利用导数探究方程根的个数问题(课堂PPT)

合集下载

第2部分专题6第6讲利用导数解决函数零点或方程根问题课件共40张PPT

第2部分专题6第6讲利用导数解决函数零点或方程根问题课件共40张PPT

因为h(x)在1,e上单调递增,故h(x)在1,e上仅有1个零点. 当-2<a≤0时,h(x)min=h(1)>0,此时h(x)在1,e上无零点. ③当0<a≤e-1, 即1<a+1≤e时, 当x∈(1,a+1)时,h′(x)<0,当x∈(a+1,e)时,h′(x)>0, 则函数h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增, 故h(x)min=h(a+1)=a+2-aln (a+1).
所以x>1时,f(x)=(x-1)ex-ax2+b>(x-1)(x+1)-1 2x2+b=
1 2
x2-1+b,
所以当x>1且12x2-1+b>0时,f(x)>0,
又f(x)在(0,+∞)上递增,且f(0)=b-1≤2a-1<0,
所以f(x)在(0,+∞)上有唯一零点,所以f(x)只有一个零点.
命题规律:以函数零点个数的判定为纽带,考查导数在研究函 数图象变化中的作用,考查学生的逻辑推理能力及数学运算的素 养.
xx
e2·e2-a(x+2)
>eln(2a)·2x+2-a(x+2)=2a>0. 故f(x)在(ln a,+∞)存在唯一零点.从而f(x)在(-∞,+∞)有两个
零点.综上,a的取值范围是1e,+∞.
命题规律:选取两类基本初等函数,借助参数相互融合,考查 学生的分类讨论的意识,逻辑推理的能力及数学运算的素养,难度 较大.
当x>ln 2a时,f ′(x)>0,函数f(x)单调递增,
由f(x)在(-∞,0)上单调递增且f(0)=b-1>2a-1>0,f

ab=-
ba-1e-
b
a<0,
可得f(x)在(-∞,0)上有唯一零点,
由f(x)在(0,ln 2a)上单调递减,在(ln 2a,+∞)上单调递增,

利用导数探究方程根的个数问题优秀课件

利用导数探究方程根的个数问题优秀课件
当x1,2时,f (x) 0,所以f (x)在1,2上单调递减
又因为f (1) 3, f (2) 1,所以方程 2x3 6x2 70
在1,2内有且只有一个实根 7y 。
21.10.2020
O1 2
x
练习
3:解: h (x )构 f(x ) 5 造 x b l函 n x 1 ) ( x 数 2 3 x b
21.10.2020
新课 思考4:方程x3-3x2 -a=0的根的个数 函数y=x3-3x2 -a的零点个数. 函数y=x3-3x2 与直线y=a的交点个数.
解:易知函数的定义x域 R
f ' (x) 3x2 6x 3x(x 2) 令f'(x)0x0或x2
令f'(x)00x2 即f(x)在( , 0) ,(2,)上单调递增
当4a0时,方3个 程不 有相等的
21.10.2020
新课 思考5:若方程x3-3x2-a=0在[-1,1]有
解.
2Hale Waihona Puke .10.2020新课 思考5:若方程x3-3x2=a在[-1,1]有解.
分析:方 f( x ) 程 a 有 a 解 { f( x ) |x D }
即 yf(x)x , D 的图 y像 a有与 交
解: f(x)易 在知 2 ( ,0 ) ,0,2 ( ) ( 2,3 ) f( 2) 2,0 f(0)0,f(2) 4,f(3)0
4a0时,在 [2,3]区 上间 有三
21.10.2020
练习 1.若函数f(x)=x3-x2-x与直线y=a有3个不 同的公共点,求实数a的取值范围. 2.判断2方 x3程 6x270在区1间 ,2)(
内根的 . 个数 3:已知f (x) ln(x 1) x2 x,若关于

利用导数解决方程根的问题说课课件ppt课件

利用导数解决方程根的问题说课课件ppt课件
9
(二)让学生从问题中质疑、尝试、归纳、 总结、运用,培养学生发现问题,研究问题 和解决问题的能力。让学生利用图形直观启 迪思维,来完成从感性认识到理性思维的一 个飞跃。
10
2005年全国2文21
设a为实数,函数f (x) x3 x2 x a 当a在什么范围内取值时,曲线y f (x)与x轴仅有一个交点。
解:f (x) 3x2 2x 1若f (x) 0,则x 1 ,或x 1 3
当x变化时,f (x), f (x)变化情况如下表:
x , 1 1
1 ,1
1
3 3 3
f (x)
+
0
-
0
1, +
f (x) 极大值 极小值
所以f (x)的极大值是f ( 1) 5 a,极小值是f (1) a 1. 3 27
在2,3内x lg x 1 0有且仅有一个实根。
17
[设计意图]通过练习让学生掌握利用导数的应 用判断函数零点的解题方法。并引导学生探索 利用导数判断方程根的情况的理论根据,如果 函数y=f(x)在区间[a,b]上的图象是连续不 断的一条曲线并且有f(a)·f(b)<0,那么函 数y=f(x)在区间(a,b)内有零点也就是方 程f(x)=0在区间(a,b)上有且只有一根
掌握函数零点存在性的判断。
②通过对问题的分析,体会用函数的角度
去思考方程的根的问题,使学生理解动与静的
辨证关系。
③在函数与方程的联系中体验数形结合思
想和转化思想的意义和价值,体会函数知识的
核心作用。培养学生发现问题、分析问题、解
决问题的能力
返回5
3.情感态度与价值观: 在学习过程中,使学生体验数学的科学价值
解法一:将方程等价变形为lg x 1 ,在坐标系内画出函数f (x) lg x x

导数解决根的个数问题

导数解决根的个数问题

导数--根的个数问题题型一:原函数根的个数问题第一步:画岀 “趋势图”,如画岀三次函数的大致趋势“是先增后减再增”还是“先减后增再减” 第二步:由趋势图结合交点个数或根的个数写不等式(组) ;主要看极大值和极小值与 0的关系;第三步:解不等式(组)即可; 例1、已知函数f(x) - x3-(k^x 2, g(x) - kx ,且f(x)在区间(2,)上为增函数. 32 3(1) 求实数k 的取值范围; (2) 若函数f (x)与g(x)的图象有三个不同的交点,求实数k 的取值范围.2解:(1 )由题意f (x) x(k 1)x - •- f (x)在区间(2,)上为增函数, ••• f (x) x 2 (k 1)x0在区间(2,)上恒成立(分离变量法)即k 1 x 恒成立,又x2,• k 1 2,故k 1 • k 的取值范围为k 1(2)设 h(x) f(x) g(x) — 坐 ©x2kx -, 3 2 3h(x)x 2 (k 1)x k(x k)(x 1)令 h (x) 0得x k 或x 1由( 1 )知 k 1,①当k 1时, h (x ) (x 1)2 0,h(x)在R 上递增,显然不合题意②当k 1时,h(x), h (x)随x 的变化情况如下表:k 1由于0,欲使f (x)与g(x)的图象有三个不同的交点,即方程 h(x) 0有三个不同的实根,故需 2k 3 k 2 12k 10,即(k 1)(k 2k 2) 02,解得 k 1 、3623k 2 2k 2 0综上,所求k的取值范围为k 1 再3 1 2例2、已知函数f(x) ax x 2x c2(1 )若x 1是f (x)的极值点且f (x)的图像过原点,求f (x)的极值;1 2(2)若g(x) bx x d,在(1 )的条件下,是否存在实数b,使得函数g(x)的图像与函数2像恒有含x 1的三个不同交点?若存在,求岀实数b的取值范围;否则说明理由。

导数的综合应用(方程的根的问题)

导数的综合应用(方程的根的问题)

导数的综合应用(方程的根的问题)
锦囊妙计:1、方程的根就是函数的零点,也就是函数图象与x 轴的交点的横坐标,因 此研究方程的根的问题,可以转化为函数的零点问题,通过研究函数的图象加以解决。

2、在讨论函数的大致图像时,利用导数,得到函数的单调性;以及极值和最值的情况,然后讨论交点的情况,从而得到方程根的情况。

1、设函数b x x x x f +-+-
=3
43431)(23,关于x 的方程)(x f =0在区间1[,]3上恒有两个相异的实根,求实数b 的取值范围
2、已知函数23)(23+-=x x x f ,关于x 的方程)(x f =c 在区间1[,]3上恰有两个相异的实根,求实数c 的取值范围
3、设a 为实数,函数
a x x x f ++-=3)(3
(1)求)(x f 的极值
(2)是否存在实数a ,使得方程)(x f =0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由
4、设函数56)(3+-=x x x f R x ∈
(1)求函数)(x f 的单调区间和极值
(2)若关于x 的方程)(x f =a 有三个不同的实数根,求实数a 的取值范围
作业:
1、求方程04962
3=-+-x x x 的根的个数。

3.若函数f(x)=x3-x2-x 与直线y=a 有3个不同的公共点,求实数a 的取值范围.
.]2,0[2
5)(,)1ln()(:32的取值范围求实数有两个不等的实数根,在区间的方程若关于已知b b x x f x x x x x f +-=--+=
.2,10762.223)内根的个数在区间(判断方程=+-x x。

高中数学导数与不等式的证明及函数零点方程根的问题精品PPT课件

高中数学导数与不等式的证明及函数零点方程根的问题精品PPT课件

热点一 利用导数证明不等式 【例 1】 (2014·潍坊模拟)已知函数 f(x)=x3-x- x.
(1)令 g(x)=faxx2++axx+ln x,若函数 y=g(x)在0,1e内有极值, 求实数 a 的取值范围; (2)在(1)的条件下,对任意 t∈(1,+∞),s∈(0,1),求证:g(t) -g(s)>e+2-1e.
• 第5讲 • 导数与不等式的证明及函数零点、方程根的问题
真题感悟·考点
热点聚焦·题
归 专纳题总训结练·思对
• 高考定位 以解答题的形式考查利用导数证 明不等式或利用导数解决有关函数零点、方 程根的个数问题,难度较大.
真题感悟·考点
热点聚焦·题
归 专纳题总训结练·思对
[真题感悟] (2014·新课标全国卷Ⅰ)设函数 f(x)=aexln x+bexx-1,曲线 y= f(x)在点(1,f(1))处的切线方程为 y=e(x-1)+2. (1)求 a,b; (2)证明:f(x)>1.
热点聚焦·题
归 专纳题总训结练·思对
安全文明网 2016安全文明驾驶常识模拟考试 安全文明驾驶常识2016年安全文明驾驶常识 模拟 2016文明驾驶 2016文明驾驶考题 安全文明网 科四安全文明驾驶考试
安全文明网 c1安全文明驾驶考试 安全文明网 b2安全文明驾驶考试 安全文明网 a1安全文明驾驶考试 科目4考试 a2安全文明驾驶考试 科目四考试 安全文明驾驶常识考试
• 又当x∈(0,x1)时,g′(x)>0,g(x)单调递增 ,x∈(x1,1)时,g′(x)<0,g(x)单调递减.
真题感悟·考点
热点聚焦·题
归 专纳题总训结练·思对
由(1)可知 x1+x2=2+a,x1x2=1,x1∈0,1e,x2∈(e,+∞), 因此:g(t)-g(s)≥g(x2)-g(x1), =ln x2+x2-a 1-ln x1-x1-a 1=ln xx21+x2-a 1-x1-a 1 =lnx22+x2-x12(x2>e), 设 k(x)=ln x2+x-1x=2ln x+x-1x,k′(x)=2x+1+x12>0, ∴k(x)在(e,+∞)单调递增,故 k(x)>k(e)=2+e-1e, 即 g(t)-g(s)>e+2-1e.

利用导数探究方程根的个数问题共27页

利用导数探究方程根的个数问题共27页

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
利用导数探究方程根的个数问题
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

第9讲 利用导数解决整数解及方程根的个数问题(解析版)

第9讲 利用导数解决整数解及方程根的个数问题(解析版)

第9讲利用导数解决整数解及方程根的个数问题【典例例题】题型一:整数解问题之化为直线与曲线位置关系问题【例1】(2023·全国·高三专题练习)若关于x 的不等式()()1e 21xa x x ->-(其中1a ≥-),有且只有两个整数解,则实数a 的取值范围是()A .235,43e ⎛⎤- ⎥⎝⎦B .31,2e ⎛⎤- ⎥⎝⎦C .235,43e ⎛⎤-- ⎥⎝⎦D .235,2e 3e ⎛⎤-- ⎥⎝⎦【答案】D 【解析】【分析】根据给定不等式,构造函数(()e 21)x f x x =-和()(1)g x a x =-,作出函数图象,结合图象分析求解作答.【详解】由不等式()()1e 21xa x x ->-(1a ≥-),令(()e 21)x f x x =-,()(1)g x a x =-,(()e 21)x f x x '=+,当12x <-时,()0f x '<,当12x >-时,()0f x '>,即函数()f x 在1(,)2-∞-上单调递减,在1(,)2-+∞上单调递增,()min 12f x f ⎛⎫=-= ⎪⎝⎭12x <时,恒有()0f x <,函数()(1)g x a x =-,1a ≥-表示恒过定点(1,0),斜率为a -的直线,在同一坐标系内作出函数()y f x =的图象和直线(1)y a x =-,如图,因不等式()()1e 21xa x x ->-(1a ≥-)有且只有两个整数解,观察图象知,-1和0是不等式()()g x f x >解集中的两个整数,于是得o −1)>o −1)o −2)≤o −2),即2>−3e3≤−5e2,解得2352e 3e a -<≤-,所以实数a 的取值范围是235(,]2e 3e--.故选:D 【点睛】关键点睛:涉及不等式整数解的个数问题,构造函数,分析函数的性质并画出图象,数形结合建立不等关系是解题的关键.【例2】(2023·四川·成都七中模拟预测(理))已知不等式e (3)20(1)+--<<x a x x a 恰有2个整数解,则a 的取值范围为()A .2324e 3e ≤<a B .2324e 3e<≤a C .324e 3≤<a D .324e 3<≤a 【答案】C 【解析】【分析】首先通过不等式分析,排除3x ≤-的可能性,对于3x >-,将不等式分离参数,得到()23e x x a x +<+,分析排除0a ≤的情况,然后令()()23e x x g x x +=+,利用导数分析其单调性,结合函数的正负值和零点,极值点分析,得到函数的大致图象,然后观察图象分析,将问题要求等价转化为()()01g a g a ⎧>⎪⎨≤⎪⎩,进而求解.【详解】当3x =-时,e (3)20(1)+--<<x a x x a 即为0320+-<,即10<,不成立;当3x <-时不等式等价于()321111·e e 13e 3e ex x x xx a x x -+⎛⎫>=->> ++⎝⎭,由于1a <,故不成立;当3x >-时,不等式等价于()23e x x a x +<+,若0a ≤,则不等式对于任意的2x >-恒成立,满足不等式的整数有无穷多个,不符合题意;当0a >时,令()()2,(3)3e x x g x x x +=>-+,则()()22553e xx x g x x ++'=-+,在53,2⎛⎫-- ⎪ ⎪⎝⎭上()0g x '>,∴()g x 单调递增,在∞⎫+⎪⎪⎝⎭上()0g x '<,∴()g x 单调递减,且在(3,2)--上()0g x <,在()2,-+∞上()0g x >,又∵在x 趋近于+∞时,()g x 趋近于0,∴()g x 在()3,-+∞上的图象如图所示:∵21-<<-,∴当3x >-时,不等式等价于()23e x x a x +<+有两个整数解,这两个整数解必然是1-和0,充分必要条件是()()01g ag a ⎧>⎪⎨≤⎪⎩,即2334ea a⎧>⎪⎪⎨⎪≤⎪⎩,∴324e 3≤<a ,故选:C 【点睛】分类讨论是解决这类问题的重要方法,利用导数研究单调性后要结合函数的零点和极值,极限值进行分析,然后利用数形结合思想找到题设要求的充分必要条件,是问题解决的关键步骤.【例3】(2022·辽宁·辽阳市第一高级中学高二期末)已知函数()()1ln f x kx x x =+-,若()0≤f x 有且只有两个整数解,则k 的取值范围是()A .ln 5ln 2,3010⎛⎤⎥⎝⎦B .ln 5ln 2,3010⎛⎫⎪⎝⎭C .ln 2ln 3,1012⎛⎤ ⎥⎝⎦D .ln 2ln 3,1012⎛⎫⎝⎭【答案】C 【解析】【分析】将问题化为ln (1)x k x x+≤有且只有两个整数解,利用导数研究ln ()xg x x =的性质,并画出()g x 与(1)y k x =+的图象,判断它们交点横坐标的范围,列不等式组求k 的范围.【详解】由题设,()f x 定义域为(0,)+∞,则()0≤f x 可得ln (1)xk x x+≤,令ln ()x g x x=,则21ln ()xg x x -'=,所以0e x <<时()0g x '>,即()g x 递增,值域为(1,)e-∞;e x >时()0g x '<,即()g x 递减,值域为1(0,)e;而(1)y k x =+恒过(1,0)-,函数图象如下:要使ln (1)xk x x+≤有且只有两个整数解,则(1)y k x =+与()g x 必有两个交点,若交点的横坐标为12x x <,则121234x x <≤<≤<,所以ln 232ln 343ln 454k k k ⎧≤⎪⎪⎪≤⎨⎪⎪>⎪⎩,即ln 2ln 31012k <≤.故选:C 【点睛】关键点点睛:首先转化为ln (1)xk x x+≤有且只有两个整数解,导数研究函数性质,再应用数形结合法判断ln ()xg x x=、(1)y k x =+交点横坐标范围,即可求参数范围.【题型专练】1.(2022·福建·莆田二中高二期中)设函数()e x f x x ax a =-+,其中1a >,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是()A .(21,2e ⎤⎦B .33e 1,2⎛⎤⎝⎦C .343e 4e ,23⎛⎤⎥⎝⎦D .323e 2e ,2⎛⎤ ⎥⎝⎦【答案】D 【解析】【分析】根据给定条件,构造函数()e ,()x g x x h x ax a ==-,将问题转化为存在唯一的整数0x 使得00(,())x g x 在直线()h x ax a =-下方,再借助导数探讨求解作答.【详解】令()e ,()x g x x h x ax a ==-,1a >,显然直线()h x ax a =-恒过点(1,0)A ,则“存在唯一的整数0x ,使得()00f x <”等价于“存在唯一的整数0x 使得点00(,())x g x 在直线()h x ax a =-下方”,(1())e x x g x +'=,当1x <-时,()0g x '<,当1x >-时,()0g x '>,即()g x 在(,1)-∞-上递减,在(1,)-+∞上递增,则当1x =-时,min 1()(1)e g x g =-=-,当0x ≤时,1()[,0]eg x ∈-,而()(0)1h x h a ≤=-<-,即当0x ≤时,不存在整数0x 使得点00(,())x g x 在直线()h x ax a =-下方,当0x >时,过点(1,0)A 作函数()e x g x x =图象的切线,设切点为(,e ),0t P t t t >,则切线方程为:e (1)e ()t t y t t x t -=+-,而切线过点(1,0)A ,即有e (1)e (1)t t t t t -=+-,整理得:210t t --=,而0t >,解得1(1,2)2t =,因(1)e 0(1)g h =>=,又存在唯一整数0x 使得点00(,())x g x 在直线()h x ax a =-下方,则此整数必为2,即存在唯一整数2使得点(2,(2))g 在直线()h x ax a =-下方,因此有23(2)(2)2e (3)(3)3e 2g h a g h a <⎧<⎧⇔⎨⎨≥≥⎩⎩,解得323e 2e 2a <≤,所以a 的取值范围是323e(2e ,]2.故选:D 【点睛】思路点睛:解决过某点的函数f (x )的切线问题,先设出切点坐标00(,)x y ,求导并求出切线方程000()()y y f x x x '-=-,然后将给定点代入切线方程转化为方程根的问题求解.2.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是()A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】将()0f x <转化为2(2)ex x a x +<,再分别求导分析2()e x x g x =和()(2)h x a x =+的图象,再分别求得()()1,1g ,()()2,2g ,()()3,3g 到()20-,的斜率,分析临界情况即可【详解】由()0f x <且0x >,得2(2)exx a x +<,设2()e x x g x =,()(2)h x a x =+,22()e xx x g x '-=,已知函数()g x 在(0,2)上单调递增,在(2,)+∞上单调递减,函数()(2)h x a x =+的图象过点(2,0)-,(1)11(2)3e g =--,2(2)12(2)e g =--,3(3)93(2)5eg =--,结合图象,因为329115e 3e e <<,所以3915e 3ea ≤<.。

利用导数探究方程根的个数问题ppt课件

利用导数探究方程根的个数问题ppt课件
4a2或 a0,f(x)a有一
思考7:若方程x3-3x2=a在[-1,1]有两解.
2a0,f(x)a有两解
09.03.2021
精选ppt
11
新课
思考8:若方程x3-3x2-a=0在区间[-2,3]有三解
解: f(x)易 在知 2 ( ,0 ) ,0,2 ( ) ( 2,3 ) f( 2) 2,0 f(0)0,f(2) 4,f(3)0
4a0时,在 [2,3]区 上间 有三
09.03.2021
精选ppt
12
练习 1.若函数f(x)=x3-x2-x与直线y=a有3个不 同的公共点,求实数a的取值范围. 2.判断2方 x3程 6x270在区1间 ,2)(
内根的 . 个数 3:已知f (x) ln(x 1) x2 x,若关于
x的方程f (x) 5 x b在区间[0,2] 2
由 f (x) 0 得, x 1 或 x 1 3
当 x 变化时, f (x) , f (x) 的变化情况如下表:
x (, 1) 1 ( 1 ,1) 1 (1,)
3
3
3
f (x)
0

0
f (x)

5 a ↘ a 1 ↗
27
故函数 f (x) 的极大值是 f ( 1) 5 a, 极小值是 f (1) a
2、解这类题的关键是利用导数对函数的单调性, 函数的极值讨论.
3、注意分类讨论的思想、函数与方程的思想、 数形结合的思想的应用.
09.03.2021
精选ppt
19
09.03.2021
精选ppt
20
知识总结
1. 方程的 f (x) 0 根
函数 y f (x) 的零点 函数 y f (x)的图象与x轴的交点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f '(x) 3x2 2x1(3x1)(x1)
当x
1, 3
f
(x)极大值
5 27
当x 1, f (x)极小值1
即: f(x)极小值 a f(x)极大值
1a 5 27
15.09.2020
.
15
练习
2 :方 2x36 程 x270在 1 , 2内根.的
解:设f (x) 2x3 6x2 7,则f (x) 6x2 12x 若f (x) 0,则x 0,或x 2
导数的综合应用
-----利用导数研究方程根
的个数问题
香城中学高二数学备课组 唐红梅
15.09.2020
.
1
复习
一、如何利用导数判断函数的单调性?
若函数y=f(x)在 (a,b) 内可导,
f(x)为增函数 f(x)为减函数
二、如何利用导数求函数的极值与最值?
求函数极值的一般步骤
(1)确定定义域
(2)求导数f’(x)
f(x)在( 0,2)上单调递减
15.09.2020
.
7
新课 思考4:方程x3-3x2 -a=0的根的个数 函数f(x)=x3-3x2 -a的零点个数. 函数y=x3-3x2 与直线y=a的交点个数.
当x0时f(x)极大值 0 当x2时f(x)极小值 4
当 a0或 a4,方程 1个有 根
当a0或a4,方程 2个有 不相等的
2
2
h'(x)(4x5)(x1) 2(x1)
x (0 ,1 )h ,'(x)0 ,即 h (x)在 0 ,1 ) (
x (1 ,2 )h ,'(x)0 ,即 h (x)在 1 ,2 ) (
h(0) b0
由题意得 h(1)
ln2
1 2
b
0
lhn3(2)1lnb3l1n2b10
15.09.2020
内根的 . 个数 3:已知f (x) ln(x 1) x2 x,若关于
x的方程f (x) 5 x b在区间[0,2] 2
有两个不等的实数根求,实数b的
取值范围.
15.09.2020
.
14
练习 1.若函数f(x)=x3-x2-x与直线y=a有3个不同的
公共点,求实数a的取值范围.
函数 f(x)x3x2x与 ya有 3个不同的
15.09.2020
.
10
新课 思考5:若方程x3-3x2=a在[-1,1]有解.
4a0时f(, x)a有解
思考6:若方程x3-3x2=a在[-1,1]有一解.
4a2或 a0,f(x)a有一
思考7:若方程x3-3x2=a在[-1,1]有两解.
2a0,f(x)a有两解
15.09.2020
.
11

新课
当4a0时,方3个 程不 有相等的
15.09.2020
.
8
新课 思考5:若方程x3-3x2-a=0在[-1,1]有
解.
15.09.2020
.
9
新课 思考5:若方程x3-3x2=a在[-1,1]有解.
分析:方 f( x ) 程 a 有 a 解 { f( x ) |x D } 即 yf(x)x , D 的图 y像 a有与 交
思考3:方程 x3 + 1 = 3x2 在(0,2)内有几个根? 思考4:讨论方程x3-3x2 -a=0 (a∈R)的根的个数. 思考5:若方程x3-3x2-a=0在区间[-1,1]有解. 思考6:若方程x3-3x2-a=0在区间[-1,1]有一解. 思考7:若方程x3-3x2-a=0在区间[-1,1]有两解. 思考8:若方程x3-3x2-a=0在区间[-2,3]有三解.
(3)求f’(x)=0的根(4)列表 (5)判断
求f(x)在闭区间[a,b]上的 最值的步骤:
15.09.2020
(1) 求f(x)在区间(a,b)内极值;
(2) 将y=f(x)的各极值与f(a)、f(b)比较,
从而确定函数的最值。
.
2
新课 例:已知函数 f(x)= x3-3x2 +1
思考1:画出函数的草图. 思考2:方程x3-3x2+1 =0在R上有几个根 ?
当x1,2时,f (x) 0,所以f (x)在1,2上单调递减
又因为f (1) 3, f (2) 1,所以方程 2x3 6x2 70
在1,2内有且只有一个实根 7y 。
15.09.2020
O1 2
.
x
16
练习
3:解: h (x )构 f(x ) 5 造 x b l函 n x 1 ) ( x 数 2 3 x b
思考8:若方程x3-3x2-a=0在区间[-2,3]有三解
解: f(x)易 在知 2 ( ,0 ) ,0,2 ( ) ( 2,3 ) f( 2) 2,0 f(0)0,f(2) 4,f(3)0
4a0时,在 [2,3]区 上间 有三
15.09.2020
.
12
练习 1.若函数f(x)=x3-x2-x与直线y=a有3个不 同的公共点,求实数a的取值范围. 2.判断2方 x3程 6x270在区1间 ,2)(
15.09.2020
.
3
新课
例:已知函数 f(x)=x3-3x2 +1
思考1: 画出函数的草图?
15.09.2020
.
4
新课
例:已知函数 f(x)=x3-3x2 +1
思考2:方程x3-3x2+1 =0在R上有几个根 ?
15.09.2020
.
5
新课
例:已知函数 f(x)=x3-3x2 +1
思考3:方程 x3 + 1 = 3x2 在(0,2)内有几个根?
.
2
17
思考题
1. 已知函数f(x)=x3-x2-x+a的图象与x轴仅
有一个交点,求实数a的取值范围.
2.已知f (x) lnx, g(x) a ,(a 0) x
是否存在实数m,使得y
g(
2a
x2
) 1
m
1,
与y f (1 x2)的图像恰有4个不同的交点,
解:由题意得:
即求函 f(x)数 x33x2在 [1,1]的值域
又由 4 知 f思 (x , )在 考 1 ,0 ( ) ,(0 ,1 )
又 f( 1 ) 4 ,f( 0 ) 0 ,f( 1 ) 2
f ( x ) m f a ( 0 ) x 0f ( x ) m f i ( n 1 ) 4 4a0时f(, x)a有解
15.09.2020
.
6
新课 思考4:方程x3-3x2 -a=0的根的个数 函数y=x3-3x2 -a的零点个数. 函数y=x3-3x2 与直线y=a的交点个数.
解:易知函数的定义x域 R
f ' (x) 3x2 6x 3x(x 2)
令f'(x)0x0或x2
令f'(x)00x2 即f(x)在( , 0) ,(2,)上单调递增
相关文档
最新文档