有理数基础运算训练题
有理数四则运算练习题100道
有理数四则运算练习题100道有理数加法 1、+2、+23、+ =-2 =1=-62原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|5+| =158、+|―| =-159、8+++=010、++2+ 11、+0+++ 13=-17=-16、2+65++ 17、+|-63|+|-37|+ = =018、19++418、+++ =-12=-420、+++ 1、++2++12=-5=2有理数减法7-―7― 0-- =-2=-16=9=-12---―― |-32|――72― =-=39.5=-233163―――10―3――7――=―70 =-10 =00.5+-+ -+-=3. =2原则三:结果的形式要与题目中数的形式保持一致。
如确定是分数还是小数,分数必须是带分数或真分数,不得是假分数,过程中无所谓。
有理数乘法× × ×31×=-6=0.0=31×+× ××0.5× ××=- =-60 =0.9××4×××=-4=-1-+6.75-―――5.1==7.4――― ―――=1=2.5-84-59+46-3 -44+6+―=-131=-7×4××4×××=-1 =2×5×36=32—63+12=30—27—2=1=-2525×-×+25× ×=25×=-16-30+21=25×1=-2=372原则四:巧妙运用运算律×72×××2758=28+54-60+56=××× =7=28有理数除法318÷ ÷÷÷ ÷= -=- =1=- =2593÷ ÷90.25÷-36÷÷=- = -1 =-2=-4026-3÷÷÷× =-36= =-1173733751÷× -×÷ ÷ ==-=206÷÷3÷× 0÷[×] =1=18=0÷-3.××÷ -1÷×1×=-6=1=-4=-6原则五:结果的形式要与题目中数的形式保持一致。
有理数的加减乘除乘方混合运算专题训练(带答案)
1.先乘方,再乘除,最后加减;之阿布丰王创作3.同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、年夜括号依次进行.1357911、—22—(—2)2—23+(—2)3 12、13、15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49+ 2×(-3 )2 + (-6 )÷(17、-14 + ( 1-0.5 )[2×(-3)2] 18、(-2)2-2×[(2-3192123、 24、25、6-(-12、(-48)÷ 8 -(-5)27、420.25 2829、(-5)×6+(-125) ÷(-5)3311、【基础题】计算:(1÷(2)(3(4(1(2(3(4(1(34(5(6(7(8;(9)10(1)11+(-22)-3×(-11);(2)(34;(5(6(7)(-6)(8)(1(2(34(5(6)-10+84×3;(7(81-0.5)(1)(-8)×5-40;(2)()÷(-(-2);(3)-20÷5×(-3)÷15;(4)-3[-5+(÷-2)];(5)-23÷2÷(2;(6×(-2.4)参考谜底1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、215、-2016、23 17、2 18、24 19、-2820、9/1621、1 22、10 23、-1/12 24、104/325、926、1427、-3128、-81又1/81 29、-9 30、-2931、-1/5 32、91、【谜底】(1)17;(2(3)31;(4)-112、【谜底】(1)-10;(2)22;(3)-16;(4)3、【谜底】(1)1;(2)0;(3)42;(4(5)18;(6)0;(7)-4.64;(8(9)8;(104、【谜底】(1)22;(2)0;(3)-17;(4(5(6)-95;(7)-85;(8)6 .5、【谜底】(1)3;(2)1;(3)-54;(4)0;(5)(6)-20;(7)-2;(86、【谜底】(1)-80;(2)5.6;(3)-2;(4)16;(5)-复习有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)=________,(-6=________.2.(-3)2的底数是________,;-32的底数是________,结果是________.3=________=________;(+8)÷(-=________.4.233=________2=________.5________=1________=-162.4=________.7.-32×(-5)23=________.83600平方公里,________.9.________;________10①23________222________3③32________22)3________)2二、判断题(每小题1分,共5分)11.零除以任何数都得零()12.互为相反数的两个数的积为负数()13.如果ab>0,则a>0且b>0()14.1除以一个非零数的商叫做这个数的倒数()15.(-3)5暗示5个-3相乘()三、选择题(每小题3分,共21分)16.下列说法,其中毛病的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A.1个B.2个C.3个D.4个17.下列各对数:①1与1;②-1与1;③a-b与b-a;④-1与-1;⑤-5与|6|,其中互为倒数的是A.①②③B.①③⑤C.①③④D.①④18.下列各题中两个式子的值相等的是A.-23与(-2)3 B.32与23C.(-2)2与-22 D.|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不即是0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数即是自身的数是±1;④若a,b互为倒数,则-ab=-1.A.4 B.3C.2 D.120.下列各式中结果年夜于0的是A.1-910×3 B.(1-910)×3C.1-(9×3)10 D.(1-9)10×3 21.下列说法中正确的是A.一个数的平方必为正数B.一个数的平方必小于这个数的绝对值C.一个数的平方必年夜于这个数D.一个数的平方不成能为负数22.用科学记数法暗示的数2.89×104,原来是A.2890 B.2890000 C.28900 D.289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+1224.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-626.(3分)(-81)÷16)27.(3分)-22×(-328.(3分)(-1)2000200120021)200329.(3分)(-2)×(-20011-200230.(331.(332.(3分)(-2.53)33.(5分)30五、解答题(934.已知A=a+a2+a3+……+a2000(1)若a=1,求A的值.(2)若a=-1,求A的值.一、1.-6 2 2.-3 9 3 -9 3-3245103平方公里9.>>><13.×14.√15.√三、16.A 17.D 18.A 19.B 21.D 22.C四、23.-90 24.1 25.-3 2627.15 28.1 29.-200230.1 31.30 3233.-4五、34.(1)2000 (2)0。
有理数练习题
正数和负数一、基础训练1.若是气温上升3度记作+3度,下降5度记作-5度,那么下列各量别离表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.下列说法中,正确的是()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数5.下列各数是负数的有哪些?-13,-0,-(-2),+2,3,,,5%,-(+2)6.下列各数中,哪些属于正数集、负数集、非负数集、整数集、分数集,•有理数集?-1,,-13,-5%,,2006,,30000,200%,0,7.已知A、B、C三个数集,每一个数集中所包括的数都写在各自的大括号内,•请把这些数填在如图2-1-1所示圆内相应的位置,A={-2,-3,-8,6,7};B={-3,-5,1,2,6};C={-1,-3,-8,2,5).BAC8.某水库的平均水位为80米,在此基础上,若水位转变时,把水位上升记为正数;水库管理员记录了3月~8月水位转变的情况(单位:米):-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市中考·课改卷)若是收入15•元记作+•15•元,•那么支出20•元记作________元.2.(05年吉林省中考·课改卷)某食物包装袋上标有“净含量385±5”,•这包食物的合格净含量范围是______克~300克.3.下列说法正确的是()A.正数和负数统称有理数 B.0是整数但不是正数C.0是最小的数 D.0是最小的正数4.下列不是具有相反意义的量是()A.前进5米和后退5米 B.节约3吨和消费10吨 C.身高增加2厘米和体重减少2千克 D.超过5克和不足2克5.下列说法正确的是()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数就是负数C.一个有理数不是整数就是分数 D.以上说法都正确6.把下列各数:-3,4,,-13,,,,0,-56,-7,别离填在相应的大括号里.正有理数集合:{ …};非负有理数集合:{ …};整数集合:{ …};负分数集合:{ …}.7运用你学的知识,给商店简单的记一笔帐.8.写出5个数,同时知足三个条件:(1)其中3个数属于非正数集合;(2)其中3个数属于非负数集合;(3)5个数都属于整数集合.9.孔子诞生于公元前551年,若是用-551年表示,则李白诞生于公元701年可表示为安___________.10.一种商品的标准价钱是200元,但随着季节的转变,商品的价钱可浮动±10%,想一想.(1)±10%的含义是什么?(2)请你计算出该商品的最高价钱和最低价钱;(3)若是以标准价为标准,超过标准价记“+”,低于标准价记“-”,•该商品价钱的浮动范围又可以如何表示?11.比-1小的整数如下列这样排列第一列第二列第三列第四列-2 -3 -4 -5-9 -8 -7 -6-10 -11 -12 -13-17 -16 -15 -14… … … …在上述的这些数中,观察它们的规律,回答数-100将在哪一列.数 轴二、基础训练:一、填空题1.在数轴上,-表示A 点,-表示B 点,则离原点较近的是_______.2.在所有大于负数的数中最小的数是_______.3.在所有小于正数的数中最大的数是_______.4.在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为_______.5.已知数轴上的一个点表示的数为3,这个点离开原点的距离必然是_______个单位长度.二、判断题1.-31的相反数是3.( )2.规定了正方向的直线叫数轴. ( )3.数轴上表示数0的点叫做原点. ( )4.若是A 、B 两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.( )5.若是A 、B 两点之间的距离是一个单位长度,那么这两点表示的数必然是两个相邻的 整数. ( )三、选择题1.每一个有理数都可以用数轴上的以下哪项来表示( ) A.一个点 B.线 C.单位 D.长度2.下列图形中不是数轴的是( )3.下列各式中正确的是( )A.-<-πB.-121>-1C.>-D.-21<-24.下列说法错误的是( )A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数别离是-231与-2,那么-2在右边D.所有的有理数都可以用数轴上的点表示出来四、下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1别离填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.三、能力提:一、填空题1.若数轴规定了向右为正方向,则原点表示的数为______,负数所对应的点在原点的______,正数所表示的点在原点的______.2.在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____.3.两个负数较大的数所对应的点离原点较_____.4.在数轴上距离原点为2的点所对应的数为_____,它们互为_____.5.数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____.6.数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____.7.一个数与它的相反数之和等于_____. 8.比较大于(填写“>”或“<”号)(1)- (2)-- (3)-21_____-31 (4)-41_____09.相反数是它本身的数为_____. 二、选择题10.下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 11.关于相反数的叙述错误的是( ) A.两数之和为0,则这两个数为相反数B.若是两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,必然互为相反数D.零的相反数为零12.若是点A 、B 、C 、D 所对应的数为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为( )<c <d <b <d <a <c <d <c <a <b <c <a13.下列表示数轴的图形中正确的是( )14.若数轴上A 、B 两点所对应的有理数别离为a 、b ,且B 在A 的右边,则a -b 必然( ) A.大于零 B.小于零 C.等于零 D.无法肯定 、解答题15.写出大于-小于的所有整数,并把它们在数轴上表示出来.16.请指出下列各数的相反数,并把它们在数轴上表示出来3,21,0,-22117.已知a 是最小的正整数,b 的相反数仍是它本身,c 比最大的负整数大3,计算(2a +3c )·b 的值.相反数练习题 一、填空题1.-2的相反数是 ( ),的相反数是( ) ,0的相反数是( )。
有理数的加减乘除乘方混合运算专题训练(带答案)
1.先乘方,再乘除,最后加减;之樊仲川亿创作3. 同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷ 3、11(22)3(11)+--⨯- 4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、33102(4)8-÷--7、)]21)21[(122--÷8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯--10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯20、0)132()43(2⨯+-+- 21、6)12()4365127(÷-⨯+-22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(- 27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯-30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32; (3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯;(4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ]; (9)[ 2253)-(-)(- ]÷)(-2;(10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-;(4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯;(4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31; (1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4) 参考答案1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-2016、23 17、2 18、24 19、-28 20、9/1621、1 22、10 23、-1/12 24、104/3 25、926、1427、-3128、-81又1/81 29、-9 30、-29 31、-1/5 32、9 1、【答案】 (1)17; (2)511; (3)31; (4)-11 2、【答案】 (1)-10; (2)22; (3)-16; (4)-25 3、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64; (8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67.6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9温习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方千米,用科学记数法暗示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3 ③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为正数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( ) 15.(-3)5暗示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是 A .1-910×3 B .(1-910)×3 C .1-(9×3)10 D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不成能为正数22.用科学记数法暗示的数2.89×104,原来是 A .2890 B .2890000 C .28900 D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a2+a3+……+a2000 (1)若a=1,求A 的值. (2)若a=-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91913-32 4.-81 -161 5.-2323 6.-1.2 7.1800 8.3.6×103平方千米 9.32 -14110.> > > <二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4。
有理数认识习题及答案
有理数认识习题及答案有理数是我们学习数学的基础,它包括整数和分数两部分。
在学习有理数的过程中,我们经常会遇到一些认识习题。
本文将介绍一些常见的有理数认识习题及其答案,帮助大家更好地理解和掌握有理数的概念。
1. 问题:判断下列数是否为有理数:-2,3/4,√2,π。
答案:-2是整数,属于有理数;3/4是分数,也属于有理数;√2是无理数,不属于有理数;π是无理数,不属于有理数。
2. 问题:将下列数按从小到大的顺序排列:-5,0,-2/3,1/2。
答案:首先,我们可以将-5和0转化为分数形式,即-5/1和0/1。
然后,将-5/1,0/1,-2/3,1/2按大小排列,即-5/1 < -2/3 < 0/1 < 1/2。
3. 问题:求下列数的相反数和绝对值:-7,2/5,0,-√3。
答案:-7的相反数是7,绝对值是7;2/5的相反数是-2/5,绝对值是2/5;0的相反数仍然是0,绝对值是0;-√3的相反数是√3,绝对值是√3。
4. 问题:判断下列数的正负性:-1/2,0,5,-√2。
答案:-1/2是负数;0既不是正数也不是负数,它是零;5是正数;-√2是负数。
5. 问题:计算下列数的倒数:2,-3/4,0,√5。
答案:2的倒数是1/2;-3/4的倒数是-4/3;0没有倒数,因为任何数乘以0都等于0;√5的倒数是1/√5。
6. 问题:计算下列数的平方:-3,2/5,0,√7。
答案:-3的平方是9;2/5的平方是4/25;0的平方仍然是0;√7的平方是7。
通过以上习题,我们可以更深入地理解有理数的概念和性质。
有理数包括整数和分数,可以是正数、负数或零。
而无理数则不能用两个整数的比值表示,如开方后为无限不循环小数的数。
有理数的大小可以通过比较绝对值来判断,绝对值越大,数值越大。
另外,有理数的相反数即为其绝对值相等但符号相反的数,而有理数的倒数是指与其相乘等于1的数。
有理数的平方是将其乘以自身得到的结果。
有理数基础题
有理数基础训练30题一.选择题(共13小题)1.下列关于“1”的说法中,错误的是()A.1的绝对值是1 B.1的倒数是1C.1的相反数是1 D.1是最小的正整数2.是()A.整数B.有限小数C.无限循环小数D.无限不循环小数3.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2 C.0 D.﹣3.44.下列说法正确的有几个()(1)任何一个有理数的平方都是正数(2)一个数的绝对值越大,表示它的点在数轴上越靠右(3)0既不是正数也不是负数(4)符号相反的两个数互为相反数.A.1个B.2个C.3个D.4个5.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是06.下列说法中,正确的是()A.正整数和负整数统称整数B.整数和分数统称有理数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数7.最小的整数是()A.1 B.0 C.﹣1 D.不存在8.下列说法中不正确的有()①1是绝对值最小的数;②0既不是正数,也不是负数;③一个有理数不是整数就是分数;④0的绝对值是0.A.1个B.2个C.3个D.4个9.零是()A.最大的非正有理数B.最小的整数C.最小的非正有理数 D.最小的有理数10.在﹣2,,0,﹣,﹣0.7,π,15%中,分数有()A.2个B.3个C.4个D.5个11.下列说法中,正确的是()A.正有理数和负有理数统称有理数B.0既不是整数也不是分数C.绝对值等于本身的数只有0 D.有理数包括整数和分数12.在有理数﹣3,0,23,﹣85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个13.在下列各数:﹣3,+8,3.14,0,π,,﹣0.4,2.75%,0.1010010001…中,有理数的个数是()A.6个B.7个C.8个D.9个二.填空题(共12小题)14.在﹣1,0.5,,0,2.7,8这六个有理数中,非负整数有.15.在,﹣18,0,0.17,﹣3,4,﹣7.23,180这八个数中,是整数,是非负数.16.在4.5,﹣,2.51,0,﹣1.98,,0.8080080008…中,是非负数,是正有理数.17.在,﹣26%,3,0,a,37,﹣100中属于整数的有.18.用“”、“”定义新运算:对于任意实数a,b,都有a b=a和a b=b,例如:32=3,32=2.则(20132014)(20112012)的值是.19.下列说法:①互为相反数的两个数相加为0;②符号不同绝对值相等的两个数互为相反数;③如果两个数的绝对值相等,那么这两个数也相等;④已知:a+b<0,|a|>|b|,那么a<0;⑤若ab>0,那么a与b符号相同;⑥立方等于本身的数是0,1,﹣1;正确的个数是个.20.下列说法正确的有.(填序号)①﹣a是负数.②0既不是正数,也不是负数③一个有理数不是整数就是分数.④0是最小的有理数.⑤有理数的绝对值是正数.⑥如果两个数的绝对值相等,则这两个数互为相反数.21.请写出一个既不是整数,又不是正数的数:.22.和统称为有理数.23.最小的自然数是0.(判断对错)24.把下列各数分别填入相应的集合里.﹣4,0,,2009,﹣(+5),﹣3.14,,25.最小的正整数是,最大的负整数是,既不是正数也不是负数的数是.三.解答题(共5小题)26.下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置.﹣28%,,﹣2014,3.14,﹣(+5),﹣0.27.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2006,﹣(+5),+1.88(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.28.把下面的有理数填在相应的大括号里:(友情提示:将各数用逗号分开)5,,0,5,128,﹣,﹣1.2,30,﹣6,…正整数集;整数;分数;负有理数集.29.把下列各数填在相应的大括号里:+8,+,0.275,﹣|﹣2|,0,﹣1.04,,﹣,﹣(﹣10),﹣(﹣8)正数集合:﹛﹜;整数集合:﹛﹜;负数集合:﹛﹜;分数集合:﹛﹜.30.把下列各数填在相应的集合内.6,﹣5,﹣0.3,,0,﹣,8.5,﹣1,155,﹣321正数集合{ };负数集合{ };正整数集合{ }整数集合{ };负整数集合{ };分数集合{ }.有理数基础训练30题参考答案一.选择题(共13小题)1.C;2.C;3.D;4.A;5.B;6.B;7.D;8.A;9.A;10.C; 11.D; 12.B;13.B;二.填空题(共12小题)14.0,8;15.-18,0,-3,180;,0,0.17,4,180;16.4.5,2.51,0,,0.8080080008…;4.5,2.51,.;17.4;18.2013;19.5;20.②③; 21.-0.5;22.整数;分数;23.正确;24.;25.1;-1; 0;三.解答题(共5小题)26.;27.;28.5,128,30;5,0,128,30,-6;,-,-1.2;-,-1.2,-6; 29.+8,+,0.275,,-(-10),-(-8); +8,-|-2|,0,-(-10),-(-8);-|-2|,-1.04,-; +,0.275,-1.04,,-;30.;。
有理数及其运算专项练习共7个专题
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.312、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10请回答,该生成绩最好和最差的科目分别是什么专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
有理数加减乘除混合运算50题
有理数加减乘除混合运算题50题一、加法与乘法混合运算1. 2 + 3×4-解析:先算乘法3×4 = 12,再算加法2 + 12 = 14。
2. 5 + (-2)×3-解析:先算乘法(-2)×3 = -6,再算加法5 + (-6)= -1。
3.(-3)+4×2-解析:先算乘法4×2 = 8,再算加法(-3)+8 = 5。
4. 6 + (-1)×(-2)-解析:先算乘法(-1)×(-2)=2,再算加法6 + 2 = 8。
4.(-4)+3×(-2)-解析:先算乘法3×(-2)= -6,再算加法(-4)+(-6)= -10。
二、减法与乘法混合运算1. 8 - 2×3-解析:先算乘法2×3 = 6,再算减法8 - 6 = 2。
2. 7 - (-3)×2-解析:先算乘法(-3)×2 = -6,再算减法7 - (-6)= 13。
-解析:先算乘法4×2 = 8,再算减法(-5)-8 = -13。
4. 9 - (-1)×3-解析:先算乘法(-1)×3 = -3,再算减法9 - (-3)= 12。
4.(-6)-3×(-2)-解析:先算乘法3×(-2)= -6,再算减法(-6)-(-6)= 0。
三、加法与除法混合运算1. 4 + 8÷2-解析:先算除法8÷2 = 4,再算加法4 + 4 = 8。
2. 5 + (-6)÷3-解析:先算除法(-6)÷3 = -2,再算加法5 + (-2)= 3。
3.(-3)+12÷4-解析:先算除法12÷4 = 3,再算加法(-3)+3 = 0。
4. 6 + (-8)÷4-解析:先算除法(-8)÷4 = -2,再算加法6 + (-2)= 4。
有理数的运算经典测试题含答案
有理数的运算经典测试题含答案一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯【答案】D【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4B .6C .7D .10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B .【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n 还成成原数时, n >0时,小数点就向右移动n 位得到原数;n<0时,小数点则向左移动|n|位得到原数.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为()A.6⨯D.41.41101.4110⨯1.4110⨯C.5⨯B.71.4110【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1410000用科学记数法表示为6⨯,1.4110故选:A.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.6⨯C.71161011.610⨯B.71.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.2019的倒数的相反数是()A.-2019 B.12019C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.11.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km 用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值16.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610⨯故选:D.此题主要考查科学记数法,熟练确定a和n是解题的关键.17.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.18.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考x=时,y的值是()19.如图,是一个计算流程图.当16A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.。
一本7年级计算题满分训练题
一本7年级计算题满分训练题一、有理数运算。
1. 计算:(-3)+5-(-2)- 解析:- 去括号法则:负负得正。
所以-(-2)=2。
- 则原式=-3 + 5+2。
- 按照从左到右的顺序计算,-3+5 = 2,2+2=4。
2. 计算:-2×(-3)×(-(1)/(6))- 解析:- 先计算-2×(-3)=6。
- 再计算6×(-(1)/(6))=-1。
3. 计算:(-2)^3+(-3)×[(-4)^2 - 2]-(-3)^2÷(-2)- 解析:- 先计算幂运算:(-2)^3=-8,(-4)^2 = 16,(-3)^2 = 9。
- 原式变为-8+(-3)×(16 - 2)-9÷(-2)。
- 先算括号里的16-2 = 14。
- 则式子为-8+(-3)×14 - 9÷(-2)。
- 计算乘法-3×14=-42。
- 式子变为-8-42-<=ft(-(9)/(2))。
- 继续计算-8-42=-50。
- 最后-50+(9)/(2)=-50 + 4.5=-45.5。
二、整式加减。
4. 化简:3a + 2b-5a - b- 解析:- 合并同类项,3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b = b。
- 所以化简结果为-2a + b。
5. 先化简,再求值:(2x^2y-2xy^2)-[(-3x^2y^2 + 3x^2y)+(3x^2y^2 - 3xy^2)],其中x=-1,y = 2- 解析:- 先去小括号:- 原式=2x^2y-2xy^2-(-3x^2y^2 + 3x^2y)- (3x^2y^2 - 3xy^2)。
- 再去中括号:- =2x^2y-2xy^2 + 3x^2y^2-3x^2y - 3x^2y^2+3xy^2。
- 合并同类项:- (2x^2y-3x^2y)+(-2xy^2 + 3xy^2)+(3x^2y^2-3x^2y^2)- 得-x^2y+xy^2。