+…+1(2n -1)×2n =1n +1+1n +2+…+1n +n. 证明:(1)当n =1时,左边=11×2=12, 右边=12,等式成立. (2)假设当n =k 时,等式成立,即11×2+13×4+…+1(2k -1)×2k=1k +1+1k +2+…+12k , 则当n =k +1时,11×2+13×4+…+1(2k -1)×2k +1(2k +1)(2k +2)=1k +1+1k +2+…+12k +1(2k +1)(2k +2) =1k +2+1k +3+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2+1k +1 =1k +2+1k +3+…+12k +12k +1+12k +2=1(k +1)+1+1(k +1)+2+…+1(k +1)+k +1(k +1)+(k +1), 即当n =k +1时,等式成立.根据(1)(2)可知,对一切n ∈N +,等式成立.10.用数学归纳法证明对于整数n ≥0,A n =11n +2+122n +1能被133整除. 证明:(1)当n =0时,A 0=112+12=133能被133整除.(2)假设n =k 时,A k =11k +2+122k +1能被133整除.当n =k +1时,A k +1=11k +3+122k +3=11·11k +2+122·122k +1=11·11k +2+11·122k +1+(122-11)·122k +1=11·(11k +2+122k +1)+133·122k +1.∴n =k +1时,命题也成立.根据(1)、(2),对于任意整数n ≥0,命题都成立.11.已知数列{a n }的前n 项和为S n ,且S n ,a n 的等差中项为1.(1)写出a 1,a 2,a 3;(2)猜想a n 的表达式,并用数学归纳法证明.解:(1)由题意S n +a n =2,∴a 1=1,a 2=12,a 3=14. (2)猜想a n =⎝⎛⎭⎫12n -1,下面用数学归纳法证明:①当n =1时,a 1=1,⎝⎛⎭⎫12n -1=⎝⎛⎭⎫120=1,等式成立. ②假设当n =k 时,等式成立,即a k =⎝⎛⎭⎫12k -1,∵S k +1=2-a k +1,S k +1-S k=a k+1,S k=2-a k,∴a k+1=12a k =⎝⎛⎭⎫12k,即当n=k+1时,等式成立.根据①②可知,对一切n∈N+,等式成立.。

[推荐学习]2018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第3节排序不等式

[推荐学习]2018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第3节排序不等式

[核心必知]1.三维形式的柯西不等式设a1,a2,a3,b1,b2,b3是实数,则(a21+a22+a23)(b21+b22+b23)≥(a1b1+a2b2+a3b3)2,当且仅当b i=0(i=1,2,3)或存在一个数k,使得a i=kb i(i=1,2,3)时,等号成立.2.一般形式的柯西不等式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.[问题思考]1.在一般形式的柯西不等式的右端中,表达式写成a i·b i(i=1,2,3,…,n),可以吗?提示:不可以,a i·b i的顺序要与左侧a i,b i的顺序一致.2.在一般形式的柯西不等式中,等号成立的条件记为a i=kb i(i=1,2,3,…,n),可以吗?提示:不可以.若b i=0而a i≠0,则k不存在.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. [精讲详析] 本题考查三维形式的柯西不等式的应用.解答本题需要构造两组数据a +b ,b +c ,c +a ;1a +b ,1b +c ,1c +a,然后利用柯西不等式解决.构造两组数a +b ,b +c , c +a ;1a +b,1b +c ,1c +a , 则由柯西不等式得(a +b +b +c +c +a )⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c .由柯西不等式知, ①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c . 因题设,a ,b ,c 不全相等,故①中等号不成立,于是2a +b +2b +c +2c +a >9a +b +c .柯西不等式的结构特征可以记为(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2,其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时(要注意从整体上把握柯西不等式的结构特征),准确地构造公式左侧的两个数组是解决问题的关键.1.设a ,b ,c 为正数,求证:a 2b +b 2c +c 2a ≥a +b +c .证明:∵⎝⎛⎭⎫a 2b +b 2c +c 2a ()a +b +c=⎣⎡⎦⎤⎝⎛⎭⎫a b 2+⎝⎛⎭⎫b c 2+⎝⎛⎭⎫c a 2·[(b )2+(c )2+(a )2] ≥⎝⎛⎭⎫a b ·b +b c ·c +c a ·a 2=(a +b +c )2,即⎝⎛⎭⎫a 2b +b 2c +c 2a (a +b +c )≥(a +b +c )2, 又a ,b ,c ∈R +, ∴a +b +c >0,∴a 2b +b 2c +c 2a≥a +b +c ,当且仅当a =b =c 时等号成立。

高中数学人教A版选修4-5创新应用教学案第三讲 章末小结与测评

高中数学人教A版选修4-5创新应用教学案第三讲 章末小结与测评

()柯西不等式取等号的条件实质上是:==…=.这里某一个为零时,规定相应的为零.
()利用柯西不等式证明的关键是构造两个适当的数组.
()可以利用向量中的αβ≥α·β的几何意义来帮助理解柯西不等式的几何意义.
若是不小于的正整数,求证:
<-+-+…+-<.
[证明]-+-+…+-
=-=++…+,
所以求证式等价于<++…+<.
由柯西不等式,有
[(+)+(+)+…+]≥,
于是++…+
≥==≥=,
又由柯西不等式,有++…+<
<=.
设,,,为不全相等的正数.
求证:+++>.
[证明]记=+++,则原不等式等价于
+++>.
构造两组数
,,,;,,,,由柯西不等式得
[()+()+()+()]·[+++]≥(+++).
即[-(+++)]·(+++)≥,
于是+++≥,
等号成立⇔-=-=-=-⇔===.
因题设,,,不全相等,故取不到等号,
即+++>.
利用不等式解决最值,尤其是含多个变量的问题,是一种常用方法.特别是条件最值问题,通常运用平均值不等式、柯西不等式、排序不等式及幂平均不等式等,但要注意取等号的条件能否满足.
已知正实数,,满足++=,求++的最小值.
[解]∵++=.
∴=(++)=
≤(++),
∴++≥=.
当且仅当÷=÷=÷,
即=,=,=时取到“=”号,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[核心必知]1.二维形式的柯西不等式(1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d )(a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R ); a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ). 2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.3.二维形式的三角不等式(1)x 21+y 21+x 22+y 22x 1,y 1,x 2,y 2∈R ).(2)推论:(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1,x 2,x 3,y 1,y 2,y 3∈R ).[问题思考]1.在二维形式的柯西不等式的代数形式中,取等号的条件可以写成a b =cd 吗?提示:不可以.当b ·d =0时,柯西不等式成立,但a b =cd不成立.2.不等式x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,x2,y1,y2∈R)中,等号成立的条件是什么?提示:当且仅当P1(x1,y1),P2(x2,y2),O(0,0)三点共线,且P1,P2在原点两旁时,等号成立.2·a2+c2≥a+c,设a,b,c为正数,求证:a2+b2+b2+c2+a2+c2≥2(a+b+c).[精讲详析]本题考查柯西不等式的应用.解答本题需要根据不等式的结构,分别使用柯西不等式,然后将各组不等式相加即可.由柯西不等式:a2+b2·12+12≥a+b,即2·a2+b2≥a+b,同理:2·b2+c2≥b+c,2·a2+c2≥a+c,将上面三个同向不等式相加得:2(a2+b2+b2+c2+a2+c2)≥2(a+b+c),∴a2+b2+b2+c2+a2+c2≥2·(a+b+c).利用二维柯西不等式的代数形式证题时,要抓住不等式的基本特征:(a2+b2)(c2+d2)≥(ac+bd)2,其中a,b,c,d∈R或(a+b)·(c+d)≥(ac+bd)2,其中a,b,c,d∈R+.1.设a1,a2,a3为正数,求证:a31+a21a2+a1a22+a32+a32+a22a3+a2a23+a33+a33+a23a1+a3a21+a31≥2(a31+a32+a33).证明:因为a31+a21a2+a1a22+a32=(a1+a2)·(a21+a22),由柯西不等式得[(a 1)2+(a 2)2](a 21+a 22)≥(a 1a 1+a 2a 2)2, 于是a 31+a 21a 2+a 1a 22+a 32≥(a 31+a 32)2. 故a 31+a 21a 2+a 1a 22+a 32≥a 31+a 32, 同理a 32+a 22a 3+a 2a 23+a 33≥a 32+a 33, a 33+a 23a 1+a 3a 21+a 31≥a 33+a 31.将以上三个同向不等式相加,即得a 31+a 21a 2+a 1a 22+a 32+a 32+a 22a 3+a 2a 23+a 23+ a 33+a 23a 1+a 3a 21+a 31≥2(a 31+a 32+a 33).设a ,b ,c ,d 是4个不全为零的实数,求证: ab +2bc +cd a 2+b 2+c 2+d2≤ 2+12. [精讲详析] 本题考查柯西不等式的灵活应用,解答本题需要从欲证不等式左边的分子入手,将其进行适当的变形,创造利用柯西不等式的条件. ab +2bc +cd =(ab +cd )+(bc -ad )+(bc +ad )≤2[(ab +cd )2+(bc -ad )2]+(b 2+a 2)(c 2+d 2) =2·(a 2+c 2)(b 2+d 2)+(a 2+b 2)(c 2+d 2) ≤2·(a 2+c 2)+(b 2+d 2)2+(a 2+b 2)+(c 2+d 2)2=2+12(a 2+b 2+c 2+d 2).∴ab +2bc +cd a 2+b 2+c 2+d2≤2+12.利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.2.设a ,b ∈R +,且a +b =2.求证:a 22-a +b 22-b ≥2.证明:根据柯西不等式,有[(2-a )+(2-b )]⎝⎛⎭⎫a 22-a +b22-b=[(2-a )2+(2-b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a 2-a +2-b ·b 2-b 2=(a +b )2=4.∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. ∴原不等式成立.若3x +4y =2,求x 2+y 2的最小值.[精讲详析] 本题考查柯西不等式的应用.解答本题需要熟知柯西不等式的结构,凑成柯西不等式的结构,然后利用柯西不等式求最值.由柯西不等式得(x 2+y 2)(32+42)≥(3x +4y )2, 25(x 2+y 2)≥4,所以x 2+y 2≥425. 当且仅当x 3=y4时等号成立,由⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4.得⎩⎨⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425.利用柯西不等式求最值的方法(1)先变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或为常数的各项,就可以应用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)而有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用的技巧之一.3.如何把一条长为m 的绳子截成2段,各围成一个正方形,使这2个正方形的面积和最小?解:设这2段的长度分别为x ,y ,则x +y =m ,且2个正方形的面积和S =⎝⎛⎭⎫x 42+⎝⎛⎭⎫y 42=116(x 2+y 2).因为(x 2+y 2)(12+12)≥(x +y )2=m 2,等号当且仅当x =y =m 2时成立, 所以x 2+y 2有最小值m 22,从而S 有最小值m 232.把绳子两等分后,这2段所围成的2个正方形的面积和最小.柯西不等式在求最值中的应用是考试的热点.本考题以解答题的形式考查了柯西不等式在求最值中的应用,是高考命题的一个新亮点.[考题印证]已知实数a 、b 、c 、d 满足a 2+b 2=1,c 2+d 2=2,求ac +bd 的最大值. [命题立意] 本题考查柯西不等式在求最值中的应用. [解] ∵a 2+b 2=1,c 2+d 2=2,∴由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2, 得(ac +bd )2≤1×2=2. ∴-2≤ac +bd ≤ 2.当且仅当ad =bc ,即c a =db =2时取最大值 2.∴ac +bd 的最大值为 2.一、选择题1.若a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ] C .[-10,10 ] D .(-5, 5 ] 解析:选A ∵a 2+b 2=10, ∴(a 2+b 2)(12+12)≥(a +b )2, 即20≥(a +b )2, ∴-25≤a +b ≤2 5.2.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536 D.3625解析:选B 2x 2+3y 2=(2x 2+3y 2)⎝⎛⎭⎫12+13·65 ≥65(2x ·22+3y ·33)2=65(x +y )2=65. 3.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是( ) A .P ≤Q B .P <Q C .P ≥Q D .P >Q解析:选A 设m =(ax ,b y ),n =(a ,b ),则|ax +by |=|m·n |≤|m ||n |=(ax )2+(by )2·(a )2+(b )2=ax 2+by 2·a +b = ax 2+by 2,∴(ax +by )2≤ax 2+by 2.即P ≤Q .4.已知p ,q ∈R +,且p 3+q 3=2,则p +q 的最大值为( ) A .2 B .8 C.12D .4解析:选A 设m =(p 32,q 32),n =(p 12,q 12), 则p 2+q 2=p 32p 12+q 32q 12=|m ·n |≤|m |·|n | =p 3+q 3·p +q =2·p +q .又∵(p +q )2≤2(p 2+q 2), ∴(p +q )22≤p 2+q 2≤2p +q .∴(p +q )4≤8(p +q ).∴p +q ≤2. 二、填空题5.设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +dn,则P 与Q 的大小________.解析:由柯西不等式,得 P =am ·b m+nc ×dn≤(am )2+(nc )2×⎝⎛⎭⎫ b m 2+⎝⎛⎭⎫ d n 2=am +nc ×b m +dn =Q . 答案:P ≤Q6.函数f (x )=x -6+12-x 的最大值为________. 解析:由柯西不等式得(x -6+12-x )2≤(12+12)·[(x -6)2+(12-x )2]=12, ∴x -6+12-x ≤23(当x =9时,“=”成立). 答案:2 37.设xy >0,则⎝⎛⎭⎫x 2+4y 2⎝⎛⎭⎫y 2+1x 2的最小值为________. 解析:原式=⎣⎡⎦⎤x 2+⎝⎛⎭⎫2y 2⎣⎡⎦⎤⎝⎛⎭⎫1x 2+y 2≥⎝⎛⎭⎫x ·1x +2y ·y 2=9. 答案:98.已知a ,b ∈R +,且a +b =1,则(4a +1+4b +1)2的最大值是________. 解析:(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2]=2(4×1+2)=12.答案:12 三、解答题9.已知a 2+b 2=1, x 2+y 2=1,求证:|ax +by |≤1. 证明:由柯西不等式得 (ax +by )2≤(a 2+b 2)(x 2+y 2)=1. 故|ax +by |≤1成立.10.已知实数a 、b 、c 满足a +2b +c =1,a 2+b 2+c 2=1.求证:-23≤c ≤1.证明:因为a +2b +c =1,a 2+b 2+c 2=1, 所以a +2b =1-c ,a 2+b 2=1-c 2. 由柯西不等式得(12+22)(a 2+b 2)≥(a +2b )2, 5(1-c 2)≥(1-c )2, 整理得,3c 2-c -2≤0, 解得-23≤c ≤1.所以-23≤c ≤1.11.若x 2+4y 2=5.求x +y 的最大值及最大值点. 解:由柯西不等式得 [x 2+(2y )2]⎣⎡⎦⎤12+⎝⎛⎭⎫122≥(x +y )2即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x 2+4y 2=5,x =4y ,得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,最大值点为⎝⎛⎭⎫2,12.。

相关文档
最新文档