有限元公式集——03

合集下载

有限元直接公式法

有限元直接公式法

以上形式为:
R K u F
即表示
{反作用力矩阵}=[刚度矩阵]{位移矩阵}-{负荷矩阵}
2014年11月5日星期三 Introduction to ANSYS - Release 7.0
由于杆的上端是固定的,节点1的位移量是零,因此方程的 第一行应为u1=0。所以应用边界条件将得到如下的矩阵方程:
Introduction to ANSYS - Release 7.0
在矩阵中将反作用力和负荷区分开来得到:
R1 k1 0 k1 0 0 0 0 0 0
k1 k1 k2 k2 0 0
2014年11月5日星期三
Introduction to ANSYS - Release 7.0
总结
以上我们通过一个例题说明了直接公式法的步骤,由 直接公式法和理论计算结果的比较可以发现,使用直接 公式法进行计算是有效的。 在后续的学习当中还会接触到其它几种用公式描述 有限元问题的方法,这些有限元的基本概念将会为更 好地使用ANSYS打下坚实的基础。

(1)
f 4445.25 29.39MPa Aavg 0.00015 f 4445.25 33.82MPa Aavg 0.00014 f 4445.25 40.01MPa Aavg 0.00011
(2)
(3)
(4)
f 4445.25 48.87 MPa Aavg 0.00009
2014年11月5日星期三
Introduction to ANSYS - Release 7.0
直接公式法
w1
例: 变横截面杆的一端固 定,另一端承受负荷P。杆的 上边宽度为w1,下边宽度为 w2。杆的厚度为t,长度为L。 弹性模量为E。

第三讲 有限元分析过程及例题讲解

第三讲 有限元分析过程及例题讲解


Q2
Ke 23

K25
注意要用累加运算!
K25
=
K25
+
Ke 23
累加前总刚要清零!
长安大学汽车学院车辆工程系 王童
⎡ K11 K12
⎢ ⎢
K21
K22
⎢ K31 K32
⎢ ⎢
K41
K42
⎢ ⎢ ⎢
K51 K61
K52 K62
⎢ ⎢ ⎣
K71 K81
K72 K82
Tel:17792594186
K13 K14 K15 K16 K17 K18 ⎤
Ve
Ve
Ve
令: {Pbe}= ∫∫∫ [N ]T {Fb}⋅ dV 称单元等效体力载荷向量 Ve
{ } { } 单元体力虚功可以表示为: Wbe = Qe T Pbe
2)表面力虚功
W
e s
=
∫∫
{u}T {Fs }⋅ dA
=
∫∫
{Q e }T
[N ]T {Fs }⋅ dA
=
{Q e }T
∫∫
[N
]T {Fs }⋅ dA
y
Q6

Q5
3
4
Q7

Q2


Q4
1
Q1
2
Q3
x
长安大学汽车学院车辆工程系 王童 Tel:17792594186 Email:wangtong@
以单元①为例

Qe 2
Qe 1
Qe 4
Qe 3
⎧Q1e → Q1
局部自由度与整体自由 度的对应关系为
⎪⎪⎪⎨QQ32ee
→ →

有限元-结构静力学分析

有限元-结构静力学分析

03
结果优化
如果结果不满足设计要求,需要对有 限元模型进行优化设计,如改变梁的 截面尺寸、增加支撑等。
THANKS
谢谢您的观看
结构静力学的求解方法
解析法
解析法是通过数学方法求解结构在静载荷作用下的响应的求解方法。它通常 适用于具有简单几何形状和载荷条件的结构,如梁、板、壳等。
数值法
数值法是一种通过数值计算方法求解结构在静载荷作用下的响应的求解方法 。它通常适用于具有复杂几何形状和载荷条件的结构,如飞机、汽车等。
结构静力学的基本假设和简化
问题描述和基本方程
问题描述
弹性地基梁是支撑在弹性地基上的梁,受到垂直荷载的作用。该问题可描述为求 解地基反力和梁的挠度。
基本方程
该问题的基本方程包括梁的平衡方程、几何方程和物理方程。这些方程描述了梁 在受力后的变形和应力分布情况。
利用有限元法进行每个单元之间通过节点相连。每个节点具有三个自由度:沿 x、y、z方向的移动。
系统方程的建 立
将所有单元的平衡方程 和变形协调方程组合起 来,得到整个结构的系 统方程。
求解系统方程
利用数值方法(如高斯 消元法)求解系统方程 ,得到每个节点的位移 和应力。
结果分析和讨论
01
结果输出
输出每个节点的位移、应力、应变和 弯矩等结果。
02
结果评估
根据输出结果,对框架结构的强度、 刚度和稳定性进行评估,判断是否满 足设计要求。
连续性假设
结构静力学的基本假设是结构的材料是连续的, 即结构的内部没有空隙和缺陷。
各向同性假设
结构静力学的基本假设是结构的材料是各向同性 的,即结构的各个方向具有相同的材料性质。
均匀性假设
结构静力学的基本假设是结构的材料是均匀的, 即结构的各个部分具有相同的材料性质。

有限元三大方程公式

有限元三大方程公式

有限元三大方程公式有限元方法是一种重要的数值分析技术,用于求解结构力学、流体力学和热传导等工程学问题。

有限元方法基于有限元法,将连续的问题离散化成为微小的单元,并利用数值技术求解单元边界上的方程,最终通过组合这些边界方程得到整个问题的解。

在有限元方法中,三个常见的方程是:平衡方程、力学方程和能量方程。

下面将详细介绍这三个方程的公式及其意义。

一、平衡方程平衡方程是指物体在受到外力作用时,各部分之间保持力的平衡。

在力学中,平衡方程可表示为:∑F=0其中,∑F代表物体的所有外力的矢量和。

这个方程表明,在平衡状态下,物体上各个部分所受的外力的合力为零。

通过将平衡方程应用于每个有限元单元,可以得到离散问题的平衡方程。

二、力学方程力学方程是用于描述物体内部受力情况的方程,一般由胡克定律得到。

对于线性弹性材料,力学方程可表示为:σ=(E/ν)[ε-α(T-T0)]其中,σ代表应力,E代表弹性模量,ν代表泊松比,ε代表应变,α代表线膨胀系数,T代表温度,T0代表参考温度。

这个方程表明,应力取决于应变、温度和材料性质。

在有限元分析中,常将力学方程表示为单元应变和单元应力之间的关系,即:σ=Dε其中,D代表弹性模量矩阵,包含了材料性质的信息。

通过将力学方程应用于每个有限元单元,可以得到离散问题的力学方程。

三、能量方程能量方程是用于描述物体内部能量传递和转化的方程。

∂T/∂t=α∇²T其中,T代表温度,t代表时间,α代表热扩散率。

这个方程表明,温度随时间和空间的变化率取决于热传导率。

在有限元分析中,常将能量方程离散化为每个有限元单元的能量方程,即:∂T_i/∂t=∑(N_i∇T)其中,T_i代表单元i的温度,N_i代表形函数,∇T代表温度梯度。

通过将能量方程应用于每个有限元单元,可以得到离散问题的能量方程。

综上所述,有限元分析中的三大方程包括平衡方程、力学方程和能量方程。

这些方程为结构力学、流体力学和热传导等工程学问题的求解提供了重要的数学模型,通过将这些方程应用于每个有限元单元,可以得到离散问题的方程组,从而得到问题的数值解。

动力学问题的有限元法

动力学问题的有限元法
❖ 就结构的瞬态响应分析而言,典型的有结构在冲击载 荷下的响应问题。结构动力学中这类问题的特点是, 载荷作用前沿时间与构件的自振基频周期相近,远大 于应力波在构件中的传播时间。或者构件上长时间作 用随时间剧烈变化的载荷。
❖ 结构动力学问题在工程中具有普遍性。
3) 弹塑性动力学问题
❖ 这是连续介质变形体动力学问题的另一个重要领域。 涉及许多科学和工程领域,如高速碰撞,爆炸冲击, 人工地震勘探,无损探伤等。
力学问题。对等效系统应用虚功原理:
T
V
dV VuT(fu u)dV SuTTdS
• 将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离
散系统控制方程——结构有限元动力学方程:
Ma(t)Ca(t)Ka(t)Q(t)
方程中的系数矩阵分别为:系统质量矩阵,阻尼 矩阵,整体刚度矩阵。右端项为整体节点载荷向量。
u N ae
u(x, y, z,t) u来自v(x,
y,
z, t)
w( x, y, z, t)
a
e
a a
1 2
a n
ai
uvii
(t) (t)
(i
1,2,, n)
wi (t)
• 为建立有限元动力学响应控制方程,利用达朗倍尔原
理,在每个时刻 t,将连续介质中质点加上惯性力 u 和阻尼力 u ,则系统的动力学问题转化为等效静
• 如果忽略阻尼,则结构动力学方程简化为:
Ma(t) Ka(t) Q(t)
• 上式动力学方程的右端项为零时就得到结构自由振动 方程。
• 从动力学方程导出过程可以看出,动力学问题的有限元 分析中,由于平衡方程中出现了惯性力和阻尼力,从而 引入了质量矩阵和阻尼矩阵,运动方程是耦合的二阶常 微分方程组,而不是代数方程组。该方程又称为有限元 半离散方程,因为对空间是有限元离散的,对时间是连 续的。

有限元分析法第3章 杆单元

有限元分析法第3章 杆单元

提示: 1)本例中单元应力的计算采用了材料力学中的方法,与采 用有限元单元应力公式 E EBd 的结果相同。 2)对锥形杆,单元截面积可用平均值。 3)求应力之前需要求出节点位移——有限元位移法。
第三章
杆单元
§ 3 –1
习题2:
一维等截面杆单元
已知:
求:杆两端的支反力

第三章 杆单元
u2
v2 u3 v3
1 1 1 1 EA 1 1 1 1 2 L 1 1 1 1 1 1 1 1
第三章 杆单元
§ 3 –2
二维空间中的杆单元
将单元1,2的刚度方程扩张到系统规模(6阶), 相加后引入节点平衡条件:
第三章
杆单元
§ 3 –2
0 1 0 0 0 1 1 0 1 1 1 0
u1 v1 u2
v2
1 1 1 1 EA 1 1 1 1 2 L 1 1 1 1 1 1 1 1
第三章 杆单元
§ 3 –2
单元2:2-3
135,l
按公式计算杆应力:
二维空间中的杆单元
得:
0 E 2 L 0 1 1 1 1 2 ( P1 P2 ) 1 L 2 EA P 2A 1 P2
P 1 E 2 L P2 1 1 1 1 2 ( P1 P2 ) 2 L 2 EA 0 2 A 0
第三章
杆单元
§ 3 –2
二维空间中的杆单元
节点位移向量的坐标变换:
~ d i Tdi
第三章
杆单元
§ 3 –2
二维空间中的杆单元

有限元基础知识归纳

有限元基础知识归纳

有限元基础知识归纳有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处Ni=1,其它节点Ni=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。

可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。

4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。

即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。

称前者为母单元,后者为子单元。

还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。

如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。

5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。

这种单元称为常应变三角形单元。

常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。

有限元法PPT课件

有限元法PPT课件
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。

有限元隐式欧拉法计算公式

有限元隐式欧拉法计算公式

有限元隐式欧拉法计算公式有限元隐式欧拉法是一种常用的数值计算方法,它在工程学和物理学中有着广泛的应用。

本文将介绍有限元隐式欧拉法的计算公式,并探讨其在实际问题中的应用。

有限元隐式欧拉法是一种数值求解微分方程的方法,它通过将微分方程离散化,然后利用数值方法求解离散化后的方程,从而得到微分方程的数值解。

有限元隐式欧拉法的基本思想是将微分方程的解表示为一系列离散的节点上的值,然后利用这些节点上的值来逼近微分方程的解。

有限元隐式欧拉法的计算公式可以表示为如下形式:\[ M \frac{d^2u}{dt^2} + C \frac{du}{dt} + Ku = F \]其中,\( M \)、\( C \)、\( K \) 分别表示质量矩阵、阻尼矩阵和刚度矩阵,\( u \) 表示位移向量,\( F \) 表示外力向量。

有限元隐式欧拉法通过对上述微分方程进行离散化,得到如下形式的方程:\[ M \frac{u_{n+1} 2u_n + u_{n-1}}{\Delta t^2} + C \frac{u_{n+1} u_n}{\Delta t} + Ku_n = F_n \]其中,\( u_n \) 表示第 \( n \) 个时间步的位移向量,\( \Delta t \) 表示时间步长。

有限元隐式欧拉法的计算公式可以通过求解上述离散化后的方程得到位移向量\( u_{n+1} \)。

具体求解方法通常采用迭代法或者直接求解线性方程组的方法。

在实际应用中,有限元隐式欧拉法通常与有限元方法结合使用,通过有限元方法将连续的物理问题离散化,然后利用有限元隐式欧拉法求解离散化后的方程。

有限元隐式欧拉法在工程学和物理学中有着广泛的应用。

例如,在结构动力学中,有限元隐式欧拉法可以用来求解结构的动力响应,从而分析结构的振动特性和动态响应。

在地震工程中,有限元隐式欧拉法可以用来模拟地震对结构的影响,从而评估结构的抗震性能。

在流体力学中,有限元隐式欧拉法可以用来模拟流体的运动,从而分析流体的流动特性和压力分布。

弹性力学与有限元分析

弹性力学与有限元分析

m α 式中: = ∑i , α1,α2 ,⋯ 2m 为待定系数。把位移函
i=1
n+1
数的这种描述形式称为广义坐标形式。 在确定二维多项式的项数时,需参照二维帕斯卡三 角形,即在二维多项式中,若包含帕斯卡三角形对称轴 一侧的任意一项,则必须同时包含它在对称轴另一侧的 对应项。
1 x x2 x3 x4 y xy y2 y3
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 Ni在节点 处的值为0。 2、在单元中任意一点,3个形函数之和为1,即:
i处的值为1,而在其余两个节点
Ni (x, y) + N j (x, y) + Nm (x, y) = 1
六、计算单元刚度矩阵
U(x, y) Ni f (x, y) = = V(x, y) 0
0 Ni
Nj 0
0 Nj
Nm 0
Ui V i 0 U j Nm Vj Um Vm
其中 Ni , N j , Nm 称为单元位移的形状函数,简称形函 数,其值为:
1、用单元节点位移表示单元中任一点的应变,得

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析
杆件结构可分为桁杆和梁两类。 由杆件组成的结构体系称为杆系。由桁杆组成的杆系称为桁架; 由梁组成的杆系称为刚架。若杆系和作用力均位于同一平面内,则称 为平面桁架或平面刚架,否则称为空间桁架或空间刚架。
Finite Element Theory and Numerical Method
一、杆、梁的物理力学模型
拉压杆单元如图3-6所示,已知等直杆件杆长为 l 横截面面积为 A 材料弹性模量为 E 所受轴向分布载荷集度为 p(x) 杆端位移分别为 u1 u2
杆端力分别记为 F1 F2
1、建立位移场
F1, u1 xa
1
a p(x)
2 F2 , u2
x
设局部坐标系下杆中任意点a的坐标为 xa
因为只有两个边界条件 u1
形函数具有如下性质: 1)本端为1,它端为0 2)单元内任意一点总和为1
N1(0) 1
N1(1) 0
N2 (0) 0 N2 (1) 1
N1() N2 () 1
2、应变分析
du dx
dN dx
ue
dN1 dx
B为应变矩阵或者几何矩阵。
dN2 dx
u
e
1 l
1 l
ue
[B1
B2 ]ue Bue
图示所示桁架 l 2m
EA 1.2106 kN
试求1-2杆和1-4杆单元的局部坐标单元 刚度矩阵
1-2杆:抗拉刚度 EA / l 6106 kN/m
F1 10N 3
1
F2 20N 4
2
ke1
EA l
1 1
1
1
6
105
1 1
1
1
kN
/
m
1-4杆:抗拉刚度 EA /( 2l) 4.24264 105 kN/m

有限元第六章 动力问题的有限元法

有限元第六章  动力问题的有限元法

第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。

本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。

动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。

由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。

结构振动是工程中一个很普遍很重要的问题。

有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。

因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。

振动问题主要解决两方面的问题。

1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。

2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。

6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。

在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。

上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。

在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。

有限元理论与方法

有限元理论与方法

第一章 绪论有限元发展过程:有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德J.H.Argyrb 教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书容提供了有限元法的理论基础。

美国的M.T.Turner 、 R.W.cloagh 、 H.C.martin 和L.J.Topp 等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。

美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。

1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。

有限元法的基本思路:有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。

这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。

有限元分析中可采取三种方法:位移法——取节点位移作为基本未知数力 法——取节点力作为基本未知数混合法——有限元法分析过程:1、结构离散化(单元划分)2、选择位移模式为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。

{}[]{}e u N δ= (1)3、分析单元的力学特性(1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{}e εδ=B {}ε为单元任一点的应变列阵 (2)非线性有限元线性有限元几何非线性 材料非线性有限元(2)利用物理方程,由应变的表达式导出用节点位移表示单元应力的关系式{}[][]{}[]{}eD D δδε=B = (3) {}δ是单元任一点的应力列阵 []D 是材料的弹性矩阵(3)利用虚功原理建立作用于单元上的节点力和节点位移之间的关系式,即单元的刚度方程(平衡方程)[]{}{}e e K R δ=4、计算等效节点力弹性体经过离散化后,假定力是通过节点从一个单元传递到另一个单元,但是作为实际的连续体,力是从单元的公共边界传递到另一个单元的,因而,这种作用在单元边界上的表面力、体积力、集中力等都需要等效移置到节点上去,所用方法虚功等效。

汽车结构有限元分析03单元类型及单元分析

汽车结构有限元分析03单元类型及单元分析
这样空间梁单元就由3个节点组成, 点必须 在一个平面内,但不能共线。i节点到j节点为单 元坐标系的x轴,y轴(或z轴)在节点i、j和k构成 的平面上且与x轴垂直,应用右手定则可以确定 另一坐标z轴(或y轴)。 三点确定后,单元坐 标系即确定,梁单元的截面方位也就完全确定下 来。所增加的一个用于定向的参考点k,也是构 建空间刚架有限元模型的内容,汽车不结构能有限忽元分析略03单。元类型及单
目前使用的梁单元除一次梁单 元外,还有二次梁单元、曲梁单 元和锥梁单元等。二次梁单元是 由三个节点确定的抛物线,曲梁 单元是由两个节点决定的、具有 曲率半径的圆弧,而锥梁单元则 是采用两个节点处截面积不等的 线性梁。
汽车结构有限元分析03单元类型及单 元分析
上述在局部坐标系中得出的杆单元或梁 单元刚度矩阵,由于整体结构中各杆梁位 置不同、倾角不同,有限元模型要求一个 单元在整体坐标系中能够任意定位,这就 需要建立两种坐标系下的转换关系。对平 面桁架、空间桁架、平面刚架与空间刚架, 都需要建立这种坐标变换关系。
形函数的构成要分成八个角点的形函 数和各棱边中节点的形函数两种情况表述。 其表达式如下:
汽车结构有限元分析03单元类型及单 元分析
由空间弹性力学几何方程,得应变表达式: 由空间弹性力学物理方程,单元内的应力可以
表示成: 单元刚度矩阵为 :
汽车结构有限元分析03单元类型及单 元分析
实体单元可以直接利用三维CAD所做好的 实体模型,所以非常容易理解。实体单元能够 适用于所有的结构,但其节点数或单元数可能 非常之多。虽然板梁结构都可以采用实体单元 建模,但对于符合板或梁形式的结构还是采用 梁单元或板壳单元为佳,其精度完全满足工程 结构设计要求。采用实体单元分析所花费时间 一般较采用梁单元与板单元为多,另外三维网 格调整是比较困难的,用板梁单元建立的模型, 截面内力容易判断,在初期设计阶段,更易于 评价计算结果。

abaqus系列教程-03有限单元和刚性体

abaqus系列教程-03有限单元和刚性体

abaqus系列教程-03有限单元和刚性体3. 有限单元和刚性体有限单元和刚性体是ABAQUS模型的基本构件。

有限单元是可变形的,⽽刚性体在空间运动不改变形状。

有限元分析程序的⽤户可能多少理解有限单元,⽽对在有限元程序中的刚性体的⼀般概念可能多少会感到陌⽣。

为了提⾼计算效率,ABAQUS具有⼀般刚性体的功能。

任何物体或物体的局部可以定义作为刚性体;⼤多数的单元类型都可以⽤于刚性体的定义(例外的类型列出在ABAQUS分析⽤户⼿册第2.4.1节“Rigid Body definition”)。

刚性体⽐变形体的优越性在于对刚性体运动的完全描述只需要在⼀个参考点上的最多六个⾃由度。

相⽐之下,可变形的单元拥有许多⾃由度,需要昂贵的单元计算才能确定变形。

当这变形可以忽略或者并不感兴趣时,将模型⼀个部分作为刚性体可以极⼤地节省计算时间,并不影响整体结果。

3.1 有限单元ABAQUS提供了⼴泛的单元,其庞⼤的单元库为你提供了⼀套强有⼒的⼯具以解决多种不同类型的问题。

在ABAQUS/Explicit 中的单元是在ABAQUS/Standard中的单元的⼀个⼦集。

本节将介绍影响每个单元特性的五个⽅⾯问题。

3.1.1 单元的表征每⼀个单元表征如下:●单元族●⾃由度(与单元族直接相关)●节点数⽬●数学描述●积分ABAQUS中每⼀个单元都有唯⼀的名字,例如T2D2,S4R或者C3D8I。

单元的名字标识了⼀个单元的五个⽅⾯问题的每⼀个特征。

命名的约定将在本章中说明。

单元族图3-1给出了应⼒分析中最常⽤的单元族。

在单元族之间⼀个主要的区别是每⼀个单元族所假定的⼏何类型不同。

实体单元壳单元梁单元刚体单元弹簧和粘壶桁架单元⽆限单元膜单元图3-1 常⽤单元族在本指南中将⽤到的单元族有实体单元、壳单元、梁单元、桁架和刚性体单元,这些单元将在其它章节⾥详细讨论。

本指南没有涉及到的单元族;读者若在模型中对应⽤它们感兴趣,请查阅ABAQUS分析⽤户⼿册的第V部分“Elements”。

有限元课件第4讲等参元和高斯积分

有限元课件第4讲等参元和高斯积分
01.
构造插值函数
01.
位移函数
节点条件:
同理可得:
单元的几何坐标与位移用同样的节点和相同的形状函数通过插值的方式表示。形状函数用自然坐标给出。
?
雅可比矩阵:
偏导数变换
不能有重节点 不能出现内角大于180o的情况 内角最好介于30o-150o之间(有限变形的情 ,2维
直角坐标系( x , y , z)
球坐标系(r,θ, )
柱坐标系 (, , z)
自然坐标系
自然坐标系:
选轨迹上任一点O为原点
用轨迹长度S 描写质点位置
O
m
S
质点与切向正交且指向轨迹曲线凹侧的 单位矢量为法向单位矢量(normal unit vector)
3
4.2 数值积分
数值积分及其基本思想
Newton-cotes积分公式
Gauss-Legendre积分公式
等参元中积分阶次的选择
一个函数的定积分可以通过n个结点的函数值的加权组合来表示
计算刚度矩阵及等效节点载荷列阵的元素时,往往涉及到复杂函数的定积分,在有限元分析中广泛采用数值积分方法。 数值积分方法是一种近似的方法。
第4讲 等参单元和数值积分
单击添加副标题
汇报人姓名
4.1 等参单元
01
02
03
04
简单杆系问题分析的新途径
等参单元定义的给出
平面问题四边形等参单元计算公式
三维问题六面体等参单元计算公式
05
采用等参单元的优点
途经1:在整体直角坐标系下进行单元分析(参看第3讲内容) 途径2:建立局部自然坐标系进行单元分析
当点的运动轨迹已知时,通常采用自然法确定点的运动规律、速度、加速度。

有限元分析第3章弹性力学基础知识1

有限元分析第3章弹性力学基础知识1
¶w ¶v ¶w ¶w ¶u z , yz + , zx + ¶z ¶z ¶y ¶x ¶z
联立得到几何方程,表明应变分量与位移分量之间的关系:
¶u ¶v ¶w , y , z ¶x ¶y ¶z ¶u ¶v ¶v ¶w ¶w ¶u + , yz + , zx + ¶y ¶x ¶z ¶y ¶x ¶z
弹性力学的基本假定
4、各向同性(Isotropy)
物体的弹性性质在所有各个方向都相同 好处:物体材料常数不随坐标方向改变而改变
像木材,竹子以及纤维增强材料等,属于各向异 性材料。
弹性力学的基本假定
5、小变形假定(Small deformation):
物体的位移和形变是微小的. 即物体的位移 远小于物体原来的尺寸, 而且应变和转角都远小 于1
u+
¶u dy ¶y
C'
D" b D '
D C
A ' B ' AB x AB ¶u (u + dx) u ¶x dx ¶u ¶x
dy
u
v
A
A'
B'
a
v+
¶v dx ¶x
B dx
¶u u + dx ¶x
B"
x
0
¼ Í
1-5
弹性力学的基本方程之几何方程
(2)y方向的相对伸长量
y
¶u dy ¶y
切应力符号 的含义
受力面的法线方向
xy
力的方向
弹性力学的运动与变形
1、位移、形变、正应变、剪应变的概念
位移(displacement): 是指位置的移动. 它在 x, y and z 轴上的 投影用 u, v 和w。

平面问题有限元解法(公式推导讲解)

平面问题有限元解法(公式推导讲解)

设斜面AB 的长度为ds,则PB面及A面的长度
分别为 lds及mds,而PAB的面积为 ldsmds/2,
棱柱的厚度设为1。 由x轴平衡条件,得:
pxdsxldsxym dsfxlds2 m ds0
其中,fx为体力分量。将上式除以ds,并令ds趋于0(斜面AB趋于P点),即得:
px lxmxy
由y轴平衡条件,得:
py mx\ylxy
28.12.2020
h
18
几何方程
经过弹性体内的任意一点P,沿x
轴和y轴的正方向取两个微小长度
v
的线段PA=dx和PB=dy。假定弹
性体受力后,P,A,B三点分别移动
到P’,A’,B’.
v v dy
y
线段PA的线应变是: x
u
u x
dx
dx
u
u x
u
即: 三大方面
三大方程
求解方法
经典解析 半解析 传统数值解法 现代数值解法(计算机硬件、规范化、标准化、规模化)
28.12.2020
h
3
有限元单元模型中几个重要概念
单元
网格划分中每一个小的块体
节点
单元
确定单元形状、单元之间相互联结的 点
节点力
单元上节点处的结构内力
载荷
作用在单元节点上的外力 (集中力、分布力)
28.12.2020
h
6
有限元单元法分析步骤(二)
单元特性分析
选择未知量模式 选择节点位移作为基本未知量时,称为位移法; 选节点力作为基本未知量时,称为力法; 取一部分节点位移和一部分节点力作为未知量,称为混合法。
分析单元力学性质 根据单元材料性质、形状、尺寸、节点数目、位置等,找出单元 节点力和节点位移关系式,应用几何方程和物理方程建立力和位 移的方程式,从而导出单元刚度矩阵。

有限元分析简介

有限元分析简介

有限元软件ansys简介有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

ANSYS是一种广泛的商业套装工程分析软件。

所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。

一般机械结构系统的几何结构相当复杂,受的负载也相当多,理论分析往往无法进行。

想要解答,必须先简化结构,采用数值模拟方法分析。

由于计算机行业的发展,相应的软件也应运而生,ANSYS 软件在工程上应用相当广泛,在机械、电机、土木、电子及航空等领域的使用,都能达到某种程度的可信度,颇获各界好评。

使用该软件,能够降低设计成本,缩短设计时间。

ANSYS 软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。

该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS 参数设计语言扩展宏命令功能。

有限元分析有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的物理方程:④边界条件:
,弹性问题中系统势能的表达式:3,梁弯曲问题近似求解的Galerkin加权残值法所得到的线性
方程组:
5,有限元问题中物理量的表达:其中ωi为加权函数,一般可取1.
并有:
,梁单元
一般坐标系中的平面梁单元:③平面梁单元的坐标变换:
单元的坐标变换矩阵:局部坐标系中的空间梁单元的刚度矩阵:⑤空间梁单元坐标变换:梁单元的常用节点等效载荷:
其中: )表示下标轮换,如1→2,2→3,3→1。

α3=x 1y 2-x 2y 1
β3=y 1-y 2
四节点矩形单元的刚度矩阵:
变形协调方程 :y x x
y xy
yy xx ∂∂∂=∂∂+∂∂γεε2
2
222
单元刚度矩阵:。

相关文档
最新文档