平面四杆机构及设计

合集下载

《机械原理》第四章 平面连杆机构及其设计

《机械原理》第四章 平面连杆机构及其设计

2. 急回特性和行程速比系数
判断下列机构是否具有急回特性:
双曲柄机构和对心曲柄滑块机构适 当组合后,也可能产生急回特性。
机械原理
小结:
第四章 平面连杆机构及其设计
2. 急回特性和行程速比系数
1)急回特性的作用:节省空回行程的时间,提高劳动生产 率。 2)急回特性具有方向性,当原动件的回转方向改变时,急 回的行程也跟着改变。 3)对于有急回运动要求的机械,先确定K,再求θ。
∆DB1C1 中 : a + d ≤ b + c ∆DB2C 2 中 : b ≤ (d-a ) + c
(a ) 即 a+b≤c+d 即 a+c ≤ b+d
c ≤ (d-a ) + b (a ) + (b ),得 a ≤ c (a ) + (c ),得 a ≤ b
(b ) + (c ),得 a ≤ d
手摇唧筒
固定滑块3成为唧筒外壳,导杆4的下端固结着汲水活塞,在 唧筒3的内部上下移动,实现汲水的目的。
机械原理
2 . 平面四杆机构的演化形式 ( ) 运动副元素的逆换 4
第四章 平面连杆机构及其设计
将移动副两元素的包容关系进行逆换,并不影响两构件 之间的相对运动,但却能演化成不同的机构。
构件2 包容 构件3 导杆机构
4-2
平面四杆机构的类型和应用
1. 平面四杆机构的基本形式 2. 平面四杆机构的演化形式
机械原理
第四章 平面连杆机构及其设计
铰链四杆机构 1. 平面四杆机构的基本形式:
机架:固定不动的构件,如AD 杆 连杆:不直接与机架相连的构件,如BC杆 连架杆:直接与机架相连的构件,如AB、CD 杆 曲柄:能作整周转动的连架杆,如AB 杆 摇杆:不能作整周转动的连架杆,如CD 杆

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

第二章 平面连杆机构及其设计

第二章  平面连杆机构及其设计

搅拌机
抓片机构
输送机
10/49
§2—1 铰链四杆机构的基本型式和特性
2)摇杆为原动件,曲柄为从动件时: 摇杆的往复摆动 曲柄的连续转动。 3 2
如图所示的缝纫机踏板机构。
3 2 1 4 摇杆主动
4 1
缝纫机踏板机构
11/49
§2—1 铰链四杆机构的基本型式和特性
二、双曲柄机构
双曲柄机构:两个连架杆都是曲柄。 传动特点: 主动曲柄连续等速转动时,从动 曲柄一般作变速转动。
冲床机构
如图所示的旋转式水泵和如上图所示的冲床机构。
A
1 D C 3 A B 2 4 D
1 B
2 C 3
旋转式叶片泵
振动筛机构
12/49
§2—1 铰链四杆机构的基本型式和特性
三、双摇杆机构
两个连架杆都是摇杆,则称为双摇杆机构。 其运动特性是:两摇杆都作摆动,但两 摇杆的摆角大小不同。 应用实例: 图2-6所示的工件夹紧机构、图2-11的飞机起落架机 构 ;
优 点:
图c
图d
3/49
2、缺点:
1)低副中存在间隙,会引起运动误差,使效率降低;
2)动平衡较困难,所以一般不宜用于高速传动;
3)设计比较复杂,不易精确地实现复杂的运动规律。
应 用:
连杆机构广泛地应用在各种机械和仪器中。 如雷 达调整机构(图2-3)、缝纫机踏板机构(图2-5) 、 鹤式起重机、机车驱动轮联动机构(图2-10)、牛头刨 床、椭圆仪(图2-22) 、机器人等。
1、在满足杆长条件下,即Lmin+Lmax≤Li+Lj : 1)取Lmin为机架时,机架上有两个整转副,该机构为 双曲柄机构(2个曲柄)。 2)取Lmin为连架杆(即最短杆的邻边为机架)时,机 架上只有一个整转副,该机构为曲柄摇杆机构(1 个曲柄)。 3)取Lmin为连杆(即最短杆的对边为机架)时,机架 上没有整转副,该机构为双摇杆机构(无曲柄)。

平面四杆机构的设计

平面四杆机构的设计

以A为圆心、 l1为半径作圆, 交C1A的延长线于
B1, 交C2A于B2, 即可得连杆的长度l2=B1C1=B2C2
以及机架的长度l4=AD。 机构AB1C1D即为该机构在
极限位置时的运动简图。
返回
机械设计基础
cos l2 cos l4 l3 cos
sin l2 sin l3 sin
机械设计基础
Machine Design Foundation
平面四杆机构的设计
该机构的四个杆组成封闭多边形。取各杆在坐标轴 x和y上的投影,可得以下关系式:
将cosφ和sinφ平移到等式右边,再把等式两边平
机械设计基础
Machine Design Foundation
平面四杆机构的设计
1.3 按给定的行程速度变化系数设计
在设计具有急回特性的平面四杆机构时, 通常 按照实际的工作需要, 先确定行程速度变化系数K的
数值, 并按式(6 - 2)计算出极位夹角θ, 然后利用
机构在极限位置时几何关系, 再结合其它有关的附加 条件进行四杆机构的设计, 从而求出机构中各个构件 的尺寸参数。
P
平面四杆机构的设计
NM
图6- 25 按K值设计曲柄摇杆机构
机械设计基础
Machine Design Foundation
平面四杆机构的设计
解 设计的实质就是确定曲柄与机架组成的固定
铰链中心A的位置, 并求出机构中其余三个构件的长 度l1、 l2和l4。
其设计步骤如下:
(1) 计算极位夹角θ。
根据给定的行程速度变化系数K, 由式(4 - 9)计
解 设计的实质就是确定连架杆与机架组成的固定
铰链中心A和D的位置, 并由此求出机构中其余三个构 件的长度l1、 l3和l4。

机械设计2-1分析平面四杆机构的运动特性

机械设计2-1分析平面四杆机构的运动特性
(1)此机构中,当取构件AD为机架时,是否存在曲柄?如果存在,指出是 什么机构?(说明理由)
(2)当分别取构件AB、BC、CD为机架时,各将得到什么机构?
解:(1)当AD杆为机架时,最短杆 为连杆BC。最短杆并非是机架或连架 杆,所以该机构为双摇杆机构。
(2)由50+120>72+96,可知,此 机构不满足曲柄存在的杆长之和条件 。故,无论取何构件为机架,该机构 均为双摇杆机构。
搅拌机
雷达天线俯仰机构
天线
2C
3
1
BA
4
D
曲柄摇杆机构
1-曲柄、2-连杆、3-摇杆、4-机架
缝纫机脚踏机构
铰链四杆机构应用实例
(2)双曲柄机构
含义:两连架杆BC、AD均为曲柄
a) 一般双曲柄机构:BC≠AD 应用实例:惯性筛
2 3
1 4
双曲柄机构
铰链四杆机构应用实例
b)特例
平行四边形机构(反向平行四边形)BC=AD、AB=CD
3、图示铰链四杆机构中,已 知AB,BC,CD,AD 的长度如 图所标,单位为毫米,其中 AD为机架,试问,该四杆机 构有曲柄吗?如果存在,指出 是什么机构?
曲柄存在条件例子
解:由曲柄存在的条件可知, 若该四杆机构满足杆长之和条件,且有最短杆,那么该四杆 机构就有曲柄。故列以下式子: 最短杆+最长杆:200+450=650 其他两杆之和: 300+400=700 显然,该四杆机构满足杆长之和条件,故有曲柄。 若以AD为机架,则该机构为曲柄摇杆机构。
曲柄存在条件例子
1、图示铰链四杆机构中,已知各杆的长度如图所标,单 位为毫米,试问,该四杆机构有曲柄吗?如果存在,指出 是什么机构?

平面四杆机构教学设计

平面四杆机构教学设计

教学设计设计思路:本次课程的主要内容:首先通过PPT图片引出本次课程的学习内容平面四杆,然后通过介绍平面四杆机构的概念,并进行详细的讲解让学生理解并记住,引出新名词曲柄摇杆概念让学生分组进行讨论研究。

教师介绍平面四杆机构的基本类型,并对每个类型讲解,列举生活中的应用实例,最后介绍四杆机构的判别方法,最后教师进行总结。

教学内容:平面四杆机构。

教学目标:知识与能力目标:1、引领学生对平面四杆机构进行学习。

2.提升学生理论知识与实际应用结合的能力。

过程与方法目标:培养学生提出问题、解决问题的能力。

情感态度与价值观目标:1.引导学生学习,调动学生学习积极性。

2.培养学生的自信心。

教学重点:平面四杆机构的组成。

教学难点:平面四杆机构的分类。

教学方法:案例教学法、分组讨论法教材准备:《机械基础》学情分析:学生在之前课时中已经学习过高副低副以及构件的概念。

教材分析:《机械基础》是中等职业教育规划新教材,本次课《键连接和销连接》选自课本第四章第一节,介绍了键和销连接功能、类型、结构形式及应用是本书重点内容之一。

为后面学习第五章构件、机械的基础知识、工作原理和基本技能等知识打好理论知识基础,在机械专业中具有不容忽视的重要的地位。

教学过程:1.首先教师通过复习之前课程学习过的高副低副以及构件的基本概念并介绍平面四杆机构的概念,提问学生生活中有哪些类型的四杆机构?让学生进行思考。

2.教师通过展示平面四杆机构的图片,让学生对于平面四杆机构有一个大致的了解,然后详细介绍每一构件。

3.教师讲解平面四杆机构的各种类型,并列举生活中的应用实例,让同学们有进一步的了解。

4.教师通过讲授法给学生讲解平面四杆机构的判别方法。

5.教师最后进行评价总结,知识建构。

教学评价:根据学生在课堂上的表现,课堂学习的氛围,师生之间的互动情况反思教学设计思路是否合理,教学内容的选择和教学过程的安排是否合理,学生是否能跟上教师的节奏,内容的转换是否突兀,讲解的内容是否符合由浅入深的教学原则,并作出相应的修改和调整。

第8章第5讲平面四杆机构的设计——解析法

第8章第5讲平面四杆机构的设计——解析法

第8章第5讲平面四杆机构的设计——解析法平面四杆机构是机械工程中常用的一种机构,它由4个连接杆组成,通过连接杆与铰链的连接方式,能够实现不同形式的运动。

平面四杆机构的设计可以采用解析法,该方法通过解析机构的运动学性质和机构参数,来确定机构的设计参数和结构尺寸。

在平面四杆机构的解析法设计中,首先需要确定机构的运动类型。

根据机构的运动要求和工作环境,可以选择不同的运动类型,如平行移动、旋转、复杂曲线轨迹等。

运动类型的选择将对机构的结构设计和参数确定产生重要影响。

接下来,需要确定机构的工作原理和结构特点。

根据机构的运动类型,可以选择不同的结构形式,如平行四杆机构、向心四杆机构、菱形四杆机构等。

不同的结构形式具有不同的运动学特性和工作原理,需要根据实际需求进行选择。

确定机构的杆件长度和角度。

在机构设计中,杆件的长度和角度是关键的设计参数。

杆件的长度决定了机构的尺寸和工作范围,而杆件的角度决定了机构的运动轨迹和运动特性。

通过分析机构的运动学方程和几何方程,可以确定机构的杆件长度和角度。

确定机构的铰链位置。

铰链的位置决定了杆件之间的连接方式和机构的运动特性。

通过分析机构的力学平衡条件和运动学方程,可以确定机构的铰链位置,使机构能够实现所需要的运动要求。

最后,进行机构的参数优化和结构优化。

根据机构的运动学性能和工作要求,可以对机构的结构参数进行优化,使机构的运动特性更加优秀。

同时,还需要对机构的结构进行优化,提高机构的强度和刚度,确保机构在工作过程中的可靠性和稳定性。

通过解析法进行平面四杆机构的设计,可以使机构的结构和性能更加合理和可靠。

这种设计方法具有简单易行、工程实用性强的特点,是一种常用的机构设计方法。

在实际的机械设计中,可以根据具体的需求和实际情况,采用解析法进行平面四杆机构的设计,以提高机构的性能和工作效果。

平面四杆机构ppt课件

平面四杆机构ppt课件
平面四杆机构ppt课件
contents
目录
• 平面四杆机构简介 • 平面四杆机构类型 • 平面四杆机构的设计与优化 • 平面四杆机构的特性分析 • 平面四杆机构的实例分析 • 平面四杆机构的未来发展与挑战
01 平面四杆机构简介
定义与特点
定义
平面四杆机构是一种由四个刚性 杆通过铰链连接形成的平面机构 。
3D打印技术
利用3D打印技术,实现复杂结构的设计和快速原型制造。
智能化与自动化
传感器和执行器的集成
01
在机构中集成传感器和执行器,实现实时监测和控制。
智能化控制算法
02
采用先进的控制算法,如模糊控制和神经网络控制,以提高机
构的动态性能和稳定性。
自动化系统集成
03
将机构与自动化系统集成,实现远程监控、故障诊断和预测性
详细描述
摄影升降装置中的平面四杆机构由支架、滑轨、连杆和摄像设备组成。通过电机驱动,滑轨带动连杆运动,使摄 像设备实现升降。平面四杆机构在摄影升降装置中保证了摄像设备的稳定性和精确性,为拍摄高质量的画面提供 了保障。
06 平面四杆机构的未来发展 与挑战
新材料的应用
高强度轻质材料
采用高强度轻质材料,如碳纤维复合材料和铝合 金,以提高机构的强度和减轻重量。
运动特性分析
运动特性
分析平面四杆机构的运动特性, 包括运动范围、运动速度和加速 度等,以及各杆件之间的相对运
动关系。
运动轨迹
研究平面四杆机构中各点的运动轨 迹,包括曲线的形状、变化规律和 影响因素。
运动学分析
通过建立平面四杆机构的运动学方 程,分析其运动规律,为机构的优 化设计提供理论依据。
受力特性分析
实例二:搅拌机

精密机械设计第4章平面连杆机构

精密机械设计第4章平面连杆机构

曲柄摇杆机构
特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。
雷达天线俯仰机构
(天线→摇杆)→调整天线 俯仰角的大小
2 . 双曲柄机构:
连架杆均为曲柄→ ┌主动曲柄: 匀速转动 └从动曲柄: 变速转动
作用:将等速回转转变为等速或变速回转。
特例:平行四边形机构 特征:两连架杆等长且平行,
二.急回运动和行程速比系数 (以曲柄摇杆机构为例)
从动件作往复运动的平面连杆机构中,若从动件工作行程的平 均速度小于回程的平均速度,则称该机构具有急回特性。
工作行程时间>空回行程时间
在曲柄摇杆机构中,当从动件 (摇杆)位于两极限位置时, 曲柄与连杆共线。此时对应的
主动曲柄之间所夹的锐角θ
叫作极位夹角。
l3≤(l4 –l1) + l2 l2≤(l4– l1) + l3
l1+l4≤ l2 + l3
l1+ l3 ≤ l2 + l4 l1+l2 ≤ l3 + l4
将以上三式两两相加得: l1≤ l2
即:AB 为最短杆 l1最短
l1≤l3 l1≤l4
曲柄存在的条件: (1)最短杆与最长杆长度之和小于或等于其余两杆长度之和 (2)最短杆是连架杆或机架
常用γ的大小来表示
γ是α的余角。
机构传力性能的好坏
由于在机构运动过程中,角是变化的, 因此设计时一般要求: γmin≥40°
min 出现在什么位置?
当∠BCD最小或最大时,即在主动曲柄与机架共线的 位置,都有可能出现γmin
主动件与机架共线的两个位置之一,传动角最小.
四.死点位置
从动件与连杆共线( =0) →卡死

机械设计基础第二章平面连杆机构

机械设计基础第二章平面连杆机构
(3)过C1、C2、 P 作圆
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)

(完整版)图解法设计平面四杆机构

(完整版)图解法设计平面四杆机构

3.4 图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。

::1::::2::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。

①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。

②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。

连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。

③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。

在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。

例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。

要求固定铰链中心A、D在同一水平线上并且A D=B C。

自己可以试着在纸上按比例作出图形,再求出各杆长度。

若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。

怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。

①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。

③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。

02平面四杆机构

02平面四杆机构

反向双曲柄机构
两曲柄旋转方向相 反,且角速度不相 等
公共车门自动启闭 机构
三、双摇杆机构
两个连架杆均为摇杆的铰链四杆机构称为双 摇杆机构。
造型机翻箱机构
铰链四杆机构的演化
通过用移动副取代转动副、变更杆件长度, 变更机架和扩大转动副等途径,可得到铰链四杆 机构的其它演化形式。 一、曲柄滑块机构: 改变构件的形状和运动副 二、导杆机构: 选用不同的构件为机架 三、摇块机构和定块机构: 选用不同的构件为 机架 四、双滑块机构: 改变构件的形状和运动副 五、偏心轮机构:扩大转动副
2、死点位置:(主动件条件)
当摇杆为主动件,连杆和曲柄共线时,过铰链中心A 的力,对A点不产生力矩,不能使曲柄转动,机构的 这种位置称为死点位置 。
B F
A
B C F A C D D
1、机构停在死点位置,不能起动。运转时, 靠 惯性冲过死点。可加飞轮增大惯性
2、利用死点实例
飞机起落架机构
工件夹紧机构
雷达天线俯仰机构 还有剪刀机,破碎机,搅拌机等
曲柄摇杆机构的应用
曲柄摇杆机构的应用
3
3 2 1 4 摇杆主动
2
4 1
缝纫机踏板机构
曲柄摇杆机构的应用
剪刀机
曲柄摇杆机构的应用
牛头刨床刨刀进给机构
曲柄摇杆机构的一些主要特性:
1、机构的急回运动特性:
当曲柄转动一时, 有两次曲柄与连杆共 线。
这两个位置就是极限 位置,简称极位
4
B
手摇唧筒
四、双滑块机构: 改变构件的形状和运动副 双滑块机构是具有两个移动副的四杆机 构。
2 1 3 H A ф 4 H D l1 D A C B 2
ф

机械原理-平面连杆机构及设计

机械原理-平面连杆机构及设计

曲柄滑块机构有曲柄的条件
B
a
b
C’
C
e
A
b a
B’
显然,需满足: a+e ≤ b
B a
b C”
e
B’
B”
A
C C’
导杆机构有曲柄的条件
摆动导杆机构有曲柄的条件
d- a d
a
B
A
B’
C E’ E
e ≤ d-a
转动导杆机构有曲柄的条件
B a A
CE
d+e ≤ a
d+e d
二、平面四杆机构输出件的急回特性
B2
B1 C

=
DБайду номын сангаас
平行四边形机构
B
b
a
B’
A
d
C C’
c
D
反平行四边形机构
B a
A
A
C 23
C1
D
1
B
B1
4
d
D
b c
C
平 行 四 边 形 机 构
• 实现轨迹:刀刃按一定 轨迹运动
• 实现速度要求:在剪切 区的水平速度有要求
二、平面四杆机构的设计
设计方法
– 几何法 – 解析法 – 实验法
1、给定连杆位置设计四杆机构
C1
C2
B1
C3
B2
B3
A D
2、给定行程速度变化系数设计四杆机构
• 铰链四杆机构-设计过程 • 曲柄滑块机构-设计过程 • 导杆机构-设计过程
δmin
B’’
A
d B’
D
γmin=[δmin , 180-δmax]min δ= arccos{[b2+c2-d2-a2+2adcos]/2bc}.

四杆机构的基本特性和设计

四杆机构的基本特性和设计
①计算θ=180°(K-1)/(K+1);
E
θ
φ 设计:潘存云
C1 90°-θ
②任取一点D,作等腰三角形
腰长为CD,夹角为φ;
A
θD
③作C2P⊥C1C2,作C1P使
∠C2C1P=90°-θ,交于P;
P
④作△P C1C2的外接圆,则A点必在此圆上。
⑤选定A,设曲柄为l1 ,连杆为l2 ,则:
A C1= l1+l2 ,A C2=l2- l1 => l1 =( A C1-A C2)/ 2
⑥以A为圆心,A C2为半径作弧交于E,得: l1 =EC1/ 2 l2 = A C1-EC1/ 2
2) 曲柄滑块机构 已知K,滑块行程H,偏
H C1 90°-θ C2
距e,设计此机构 。
A
90°-θ
e
E 设计:潘存云
①计算:

θ=180°(K-1)/(K+1);
o
②作C1 C2 =H
③作射线C1O 使∠C2C1O=90°-θ, 作射线C2O使∠C1C2 O=90°-θ。
A
B1
C C1 DD
B2
当曲柄以ω逆时针转过180°+θ时,摇杆从C1D位置 摆到C2D。 所花时间为t1 , 平均速度为V1,那么有:
t1 (180 ) / V1 C1C2 t1 C1C2 /(180 )
当曲柄以ω继续转过180°-θ时,摇杆从C2D,置摆到
C1D,所花时间为t2 ,平均速度为V2 ,那么有:
2023最 新 整 理 收 集 do
something
§6.3
平面机构的基本特性
1.曲柄存在条件Βιβλιοθήκη 2.急回运动特性 3.压力角和传动角 4.死点位置

四杆机构

四杆机构
二、急回特性
急回特性 机构工作件返回行程速度大于工作行程速度的特性。 行程速比系数K 为了表示工作件往复运动时的急回程度,用V2和V1的比值K来描述。
急回性能分析
V2 c2c1 / t 2 t1 1 1800 k V1 c1c2 / t1 t 2 2 1800
演化:曲柄摇杆机构
回转副D→移动副 曲柄滑块机构
§2.2 平面四杆机构的基本形式及其演化
类型:
曲柄滑块机构(偏距e) 对心曲柄滑块机构, e=0 滑块运动线与曲柄回转中心共线 偏置曲柄滑块机构,e≠0 滑块运动线与曲柄回转中心不共线 特点:曲柄等速回转,滑块具有急 回特性。
应用:活塞式内燃机,空气压缩
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
缝纫机脚踏板机构
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
跑步机
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
自动送料机构
§2.2 平面四杆机构的基本形式及其演化
2.双曲柄机构——两连杆架均为曲柄的四杆机构 连杆架 曲柄—原动件,等速转动 曲柄—从动件,变速转动
l1+l4≤ l2+ l3 将式2-1、2-2、2-3两两相加,可得 l1≤l2 , l1≤l3 , l1≤l4 AB杆(曲柄)为最短杆 最短杆与任意一杆长度之和≤其它两杆长度之和
§2.3 平面四杆机构的几个基本概念
铰链四杆机构有一个曲柄的条件: (1) 最短杆与最长杆之和小于或等于其余两杆长度之和;
Fn
1 1
A
B
2

4

3 D
g C a
F

平面四杆机构设计介绍

平面四杆机构设计介绍

第三章 平面四杆机构的设计§3—1 平面连杆机构的特点、类型及应用1.1 概 述连杆机构:各构件之间用低副和刚性构件连接起来实行运动传递的机构。

如图2-1 分为平面连杆机构和空间连杆机构 。

连杆机构由连架杆,连杆和机架组成。

平面连杆机构的特点:1.2平面连杆机构的基本类型和结构特点:由于连杆机构的构件一般呈杆状,也以其构件的数量称为多杆机构。

平面杆机构是最基本最常用的连杆机构。

1.2.1 平面连杆机构的基本类型:1) 曲柄摇杆机构 2)双曲柄机构 3)双摇杆机构 1.2.2 平面连杆机构演化 1) 转动副转化为移动副 2)取不同的构件为机架 3)变换构件的形态 4)扩大转动副的尺寸§3—2 平面连杆机构的运动特性2.1平面连杆机构的运动特性:(1Grashoff 定理(简称曲柄存在条件):如图示a + d ≤b + cb ≤ d – a +c c ≤d – a + b a ≤ c a + b ≤ c + da ≤b a +c ≤ b +d a ≤ d a + d ≤ b + c在全铰链四杆机构中,如果最短杆与最长杆杆长之和小于或等于其余两杆杆长之和,则必然存在作整周转动的构件。

若不满足上述条件,即最短杆与最长杆杆长之和大于其余两杆杆长之和,则不存在作整周转动的构件。

(2)四杆机构从动件的急回特性:如图示四杆机构从动件的回程所用时间小于工作行程所用的时间,称为该机构急回特性。

急回特性用行程速比系数K 表示。

212112ϕϕ===t t v v K极位夹角θ—— 从动摇杆位于两极限位置时,原动件两位置所夹锐角。

θ越大,K 越大,急回特性越明显。

§3—3 平面连杆机构的传力特性3.1. 传动角与压力角:如图示在机构处于某一定位置时,从动件上作用力与作用点绝对速度方向所夹的锐角 α 称为压力角。

压力角的余角 γ( γ = 90°— α) 作为机构的传力特性参数,故称为传动角。

平面四杆机构概述

平面四杆机构概述
平面连杆机构概述
连杆机构:各构件间均以低副(转动副、移动副、 球面副、圆柱副等)相连接的机构称为连杆机构, 也叫低副机构。 平面机构:各构件的相对运动平面互相平行(常用 的机构大多数为平面机构)。
空间机构:至少有两个构件能在三维空间中相对运 动。
连杆机构(面接触的结构)的优点:
运动副单位面积受压力较小,面接触便于润滑,故 磨损较小;
制造方便,易获得较高的精度;
两构件之间的接触是靠本身的几何封闭来维系的;
连杆机构可以实现给定的运动规律或实现给定的运
动轨迹,但只用于速度较低的场合。
平面连杆机构分为四杆机构和

平面四杆机构ppt课件

平面四杆机构ppt课件

摄影三脚架中的平面四杆机 构通常由三根支撑杆和若干 个连接杆组成。
三根支撑杆通常具有较好的 弹性和韧性,可以适应不同 地形和环境,提供稳定的支 撑效果。连接杆则将三根支 撑杆连接在一起,形成稳定 的三角形结构。
挖掘机机构
挖掘机是一种广泛应用于建筑、道路 、矿山等领域的工程机械设备。它的 主要功能是通过挖掘斗的升降、旋转 和移动来实现挖掘作业。
作用
03
连杆在机构中起到传递运动和动力的作用,还可以改变运动的
方向。
转动副
定义
转动副是平面四杆机构的基本组成之一,是一种 连接两个构件的相对转动的运动副。
特点
转动副由两个构件组成,一个构件作为固定轴, 另一个构件围绕固定轴旋转。
作用
转动副在机构中起到传递运动和动力的作用,同 时也可以改变运动的方向。
双摇杆机构
由两个摇杆和两个连架杆组成的平面四杆机构。双摇杆机构中,两个摇 杆长度相等且平行,连架杆相对摇杆做往复摆动,可以实现将摇杆的往 复摆动转换为连架杆的往复摆动。
平面四杆机构的应用
实例1
缝纫机踏板机构。当脚踏板低速转动时,通过一个曲柄摇杆 机构将脚踏板的往复摆动转换为缝针的上下摆动;当脚踏板 快速转动时,通过一个双曲柄机构将脚踏板的往复摆动转换 为缝针的上下摆动。
利用计算机辅助设计软件进行 数值仿真,通过对机构参数的
调整,实现最优设计。
基于实验设计的优化
通过实验测试机构的性能,利 用实验设计方法对机构进行优 化。
基于人工智能的优化
利用人工智能算法,如神经网 络、遗传算法等,对机构的参 数进行优化。
多学科优化方法
综合考虑机构的多学科因素, 如结构、运动、动力学等,实
转向机构是汽车底盘的一个重要组成部分,它的 主要功能是控制汽车的行驶方向,使车辆能够按 照驾驶员的意愿进行转弯或者改变行驶方向。

机械设计中的平面四杆机构设计

机械设计中的平面四杆机构设计

机械设计中的平面四杆机构设计机械设计中的平面四杆机构设计是一项关键的技术,它对于机械设备的运动性能和工作效率具有重要影响。

在本文中,我们将探讨平面四杆机构的设计原理和方法,并重点讨论几种常见的平面四杆机构设计。

1. 平面四杆机构的基本原理平面四杆机构是由四个杆件和四个转动副组成的机械系统。

其中,两个杆件为连杆,两个杆件为曲柄。

通过合理的连接和安排,平面四杆机构可以实现特定的运动轨迹和工作功能。

平面四杆机构通常具有四个连杆长度、四个连杆转动角度和四个面间夹角等参数,这些参数的选择和设计将直接影响机构的性能。

2. 平面四杆机构的设计方法在平面四杆机构的设计过程中,需要注意以下几个关键要素:2.1 机构类型选择根据具体的工作需求和运动特点,选择合适的平面四杆机构类型。

常见的类型包括双曲柄四杆机构、双滑块四杆机构和连杆滑块四杆机构等。

每种类型的机构都有其特点和适用范围,设计者需要根据具体情况做出选择。

2.2 运动轨迹设计平面四杆机构的设计目标之一是确定所需的运动轨迹。

通过合理设置连杆长度和转动角度等参数,设计者可以使机构实现所需的直线运动、往复运动或者特定的曲线轨迹等。

2.3 运动性能评估在设计过程中,需要对平面四杆机构的运动性能进行评估。

常见的评估指标包括机构速度、加速度、运动稳定性和工作效率等。

通过使用运动分析软件或者手工计算,可以得到机构的具体性能参数。

3. 常见的平面四杆机构设计在实际应用中,有几种常见的平面四杆机构设计。

3.1 双曲柄四杆机构双曲柄四杆机构由两个曲柄和两个连杆组成,具有简单的结构和稳定的运动特性。

它常用于需要往复运动的机械设备中,例如活塞式发动机。

3.2 双滑块四杆机构双滑块四杆机构包含两个滑块和两个连杆,可实现两个滑块的相对运动。

这种结构常用于需要同时进行两个工作操作的装置,比如双手操作的印刷机械。

3.3 连杆滑块四杆机构连杆滑块四杆机构是由两个连杆和两个滑块组成,其中一个滑块在连杆上滑动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-2
平面四杆机构的类型及应用
连杆 B C 连架杆
一、平面四杆机构的基本型式
基本型式——铰链四杆机构 连架杆 运动副全为转动副。 动画演示 A D
曲柄:能作整周回转的连架杆。 摇杆:只能在一定范围内摇动的连架 ★曲柄摇杆机构 杆; 周转副:组成转动副的两构件能整周相 ★双曲柄机构 对转动; ★双摇杆机构 摆转副:不能作整周相对转动的转动副。
消去θ2i
cos(θ1i + α 0 ) = n cos(θ 3i + ϕ 0 ) − (n / l ) cos(θ 3i + ϕ 0 − θ1i − α 0 ) + (l 2 + n 2 + 1 − m 2 ) /( 2l )
P2 P1
cos(θ1i + α 0 ) = P0 cos(θ 3i + ϕ 0 ) + P cos(θ 3i + ϕ 0 − θ1i − α 0 ) + P2 1
惯性筛机构
平行四边形机构特性: ▲两曲柄同速同向转动 ▲连杆作平动
平行四边形机构的应用实例
车轮动画
播种机料斗机构
机车车轮联动机构
升 降 机 构 升降机构动画
逆平行(反平行) 四边形机构:指两 相对杆长相等但不 平行的双曲柄机构
应用实例
车门开闭机构 动画
★双摇杆机构
铰链四杆机构若两连架杆都是摇杆,则称其为双摇杆机构。 应用实例 等腰梯形机构:指两摇杆 长相等的双摇杆机构。 应用实例
动画 根据杆数命名: 四杆机构
动画
中间构件称为连杆。
六杆机构 四杆机构ABCD 四杆机构DEF
四杆机构应用非 常广泛,且是多 杆机构的基础 着重 讨论
二、连杆机构的特点
优点: ①连杆机构为低副机构,运动副为面接触,压强小,承载 能力大,耐冲击; ② 运动副元素的几何形状多为平面或圆柱面,便于加工 制造; ③在原动件运动规律不变情况下,通过改变各构件的相对 长度可以使从动件得到不同的运动规律; ④可以连杆曲线可以满足不同运动轨迹的设计要求; 缺点: ①由于运动积累误差较大,因而影响传动精度; ②由于惯性力不好平衡而不适于高速传动; ③设计方法比较复杂。
b 2 + c 2 − (d + a) 2 γ 2 = arccos (∠B2C2 D < 90°) 2bc b 2 + c 2 − (d + a) 2 (∠B2C2 D > 90°) 或 γ 2 = 180° − arccos 2bc
γmin出现在曲
γ min = min(γ 1 , γ 2 )
三、四杆机构的传动角与死点(续)
机 构 示 例
铸造用翻箱机构 动画 飞机起落架机构
一、平面连杆设计的基本问题(续)
(3)满足预定的轨迹要求 即要求机构运动过程中,连杆上某些点能实现预定 的轨迹要求。 机构示例:
鹤式起重机 动画
搅拌机机构 动画
二、用解析法设计四杆机构 1. 按预定的运动规律设计四杆机构 ◆ 按两连架杆的对应位置设计四杆机构
第四章
平面连杆机构及其设计
本章教学内容 4-1 连杆机构及其特点 4-2 平面连杆机构的类型及应用 4-3 平面连杆机构的基本知识 4-4 平面四杆机构的设计 4-5 多杆机构
4-1
构由若干个构件通过低副连接而组成,又称为 低副机构。 连杆机构根据各构件间的相对运动是平面还是空间运动分为 构件多呈杆状——简称为杆 ★空间连杆机构 ★平面连杆机构 共同特点: 动画 原动件的运动 经过不与机架直接 相连的中间构件传 递到从动件上。
取最短杆对 边为机架得 双摇杆机构
一、平面四杆机构有曲柄的条件(续)
满足满足杆长条件的双 摇杆机构的应用实例:
风扇摇头机构
注意:如果四杆机构不满足杆长条件,则不论取哪个构件 为机架,均为双摇杆机构。 思考题:曲柄滑块机构和导杆机构有曲柄的条件是什么?
二、急回运动和行程速比系数
1. 机构极位:曲柄回转 一周,与连杆两次共 线,此时摇杆分别处于 两极限位置,称为机构 极位。 2. 极位夹角:机构在两 个极位时,原动件所处 两个位置之间所夹的锐 角θ称为极位夹角。 3. 急回运动:
4. 死点 曲柄摇杆机构:若以摇杆CD为主动件,则当连杆与 曲柄共线时,机构传动角为零,这时CD通过连杆作用于 从动件AB上的力恰好通过其回转中心,出现不能使构件 AB转动而“顶死”的现象,机构的这种位置称为死点。
三、四杆机构的传动角与死点(续)
曲柄滑块机构的死点位置
三、四杆机构的传动角与死点(续)
汽车前轮转向机构
造型机翻箱机构 动画
二、平面四杆机构的演化型式
◆改变构件的形状和运动尺寸 曲柄摇杆机构 变摇杆 为滑块 机构演化动画
曲线导轨曲柄滑块机构 摇杆尺寸 为无穷大 对心曲柄滑块机构 e=0 偏置曲柄滑块机构
二、平面四杆机构的演化型式(续)
对心曲柄滑块机构 变连杆 为滑块 双滑块机构
连杆尺寸 为无穷大 正弦机构
第四章
平面连杆机构及其设计
本章教学目标 ◆了解平面连杆机构的组成及其主要优缺点; ◆了解平面连杆机构的基本形式及其演化和应 用; ◆明确四杆机构曲柄存在条件和机构急回运动及 行程速比系数等概念; ◆ 对传动角、死点、运动连续性等有明确的概 念; ◆了解平面四杆机构设计的基本问题,掌握根据 具体设计条件和实际需要设计平面四杆机构的方
γ = 90° − α
机构常用传动 角大小及变化来衡 量机构传力性能的 好坏。
γ min ≥ 40° ~ 50°
三、四杆机构的传动角与死点(续)
3. 最小传动角的位置: 动画演示 曲柄摇杆机构: 柄与机架共线的两 位置之一。
b 2 + c 2 − (d − a) 2 γ 1 = arccos 2bc
二、平面四杆机构的演化型式(续)
◆ 运动副元素的逆换 对于移动副,将运动副两元素的包容关系进行逆换, 并不影响两构件之间的相对运动。 摆动导杆机构 曲柄摇块机构
构件2包 容构件3
构件3包 容构件2
4-3 平面四杆机构的基本知识
一、平面四杆机构有曲柄的条件
◆分析: 构件AB要为曲柄,则转动 副A应为周转副; 为此AB杆应能占据整周中 的任何位置; 因此AB杆应能占据与AD共 线的位置AB'及AB''。 由△ DB'C' 由△DB'' C'' 两两相加
从动件3的位移与原 动件1的转角成正比:
s = l AB sin ϕ
移动副可认为是回 转中心在无穷远处 的转动副演化而来
二、平面四杆机构的演化型式(续)
◆ 改变运动副的尺寸 曲柄滑块机构 ★当曲柄AB的尺寸较小时, 由于结构需要,常将曲柄作成 几何中心与回转中心不重合的 圆盘,称此圆盘为偏心轮。 ★几何中心与回转中心间的距 离称为偏心距,等于曲柄长。 偏心轮机构
◆推论
当机构尺寸满足杆长条件时,最短杆两端的转动副 均为周转副;其余转动副为摆转副。
◆平面四杆机构有曲柄的条件
机构尺寸满足杆长条件,且最短杆为机架或连架杆。
一、平面四杆机构有曲柄的条件(续)
例:图示机构尺寸满足杆长条件,当取不同构件为机架时 各得什么机构? 最短杆为 机架得双 曲柄机构 取最短杆相 邻的构件为 机架得曲柄 摇杆机构
★曲柄摇杆机构
铰链四杆机构中,若其两个连架杆一为曲柄,一为摇 杆,则此四杆机构称为曲柄摇杆机构。 应用: 缝 纫 机 脚 踏 板 机 构
雷 达 天 线 俯 仰 机 构 动画
动画
★ 双曲柄机构
在铰链四杆机构 中,若其两个连架 杆都是曲柄,则称 为双曲柄机构。 平行四边形机构: 指相对两杆平行且 相等的双曲柄机构。
a + d ≤ b + c a+b≤d +c b ≤ (d − a ) + c a+c≤d +b c ≤(d −a) +b
a≤c
a≤b
a≤d
一、平面四杆机构有曲柄的条件(续)
◆结论: 转动副A成为周转副的条件: 1)最短杆长度+最长杆长度≤其余两杆长度之和 ——杆长条件 2)组成该周转副的两杆中必有一杆是最短杆。
(3)将两连架杆的已知对应角代入上式,列方程组求解
◆按两连架杆的对应位置设计四杆机构(续) 注意:
cos(θ1i + α 0 ) = P0 cos(θ 3i + ϕ 0 ) + P cos(θ 3i + ϕ 0 − θ1i − α 0 ) + P2 1
二、急回运动和行程速比系数(续)
摆动导杆机构的急回运动
机构急回的作用: 节省空回时间,提 高工作效率。
注意:急回具有方向性
三、四杆机构的传动角与死点
1. 机构压力角 机构从动件上作用点的力与该点的速度方向之间所夹的 锐角,为机构在此位置的压力角α。 2. 传动角 机构压力角的 余角称为机构在此 位置的传动角 γ。
设计步骤: (1)建立坐标系和杆矢量 (2)列杆矢量封闭方程解析式
令a/a=1, b/a=m, c/a=n, d/a=l。
m cosθ 2i = l + n cos(θ 3i + ϕ 0 ) − cos(θ1i + α 0 )⎫ ⎬ m sin θ 2i = n sin(θ 3i + ϕ 0 ) − sin(θ1i + α 0 ) ⎭ P0
一、平面连杆设计的基本问题(续)
满足预定运动的规 律要求机构示例: 利用两连架杆的转 角关系实现对数计算。 对数计算机构 车门开闭机构 动画 设计时要求两连架 杆的转角应大小相 等,方向相反,以实 现车门的起闭。
一、平面连杆设计的基本问题(续)
又称为刚体导引问题 (2)满足预定的连杆位置要求 即要求连杆能依次点据一系列的预定位置。
相关文档
最新文档