大数据分析_图文_1546824409
合集下载
大数据分析教材PPT图文
![大数据分析教材PPT图文](https://img.taocdn.com/s3/m/3cfed21ca5e9856a561260f9.png)
输入标题
点击输入文字内容 点击输入文字内容
输入标题
点击输入文字内容 点击输入文字内容
输入标题文字
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
输入标题文字
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
请在此处输入您的文本
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
回款数额:XXXX万
您的文字
目录
CONTENTS
1 请在此处输入您的文本 2 请在此处输入您的文本 3 请在此处输入您的文本 4 请在此处输入您的文本 5 请在此处输入您的文本
LOGO 点击此处添加标题
输入标题文字
请输入你的文本内容 请输入你的文本内容 请输入你的文本内容 请输入你的文本内容 请输入你的文本内容
输入 文字
输入标题文字
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
输入标题文字
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
LOGO 点击此处添加标题
输入标题
点击输入文字内容 点击输入文字内容
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
点击输入文字内容点击输入文字内容 点击输入文字内容点击输入文字内容
大数据分析方法精选ppt
![大数据分析方法精选ppt](https://img.taocdn.com/s3/m/4484f6a7192e45361166f52c.png)
话标准、表现情感等相似的定量评分
注:部分研究问题已经明显定量化,部分则需要人工确定 量化标准
步骤6:运用数据分析方法产生结论
内容:套用各种数据方法产出结论
形式:数值、概率值、图表
分析软件和语言
SPSS、SAS、Matlab、smartPLS Python、R等等
分析方法:
常规统计方法:T检验、方差分析、相关分析、回归分析 、因子分析、时间序列分析、结构方程模型等,参考任 意一本统计学教材。
各种全新的配套手段:
存储(云);处理(并行); 保护(安全性);分析(数据挖掘、机器学习)
潜力无限 vs 言过其实? 创新为主 vs 传承为主?
引言
思考1:“大”数据,到底应该多大?
量级不严格、范围不严格
思考2:新方法,到底有多新?
大多数传承传统方式 新方法解决面窄
思考3:新结论,到底多有价值?
总结
总结
大数据和新方法只是新的资源和工具 挖掘数据价值的还是人
我们还会继续沿derstanding 大胆假设、小心求证 – Insight 实践产出理论、理论指导实践 – Prospect
Thanks
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
数据分析的具体流程
步骤1:建立对对象的整体认知
内容:对对象建立主观印象 意义:产生新问题;产生对问题的合理假设 着手点:
观察现状;例子:购物中心的消费习惯转变 观察数据;例子:消费数据分析暗示的消费群体变化 此外,闻者有心:例子:外卖数据暗示房价
步骤2:提出希望探索的宏观问题
内容:提出大目标 形式:“A对B的影响”、“A未来一年的销售额”
注:部分研究问题已经明显定量化,部分则需要人工确定 量化标准
步骤6:运用数据分析方法产生结论
内容:套用各种数据方法产出结论
形式:数值、概率值、图表
分析软件和语言
SPSS、SAS、Matlab、smartPLS Python、R等等
分析方法:
常规统计方法:T检验、方差分析、相关分析、回归分析 、因子分析、时间序列分析、结构方程模型等,参考任 意一本统计学教材。
各种全新的配套手段:
存储(云);处理(并行); 保护(安全性);分析(数据挖掘、机器学习)
潜力无限 vs 言过其实? 创新为主 vs 传承为主?
引言
思考1:“大”数据,到底应该多大?
量级不严格、范围不严格
思考2:新方法,到底有多新?
大多数传承传统方式 新方法解决面窄
思考3:新结论,到底多有价值?
总结
总结
大数据和新方法只是新的资源和工具 挖掘数据价值的还是人
我们还会继续沿derstanding 大胆假设、小心求证 – Insight 实践产出理论、理论指导实践 – Prospect
Thanks
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
数据分析的具体流程
步骤1:建立对对象的整体认知
内容:对对象建立主观印象 意义:产生新问题;产生对问题的合理假设 着手点:
观察现状;例子:购物中心的消费习惯转变 观察数据;例子:消费数据分析暗示的消费群体变化 此外,闻者有心:例子:外卖数据暗示房价
步骤2:提出希望探索的宏观问题
内容:提出大目标 形式:“A对B的影响”、“A未来一年的销售额”
大数据分析PPT模板
![大数据分析PPT模板](https://img.taocdn.com/s3/m/1d42bc22ae1ffc4ffe4733687e21af45b307fe95.png)
02
03
Spark
Flink
一个快速、通用的大规模数据 处理引擎,提供了Java、Scala
、Python等多种编程语言的 API。
一个流处理和批处理的开源框 架,支持实时数据流分析和处
理。
8
数据存储技术
03
Hadoop HDFS
HBase
Cassandra
一个分布式文件系统,用于存储大规模数 据集,提供高吞吐量访问和容错能力。
数据可视化与报告呈现
01
02
03
04
可视化工具选择
根据需求选择合适的可视化工 具,如Tableau、Power BI等
。
可视化图表设计
设计直观、易懂的图表,如折 线图、柱状图、散点图等。
报告编排
将分析结果以报告形式呈现, 包括标题、摘要、正文、结论
等部分。
交互性增强
添加交互功能,如筛选器、动 态显示等,提高报告的易用性
策支持。
供应链优化
通过分析供应链各环节的数据, 发现潜在问题和瓶颈,优化库存 管理和物流配送,提高运营效率
。
2024/1/26
27
金融领域的大数据分析应用
1 2
风险评估与管理
利用大数据分析技术,对金融机构的客户、交易 和市场风险进行全面评估和管理,提高风险防控 能力。
投资决策支持
通过分析市场数据、企业财务数据等,为投资者 提供投资决策支持,降低投资风险,提高投资收 益。
临床试验数据分析
对临床试验数据进行深入挖掘和分析,发现新的治疗方法和药物作用 机制,推动医学研究的进步。
2024/1/26
29
其他领域的大数据分析应用
2024/1/26
大数据分析课件
![大数据分析课件](https://img.taocdn.com/s3/m/abc02480960590c69fc3762e.png)
4 大必 要的活 动步骤
第五章 大数据分析
(2)采集数据
数据采集就是运用合适的方法来有效收 集尽可能多的相关数据,从而为数据分 析过程的顺利进行打下基础。常用的数 据采集方法包括:系统日志采集方法, 这是目前广泛使用的一种数据采集方法。
(4)数据挖掘
数据挖掘的目的是在现有数据基础之上利 用各类有效的算法挖掘出数据中隐含的有 机质信息,从而达到分析推理和预测的效 果,实现预定的高层次数据分析需求。
Storm
Storm是一个开源的、分布式的 具有高容错性的实时计算系统。 Storm能够十分可靠地处理庞大 的数据流,能够用来处理Hadoop 的批量数据。Storm应用领域广 泛,包括:在线机器学习、实时 分析、分布式RPC(远过程调 用)、持续计算、ETL等等。 Storm的处理速度非常迅速,每 个节点每秒可以处理上百万个数 据元组,Storm支持多种语言编 程,具有容错性高、可扩展、易 于设置和操作的特点。
机器学习算法从数据中自动分析获得规律,并利用规律对未
机器学习
知数据进行预测。高性能的以机器学习算法为核心的数据分 析,为实际业务提供服务和指导,进而实现数据的最终变现。
可视化分析与信息绘图学和信息可视化相关。数据可视
可视化 分析
化的目标是以图形方式清晰有效地展示信息,从而便于 解释数据之间的特征和属性情况。
MLlib是构建在Apache Spark上的 一个可扩展的分布式机器学习库, 充分利用了 Spark 的内存计算和 适合迭代型计算的优势,将性能 大幅度提升。MLlib支持的分类算 法主要有:朴素贝叶斯、逻辑回 归、决策树和支持向量机.MLlib 支持的回归算法主要有:Lasso、 线性回归、决策树和岭回归。聚 类算法属于非监督式学习,MLlib 目前支持广泛使用的Kmeans算法。 MLlib也支持基于模型的协同过滤, 其中用户和商品通过一小组隐语 义因子进行表达,并且这些因子 也用于预测缺失元素。
大数据分析讲稿PPT
![大数据分析讲稿PPT](https://img.taocdn.com/s3/m/26d93d30852458fb770b568e.png)
理论
THEOபைடு நூலகம்Y
技术
TECHNOLOGY
实践
UTILIZATION
01
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
学习
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超 出了计算机科学的范畴,人工智能与思维科学的关系是实践和理
02
思考
论的关系,人工智能是处于思维科学的技术应用层次,是它的一 个应用分支。
大数据的应用领域
教育学 天文学 金融学
情报学 电子政务 生活娱乐
公共服务 传媒业 总统选举
生物医学 气候学 图书馆学
商业智能 企业管理 市场营销
强大的执行力
备用
精准的营销能力
对项目的深刻理解
丰富的产品运营经验
领先的技术优势
过硬的开发能力
点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,
云处理为大数据提供了弹性可拓展的基础设备, 是产生大数据的平台之一。自2013年开始, 大数据技术已开始和云计算技术紧密结合,预 计未来两者关系将更为密切。
数据科学和数据联盟的成立:未来,数据
科学将成为一门专门的学科,被越来越多的人 所认知。各大高校将设立专门的数据科学类专 业,也会催生一批与之相关的新的就业岗位。
01 02 03 04
大数据(BIG DATA)
指无法在一定时间范围内用常规软件工具进行捕捉、 管理和处理的数据集合,是需要新处理模式才能具 有更强的决策力、洞察发现力和流程优化能力的海 量、高增长率和多样化的信息资产。
对于“大数据”(Big data) 研究机构Gartner给出了这样