2013年武汉市中考数学试卷及答案(word版)
2013年湖北地区武汉市中考数学试卷及标准答案(编辑整理汇编)
2013年武汉市初中毕业生学业考试数学试卷第I 卷(选择题 共30分)一、选择题(共12小题,每小题3分,共36分)1.下列各数中,最大的是( )A .-3B .0C .1D .22.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x <1 B .x ≥1 C .x ≤-1 D .x <-13.不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球. B .摸出的三个球中至少有一个球是白球. C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球.5.若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( )A .-2B .-3C .2D .36.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的 度数是( )A .18°B .24°C .30°D .36° 7.如图,是由4个相同小正方体组合而成的几何体, 它的左视图是( )A .B .C .D .8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A .21个交点B .18个交点C .15个交点D .10个交点第6题图D CBA9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。
图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。
以下结论不正确...的是( )A .由这两个统计图可知喜欢“科普常识”的学生有90人.B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有 360个.C .由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为72°.10.如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点, 若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DEA .()9090Rx -π B .()9090Ry -πC .()180180Rx -π D .()180180R y -π第II 卷(非选择题 共84分)二、填空题(共4小题,每小题3分,共12分)11.计算︒45cos = .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .13.太阳的半径约为696 000千米,用科学记数法表示数696 000为 . 14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是 米/秒.第9题图(2)第9题图(1)30%其它10%科普常识漫画小说书籍P第10题图15.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x xky 的图象上,则k 的值等于 .16.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .三、解答题(共9小题,共72分)17.(本题满分6分)解方程:xx 332=-. 18.(本题满分6分)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集. 19.(本题满分6分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.(本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率.第16题图HGF E DCBA第19题图A B C D E F22.(本题满分8分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.第21题图第22题图①第22题图②24.(本题满分10分)已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G .(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDAD CF DE =成立?并证明你的结论; (3)如图③,若BA =BC =6,DA =DC =8,∠BAD =90°,DE ⊥CF ,请直接写出CFDE的值.25.(本题满分12分)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A 、B 两点.(1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标; (2)①若点P 的坐标为(-2,t ),当P A =AB 时,请直接写出点A 的坐标;②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得P A =AB成立.(3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC =∠OCP ,求点P 的坐标.E F G AB C D 第24题图①第24题图②A B C D F G E 第24题图③AB C D F GE2013年武汉市中考数学参考答案11.2212.28 13.51096.6⨯ 14.20 15.-12 16.15- 三、解答题 17.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .经检验, 9=x 是原方程的解. 18.(本题满分6分)解:∵直线b x y +=2经过点(3,5)∴b +⨯=325.∴1-=b .即不等式为12-x ≥0,解得x ≥21. 19.(本题满分6分)证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE . 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ∴∠A =∠D . 20.(本题满分7分) 解:(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果.(列表法参照给分)(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等. ∴P (一次打开锁)=4182=.b m n n m b A Ba又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC . ∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a ,∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a . 在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴a a EG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .23.(本题满分10分)解:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .第21题图第22(2)题图24.(本题满分10分)(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF ,∴DCADCF DE =. (2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下: 在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM . ∵AB ∥CD ,∴∠A =∠CDM , ∵∠B+∠EGC =180°, ∴∠AED =∠FCB ,∴∠CMF =∠AED .∴△ADE ∽△DCM ,∴DC ADCM DE =,即DC AD CF DE =. (3)2425=CF DE . 25.(本题满分12分)解:(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122y x∴A (23-,49),B (1,1). (2)①A 1(-1,1),A 2(-3,9).②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA =PB ,∴△PAG ≌△BAH , ∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ), 将点B 坐标代入抛物线2x y =,得0224222=--+-a a am m , ∵△=()()081816168228162222>++=++=---a a a a a a∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的 点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H .∵△AOB 的外心在AB 上,∴∠AOB =90°, 由△AGO ∽△OHB ,得BHOHOG AG =,∴1-=mn . 联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x ,依题意,得m 、n 是方程02=--b kx x 的两根,∴b mn -=,∴1-=b ,即D (0,1).MEG F DCB A第24题图②∵∠BPC =∠OCP ,∴DP =DC =3.P设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+, ∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514). ∵PN 平分∠MNQ ,∴PT =NT ,∴()t t t -=+-22212,。
中考真题电子版-数学湖北-2013
2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。
2013年湖北中考数学真题卷含答案解析
2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。
2013年武汉市中考数学试题及答案
2013年武汉市初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120,考试用时120分钟.2.答题前,请将你的姓名、准考证号码填写在“答题卡”相应的位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案,不得答在......“.试卷..”.上。
4.答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在..“.试卷..”.上无效...。
5.认真阅读答题卡上的注意事项。
预祝你取得优异的成绩!第Ⅰ卷(选择题共30分)一、选择题:(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.下列各数中最大的是A.-3B.0C.1D.22.式子√x−1在实数范围内有意义,则x的取值范围是A.x<1 B.x≥1C.x≤-1 D.x<-13.不等式组{x+2≥0|的解集是A.-2≤x≤1B.-2<x<1 C.x≤-1 D.X>24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机的从袋子中摸出三个球,下列事件中是必然事件的是A.摸出的三个球中至少有一个球是黑球B.摸出的三年球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1、x2是一元二次方程x2−2x+3=0的两个根,则x1x2的值是A.-2 B.-3 C.2 D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确...的是A.由这两个统计图可知喜“科普常识”的学生有90人.B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”学生约有360人.C.由这两个统计图不能确定喜欢“小说”的学生人数D.在扇形统计图中,“漫画”所在的扇形的圆心角为72°10.如图,⊙A与⊙B外切于点D,PC、PD、PE分别是圆的切线,C、D、E是切点,若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则弧DE的长度是A.π(90−x)R90B.π(90−y)R90C.π(180−x)R180D.π(180−y)R180第Ⅱ卷(非选择题,共90分)11.计算:cos45°=.12.在2013年体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是.13.太阳的半径约为696000千米,用科学计数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒。
中考真题---2013年湖北省武汉市中考数学试卷及解析
2013年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的。
1.(3分)下列各数中,最大的是()A.﹣3B.0C.1D.22.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥1B.x≤1C.x>0D.x>13.(3分)不等式组的解集是()A.﹣2≤x≤1B.﹣2<x<1C.x≤﹣1D.x≥24.(3分)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.(3分)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是()A.3B.﹣3C.2D.﹣26.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.(3分)如图是由四个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.8.(3分)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.(3分)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,如果没有喜好的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.这两个统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.(3分)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:cos45°=.12.(3分)在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是.13.(3分)太阳的半径约为696 000千米,用科学记数法表示数696 000为.14.(3分)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y 米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.(3分)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.16.(3分)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(6分)解方程:.18.(6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(6分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.21.(7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A 2的坐标为(0,﹣4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得PA +PB 的值最小,请直接写出点P 的坐标.22.(8分)如图,已知△ABC 是⊙O 的内接三角形,AB=AC ,点P 是的中点,连接PA ,PB ,PC .(1)如图①,若∠BPC=60°.求证:AC=AP ;(2)如图②,若sin ∠BPC=,求tan ∠PAB 的值.23.(10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/℃… ﹣4 ﹣2 0 2 4 4.5 … 植物每天高度增长量y/mm…414949412519.75…由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.24.(10分)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图2,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.25.(12分)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得PA=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.2013年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的。
2013年湖北省武汉市中考数学试卷及答案(word版)
30%2013年武汉市初中毕业生学业考试数学试卷第I 卷(选择题共30 分)一、选择题(共12小题,每小题3分,共36 分)1 .下列各数中,最大的是( )A . - 3B . 0C . 1D . 22.式子.x_1在实数范围内有意义,则 x 的取值范围是()1 D . x < — 1x 2 一 0 “的解集是( x —1 兰0x w 1 B . — 2< x <1 A . — 2W 4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球 的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( A .摸出的三个球中至少有一个球是黑球. B .摸出的三个球中至少有一个球是白球. C .摸出的三个球中至少有两个球是黑球. 摸出的三个球中至少有两个球是白球. C . x w — 1 2 x 1, x 2是一元二次方程 x -2x-3=0的两个根,则x 1x 2的值是( A . 6. 如图,△ 度数是( A . 18°7. 如图,是由 B . — 3 ABC 中,AB = AC , / A = 36 ) B . 24° C . 30 ° C . 2 D . 3 ,BD 是AC 边上的高,则/ DBC 的 D . 36° ) 它的左视图是( 4个相同小正方体组合而成的几何体, ) &彗条直线矗;有 A . B . 目 3个] 交占 八 三条直线最多 C . D .条直纟 戋最多 纟有 6个交点,… 1个交点, 那么六条直线最多有(—A . 21个交点B . 18个交点C . 15个交点 9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求D . 10个交点 每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。
图( 1)与图(2)是整理数据后绘制的两幅不完整的统计图。
以下结论不正确 的是( )A .由这两个统计图可知喜欢“科普常识”的学生有B .若该年级共有6200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有36CC .由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中 O A 与O] I10 .如图, 小说其它10%形的圆心角为,E 是切点,“漫画”所在扇 切于点D , PC , PD , PE 分别是圆的切线, 普常识A . x <13.不等式组11. 12.13. 14. 若/ CED = x 。
湖北省武汉市2013年中考数学试卷(解析版)
2013年湖北省武汉市中考数学试卷一、选择题(共12小题)1.(2013武汉)在2.5,-2.5,0,3这四个数种,最小的数是()A. 2.5 B.-2.5 C. 0 D. 3考点:有理数大小比较。
解答:解:∵-2.5<0<2.5<3,∴最小的数是-2.5,故选B.2.(2013武汉)若在实数范围内有意义,则x的取值范围是()A.x<3 B.x≤3C.x>3 D.x≥3考点:二次根式有意义的条件。
解答:解:根据题意得,x-3≥0,解得x≥3.故选D.3.(2013武汉)在数轴上表示不等式x-1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。
解答:解:x-1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(2013武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3考点:随机事件。
解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(2013武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2 B. 2 C. 3 D. 1考点:根与系数的关系。
解答:解:由一元二次方程x2-3x+2=0,∴x1+x2=3,故选C.6.(2013武汉)某市2013年在校初中生的人数约为23万.数230000用科学记数法表示为()A. 23×104B. 2.3×105C. 0.23×103D. 0.023×106考点:科学记数法—表示较大的数。
解答:解:23万=230 000=2.3×105.故选B.7.(2013武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 10考点:翻折变换(折叠问题)。
2013武汉中考数学真题word版
2013年武汉市初中毕业生学业考试数 学 试 卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120,考试用时120分钟.2.答题前,请将你的姓名、准考证号码填写在“答题卡”相应的位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案,不得答在“试卷”上。
.......... 4.答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在..“试卷”上无效.......。
5.认真阅读答题卡上的注意事项。
预祝你取得优异的成绩!第Ⅰ卷(选择题 共30分)一、选择题:(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.下列各数中最大的是A.-3 B.0 C.1 D.22.式子1-x 在实数范围内有意义,则x 的取值范围是 A.x <1 B.x ≥1 C.x ≤-1 D .x <-1 3.不等式组⎩⎨⎧≤-≥+0102x x 的解集是A.-2≤x ≤1 B.-2<x <1 C.x ≤-1 D.X >24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机的从袋子中摸出三个球,下列事件中是必然事件的是 A.摸出的三个球中至少有一个球是黑球 B.摸出的三年球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球5.若x 1、x 2是一元二次方程0322=+-x x 的两个根,则x 1x 2的值是 A.-2 B.-3 C.2 D.36.如图,△ABC 中,AB=AC,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是 A .18° B.24° C.30° D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有A.21个交点 B.18个交点 C.15个交点 D.10个交点 9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确...的是A .由这两个统计图可知喜“科普常识”的学生有90人.B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”学生约有360人.C.由这两个统计图不能确定喜欢“小说”的学生人数 D .在扇形统计图中,“漫画”所在的扇形的圆心角为72°10.如图,⊙A 与⊙B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切点,若∠CDE =x °,∠ECD =y °,⊙B 的半径为R ,则弧DE 的长度是 A.90)90(Rx -π B.90)90(Ry -πC.180)180(R x -π D.180)180(Ry -π第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算:cos45°= .12.在2013年体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是 .13.太阳的半径约为696000千米,用科学计数法表示数696000为 . 14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x 秒后两车的距离为y 米,y 关于x 的函数关系如图所示,则甲车的速度是 米/秒。
2013年武汉市中考数学试题及答案
2013年武汉市初中毕业生学业考试数 学 试 卷第Ⅰ卷(选择题 共30分)一、选择题:(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.下列各数中最大的是A.-3 B.0 C.1 D.22.式子1-x 在实数范围内有意义,则x 的取值范围是 A.x <1 B.x ≥1 C.x ≤-1 D .x <-13.不等式组⎩⎨⎧≤-≥+0102x x 的解集是A.-2≤x ≤1 B.-2<x <1 C.x ≤-1 D.X >24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机的从袋子中摸出三个球,下列事件中是必然事件的是 A.摸出的三个球中至少有一个球是黑球 B.摸出的三年球中至少有一个球是白球 C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球5.若x 1、x 2是一元二次方程0322=+-x x 的两个根,则x 1x 2的值是 A.-2 B.-3 C.2 D.36.如图,△ABC 中,AB=AC,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是A .18° B.24° C.30° D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有A.21个交点 B.18个交点 C.15个交点 D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正..确.的是A .由这两个统计图可知喜“科普常识”的学生有90人.B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”学生约有360人.C.由这两个统计图不能确定喜欢“小说”的学生人数 D .在扇形统计图中,“漫画”所在的扇形的圆心角为72° 10.如图,⊙A 与⊙B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切点,若∠CDE =x °,∠ECD =y °,⊙B 的半径为R ,则弧DE 的长度是A.90)90(R x -π B.90)90(R y -πC.180)180(R x -π D.180)180(Ry -π第Ⅱ卷(非选择题,共90分)11.计算:cos45°= .12.在2013年体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是 .13.太阳的半径约为696000千米,用科学计数法表示数696000为 . 14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x 秒后两车的距离为y 米,y 关于x 的函数关系如图所示,则甲车的速度是 米/秒。
2013年湖北省武汉市中考数学试卷及答案
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前湖北省武汉市2013年初中毕业生学业考试数学 .................................................................. 1 湖北省武汉市2013年初中毕业生学业考试数学答案解析 .. (5)湖北省武汉市2013年初中毕业生学业考试数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.下列各数中,最大的是( ) A .3- B .0C .1D .2 2.,则x 的取值范围是( )A .1x <B .1x ≥C .1x -≤D .1x -< 3.不等式组20,10x x +⎧⎨-⎩≥≤的解集是( )A .21x -≤≤B .2x -<<1C .1x -≤D .2x ≥ 4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是 ( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球5.若12,x x 是一元二次方程2230x x --=的两个根,则12x x 的值是 ( ) A .2- B .3-C .2D .36.如图,ABC △中,AB AC =,36A ∠=,BD 是AC 边上的高,则DBC ∠的度数是 ( ) A .18B .24C .30D .367.如图是由四个大小相同的正方体组合而成的几何体,其主视图是( )A B C D8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有 ( )A .21个交点B .18个交点C .15个交点D .10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确...的是 ( )A .这两个统计图可知喜欢“科普常识”的学生有90人B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个C .由这两个统计图不能确定喜欢“小说”的人数D .在扇形统计图中,“漫画”所在扇形的圆心角为7210.如图,A 与B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点,若CED x ∠=,ECD y ∠=,B 的半径为R ,则DE 的长度是 ( )A .π(90)90x R -B .π(90)90y R-C .π(180)180x R -D .π(180)180y R -第Ⅱ卷(非选择题 共90分)第9题图(2)第9题图(1)30%其它10%科普常识漫画小说书籍毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------第10题图数学试卷 第3页(共24页) 数学试卷 第4页(共24页)二、填空题(共6小题,每小题3分,共18分) 11.计算cos45= .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .13.太阳的半径约为696000千米,用科学记数法表示数696000为 .14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是 米/秒.15.如图,已知四边形ABCD 是平行四边形,2BC AB =,,A B 两点的坐标分别是(1,0)-,(0,2),,C D 两点在反比例函数(0)ky x x=<的图象上,则k 等于 .16.如图,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF=.连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .三、解答题(共9小题,共72分) 17.(本小题满分6分)解方程233x x=-.18.(本小题满分6分)直线2y x b =+经过点(3,5),求关于x 的不等式20x b +≥的解集.19.(本小题满分6分)如图,点E ,F 在BC 上,BE CF =,AB DC =,B C ∠=∠.求证A D ∠=∠.20.(本小题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能的结果; (2)求一次打开锁的概率. 21.(本小题满分7分) 如图,在平面直角坐标系中,Rt ABC △的三个顶点分别是(3,2)A -,(0,4)B ,(0,2)C . (1)将ABC △以点C 为旋转中心旋转180,画出旋转后对应的11A B C △; 平移ABC △,若A 的对应点2A 的坐标为(0,4)-,画出平移后对应的222A B C △;(2)若将11A B C △绕某一点旋转可以得到222A B C △,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA PB +的值最小,请直接写出点P 的坐标.22.(本小题满分8分)如图,已知ABC △是O 的内接三角形,AB AC =,点P 是AB 的中点,连接,,PA PB PC .(1)如图①,若60BPC ∠=,求证AC AP ;(2)如图②,若24sin 25BPC ∠=,求tan PAB ∠的值.第22题图①第22题图②第22题图①第22题图②第16题图H GF EDCBA第21题图数学试卷 第5页(共24页) 数学试卷 第6页(共24页)23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.24.(本小题满分10分)已知四边形ABCD 中,,E F 分别是,AB AD 边上的点,DE 与CF 交于点G .(1)如图①,若四边形ABCD 是矩形,且DE CF ⊥,求证DE ADCF CD=; (2)如图②,若四边形ABCD 是平行四边形,试探究:当B ∠与EGC ∠满足什么关系时,使得DE AD CF CD=成立?并证明你的结论; (3)如图③,若6BA BC ==,8DA DC ==,90BAD ∠=,DE CF ⊥,请直接写出DECF的值.25.(本小题满分12分)如图,点P 是直线l :22yx =--上的点,过点P 的另一条直线m 交抛物线2y x =于,A B 两点. (1)若直线m 的解析式为1322y x =-+,求,A B 两点的坐标;(2)①若点P 的坐标为(2,)t -,当PA AB =时,请直接写出点A 的坐标; ②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA AB =成立.(3)设直线l 交y 轴于点C ,若AOB △的外心在边AB 上,且BPC OCP ∠=∠,求点P的坐标.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2013年湖北省武汉市中考数学试卷-答案
【解析】表示-3、0、1、2的数在数轴上的位置如图所示:,由图示知,这四个数中,最大的是2.故选:D .【解析】解:1x ,2x 是一元二次方程12cx x a==-【提示】找出一元二次方程的系数的值,利用根与系数的关系即可求出两根之积.=.BD是AC 【解析】解:AB AC︒-︒=7218【提示】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠【解析】两条直线最多有n++-,1++++=.故选:C.1234515++-,然后把1n【考点】规律型:图形的变化类..喜欢“其它”类的人数为:长为半径的P 故选:B.都在P上,由圆周角定理可得:后利用弧长公式计算出结果.【考点】弧长的计算,多边形内角与外角,圆周角定理,切线的性质,切线长定理.,四边形a<,∴【提示】设点.BAH∠+OH OD、,则【解析】直线【解析】BE CF=)PO AC ∥【提示】(1)延长(0,4)-,得出图像平移单位,即可得出)证明:BC BC =.又AB AC =.点P 是弧AB 的中点,APC ABC =∠(2)过A 点作AD BC ⊥交BC 于D ,连结OP 交AB 于E ,如图.AB AC =,AD ∴平分BC ,∴点O 在AD 上.连结OB ,则BOD BAC ∠=∠.BPC BAC ∠=∠,24sin sin 25BDBOD BPC OB∴∠=∠==.设25OB x =,则24BD x =,7OD x ∴.在Rt ABD △中,25732AD x x x =+=,24BD x =,40AB x ∴=.点P 是AB 的中点,OP ∴垂直平分AB ,1202AE AB x ∴==,90AEP AEO ∠=∠=︒.在Rt AEO △中,15==OE x 251510PE OP OD x x x ∴=-=-=.在Rt APE △中,101tan 202PE x PAE AE x ∠===,即tan PAB ∠的值为12.a=-<.1)10,∴平均每天该植物高度增长量超过⊥)证明:四边形.DE CF∠=∠,.A CDF ∥AB CDB EGC∠+∠∴∠=AED∴△∽△ADE⊥AB AD∴∠=∠A M∴四边形AMCN在∠+ABC∠=∴∠,CND CBM∴△,BCM∠=∠A FGD∴∠+AED∠+AFG∴∠=AED∠=∠A CNF∴△∽△AEDDE AD∴=CF CN)①点设2(,)A m m ,如图1所示,分别过点P 、A 、B 作x 轴的垂线,垂足分别为点G 、E 、F .PA AB =,AE ∴是梯形PGFB 的中位线,GE EF ∴=,1()2AE PG BF =+. GE EF OE OF ∴==+,22OF GE OE m ∴=-=-.1()2AE PG BF =+,2222BF AE PG m ∴=-=-.2(22,22)B m m ∴--. 点B 在抛物线2y x =上,2222(22)m m ∴-=-解得:1m =-或3-,当1m =-时,21m =;当3m =-时,29m =∴点A 的坐标为(1,1)-或(3,9)-.②设(,22)P a a --,2(,)A m m .如图1所示,分别过点P 、A 、B 作x 轴的垂线,垂足分别为点G 、E 、F .与①同理可求得:2(2,222)B m a m a -++.点B 在抛物线2y x =上,22222(2)m a m a ∴++=-.整理得:222420m am a a -+-=.2222168(22)816168(1)80a a a a a a ∆=---=++=++>,∴无论a 为何值时,关于m 的方程总有两个不相等的实数根.即对于任意给定的点P ,抛物线上总能找到两个满足条件的点A ,使得PA AB =成立.(3)AOB △的外心在边AB 上,AB ∴为AOB △外接圆的直径,90AOB ∴∠=︒.设2(,)A m m ,2(,)B n n ,如图2所示,过点A 、B 分别作x 轴的垂线,垂足为E 、F ,则易证:AEO OFB △∽△. AB OE OF BF ∴=,即22m m n n-=,整理得:(1)0mn mn +=, 0mn ≠,10mn ∴+=,即1mn =-.设直线m 的解析式为y kx b =+,联立y kx b y x=+⎧⎨=⎩,得:20x kx b --=. m ,n 是方程的两个根,mn b ∴=-.1b ∴=.设直线m 与y 轴交于点D ,则1OD =.易知(0,2)C -,2OC =,3CD OC OD ∴=+=.BPC OCP ∠=∠,3PD CD ∴==.设(,22)P a a --,过点P 作PG y ⊥轴于点G ,则PG a =-,23GD OG OD a =-=--.在Rt PDG △中,由勾股定理得:222PG GD PD +=,即:222()(23)3a a +--=-,整理得:25120a a +=,解得0a =(舍去)或125a =-. 当125a =-时,14225a --=,1214,55P ⎛⎫∴- ⎪⎝⎭.【提示】(1)联立抛物线2y x =与直线1322y x =-+的解析式,求出点A 、B 的坐标. (2)①如图1所示,求出点P 坐标(2,2)-.设2(,)A m m .作辅助线,构造直角梯形PGFB ,AE 为中位线,求出点B 的坐标(用含m 的代数式表示),然后代入抛物线的解析式求出m 的值.②与①解题思路一致.设P (,22)a a --,2(,)A m m .作辅助线,构造直角梯形PGFB ,AE 为中位线,求出点B 的坐标(用含a 、m 的代数式表示),然后代入抛物线的解析式得到关于m 的一元二次方程,根据其判别式大于0,可证明题中结论成立.(3)AOB △的外心在边AB 上,则AB 为AOB △外接圆的直径,90AOB ∠=︒.设2(,)A m m ,B 2(,)n n .作辅助线,证明AEO OFB △∽△,得到1mn =-.再联立直线:m y kx b =+与抛物线2y x =的解析式,由根与系数关系得到:mn b =-,所以1b =.由此得到OD 、CD 的长度,从而得到PD 的长度.作辅助线,构造Rt PDG △,由勾股定理求出点P 的坐标.【考点】二次函数综合题.。
2013年武汉市中考数学试卷及答案(Word解析版二)
湖北省武汉市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的。
1.(3分)(2013•武汉)下列各数中,最大的是()A.﹣3 B.0C.1D.2考点:有理数大小比较.分析:先在数轴上标出各选项中的数,再根据数轴上表示的数,越在右边的数越大,得出结果.解答:解:表示﹣3、0、1、2的数在数轴上的位置如图所示:,由图示知,这四个数中,最大的是2.故选D.点评:本题考查了有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2013•武汉)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>1考点:二次根式有意义的条件分析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)(2013•武汉)不等式组的解集是()A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥2考点:解一元一次不等式组.专题:计算题.分析:分别解出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥﹣2;由②得,x≤1;故不等式组的解集为﹣2≤x≤1.故选A.点评:本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.(3分)(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球考点:随机事件.分析:必然事件就是一定发生的事件,依据定义即可作出判断.解答:解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2013•武汉)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是()A.3B.﹣3 C.2D.﹣2考点:根与系数的关系专题:计算题.分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系即可求出两根之积.解答:解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,∴x1•x2==﹣3.故选B点评:此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时,设方程的两根分别为x1,x2,则有x1+x2=﹣,x1x2=.6.(3分)(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°考点:等腰三角形的性质分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=7,2°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)(2013•武汉)如图是由四个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行最右边是一个正方体.故选:C.点评:本题考查了三种视图中的主视图,培养了学生空间想象能力.8.(3分)(2013•武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最A.21个交点B.18个交点C.15个交点D.10个交点考点:规律型:图形的变化类.分析:通过画图和观察图形得到2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…,则n条直线最多的交点个数为1+2+3+4+…+n﹣1,然后把n=6代入计算.解答:解:∵两条直线最多有1个交点,三条直线最多有3个交点,1+2=3,四条直线最多有6个交点,1+2+3=6,∴n条直线最多的交点个数为1+2+3+4+…+n﹣1,∴当n=6时,6条直线最多的交点个数为1+2+3+4+5=15.故选C.点评:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.(3分)(2013•武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,如果没有喜好的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.这两个统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°考点:条形统计图;扇形统计图.专题:压轴题.分析:首先根据“其它”类所占比例以及人数,进而求出总人数,即可得出喜好“科普常识”的学生人数,再利用样本估计总体得出该年级喜爱“科普常识”的学生总数,进而得出喜好“小说”的人数,以及“漫画”所在扇形的圆心角.解答:解:A、∵喜欢“其它”类的人数为:30人,扇形图中所占比例为:10%,∴样本总数为:30÷10%=300(人),∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;B、若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有:×90=360(人),故此选项不符合题意;C、喜好“小说”的人数为:300﹣90﹣60﹣30=120(人),故此选项错误符合题意;D、“漫画”所在扇形的圆心角为:×360°=72°,故此选项不符合题意.故选:C.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(3分)(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.考点:弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.专题:压轴题.分析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.解答:解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y+90°=360°,解得:∠B=180°﹣2y.∴的长度是:=.故选B.点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2013•武汉)计算:cos45°=.考点:特殊角的三角函数值分析:根据特殊角的三角函数值计算即可.解答:解:根据特殊角的三角函数值可知:cos45°=.故答案为.点评:本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.(3分)(2013•武汉)在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是28.考点:众数分析:一组数据中出现次数最多的数据叫做众数,结合所给数据即可得出答案.解答:解:27、28、29、28、26、28中,28出现的次数最多,故这组数据的众数是28.故答案为:28.点评:本题考查了众数的知识,属于基础题,掌握众数的定义是解题的关键.13.(3分)(2013•武汉)太阳的半径约为696 000千米,用科学记数法表示数696 000为6.96×105.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:696 000=6.96×105,故答案为:6.96×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是20米/秒.考点:一次函数的应用分析:设甲车的速度是x米/秒,乙车的速度为y米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.解答:解:设甲车的速度是x米/秒,乙车的速度为y米/秒,由题意,得,解得:.故答案为20.点评:本题是一道运用函数图象表示出来的行程问题,考查了追击问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键,根据条件建立方程组是难点.15.(3分)(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.考点:反比例函数综合题.专题:压轴题.分析:设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a 的值,继而得出k的值.解答:解:设点C坐标为(a,),(a<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(a﹣1,+0)=(x+0,y+2),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(a﹣0)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.点评:本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.(3分)(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.考点:正方形的性质.专题:压轴题.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三、解答题(共9小题,共72分)17.(6分)(2013•武汉)解方程:.考点:解分式方程分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.18.(6分)(2013•武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.考点:一次函数与一元一次不等式专题:探究型.分析:先把点(3,5)代入直线y=2x+b,求出b的值,再根据2x+b≥0即可得出x的取值范围.解答:解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,解得b=﹣1,∵2x+b≥0,∴2x﹣1≥0,解得x≥.点评:本题考查的是一次函数与一元一次不等式,先根据题意得出关于x的一元一次不等式是解答此题的关键.19.(6分)(2013•武汉)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:可通过证△ABF≌△DCE,来得出∠A=∠D的结论.解答:证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.点评:此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(7分)(2013•武汉)把两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述实验所有可能的结果;(2)求一次打开锁的概率.考点:列表法与树状图法分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图,可求得一次打开锁的情况,再利用概率公式求解即可求得答案.解答:解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(7分)(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.考点:作图-旋转变换;轴对称-最短路线问题分析:(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,利用点A的对应点A2的坐标为(0,﹣4),得出图象平移单位,即可得出△A2B2C2;(2)根据△△A1B1C1绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;(3)根据B点关于x轴对称点为A2,连接AC2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.解答:解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(,﹣1);(3)∵PO∥AC,∴=,∴=,∴OP=2,∴点P的坐标为(﹣2,0).点评:此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.22.(8分)(2013•武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.考点:垂径定理;勾股定理;圆周角定理;解直角三角形专题:探究型.分析:(1)根据圆周角定理得∠BPC=∠BAC=60°,可判断△ABC为等边三角形,∠ACB=∠ABC=60°,再利用圆周角定理得到∠APC=∠ABC=60°,而点P是的中点,则∠ACP=∠ACB=30°,于是∠PAC=90°,然后根据30度的正切可计算出AC=AP;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,根据垂径的推论得到点O 在AD上,连结OB,根据圆周角定理得∠BOD=∠BAC,∠BPC=∠BAC,所以sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,在Rt△OBD中可计算出OD=7x,再在Rt△ABD计算出AB=40x,由于点P是的中点,根据垂径定理的推论OP垂直平分AB,则AE=AB=20x,在Rt△AEO中,根据勾股定理计算出OE=4x,所以PE=(25﹣4)x,最后在Rt△APE中,利用正切的定义求解.解答:解:(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是的中点,∴∠ACP=∠ACB=30°,∴∠PAC=90°,∴tan∠PCA==tan30°=,∴AC=PA;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,∵AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵点P是的中点,∴OP垂直平分AB,∴AE=AB=20x,∠AEP=∠AEO=90°,在Rt△AEO中,OE==15x,∴PE=OP﹣OD=25x﹣15x=10x,在Rt△APE中,tan∠PAE===,即tan∠PAB的值为.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理、圆周角定理和解直角三角形.23.(10分)(2013•武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如温度x/℃…﹣4 ﹣2 0 2 4 4.5 ……41 49 49 41 25 19.75 …植物每天高度增长量y/mm数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.考点:二次函数的应用分析:(1)选择二次函数,设y=ax2+bx+c(a≠0),然后选择x=﹣2、0、2三组数据,利用待定系数法求二次函数解析式即可,再根据反比例函数的自变量x不能为0,一次函数的特点排除另两种函数;(2)把二次函数解析式整理成顶点式形式,再根据二次函数的最值问题解答;(3)求出平均每天的高度增长量为25mm,然后根据y=25求出x的值,再根据二次函数的性质写出x的取值范围.解答:解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=﹣2时,y=49,x=0时,y=49,x=2时,y=41,∴,解得,所以,y关于x的函数关系式为y=﹣x2﹣2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(﹣4,41),(﹣2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,∵a=﹣1<0,∴当x=﹣1时,y有最大值为50,即当温度为﹣1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,﹣x2﹣2x+49=25,整理得,x2+2x﹣24=0,解得x1=﹣6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在﹣6<x<4℃.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,以及利用二次函数求不等式,仔细分析图表数据并熟练掌握二次函数的性质是解题的关键.24.(10分)(2013•武汉)已知四边形ABCD在,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.考点:相似形综合题专题:压轴题.分析:(1)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC 即可;(2)当∠B+∠EGC=180°时,=成立,证△DFG∽△DEA,得出=,证△CGD∽△CDF,得出=,即可得出答案;(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x﹣6)2+(x)2=62,求出CN=,证出△AED∽△NFC,即可得出答案.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=;(2)当∠B+∠EGC=180°时,=成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴=,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴=,∴=,∴=,即当∠B+∠EGC=180°时,=成立.(3)解:=.理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠CBM=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴=,∴=,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣6,由勾股定理得:BM2+CM2=BC2,∴(x﹣6)2+(x)2=62,x=0(舍去),x=,CN=,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴===.点评:本题考查了矩形性质和判定,勾股定理,平行四边形的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好.25.(12分)(2013•武汉)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得PA=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)联立抛物线y=x2与直线y=﹣x+的解析式,求出点A、B的坐标.(2)①如答图1所示,求出点P坐标(﹣2,2),设A(m,m2).作辅助线,构造直角梯形PGFB,AE为中位线,求出点B的坐标(用含m的代数式表示),然后代入抛物线的解析式求出m的值;②与①解题思路一致.设P(a,﹣2a﹣2),A(m,m2).作辅助线,构造直角梯形PGFB,AE为中位线,求出点B的坐标(用含a、m的代数式表示),然后代入抛物线的解析式得到关于m的一元二次方程,根据其判别式大于0,可证明题中结论成立.(3)△AOB的外心在边AB上,则AB为△AOB外接圆的直径,∠AOB=90°.设A (m,m2),B(n,n2).作辅助线,证明△AEO∽△OFB,得到mn=﹣1.再联立直线m:y=kx+b与抛物线y=x2的解析式,由根与系数关系得到:mn=﹣b,所以b=1;由此得到OD、CD的长度,从而得到PD的长度;作辅助线,构造Rt△PDG,由勾股定理求出点P的坐标.解答:解:(1)∵点A、B是抛物线y=x2与直线y=﹣x+的交点,∴x2=﹣x+,解得x=1或x=﹣.当x=1时,y=1;当x=﹣时,y=,∴A(1,1),B(﹣,).(2)①∵点P(﹣2,t)在直线y=﹣2x﹣2上,∴t=2,∴P(﹣2,2).设A(m,m2),如答图1所示,分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.∵PA=AB,∴AE是梯形PGFB的中位线,∴GE=EF,AE=(PG+BF).∵GE=EF=OE+OF,∴OF=GE﹣OE=2﹣2m.∵AE=(PG+BF),∴BF=2AE﹣PG=2m2﹣2.∴B(2﹣2m,2m2﹣2).∵点B在抛物线y=x2上,∴2m2﹣2=(2﹣2m)2解得:m=﹣1或﹣3,当m=﹣1时,m2=1;当m=﹣3时,m2=9∴点A的坐标为(﹣1,1)或(﹣3,9).②设P(a,﹣2a﹣2),A(m,m2).如答图1所示,分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.与①同理可求得:B(2m﹣a,2m2+2a+2).∵点B在抛物线y=x2上,∴2m2+2a+2=(2m﹣a)2整理得:2m2﹣4am+a2﹣2a﹣2=0.△=16a2﹣8(a2﹣2a﹣2)=8a2+16a+16=8(a+1)2+8>0,∴无论a为何值时,关于m的方程总有两个不相等的实数根.即对于任意给定的点P,抛物线上总能找到两个满足条件的点A,使得PA=AB成立.(3)∵△AOB的外心在边AB上,∴AB为△AOB外接圆的直径,∴∠AOB=90°.设A(m,m2),B(n,n2),如答图2所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线m的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.设直线m与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、梯形及梯形中位线、勾股定理、相似三角形、一元二次方程等知识点,有一定的难度.第(2)问中,注意根的判别式的应用,第(3)问中,注意根与系数关系的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年武汉市初中毕业生学业考试数学试卷第I卷(选择题共30 分)一、选择题(共12小题,每小题3分,共36 分)1 .下列各数中,最大的是()A . —3B . 0C . 1D . 22•式子• x -1在实数范围内有意义,则x的取值范围是(A • x<1 1 D . x< —13.不等式组x十2"的解集是(x —1 兰0A . —2W4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球•下列事件是必然事件的是(A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是白球.x w 1 B. —2< x<1 C. x w—12x1, x2是一元二次方程x -2x-3=0的两个根,则x1x2的值是(A .6. 如图,△度数是(A . 18°7. 如图,是由B. —3ABC 中,AB = AC,/ A=36 )B . 24°C . 30 °C. 2 D . 3,BD是AC边上的高,则/ DBCD . 36°C的4个相同小正方体组合而成的几何体, )它的左视图是(&两条直线最多有1个交点,三条直线最多有3个交点, 那么六条直线最多有()A. 21个交点B . 18个交点C . 15个交点四条直线最多有6个交点,……,D . 10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。
图((2)是整理数据后绘制的两幅不完整的统计图。
以下结论不正确的是(1)与图)90人.第9题图(1)A .由这两个统计图可知喜欢"科普常识”的学生有B •若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360 个.C •由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为10.如图,O A与O B外切于点D,若/ CED = x。
,/ ECD = yA Ji(90 — x R90一兀(180 _x RC .18072°.PC, PD, PE分别是圆的切线,C, D, E是切点,c,O B的半径为R,贝y DE的长度是(B哄90_yR90D 兀(180 _ y )R180第II(非选择题共84分))P二、填空题(共4小题,每小题3分,共12分)11 .计算cos 45 = ________________ .12. 在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是____________________ .13. 太阳的半径约为696 000千米,用科学记数法表示数696 000为______________ .14. 设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y关于x的函数关系如图所示,则甲车的速度是___________ 米/秒.15. 如图,已知四边形 ABCD 是平行四边形,BC = 2AB , A , B 两点的坐标分别是 (—1 , 0),k(0,2),C ,D 两点在反比例函数y=k (xcO )的图象上,贝y k 的值等于 ______________ .x16. 如图,E , F 是正方形 ABCD 的边AD 上两个动点,满足AE = DF .连接CF 交BD 于G , 连接BE 交AG 于点H .若正方形的边长为 2,则线段DH 长度的最小值是 .三、解答题(共9小题,共72 分)18.(本题满分6分)直线y=2x+b 经过点(3, 5),求关于x 的不等式2x + b >0的解集20. (本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这 两把锁,其余的钥匙不能打开这两把锁•现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2 )求一次打开锁的概率.A O x 17.(本题满分6分)解方程:2 3x -3 x19. (本题满分 求证:/ A =Z D .6分)如图,点 E 、F 在 BC 上, BE = CF , CB第15题图G第16题图C21. (本题满分7分)如图,在平面直角坐标系中,Rt△ ABC的三个顶点分别是A (- 3, 2), B (0, 4), C(0, 2).(1 )将厶ABC以点C为旋转中心旋转180°,画出旋转后对应的△ AB I C;平移△ ABC,若A的对应点A2 的坐标为(0,4),画出平移后对应的△ A2B2C2;(2)若将△AB C绕某一点旋转可以得到厶A2B2C2 ,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.22. (本题满分8分)如图,在平面直角坐标系中,△ABC是O O的内接三角形,AB= AC, c点P是AB的中点,连接PA, PB, PC.(1)如图①,若/ BPC = 60 °,求证:AC=」3AP ;(2)如图②,若sin . BPC = 24,求tan . PAB 的值.23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分温度x/ C-4-2024 4.5植物每天咼度增长量y/mm414949412519.75由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使第21题图O第22题图②C该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.24.(本题满分10分)已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF 交于点G.(1) 如图①,若四边形(2)使得如图②,若四边形岸疇成立?并证明你的结论;ABCD是矩形,且DE丄CF,求证= JAD ;CF CDABCD是平行四边形,试探究:当/ B与/ EGC满足什么关系时,(3) 如图③,若BA=BC=6, DA=DC=8,/ BAD = 90°, DE 丄CF,请直接写出DB的值.CF25.(本题满分12分)如图,抛物线y =x 2于A、B两点.(1) 若直线(2)点P是直线:y = -2x -2上的点,过点P的另一条直线m交1 3y x —2 2P的坐标为(一2, t),当PA = AB时,请直接写出点A的坐标;I上任意给定的一点P,在抛物线上都能找到点A,使得FA = ABm的解析式为求A、B两点的坐标;6若厶AOB的外心在边AB上,且/ BPC =Z OCP,求点P的坐(3)①若点②试证明:对于直线成立.设直线I交y轴于点2013年武汉市中考数学参考答案题号12345678910答案D B A A B A C C C B5 —11. 一12. 28 13. 6.96 10 14. 20 15.—12 16. 、5-12三、解答题17. (本题满分6分)解:方程两边同乘以x x -3,得2x =3x -3解得x =9 .经检验,x =9是原方程的解.18. (本题满分6分)解:•••直线y =2x b经过点(3, 5)「. 5 =2 3 b .b - -1 .即不等式为2x -1 >0,解得x > 1.219. (本题满分6分)证明:••• BE = CF,「. BE+EF = CF+EF,即BF = CE .在厶ABF和厶DCE中,AB 二DC* NB =N CBF =CE•••△ ABF ◎△ DCE , •••/ A = Z D .20. (本题满分7分)解:(1 )设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥匙分别为m、n,根据题意,可以画出如下树形图:(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.2 1• P (一次打开锁)=2= 1.8 4由上图可知,上述试验共有8种等可能结果.(列表法参照给分)21. (本题满分7分)(1) 画出△ A i B i C 如图所示:3(2) 旋转中心坐标(-,_1);2(3) 点P 的坐标(一2, 0).22. (本题满分8分)(1)证明:•••弧 BC =弧BAC =Z BPC = 60 又••• AB =ABC 为等边三角形•••/ ACB = 60°,T 点 P 是弧 AB 的中点,•••/ ACP = 30°,又/ APC = Z ABC = 60°,「. AC = ... 3 AP .(2 )解:连接 •/ AB =AC , • AF 丄 BC , BF = CF .•••点 P 是弧 AB 中点,•/ ACP = Z PCB ,• EG = EF . •••/ BPC = Z FOC ,由(1),得 y = -x 2 -2x +49 , • y = -(x +1 j +50 ,T a = T :::0,「.当x = -1时,y 有最大值为50. 即当温度为-1C 时,这种植物每天高度增长量最大.AO 并延长交PC 于F ,过点E 作EG 丄AC 于G ,连接oc .24• sin / FOC = sin / BPC= 24 .25设 FC = 24a ,则 OC = OA = 25a ,•- OF = 7a , AF = 32a . 在 Rt △ AFC中,AC 2= AF 2+FC 2, • AC = 40a .在 Rt △ AGE EG FC 和Rt △ AFC 中,sin / FAC =AEAC ,24a• EG = 12a .32a - EG 40aEG • tan / PAB = tan / PCB=巨 12aCF24 a23. (本题满分10分)解:(1)选择二次函数,设 y = ax 2c = 49+ bx +c ,得丿4a-2b+c=49,4a +2b +c = 41解得• y 关于x 的函数关系式是 不选另外两个函数的理由: 注意到点(0, 49)不可能在任何反比例函数图象上,41), y - -x 2 —2x 49. (-2, 49), (2, 41)不在同一直线上,所以 所以y 不是x 的反比例函数;点(一4, y不是x 的一次函数.(2) y(3)-6 : x ::4 .24. (本题满分10分)(1)证明:•••四边形 ABCD 是矩形,•••/ A = Z ADC = 90°,•/ DE 丄 CF ,「./ ADE =Z DCF , •△ ADE DCF , •^ADCF DC25. (本题满分12分)2-2a -2 ) , A ( m , m 2) , •/ PA = PB ,PAG ^^ BAH ,•- AG = AH , PG = BH , •- B ( 2m - a , 2m 2 …2a …2 ),将点B 坐标代入抛物线 y =x 2 ,得2m 2「4am - a 2 -2a 「2 = 0, •••△= 16a 2 -8a 2 —2a-2i ;=8a 2 16a 1^8 a 1 2 8 0•无论a 为何值时,关于 m 的方程总有两个不等的实数解,即对于任意给定的 点P ,抛物线上总能找到两个满足条件的点A .(3)设直线 m : y=kx bk=0 交 y 轴于 D ,设 A ( m , m 2) , B ( n , n 2).过A 、B 两点分别作 AG 、BH 垂直x 轴于G 、H . •/△ AOB 的外心在 AB 上,AOB = 90° , 由厶 AGO OHB ,得些二如,•. mn - -1 .OG BHy =kx +b 2 2联立」 2得x 2—kx —b=0,依题意,得m 、n 是方程x 2—kx —b=0的两 y =x根mn - -b , • b - -1 ,即 D (0, 1).(2) (3)当/ B+ / EGC = 180。