完整word版,岩石力学总结,推荐文档

合集下载

(完整版)重庆大学岩石力学总结

(完整版)重庆大学岩石力学总结

重庆大学岩石力学总结第一章1 岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。

2 岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。

3 岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。

其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。

4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。

5 岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。

它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。

6 矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。

7 岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。

8 岩石的孔隙率是指岩石孔隙的体积与岩石总体积的比值。

9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。

包括岩石的吸水性,透水性,软化性和抗冻性。

10 岩石的天然含水率rdw m m w =w m 表示岩石中水的质量,岩石的烘干质量rd m 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。

它取决于岩石孔隙的数量,大小,开闭程度和分布情况。

表征岩石吸水性的指标有吸水率,饱和吸水率和饱水系数。

岩石吸水率drdr o a m m m w -=. dr m 为岩石烘干质量,o m 为岩石浸水48小时后的总质量。

12 岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。

13岩石的透水性:岩石能被水透过的性能。

可用渗透系数衡量。

主要取决于岩石孔隙的大小,方向及相互连通情况。

A dxdh k q x = K 为岩石的渗透系数,h 为水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。

透水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。

岩体力学总结

岩体力学总结

岩块、结构面和岩体三者的变形与强度性质一、岩块1.岩块的变形性质岩块在外荷载作用下,产生变形,并随着荷载的不断增加,变形也不断增加,当荷载达到或超过某一限度是,将导致岩块破坏。

其变形分为:弹性变形、塑性变形和流变变形。

由于其矿物组成和结构构造复杂,所以其变形性质比普通材料复杂的多。

岩块的蠕变性质:外部条件不变时,岩块的变形或应变随时间而变的现象叫流变,主要包括蠕变、松弛和弹性效后。

⑴单轴压缩条件下的岩块变形性质Ⅰ孔隙裂隙压密阶段,OA段Ⅱ弹性变形至微破裂稳定发展阶段,AC段Ⅲ、Ⅳ非稳定破裂发展阶段(或称累进性破裂阶段),CD段Ⅴ破裂后阶段,D点后阶段总体而言可分为两个阶段,一是峰值前阶段(或称前区),以反映岩块破坏前的变形特征,其又可分为若干个小阶段;二是峰值后阶段(或称后区),对于该区的研究较少。

⑵三轴压缩条件下的岩块变形性质试验表明:有围压作用时,岩石的变形性质与单轴压缩时不尽相同。

首先破坏前岩块的应变随围压增大而增加;其次,随着围压增大,岩块的塑性也不断增大,而且,且由脆性逐渐转化为延性。

其破坏形式大致分为:脆性劈裂、剪切及塑性流动。

2.岩块的强度性质根据破坏时应力类型,岩块的破坏分为拉破坏、剪切破坏及流动三种基本类型。

把岩块抵抗外力破坏的能力称为岩块的强度。

由于受力状态不同,岩块的强度分为单轴抗压强度、单轴抗拉强度、剪切强度、三轴压缩强度等。

二、结构面1.结构面的变形性质⑴结构面的法向变形性质①开始时,随着法向压力增大,结构面闭合变形迅速增加。

当法向应力增到一定值时,两曲线大致平行,说明结构面基本完全闭合,其变形主要是由岩块变形贡献。

②试验研究表明,当法向压力约在1/3岩块抗压强度处开始,含结构面岩块变形由以结构面的闭合为主转为以岩块的弹性变形为主。

③结构面的最大闭合量始终小于结构面的张开度(e)。

⑵结构面的剪切变形性质①结构面剪切变形曲线均为非线性曲线。

同时,按其剪切变形机理可分为塑性变形型和脆性变形型两类曲线。

(完整版),岩石力学总结,推荐文档

(完整版),岩石力学总结,推荐文档
单轴抗拉强度:岩石在单轴拉伸荷载作用下达到破坏时所能承受的最大 拉应力
抗剪切强度:岩石在剪切荷载作用下达到破坏前所能承受的最大剪应力 三轴抗压强度:岩石在三向压缩荷载作用下,达到破坏时所能承受的最
大压应力 端部效应其消除方法:润滑试件端部(如垫云母片;涂黄油在端部)加长试件 岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。 岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质
煤与瓦斯突出预测及处理理论和技术 铁路隧道设计和施工技术 水库诱发地 震的预报问题 地震预报中的岩石力学问题 岩体力学的研究对象: 岩石 由矿物或岩屑在地质作用下按一定规律聚集而 形成的自然物体
岩体力学的发展历程:
20 世纪以前萌芽阶段 宋应星《天工开物》 古德恩维地表移动范围
20 世纪初到 20 世纪 50 年代第二阶段 松散介质学派 卡曼型三轴试验机 三下
②塑性滞回环:则每次加、卸载曲线都形成一个塑性滞回环。这些塑性滞回环
随着加、卸载的次数增加而愈来愈狭窄,并且彼此愈来愈近,岩石愈来愈接近
弹性变形,一直到某次循环没有塑性变形为止,如图中的 HH‘环。
③临界应力:当循环应力峰值小于某一数值时,循环次数即使很多,也不会导
致试件破坏;而超过这一数值岩石将在某次循环中发生破坏(疲劳破坏),这一
6
RMR Ri i 1
岩石分类评价 1. 岩石普氏系数(f=σc/10)分类法
2. 岩石质量指标 RQD
3. RMR(Rock Mass Rating)值分类法 六个参数 完整岩石强度 岩芯质量指标 节理间距
节理条件 地下水条件 节理走向或倾向
4. 巴顿岩体质量分类(Q 分类)
5.岩体基本质量分级--计算 BQ 第三章
数值称为临界应力。此时,给定的应力称为疲劳强度。

岩石力学总结

岩石力学总结

第一章岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体结构面:是指地质历史发展过程中,在岩体内部形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。

(结构面根据地质成因不同分为原生,构造和次生结构面)(结构面对工程岩体的完整性、渗透性、物理力学性质及盈利传递等都有显著地影响)岩体:是指在地质历史过程中形成的,由岩石单元体(或称岩块)和结构面网络组成的,具有一定的结构并赋存予一定的天然应力状态和地下水等地质环境中的地质体。

第三章渗透系数的物理意义是介质对某种特定流体的渗透能力,岩石的参透系数表征的就是岩石对水的渗透能力,其取决于岩石的物理性质和结构特征例如岩石中孔隙和裂隙的大小岩石遇水后体积增大的特性成为岩石的膨胀性岩石的膨胀性大小主要通过膨胀力和膨胀率两个指标来体现,测定方法由平衡加压法,压力恢复法和加压膨胀法第四章弹性指物体在外力作用下发生变形,而当撤除外力后能够恢复原状的性质(线性,非线性)塑性是指物体在外力的作用下发生不可逆变形的性质脆性是指物体在力的作用下变形很小时即发生破坏的性质延性是指物体在力的作用下破坏前能够发生大量的应变的性质,其中主要是塑性变形黏性指的是在力的作用下物体能够抑制瞬间变形,使变形因时间效应而滞后的性质岩石单轴压缩试验的目的:通过测定岩石试件在单轴压缩应力条件下的应变值,绘制应力-应变曲线,分析岩石的变形特性,并计算岩石的变形指标岩石的应变可分为三种:轴向应变εa(试样沿压力方向长度的相对变化)、横向应变εc(试样在垂直于压力的方向上长度的相对变化)和体应变εv(试样体积的相对变化)岩石典型的全应力-应力曲线:1.微裂隙闭合阶段(OA段)2.弹性变形至微破裂稳定发展阶段(ABC 段)3.裂隙非稳定发展和破坏阶段(CD段)4.破坏后阶段(D点以后)岩石典型的全应力-应力曲线决定于岩石的矿物质成分和结构特征岩石记忆:逐级一次循环加载条件下,其盈利-应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸过程并未改变岩石变形的习性,这种现象成为~回滞环:每次加荷、卸荷曲线都不重合,且围成一环形面积,成为~疲劳强度:岩石的破坏产生在反复加、卸荷曲线与应力-应变全过程交点处。

岩石力学总结

岩石力学总结

第一章1 岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。

2 岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。

3 岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。

其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。

4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。

5 岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。

它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。

6 矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。

7 岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。

8 岩石的孔隙率是指岩石孔隙的体积与岩石总体积的比值。

9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。

包括岩石的吸水性,透水性,软化性和抗冻性。

10 岩石的天然含水率rdw m m w =w m 表示岩石中水的质量,岩石的烘干质量rd m 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。

它取决于岩石孔隙的数量,大小,开闭程度和分布情况。

表征岩石吸水性的指标有吸水率,饱和吸水率和饱水系数。

岩石吸水率drdr o a m m m w -=. dr m 为岩石烘干质量,o m 为岩石浸水48小时后的总质量。

12 岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。

13岩石的透水性:岩石能被水透过的性能。

可用渗透系数衡量。

主要取决于岩石孔隙的大小,方向及相互连通情况。

A dxdh k q x = K 为岩石的渗透系数,h 为水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。

透水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》内容概要总结地应力就是存在于地层中得为受工程扰动得天然应力。

也称为岩体初始应力、绝对应力或原岩应力。

地质软岩:单轴抗压强度小于25MPa得松散、破碎、软化及风化膨胀性一类岩体得总称。

工程软岩:工程力作用下能产生显著性变形得工程岩体。

声发射:材料在受到外载荷作用时,其内部贮存得应变能快速释放产生弹性波,发生声响。

岩石岩石地下工程:地下岩石中开挖并临时获永久修建得各种工程。

围岩:在岩石地下地下工程中,由于受开挖影响而发生应力状态改变得周围岩体。

锚喷支护:锚杆与喷射混凝土联合支护得简称。

边坡:岩体、土体在自然重力作用或人为作用而形成一定倾斜度得临空面。

岩石:自然界各种矿物得集合体,就是天然地质作用得产物。

容重:岩石单位体积得重量。

根据含水情况将岩石得容重分为天然容重、干容重、饱与容重。

孔隙性:天然岩石中包含着数量不等、成因各异得孔隙与裂隙。

孔隙率:指岩石孔隙得体积与岩石总体积得比值,以百分数表示。

分为总孔隙率、总开孔隙率、大开孔隙率、小开孔隙率、与闭孔隙率。

孔隙率愈大,岩石力学性能越差。

水理性:岩石与水相互作用时所表现得性质。

包括岩石得吸水性、透水性、软化性与抗冻性。

岩石强度:岩石在各种载荷作用下达到破坏时所能承受得最大应力。

单轴抗压强度:岩石在单轴压缩载荷作用下达到破坏前所能承受得最大压应力。

岩石破坏形式:x状共轭斜面剪切破坏。

这种破坏形式就是最常见得破坏形式;单斜面剪切破坏。

这两种破坏都就是由于破坏面上得剪应力超过极限引起得。

拉伸破坏:横向拉应力超过岩石抗拉极限引起得。

流变破坏:岩石得三轴抗压强度:岩石在三向荷载作用下,达到破坏时所能承受得最大压应力。

莫尔强度包络线:同一种岩石对应各种应力状态下破坏莫尔应力圆外公切线。

直线型、抛物线型、双曲线型。

点载荷试验:试验所获得得强度指标值可以用做岩石分级得一个指标。

点载荷实验装置就是便携式得,可带到岩土工程现场去做实验。

点载荷试验对试件得要求不严格。

扩容岩石力学知识点总结

扩容岩石力学知识点总结

扩容岩石力学知识点总结一、岩石的力学性质1. 岩石的本构关系岩石的本构关系描述了岩石受力后的应力-应变关系,是岩石力学研究的核心内容之一。

根据岩石的本构关系,可以推导得到岩石的弹性模量、剪切模量等力学参数,这些参数对于岩石的工程应用至关重要。

2. 岩石的强度特性岩石的强度特性是指岩石在受到外力作用时的抗压、抗拉、抗剪等力学性能。

岩石的强度特性直接影响着岩石的工程应用能力,因此对于岩石的强度特性的研究至关重要。

3. 岩石的弹性模量岩石的弹性模量是描述岩石在受力作用下的弹性变形特性的重要参数,它是岩石的抗压、抗拉等性能的基础。

岩石的弹性模量是岩石力学研究的重要内容之一。

二、岩石的变形和破坏规律1. 岩石的变形规律岩石在受到外力作用时会发生变形,其变形规律主要表现为岩石的弹性变形和塑性变形。

岩石的变形规律是岩石力学研究的重要内容之一。

2. 岩石的破坏规律岩石在受到外力作用时会发生破坏,其破坏规律主要表现为岩石的压缩破坏、拉伸破坏、剪切破坏等。

岩石的破坏规律是岩石力学研究的重要内容之一。

三、岩石力学的实际应用1. 岩石工程设计岩石力学的研究成果可以应用于岩石工程设计中,包括隧道工程、坝基工程、矿山工程等。

岩石工程设计是岩石力学的重要应用领域之一。

2. 地质灾害防治岩石力学的研究成果可以应用于地质灾害防治工程中,包括滑坡治理、岩体稳定性评价等。

地质灾害防治是岩石力学的重要应用领域之一。

3. 岩石勘查岩石力学的研究成果可以应用于岩石勘查工作中,包括岩石性质测试、岩体稳定性评价等。

岩石勘查是岩石力学的重要应用领域之一。

总之,岩石力学是一门重要的土木工程岩土力学的分支学科,对于地下工程、矿山开采、地质灾害防治等方面具有重要的理论和实际意义。

希望本文的内容能够为岩石力学的学习和研究提供一定的参考和帮助。

岩石力学知识点总结

岩石力学知识点总结

岩石力学知识点总结一、岩石的力学性质岩石的力学性质是指岩石在外力作用下的响应和变形规律,包括抗压强度、抗拉强度、抗剪强度、弹性模量等。

这些性质对于工程设计和地质灾害的防治非常重要。

岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度、水分含量等。

1. 抗压强度抗压强度是指岩石在受到垂直方向外力作用下的抵抗能力。

岩石的抗压强度可以通过实验或者间接方法来进行测定,通常以MPa为单位。

抗压强度受到岩石成分和密度的影响,通常晶体颗粒越大、结晶度越高的岩石其抗压强度越高。

2. 抗拉强度抗拉强度是指岩石在受到拉伸力作用下的抵抗能力。

通常岩石的抗拉强度远远低于其抗压强度,因为岩石在自然界中很少受到拉力的作用。

抗拉强度常常通过实验来进行测定,其数值对于岩石的岩石工程设计和地质灾害防治具有重要意义。

3. 抗剪强度抗剪强度是指岩石在受到切割或者剪切力作用下的抵抗能力。

岩石的抗剪强度与其结构和组成有关,一般来说,岩石中存在着一定的位移面和剪切面,这些面的摩擦和滑移对于岩石的抗剪强度产生了重要的影响。

4. 弹性模量弹性模量是指岩石在受到外力作用下的弹性变形能力。

弹性模量也叫做“模量”,其数值越高,说明岩石在受到外力作用下的变形越小。

弹性模量对于岩石的岩石工程设计和地质灾害防治具有重要的意义。

二、岩石的变形和破坏规律岩石在受到外力作用下会发生变形和破坏,其变形和破坏规律对于地质工程的设计和地质灾害的防治具有重要的意义。

岩石的变形和破坏规律受到多种因素的影响,包括岩石的力学性质、结构、孔隙度、水分含量等。

1. 岩石的变形规律岩石在受到外力作用下会发生变形,其变形规律通常表现为弹性变形、塑性变形和破坏。

弹性变形是指岩石在受到外力作用后能够恢复原状的变形,塑性变形是指岩石在受到外力作用后不能够恢复原状的变形,破坏是指岩石在受到外力作用后达到极限状态,无法继续承受力的作用。

2. 岩石的破坏规律岩石在受到外力作用下会发生破坏,其破坏规律通常表现为压缩破坏、拉伸破坏和剪切破坏。

岩石力学重要知识点总结,期末考试复习

岩石力学重要知识点总结,期末考试复习

第一章1.岩石力学:固体力学的分支,研究岩石在不同物理环境的力场中产生力学效应的学科,也称为岩体力学。

研究对象:岩石与岩体2.岩石:地质作用下矿物或岩屑按一定规律聚集形成的自然物体。

可以有微小裂纹、间隙、层理等缺陷,但没有弱面,是较完整的岩块。

3.影响岩石的力学和物理性质的三个重要因素:(1)矿物:构成岩石的自然元素和化合物,如方解石、石英、云母等。

(2)结构:构成岩石的物质成分、颗粒大小和形状、相互结合情况。

(3)构造:组成成分的空间分布及其相互间排列关系。

4. 岩石按成因分类(1)岩浆岩:岩浆冷凝形成,也称火成岩。

大数由结晶矿物组成,成分和物性均一稳定,强度较高。

代表:玄武岩、花岗岩。

(2)沉积岩:母岩经风化剥蚀、搬运、海湖沉积、硬结成岩,由颗粒和胶结物组成,显著层状特点。

力学特性与矿物、岩屑、胶结物、沉积环境相关。

代表:砾岩、砂岩、石灰岩。

(3)变质岩:地壳中母岩受变质作用(高温、高压及化学流体)形成。

力学性能与母岩性质、变质作用及变质程度有关。

代表:大理岩、石英岩。

注:沉积岩和变质岩的层理构造产生各向异性特征,应注意垂直及平行于层理构造方向工程性质的变化。

5. 岩体:在地质环境中经受变形、破坏,具有一定结构的地质体。

包括岩石结构体和一定的结构面(地质构造形迹),强度远小于岩石。

6.岩体结构要素:结构面和结构体(1)结构面:一定方向,延展较大,厚度较小的面状地质界面,包括物质的分界面和不连续面,如断层、节理、层理、片理、裂隙等。

结构面产状、切割密度、粗糙度和黏结力、填充物性质等是评定岩体强度和稳定性能的重要依据。

(2)结构体:四周被不同产状结构面分割包围的岩块。

常见的结构体形式:块状、柱状、板状、菱形、楔形等。

7. 岩体结构类型及特征8.岩体特征(1)岩体是非均质各向异性材料;(2)岩体内存在着原始应力场。

主要包括重力和地质构造力,重力应力场以铅垂应力为主,构造应力场是以水平应力为主。

(3)岩体内存在着一个裂隙系统。

岩石力学期末复习总结

岩石力学期末复习总结

岩石力学期末复习总结岩石力学期末复习一、知识点部分1.线密度K":指结构面法线方向单位测线长度上交切结构面的条数2.粗糙度:可用粗糙系数JRC表示,随粗糙度的增大,结构面的摩擦角也增大3.结构面填充分类:薄膜填充、断续填充、连续填充、层厚填充4.疲劳强度:疲劳强度是指材料在无限多次交变载荷作用而不会产生破坏的最大应力,称为疲劳强度或疲劳极限。

5.流变:在外部条件不变的情况下,岩石的变形或应力随时间而变化的现象6.弹性后效:弹性后效指的是材料在弹性范围内受某一不变载荷作用,其弹性变形随时间缓缓增长的现象。

在去除载荷后,不能立即恢复而需要经过一段足够时间之后才能逐渐恢复原状,应变恢复总是落后于应力7.三轴压缩强度:试件在三向应力作用下能抵抗的最大轴向应力i.σ$%=$'()*?$,()*?σ-+2C$'()*?$,()*?ii.σ$%=σ-tan445°+?4+2C tan(45°+?4)8.RQD:大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数9.本构关系(名词解释):指岩体在外力作用下,应力或应力速率与其应变或应变速率的关系10.强度理论:采用判断推理的方法,推测材料在复杂应力状态下破坏原因,从而建立强度准则的假说11.典型岩体变形的本构规律1)弹性均质完整结构岩体变形本构规律2)弹性均质断续结构和碎裂结构岩体变形本构规律3)黏弹性材料块状或平卧层状完整结构岩体变形本构规律12.围岩压力:地下洞室围岩在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力13.形变围岩压力:由于围岩塑性变形,如塑性挤入、膨胀内鼓、弯折内鼓等形成的挤压力14.松动围岩压力:由于围岩拉裂塌落、块体滑移及重力坍塌等破坏引起的压力15.冲击围岩压力:由岩爆形成的一种特殊围岩压力16.岩爆:在具有高天然应力的弹脆性岩体中,进行各种有目的的地下开挖工程时,由开挖卸载及特殊地质构造作用引起开挖周边岩体中应力高度集中,岩体中积聚了很高的弹性应变能。

岩石力学复习知识要点提纲7页word

岩石力学复习知识要点提纲7页word

《岩石力学》课程知识要点一、基本概念 1.岩石力学 2.应力3.正应力/normal stress component :应力在其作用截面的法线方向的分量。

4.剪应力/shear stress component :应力在其作用截面的切线方向的分量。

5.体力:分布在物体体积内的力。

面力:分布在物体表面上的力。

6.弹性力学的基本假定7.内力:物体本身不同部分之间相互作用的力。

8.正面:外法线沿着坐标轴的正方向的截面。

正面上的应力分量与坐标轴方向一致为正,反之为负。

9.负面:外法线是沿着坐标轴的负方向的截面。

负面上的应力分量与坐标轴方向相反为正,反之为负。

10.应力变换公式11.主平面:单元体剪应力等于零的截面。

12.主应力:主平面上的正应力。

13.三维主应力方程与应力不变量:σ1,σ2,σ3最大主应力、中间主应力和最小主应力.14.主应力之间相互正交条件:1212120x x y y z z λλλλλλ++=15.静水应力分量与主偏应力分量 1112233,,,3m m m m I S S S σσσσσσσ==-=-=-16.静力平衡方程17.平面问题的主应力及其方向计算 18应变、位移关系方程 19.体积应变xx yy zz εεε∆=++20.变形协调方程/strain compatibility equations :(P28) 22222yy xy xxyx x yεγε∂∂∂+=∂∂∂∂ 21.虎克定律22.岩土力学关于位移、应力、应变正负的规定(i)沿坐标轴正向作用的力和位移分量为正;(ii)收缩正应变为正;(iii)压缩正应力为正;(iV)若截面内法线相对于坐标的原点向内指,则截面上剪应力方向相对于坐标原点向内为正,反之亦然。

23.强度(峰值强度) 24.残余强度 25.应变软化 26.塑性变形 27.屈服28.岩石单轴压缩与三轴压缩典型特性岩石单轴压缩特性:从变形的四个阶段理解:弹性变形、塑性变形、(峰值强度以后)应变软化、残余变形。

岩石力学知识点总结归纳

岩石力学知识点总结归纳

岩石力学知识点总结归纳一、岩石力学的基本概念岩石力学是研究岩石在受力作用下的物理性质及其变化规律的一门学科。

岩石在地质作用过程中经历了变形、破裂、流动等多种力学过程,岩石力学的研究内容主要包括以下几个方面:1. 岩石的力学性质:包括岩石的强度、变形特性、破裂特性等。

2. 岩石的应力状态:描述了岩石在外力作用下的应力分布情况,可以通过数学模型和实验方法进行研究。

3. 岩石的变形特征:描述了岩石在受力条件下的变形形态、速率和规律。

4. 岩石的破裂特征:描述了岩石在受力作用下发生破裂的条件、形态和机制。

二、岩石力学的研究方法岩石力学的研究方法主要包括实验方法、数值模拟和野外观测等多种手段。

1. 实验方法:可以通过室内试验和野外试验进行岩石的强度、变形、破裂等力学性质的研究。

室内试验主要包括拉压试验、剪切试验、压缩试验等,野外试验主要包括岩石体应力测试、岩体位移观测等。

2. 数值模拟:通过数学模型和计算机仿真手段,可以对岩石的应力状态、变形特征、破裂机制等进行模拟分析。

数值模拟方法可以有效地预测岩石的力学性质和岩体工程行为。

3. 野外观测:通过野外实际观测手段,可以对岩石的受力状态和破裂特征进行直接观测和记录,为岩石力学研究提供实际数据支持。

三、岩石力学的应用领域岩石力学作为一个重要的地质力学分支学科,在岩石工程、地质灾害防治、地下岩体开采和地质资源勘探等方面有着广泛的应用。

1. 岩石工程:岩石力学的研究成果为岩石工程设计和施工提供了理论指导和技术支持,如岩体边坡稳定分析、地下隧道开挖设计等。

2. 地质灾害防治:岩石力学可以帮助预测和评估地质灾害的危险性,如地质滑坡、岩爆等,为防治工作提供依据。

3. 地下岩体开采:岩石力学研究对于矿山开采、煤矿支护、油田注水等地下工程具有重要的指导意义。

4. 地质资源勘探:岩石力学可以帮助评价和预测地质资源的分布、产量和利用价值,为资源勘探提供依据。

综上所述,岩石力学作为地质力学的一门重要分支学科,对于岩石工程、地质灾害防治、地下岩体开采和地质资源勘探等领域具有重要的理论和实践价值。

岩石力学课程论文+总结

岩石力学课程论文+总结

岩石力学课程论文——主要前沿方向和实验方法分析学院:班级:学号:姓名:通过6周的岩石力学课程的学习,对岩石力学以及岩土工程的相关方面有了粗略的了解。

首先,岩石力学是研究岩石的力学性态的理论和应用的科学,是探讨岩石对其周围物理环境中力场反应的学科,是一门应用型基础学科。

通过对岩石力学性态的理论和实验研究,解决岩土工程领域的破坏和稳定问题。

主要的研究方法围绕工程地质研究方法、数学和力学分析法以及综合评价法展开,衍生出各种应用手段和实验方法,较好的解决了岩土工程中所遇到的相关问题。

例如,在很多工程建设中,会遇到岩石边坡。

如公路或铁路的路堑边坡,露天开采的矿山边坡,水利水电工程中的库岸边坡,渠道边坡,隧洞进出口边坡等等。

为某些工程边坡,边坡稳定问题是工程建设中经常遇到的问题之一。

众所周知,岩体常被各种方位的地质结构面切割成不同形状的块体。

因此,工程实践中所遇到的岩坡,多为岩块所组成。

在一般情况下,结构面的强度远低于完整岩体的强度,岩坡中结构面的规模、性质及其组合方式在很大程度上决定着岩坡失稳时的破坏形式。

结构面的形状或性质稍有改变,则岩坡的稳定性将会受到显著的影响。

岩坡的失稳情况,按其破坏方式主要可分为崩塌与滑坡两种。

1、崩塌是指块状岩体与岩坡分离向前翻滚而下,其特点是:在崩塌过程中,岩体中无明显滑移面,同时下落岩块或未经阻挡而直接坠落于坡脚;或于斜坡上滚翻,滑移,碰撞,最后堆积于坡脚。

2、滑坡滑坡是指岩体在重力作用下,沿坡内软弱结构面产生整体滑动,其滑动面往往深入坡体内部,有时甚至延伸到坡脚以下。

边坡实际的破坏形式是很复杂的,除上述两种主要破坏形式外,还有介于崩塌与滑坡之间的坍滑以及倾倒、剥落等破坏形式,有时也可能出现以某种破坏方式为主,有其他若干破坏形式的综合破坏。

特别是含有软弱结构面的高边坡工程,其失稳是一个渐进累积到突发破坏的过程。

对岩石流变力学特性和流变模型的研究能够较好地描述岩石的粘弹塑性性质,修正从流变试验数据进行模型辩识和参数拟合的方法,并对高边坡的稳定性状况作出合理的评价。

岩石力学知识点总结归纳

岩石力学知识点总结归纳

岩石力学知识点总结归纳
岩石力学是研究岩石在不同应力下的力学性质和变形行为的科学。

以下是岩石力学的一些重要知识点总结归纳:
1. 岩石的力学性质:
- 抗压强度:指岩石抵抗压缩破坏的能力。

- 抗拉强度:指岩石抵抗拉伸破坏的能力。

- 剪切强度:指岩石抵抗剪切破坏的能力。

2. 岩石的应力和应变:
- 应力:指岩石内部受到的力的分布状态。

- 压缩应变:指岩石在受到压力作用下发生的变形。

- 拉伸应变:指岩石在受到拉力作用下发生的变形。

- 剪切应变:指岩石在受到剪切力作用下发生的变形。

3. 岩石的变形特征:
- 弹性变形:指岩石受到外力作用后发生弹性恢复的变形。

- 塑性变形:指岩石受到外力作用后发生不可逆的变形。

- 蠕变变形:指岩石在长时间作用下由于内部结构的改变而发生的变形。

4. 岩石的断裂:
- 抗拉断裂:指岩石受到拉伸力作用下发生的断裂。

- 抗剪断裂:指岩石受到剪切力作用下发生的断裂。

5. 岩石的变形机制:
- 塑性变形机制:指岩石在受到足够大的应力作用下,其晶体结构发生可塑性变形。

- 蠕变变形机制:指岩石在长时间作用下,其内部结构发生改变导致变形。

以上是关于岩石力学的一些重要知识点的总结归纳。

希望对您有所帮助!。

岩石力学重点总结

岩石力学重点总结

岩石岩体区别:岩石可以看作是一种材料,岩体是岩石与各种不连续面的组合体;岩石可以看作是均质的,岩体是非均质的(在一定的工程范围内);岩石具有弹、塑、粘弹性,岩体受结构面控制,性质更复杂,强度更低;岩体通常是指一定工程范围内的地质体,岩石则无此概念。

岩石力学是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。

又称岩体力学,是力学的一个分支。

研究目的在于解决水利、土木工程等建设中的岩石工程问题。

它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。

研究对象:对象:岩石—对象—岩石材料—地壳中坚硬的部分;复杂性:地质力学环境的复杂性(地应力、地下水、物理、化学作用等)研究的基本内容:基本理论岩体地应力材料实验 ——三大部分→ 岩体的强度工程应用岩体的变形裂隙水力学研究方法:物理模拟→岩石物理力学性质常规实验,地质力学模型试验;数学模型→如有限元等数值模拟;理论分析→用新的力学分支,理论研究岩石力学问题;由于岩石中存在各种规模的结构面(断裂带、断层、节理、裂隙)→致使岩石的物理力学性质→不连续、不均匀、各向异性→因此,有必要引入刻划不均一程度的参数。

各向异性:指岩石的强度、变形指标(力学性质)随空间方位不同而异的特性。

岩石的基本物理力学性质岩石力学问题的研究首先应从岩石的基本物理力学性质研究入手,1. 岩石的容重:指单位体积岩石的重量。

2.比重(Gs)指岩石干重量除以岩石的实体积(不含孔隙体积)的干容重与4˚c水的容重的比值。

3.孔隙率(n%)指岩石内孔隙体积与总体积之比。

4.天然含水量:指天然状态下,岩石的含水量与岩石干重比值的百分比。

5.吸水率:指岩石在常温条件下浸水48小时后,岩石内的含水量与岩石干容重的比值。

6.饱和含水率:指岩样在强制状态(真空、煮沸或高压)下,岩样最大吸水量与岩石干重量比值。

(完整word)岩石的损伤力学及断裂力学综述

(完整word)岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用.最后,通过对岩石破坏的断裂—损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。

关键词:岩石断裂力学损伤力学应用1 引言岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。

岩石的破坏, 如脆性断裂和塑性失稳,虽然有突然发生的表面现象,但是,从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展,是作为过程而展开的。

经典的断裂力学广泛研究的是裂纹及其扩展规律问题。

物体中的裂纹被理想化为一光滑的零厚度间断面。

在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。

象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。

而损伤力学所研究的是连续分布的缺陷,物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤.从宏观来看,它们遍布于整个物体.这些缺陷的发生与发展表现为材料的变形与破坏。

损伤力学就是研究在各种加载条件下,物体中的损伤随变形而发展并导致破坏的过程和规律。

事实上,物体中往往同时存在着奇异缺陷和分布缺陷。

在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷,它的力学性质必然不同于距离裂纹尖端远处的材料.因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。

2 断裂力学2。

1 断裂力学学科发展“断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。

岩土力学知识总结(DOC)

岩土力学知识总结(DOC)

岩土工程问题的基本特点:工程类型的多样性;材料性质的复杂性 ;荷载条件的复杂性 ;初始条件与边界条件的复杂性 ;相互作用问题为尽可能求得问题的可靠解答,人们的追求与选择大致有三个梯次,退而择之。

建立严格的控制物理方程-严格精确解基于假定建立较为精确的控制物理方程-近似理论解必要简化假设的基础上得到的控制物理方程(微分方程或微分方程组)-寻求数值解滑移线理论与特征线方法(Characteristics Line Method ,CLM)。

极限分析法(Limit Analysis Method,LAM)有限单元法(Finite Element Method, FEM),包括土体应力变形、固结有限元及渗流有限元;离散单元法(Discrete/Distinct Element Method,DEM);非连续变形分析法(Discontinuous Deformation Analysis , DDA);岩土参数反分析法(Back Analysis Method ,BAM);三个常用软件应用(显式有限差分方法差分的拉格朗日法FLAC3D,基于非线性有限元的通用分析软件的ABAQUS,基于离散元方法的PFC )学习中应注意的问题:1)掌握每种方法的数学力学原理,基本假定和适用范围;(2)弄清每种方法对岩土体材料模型及其参数的要求;(3)弄清每种方法对岩土体材料与结构的相互作用模型及其参数的要求,包括岩石块体之间的关联和相互作用;(4)分析岩土体是否存在渗流和与水的相互作用或其它耦合问题(5)分析初始条件、边界条件和荷载特征等,确定模拟思路,正确建模;(6)对于反演分析,要研究和分析已知数据,明确待求未知量,选择恰当方法。

对于土体,滑移线理论、极限分析理论与力的极限平衡理论同属极限状态理论的范畴,都是求土体达到极限状态时解答的理论方法。

这些理论方法都是假定分析对象服从库仑材料破坏准则,求解时不考虑材料到达极限状态的过程,即不考虑材料的具体应力应变关系,从而求得土体达到极限状态时的解答,但他们各自求解问题的视角和方法不同。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论岩石力学 是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。

又称岩体力学,是力学的一个分支。

研究目的在于解决水利、土木工程等建设中的岩石工程问题。

它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。

应用: 水利水电 道路建设 采矿工程 等煤与瓦斯突出预测及处理理论和技术 铁路隧道设计和施工技术 水库诱发地震的预报问题 地震预报中的岩石力学问题岩体力学的研究对象: 岩石 由矿物或岩屑在地质作用下按一定规律聚集而形成的自然物体岩体力学的发展历程:20世纪以前萌芽阶段 宋应星《天工开物》 古德恩维地表移动范围20世纪初到20世纪50年代第二阶段 松散介质学派 卡曼型三轴试验机 三下开采20世纪50年代到现在现代阶段 弹塑性理论 流变理论百花齐放 世界各国成立岩石力学学会 论文的发表 数值模拟方法矿山岩体力学的特点及其研究范围采深大 计算精度低 位置受限 不断移动由于大面积开采还会引起采空区上方大量岩层移动和破坏,研究这些岩层的运动、破坏和平衡规律及其控制方法,是矿山岩石力学的重要课题,这也是区别于其他应用性岩石力学学科的重要内容。

矿山岩体力学的研究目的和方法在安全、经济、高强度、高指标的原则下最大限度地开采地下资源。

矿山岩石力学的研究方法是科学实践和理论分析相结合,二者互相联系,互相促进。

岩石的物理性质密度、视密度、孔隙性、碎胀性和压实性、吸水性、透水性、软化性、膨胀性和崩解性 密度是指单位体积的岩石(包括空隙)的质量容重是指单位体积的岩石(包括空隙)的重量 通常,岩石的容重愈大则它的性质就愈好孔隙度是岩石中各种孔洞、裂隙体积的总和与岩石总体积之比,故也称为孔隙率 通常根据岩石的密度和干视密度经计算而求得 碎胀性是岩石破碎以后的体积将比整体状态下增大的性质吸水性是指遇水不崩解的岩石在一定的试验条件下(规定的试样尺寸和试验压力)吸入水分的能力,通常以岩石的自然吸水率和强制吸水率表示。

岩石的自然吸水率是试件在大气压力作用下吸入水分的质量与试件的干质量之比透水性是岩石能被水透过的性能。

达西定律可知Q=KAI软化系数是指水饱和岩石试件的单向抗压强度与干燥岩石试件单向抗压强度之比332.710kg/m ⨯膨胀性和崩解性主要取决于其胶结程度及造岩矿物的亲水性,一般含有大量粘土矿物(如蒙脱石、高岭土和水云母等)的软岩遇水后极易产生膨胀和崩解。

岩石的膨胀性可用膨胀应力和膨胀率来表示。

岩石与水进行物理化学反应后,随时间变化会产生体积增大现象,这时使试件体积保持不变所需要的压力称为岩石的膨胀应力,而增大后的体积与原体积的比率称为岩石的膨胀率。

岩石的崩解性是用耐崩解性指数表示,它是指岩样在承受干燥和湿润两个标准循环之后,岩样对软化和崩解作用所表现出的抵抗能力。

第二章岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够承受的最大应力。

a.单向抗压强度b.单向抗拉强度c.剪切强度d.三轴抗压强度a.单向压缩变形b.反复加载变形c.三轴压缩变形d.剪切变形●单轴抗压强度:岩石在单轴压缩荷载作用下达到破坏前所能承受的最大压应力称为岩石的单轴抗压强度●单轴抗拉强度:岩石在单轴拉伸荷载作用下达到破坏时所能承受的最大拉应力●抗剪切强度:岩石在剪切荷载作用下达到破坏前所能承受的最大剪应力●三轴抗压强度:岩石在三向压缩荷载作用下,达到破坏时所能承受的最大压应力端部效应其消除方法:润滑试件端部(如垫云母片;涂黄油在端部)加长试件岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。

岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质弹性:物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质称为弹性。

塑性(plasticity):物体受力后产生变形,在外力去除(卸载)后变形不能完全恢复的性质,称为塑性。

在外力作用下只发生塑性变形的物体,称为理想塑性体▪理想塑性体的应力-应变关系:▪当σ <σs 时,ε=0▪当σ ≥σs 时,ε->∞黏性(viscosity): 物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质,称为粘性脆性(brittle): 物体受力后,变形很小时就发生破裂的性质。

5%岩石的延性与脆性是相对的,在一定的条件下可以相互转化延性(ductile): 物体能承受较大塑性变形而不丧失其承载力的性质,称为延性单轴压缩条件岩石应力-应变曲线6种类型类型Ⅰ弹性岩石。

例如:玄武岩、石英岩、白云岩以及极坚固的石灰岩类型Ⅱ弹—塑性岩石。

例如:较弱的石灰岩、泥岩以及凝灰岩类型Ⅲ塑—弹性岩石。

例如:砂岩、花岗岩、片理平行于压力方向的片岩以及某些辉绿岩类型Ⅳ塑—弹—塑性岩石。

例如:大多数为变质岩类型Ⅴ与类型Ⅳ相同一般发生在压缩性较高的岩石中。

应力垂直于片理的片岩具有这种性质类型Ⅵ弹—粘性岩石。

例如:岩盐、某些软弱岩石名词解释(已知)1、弹性模量:直线的斜率,也即应力(σ)与应变(ε)的比率被称为岩石的弹性模量,记为E线弹性岩石应力—应变曲线具有近似直线的形式完全弹性岩石岩石的应力—应变关系不是直线,而是曲线弹性岩石岩石的应力—应变关系不是直线,而是曲线,且卸载曲线不沿原加载路径返回原点O 滞回效应弹塑性岩石岩石的应力—应变关系不是直线,而是曲线,卸载曲线不沿原加载路径返回,且应变也不能恢复到原点O 塑性滞回环:加载曲线与卸载曲线所组成的环,叫做塑性滞回环弹塑性岩石等荷载循环加载变形特征①等荷载循环加载:如果多次反复加载与卸载,且每次施加的最大荷载与第一次施加的最大荷载一样。

②塑性滞回环:则每次加、卸载曲线都形成一个塑性滞回环。

这些塑性滞回环随着加、卸载的次数增加而愈来愈狭窄,并且彼此愈来愈近,岩石愈来愈接近弹性变形,一直到某次循环没有塑性变形为止,如图中的HH‘环。

③临界应力:当循环应力峰值小于某一数值时,循环次数即使很多,也不会导致试件破坏;而超过这一数值岩石将在某次循环中发生破坏(疲劳破坏),这一数值称为临界应力。

此时,给定的应力称为疲劳强度。

弹塑性岩石增荷载循环加载变形特征▪①增荷载循环加载:如果多次反复加载、卸载循环,每次施加的最大荷载比前一次循环的最大荷载为大。

▪②塑性滞回环:每次加、卸载曲线都形成一个塑性滞回环。

随着循环次数的增加,塑性滞回环的面积也有所扩大,卸载曲线的斜率(它代表着岩石的弹性模量)也逐次略有增加,表明卸载应力下的岩石材料弹性有所增强。

▪③岩石的记忆性:每次卸载后再加载,在荷载超过上一次循环的最大荷载以后,变形曲线仍沿着原来的单调加载曲线上升(图中的OC线),好象不曾受到反复加载的影响似的,这种现象称为岩石的变形记忆。

全应力-应变曲线的特征孔隙裂隙压密阶段(OA段)弹性变形至微弹性裂隙稳定发展阶段(AC段非稳定破裂发展阶段,或称累进性破裂阶段(CD段)破裂后阶段(D点以后段)▪其工程意义:揭示岩石试件破裂后,仍具有一定的承载能力。

▪预测岩爆。

▪预测蠕变破坏。

▪预测循环加载条件下岩石的破坏。

▪围压对岩石变形的影响:随着围压的增大,岩石的抗压强度、变形、弹性极显著增大,岩石的性质发生了变化:由弹脆性→弹塑性→应变硬化按照结构面的形成原因可以划分为:原生、构造、以及次生结构面结构面状态按照贯通情况可划分为:非贯通、半贯通、贯通或者:产状:倾向、倾角、走向(与工程关系)形态:起伏度、粗造度(影响抗滑力)延展度:相对工程岩体范围内充填物:断层泥(硅质、钙质、泥质)水对其的力学性质有很大影响密集度:裂隙度(K)切割度(Xe)迹长张开度裂隙度(K):沿取样线方向单位长度的节理数(面)切割度X e迹长:结构面露出表面的长度张开度具体可以划分为闭合、裂开、张开结构面结构面形态按照JRC划分为10种结构面的力学性质:法向、剪切、抗剪强度。

岩石分类评价 1.岩石普氏系数(f=σc/10)分类法2.岩石质量指标RQD3.RMR(Rock Mass Rating)值分类法六个参数完整岩石强度岩芯质量指标节理间距节理条件地下水条件节理走向或倾向4.巴顿岩体质量分类(Q分类)5.岩体基本质量分级--计算BQ BQ=90+3σC+250K V第三章地应力:是存在于地层中的未受工程扰动的天然应力。

质年代里由于地质构造运动等原因使地壳物质产生了内应力效应,这种应力称为地应力地应力的成因:1)板块边界受压2)地幔热对流3)岩体自重应力场4)岩浆侵入5)水压力、热应力6)地形、地表剥蚀对地应力影响地壳浅部(3000m以内)地应力分布的主要规律1)地应力是一个具有相对稳定性的非稳定应力场,它是时间和空间的函数。

2)垂直应力随深度的变化规律:垂直应力随深度线性增加3)水平应力普遍大于垂直应力;4)平均水平应力与垂直应力之比随深度增加而减小,且趋近于15)最大水平主应力与最小水平主应力随深度增加线性增长6)最大水平主应力与最小水平主应力之差随深度增加而增大地应力测量的方法直接测量法: 1 扁千斤顶法2刚性包体应力记法 3 水压致裂法 4 声发射法间接测量法:1全应力解除法2局部应力解除法3松弛变量测量法4孔壁崩落测量法5地球物理勘探法材料力学─研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。

结构力学─在材料力学基础上研究杆系结构如桁架、刚架等弹性力学─研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

外力─其他物体对研究对象(弹性体)的作用力。

体力─(定义)作用于物体体积内的力。

以单位体积内所受的力来量度。

坐标正向为正。

面力─(定义)作用于物体表面上的力。

坐标正向为正。

应力─截面上某一点处,单位截面面积上的内力值正面正向,负面负向为正正应变,以伸长为正。

切应变, 以直角减小为正,用弧度表示。

形变—用线应变和切应变表示,.22--TML.21--TML.21--TML弹性力学中的五个基本假定。

(1)连续性 ─ 假定物体是连续的。

(2)完全弹性(3)均匀性 ─ 假定物体由同种材料组成。

(4)各向同性 ─ 假定物体各向同性。

(5)小变形假定 ─ 假定位移和形变为很小。

弹力基本假定,确定了弹力的研究范围: 理想弹性体的小变形问题。

解法:在弹性体区域V 内,根据微分体上力的平衡条件,建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件,建立物理方程。

在弹性体边界s 上,根据面力条件,建立应力边界条件,根据约束条件,建立位移边界条件。

相关文档
最新文档