第8章-化学动力学基础

合集下载

化工基础 第八章 典型反应器

化工基础 第八章 典型反应器

(10)滴流床反应器
实质是按传递过程的特征分类,相同结构反应器内物料具有相同流动、混和、
传质、传热等特征。
3 根据温度条件和传热方式分类 (1)根据温度条件分:等温、非等温式反应器。 (2)根据传热方式分:
绝热式:不与外界进行热交换; 外热式:由热载体供给或移走热量,
又有间壁传热式、直接传热式、外循环传热式之分。 蒸发传热式:靠挥发性反应物、产物、溶剂的蒸发移除热量。
直叶和弯曲叶。涡轮搅拌器速度较大,300~600r/min。
涡轮搅拌器的主要优点是当能量消耗不大时,搅拌效率较高,搅拌产生很强
的径向流。因此它适用于乳浊液、悬浮液等。
C、推进式搅拌器
推进式搅拌器,搅拌时能使物料在反应釜内循环流动,所起作用以容积循环 为主,剪切作用较小,上下翻腾效果良好。当需要有更大的流速时,反应釜内设 有导流筒。
第八章 典型反应器
§8.1 概述
任何化学品的生产,都离不开三个阶段:原料预处理、化学反应、产品精制。 化学反应过程是化工生产过程的核心。 物理过程的原理和操作设备——《流体流动与传热》和《传质与分离技术》。 化学反应过程的原理和反应设备——《化学反应过程与设备》,属于化学反 应工程的范畴。 1 研究目的 研究目的:使化学工业生产中的反应过程最优化。 (1)设计最优化:由给定的生产任务,确定反应器的型式和适宜的尺寸及 其相应的操作条件。 (2)操作最优化:在反应器投产运行之后,还必须根据各种因素和条件的 变化作相应的修正,以使它仍能处于最优的条件下操作。 2 研究内容 从实验室开发到工业生产存在放大效应。 在工业反应器中实际进行的过程不但包括有化学反应,还伴随有各种物理过 程,如热量的传递、物质的流动、混和和传递等,所有这些传递过程使得反应器 内产生温度分布和浓度分布,从而影响反应的最终结果。 化学动力学特性的研究 :在实验室的小反应器内进行,完全排除传递过程 的影响。 流动、传递过程对反应的影响 处理整个反应工程的问题需要具备三个方面的知识(三传一反): a. 化学反应的规律(反应动力学); b. 传递过程的规律(质量、热量和动量的传递); c. 上述两者的结合。 3 研究作用 (1)反应器的合理选型

大学化学基础 第8章 化学动力学1

大学化学基础 第8章 化学动力学1

由实验确定反应速率方程的 简单方法—初始速率法
k 例如:2NOg 2H2 g 1073 N2 g 2H2Og 反应的有关实验数据如下:
1 1 1 -1 /( mol L s ) c H /( mol L ) cNO /(mol L ) Ê Ô é Ñ ± à Å º 2
反应的可能性足够大, 只是反应速率不够快, 不能在尾气管 中完成, 以致散到大气中, 造成污染. 若能寻找催化剂, 使上 述反应达足够快的速率, 是不小的成就. 有些反应, 如橡胶 的老化, 人们又常常希望它慢一些. 所以研究速率理论是完全必要的。
反应机理:化学反应过程中经历的真 实反应步骤的集合。 基元反应:由反应物一步生成生成物 的反应,没有可用宏观实验方法检测到的 中间产物。 意义:通过实验一旦证实某一有确定 反应物和生成物的反应为基元反应,就可以 根据化学反应计量方程式直接写出其速率 方程式。 500K NOg O3 g T NO 2 g O 2 g 为元反应
例题:一氧化氮被还原为氮气和水: 2NO(g) 2H2 (g) N2 (g) 2H2O(g) 根据光谱学研究提出的反应机理是: k1 ① 2 NO k N 2 O 2 (快, 平衡) -1 k2 ②N2O2 H2 N2O H2O (慢) k1 ③N2O H2 2N2 H2O (快)
3.5910 3.60104 3.6210 3.61104
4
3.68104
N2O5的分解速率与N2O5浓度的比值是 恒定的,即反应速率υ与c(N2O5)成正比。 可见: r kc(N 2O5 )
对于一般的化学反应:
aA bB yY zZ
r = k[A]α[B]β
α,β—反应级数:若α=1,A为一级反应; β=2, B为二级反应,则α+β=3,总反应级数为3。α,β必 须通过实验确定其值。通常α≠a,β≠b。 k —反应速率系数:k是有单位的量,k 不随浓度 而变,但受温度的影响,通常温度升高, k 增大。

第八章 基元反应动力学

第八章 基元反应动力学

k的值与T、催化剂有关,与反应 物浓度无关
注意:质量作用定律
举例子:
仅适用于基元反应
不适用总反应
NO2 + CO === NO + CO2
r k[ NO2 ][CO]
基元反应(简单反应),根据质量作用定律直接写出速率方程
HBr气相合成反应:H2 + Br2 2HBr
复杂反应 非基元反应 不能依质量作用定律写出
0 a 2k t
0
dx dt
k (a x)
t 0
3

x
0

dx 3 0 (a x)
x
kdt
x kt t1/ 2

1 ( a x )2
a12 2kt
3 2 ka2
t1/ 2
表面催化反应和酶催化反应 不常见
常见的零级反应: 级 反 应 :
反应速率决定于固体催化剂 的有效表面活性位或酶的浓度。
n=2 的反应为二级反应
常见的二级反应:乙烯、丙烯的二聚作用,乙酸乙酯的皂化,碘化氢的 热分解,等 · · · 1) 速率方程
k A B P a b 0 a- x b- x x
t 0 t
速率方程: -
d(a - x ) dt x

dx dt
k (a x)(b x) kdt
如: H2 + Cl2
则:反应级数 n = α+β
2HCl r =k [H2][Cl2]1/2
对H2来说为一级反应 对Cl2来说为1/2级反应
1.5级
催化 常见 少见
n 的 值
0、1、2、3 分数级反应 无级数反应
简单级数反应 (0级反应、1级反应、 ···、3级反应) H2+Cl2→2HCl H2+Br2→2HBr

第八章-固相反应(1)

第八章-固相反应(1)

C0 V KC K (1 K / D)
1 1 1 V KC 0 DC0 /
(8-19)
12
讨论:
1 1 1 V KC0 DC0 /
(1)D>>K时,扩散快,相界面反应慢,δ/DC0很小, V= KC0=KC= VR (C≈C0)
属于界面反应控制范围(即化学反应动力学范围)。
(2)一级反应(n=1):
VR=dG/dt = KF(1-G)
对于球形颗粒
F= N4πR02(1-G)2/3
dG/dt= KN4πR02(1-G)2/3(1-G) =K1(1-G)5/3 (微分式 8-25)
积分式:

3K1 (1 G)5 / 3 dR0
dG

dt
当t=0时,G=0时,
得F(G)=
b)反应物分解AB(s)→A(g) +B(g)
例:ZnO(s)→ZnO(g) ;
ZnO(g) + Al2O3→ZnO·Al2O3
3
(2)按反应的性质分(有五种类型,如表7-3)。
(3)按反应机理分有: 扩散控制过程;化学反应控制过程;晶体长大控制过程; 升华速度控制过程等。
4
二.固相反应的基本特征 1.固相反应属于非均相反应,参与反应的固相相互接 触是反应物间发生化学反应和物质输送的前提; 2.固相反应一般需在较高温度下进行,但反应开始的 温度远低于反应物的熔点或系统低共熔点温度。这一温 度与系统内部出现明显扩散的温度一致,称为泰曼温度 或烧结开始温度。 泰曼(Tamman)温度——系统内部出现明显扩散的温度 ( 为固相反应开始温度)。 泰曼温度与熔点(TM)之间的关系: 一般金属: 0.3~0.4 TM ; 盐类:0.57 TM ; 硅酸盐:0.8~0.9 TM ; 海德华定律——反应物之一的多晶转变温度标志着固相 反应开始的温度。

《物理化学》高等教育出版(第五版)第八章

《物理化学》高等教育出版(第五版)第八章

《物理化学》高等教育出版(第五版)第八章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章化学动力学(2)练习题一、判断题:1.碰撞理论成功处之一,是从微观上揭示了质量作用定律的本质。

2.确切地说:“温度升高,分子碰撞次数增大,反应速度也增大”。

3.过渡状态理论成功之处,只要知道活化络合物的结构,就可以计算出速率常数k。

4.选择一种催化剂,可以使Δr G m> 0的反应得以进行。

5.多相催化一般都在界面上进行。

6.光化学反应的初级阶段A + hv-→P的速率与反应物浓度无关。

7.酸碱催化的特征是反应中有酸或碱存在。

8.催化剂在反应前后所有性质都不改变。

9.按照光化当量定律,在整个光化学反应过程中,一个光子只能活化一个分子,因此只能使一个分子发生反应。

10.光化学反应可以使Δr G m> 0 的反应自发进行。

二、单选题:1.微观可逆性原则不适用的反应是:(A) H2 + I2 = 2HI ; (B) Cl· + Cl· = Cl2;(C) 蔗糖 + H2O = C6H12O6(果糖) + C6H12O6(葡萄糖) ;(D) CH3COOC2H5 + OH-=CH3COO-+ C2H5OH 。

2.双分子气相反应A + B = D,其阈能为40 kJ·mol-1,有效碰撞分数是6 × 10-4,该反应进行的温度是:(A) 649K ;(B) 921K ;(C) 268K ;(D) 1202K 。

3.双分子气相反应A + B = D,其阈能为50.0 kJ·mol-1,反应在400K时进行,该反应的活化焓≠∆mrH为:(A) 46.674 kJ·mol-1;(B) 48.337 kJ·mol-1;(C) 45.012 kJ·mol-1;(D) 43.349 kJ·mol-1。

《化学动力学》PPT课件

《化学动力学》PPT课件
热力学解决了化学反应的可能性问题,但化学反 应实际上的发生,却是动力学研究的范畴。化学反应 的速率,即是动力学的基础。自发过程是否一定进行 得很快?
实际上, 速率相当慢!
实际上, 反应速率相当快!
热力学 可能性; 动力学 现实性
a
1
化学动力学研究化学反应的速率和反 应的机理以及温度、压力、催化剂、溶剂 和光照等外界因素对反应速率的影响,把 热力学的反应可能性变为现实性。
a
3
8.1 化学反应速率表示法
1 化学反应速率定义及表示法 2 平均速率与瞬时速率
a
4
1.化学反应速率定义及表示法 ❖定义
化学反应速率是参与反应的某物质的“物质的 量”随时间变化率的绝对值。 对于反应体积不变的密闭系统,反应速率是参 与反应的物质的物质的量浓度随时间变化率的 绝对值。
Note:取绝对值的原因是因为反应速率总是正值。
1 反应机理 2 基元反应 3 复杂反应
a
15
H2 (g)+Cl2 (g) → 2HCl (g)
(1) Cl2 (g) + M → 2Cl• (g) +M (2) Cl• (g) +H2 (g) →HCl (g) + H• (3) H• (g) + Cl2 →HCl (g) + Cl• (4) 2Cl• (g) + M →Cl2 (g) + M
N2 + 3H2→2NH3
起始浓度(mol·L-1) 1.0 3.0 0 3s后浓度(mol·L-1) 0.7 2.1 0.6
解: N 2 0 .7 1 .0 0 .1mol L-1 s -1
3
H 2 2 .1 3 .0 0 .3 mol L-1 s -1 3

化学动力学

化学动力学
程为-dp/dt=kApA0.5pB1.5,求速率常数kA。
解:由于反应物配料符合化学计量比2pA0=pB0, 所以2pA=pB,代入速率方程得:
-dp/dt=kApA0.5pB1.5 =kApA0.5(2pA)1.5
-dp/dt=21.5kApA2 =kA′pA2
(kA′= 21.5kA )
对二级反应有
1 pA
1 pA0
k At
开始时:p0= 3.36kPa, 2pA0=pB0,, pC0=0, 所以 pA0=p0/3=1.12kPa 反应进行到t时刻时pB=2pA, pC0=pA0-pA
p=pA+2pA+pA0-pA=2pA+pA0 pA=(p-pA0)/2=(2.12kPa-1.12kPa)/2=0.5kPa
指数式:k
Ea
k0e RT
对数式: ln k ln k0 Ea [k] [k] RT
积分式:ln k2 Ea ( 1 1 )
k1
R T2 T1
微分式:
d
ln k /[k] dt
Ea RT 2
A:频率因子,又称指前因子 Ea:活化能
适用于基元和有反应级数 的非基元反应
§ 8-7 活化能
Activation energies
kt 1 ln
CB0CA
CA0 CB0 CA0 (CB0 CA0 CA )
kt
1
ln CB0CA
CA0 CB0 CA0CB
§ 8-4动力学计算举例
例题1:乙酸乙酯皂化反应:
CH3COOC2H5+NaOH→CH3COONa+C2H5OH
(A)
(B)
(C)
(D)
是 二 级 反 应 。 反 应 开 始 时 ( t=0 ) ,A 与 B 的 浓 度 都 是 0.02mol·dm-3, 在 21℃时,反应25min后,取出样品,立即终止反应进行定量分析,测 得溶液中剩余NaOH为0.529×10-2mol·dm-3,问:

《大学物理化学》知识点总结

《大学物理化学》知识点总结

第一章 理想气体1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。

2、分压力:混合气体中某一组分的压力。

在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。

混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。

每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。

P y P B B =,其中∑=BBB B n n y 。

分压定律:∑=BB P P道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。

∑=BB V RT n P )/(3、压缩因子ZZ=)(/)(理实m m V V 4、范德华状态方程 RT b V V ap m m=-+))((2 nRT nb V Van p =-+))((225、临界状态(临界状态任何物质的表面张力都等于0)临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数:(1)临界温度c T ——气体能够液化的最高温度。

高于这个温度,无论如何加压 气体都不可能液化;(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。

6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。

取决于状态,主要取决于温度,温度越高,饱和蒸气压越高。

7、沸点:蒸气压等于外压时的温度。

8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。

对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、rr r c r r r c c c T Vp Z T V p RT V p Z =⋅=10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。

化学反应动力学(全套课件582P)

化学反应动力学(全套课件582P)
r 1 d[A] 1 d[B] 1 d[C] 1 d[D] a dt b dt c dt d dt
或 r 1 d[Ri ]
i dt
对于气相反应,也可用压力表示反应速率:
rP
1 a
dPA dt
1 b
dPB dt
1 c
dPC dt
1 d
dPD dt
或:
rP
1
i
dPRi dt
对于理想气体: Pi ci RT
化学反应动力学
课程属性: 学科基础课 学时/学分:60/3
教 材:
《 Chemical Kinetics and Dynamics 》 J. I. Steinfeld, et al, 1999 ( Prentice Hall )
参考书 :
1《化学反应动力学原理》(上、下册) 赵学庄编 (高等教育出版社)
k = 2×104
k = 1×10-2
§1-2 反应速率的定义
( Definition of the Rate of a Chemical Reaction ) 若一个反应的化学计量式如下:
(1) a A + b B c C + d D 或写为: (2) 0 = iRi
式(2) 中,
Ri:反应物和产物。 i: 化学计量系数, 它对于反应物为负,
1 给定乙醛的初始浓度, 测定不同反应时间 的反应速率及乙醛浓度,从而确定反应的 反应级数。
则反应速率 与[CH3CHO]的平方成正比, 即称其时间级数为二级的。
2 以乙醛的不同初始浓度进行实验, 测 定不同初始浓度下的反应速率,从 而确定反应级数。
则反应速率与乙醛的初始浓度的一 次方成正比,即称其浓度级数为一 级的。

第八章 化学动力学

第八章  化学动力学

(1)此反应转化率达90%时,所需时间是多少?
(2)若A、B的初始浓度均为0.01mol· -3,达到同样转化率,所需时间是多少? dm 解:初始浓度相同的二级反应。
小结: (1)化学反应速率定义与测定;反应速率与定容反应速率; (2)基元反应与质量作用定律;反应级数与反应速率常数; (3)非基元反应速率表示方法;
时间 浓度
t1 c1
t2 c2
t3 c3
t4 c4
t5 c5
t6 c6
…… ……
1、微分法: 如通过实验能得出参加反应物质浓度与反应速率关系数据,可 采用微分法:等式两边同除以各自单位后取对数:
得出上述直线关系从而得出直线斜率,即反应级数。
2、尝试法: (1)公式代入法:将各实验数据代入不同级数反应速率方程的 定积分形式中,如代入某级速率方程中得出的反应级数和反应 速率常数相同,则为几级; (2)作图法: cA-t图、ln(cA/[c]) -t图、 [c] / cA -t图、 1/ (cA /[c]) n-1 -t图哪种关系成直线,则说明是几级反应。
例:乙酸乙酯皂化反应 CH3COOC2H5 + NaOH → CH3COONa + C2H5OH (A) (B) (C) (D) 是二级反应。
A、B 的初始浓度均为 0.02 mol·dm-3,在21℃时,反应 25 min 后,取出样品, 终止反应进行定量分析,测得溶液中剩余NaOH 浓度为 0.529×10-2 mol·dm-3.
K 0 K t
t
K反 K生
(8)
(9)
将(8)、(9)两式代入(2)式即得:ln C kt ln C0
ln t kt ln 0

化学动力学总结及例题 [兼容模式]

化学动力学总结及例题 [兼容模式]

物理化学(第8、10章总结及例题)(第810章总结及例题)厦门大学材料科学与工程系材料科学与程系黄雅熙1.零级、一级、二级、三级、n级反应速率方程的特征及其应用,熟练应用速率方程式计算反应物的浓度或转化率及求值。

k2.由实验数据,应用积分法、微分法、半衰期法及隔离法等方法建立反应的速率方程,确定反应级数。

3. 阿仑尼乌斯方程的各种形式及其应用,活化能的物理意义及计算。

4.典型复合反应(对峙反应、平行反应、连续反应等)的特征及其积分速率方程的应用(主要为1-1级反应)。

5. 5.重点掌握根据稳态近似法和平衡态近似法由复合反应的反应历程推导或证明机理速率方程;推导表观活化能与基元反应活化能的关系。

6. 掌握链反应的特点及速率方程的推导。

, 7.了解催化作用的通性及单相多相催化反应的特点, 催化剂特征及作用。

8. 酶催化特征和酶催化反应的简单机理。

反应级数及反应分子数反应级数:速率方程中各反应物浓度项上的指数称为该反应物的级数;反应级数可以是正数、负数、整数、分数或零,有的反应无法用简单的数字来表示级数。

总包反应的反应级数必须通过实验测定各反应物的技术反应分子数:基元反应中实际参加反应的反应物的分子数。

只能是1、2、3分子反应。

基元反应的反应分子数等于反应级数。

一级反应的特点1.k 的特1. 速率系数k 的单位为时间的负一次方,时间t 可以是秒(s),分(min),小时(h),天(d)和年(a)等。

2. 半衰期(half-life time )是一个与反应物起始2/1t 浓度无关的常数,。

1/21ln 2/t k =3. t ln c 与呈线性关系。

A 引(1) 所有分数衰期都是与起始物浓度无关的常数。

伸的(2)1/23/47/8::1:2:3t t t =(特(3))exp(/10t k c c −=t 点0/c c 反应间隔t 相同, 有定值。

2、复合反应的动力学•对峙反应的微分式•对峙反应•对峙反应的积分式•对峙反应的特点•两个一级平行反应的微分、积分式•平行反应•两个二级平行反应的微分、积分式•平行反应的特点•连续反应的微分、积分式•连续反应•连续反应的近似处理•连续反应的c~t关系图•中间产物极大值的计算对峙反应的特点1.净速率等于正、逆反应速率之差值2.达到平衡时,反应净速率等于零3.正、逆速率系数之比等于平衡常数K=kf /kb4.在c~t图上,达到平衡后,反应物和产物的浓度不再随时间而改变连续反应的c~t关系图(1)阿仑尼乌斯方程表示反应速率与温度关系的最常用方程,阿仑尼乌斯方程特点适用于基元反应和非基元反应。

2021年第8章 化学动力学自测题

2021年第8章  化学动力学自测题

第8章 化学动力学自测题欧阳光明(2021.03.07)1.在一定条件下,基元反应为A +B →D ,则此反应为( )分子反应。

若实验测定时,起始浓度A,0c >>B,0c ,即可认为反应过程中A,0c 近似不变,则此反应的级数为( )。

( )A 、2,2;B 、1,2;C 、2,1;D 、1,1。

2.反应A →B ,若开始时B,0c =0,A 的起始浓度为A,0c ,当反应物A完全转化B 时,需时为t ,而反应掉A 的起始浓度A,0c 之一半时,所需时间为t 1/2,则得t ⁄ t 1⁄2=2,则此反应的级数为( )。

A 、零级;B 、一级;C 、3/2级;D 、二级。

3.反应2A →3B ,其速率方程可表示为21A A A B d /d 2c t k c c --=或21B B A B d /d c t k c c -=则两者的速率常数之比,即A B /k k =( )。

A 、2;B 、2/3;C 、3/2;D 、3。

4. 已知某气相反应2A(g) →2B 十C 的速率常数k 的单位为dm 3×mol -1×S -1。

温度一定下,若反应开始时,A 的浓度为A,0c =1mol×dm 3,实验测得:A 反应掉1/2A,0c 所需的时间t 1/2与反应掉3/4A,0c 时所需时间t 3/4之差为600 s,则t l/2=( )。

A 、300 s ;B 、600s ;C 、900S ;D 、数据不足,无法计算。

5. 下列所列举的反应中,哪一反应有可能(注意是可能)是基元反应( )。

A 、A+ 21B →C+D ; B 、A+B→D ,其速率方程为1/2A A A B d /d c t k c c -=;C 、A +B →C +E ,其反应速率随温度升高而降低;D 、A +B →E,其速率方程A A A B d /d c t k c c -=。

6.某反应B →C+ D 的速率方程可表示为B d d c t -=B B n k c ,在300k 下,则此反应的级数为( )。

第四版无机化学习题及答案

第四版无机化学习题及答案

第一章原子结构和原子周期系1-1根据原子序数给出下列元素的基态原子的核外电子组态:(a)K (b)Al (c)Cl (d)Ti(Z=22)(e)Zn(Z=30)(f)As(Z=33)答:(a)[Ar]4s1(b)[Ne]3s23p1(c)[Ne]3s23p5(d)[Ar]3d54s2(e)[Ar] 3d104s1(f)[Ar]4s24p3 1-2给出下列原子或离子的价电子层电子组态,并用方框图表示轨道,填入轨道的电子用箭头表示。

(a)Be (b)N (c)F (d)Cl-(e)Ne+(f)Fe3+(g)As3+1-3 Li+、Na+、K+、Rb+、Cs+的基态的最外层电子组态与次外层电子组态分别如何1-4以下+3价离子那些具有8电子外壳Al3+、Ga3+、Bi3+、Mn3+、Sc3+答:Al3+和Sc3+具有8电子外壳。

1-5已知电中性的基态原子的价电子层电子组态分别为:(a)3s23p5(b)3d64s2(c)5s2(d)4f96s2(e)5d106s1试根据这个信息确定它们在周期表中属于那个区、哪个族、哪个周期。

答:(a)p区,ⅦA族,第三周期(b)d区,Ⅷ族,第四周期(c)s区,ⅡA族,第五周期(d)f区,ⅢB族,第六周期(e)ds区,ⅠB族,第六周期1-6根据Ti、Ge、Ag、Rb、Ne在周期表中的位置,推出它们的基态原子的电子组态。

答:Ti位于第四周期ⅣB族,它的基态原子的电子组态为[Ar]3d24s2;Ge位于第四周期ⅣA族,它的基态原子的电子组态为[Ar]3d104s24p2;Ag位于第五周期ⅠB族,它的基态原子的电子组态为[Kr] 4d105s1;Rb位于第五周期ⅠA族,它的基态原子的电子组态为[Kr] 5s1;Ne位于第二周期0族,它的基态原子的电子组态为[He] 2s22p6。

1-7某元素的基态价层电子构型为5d36s2,给出比该元素的原子序数小4的元素的基态原子电子组态。

答:该元素的基态原子电子组态为[Xe] 4f126s2。

(医学课件)化学动力学基础ppt演示课件

(医学课件)化学动力学基础ppt演示课件


则单位体积内所有运动着的 A 分子与 B 分 子的碰撞频率为:
NA Z AB ZAB V d
2 AB
N A NB 2 2 u A u B ( 3) 2 V
.中国科学技术大学化学物理系屠兢

11
由分子运动论得:
〈u A〉 8RT , 〈u B〉 M A 8RT M B
NA 2 u A V
2 AA
2d
NA 8RT V M A
.中国科学技术大学化学物理系屠兢
ZAA 2d
15
2 AA
NA 8RT有 A 分子间的碰撞频率即为:
Z AA
1 NA ZAA 2 V
1 乘以系数 是因为每一对碰撞 A i A j 2 被重复计算了两次 :A i A j; A i A j
.中国科学技术大学化学物理系屠兢

17
常温常压下,ZAB ~ 1035 m3s1,若每次
碰撞均为可发生反应:A + B P 的有
效碰撞,则单位体积内 A 分子的消耗速
率即为 A、B 分子的碰撞频率:
NA d( ) d[ A] V L Z AB dt dt
.中国科学技术大学化学物理系屠兢
23 1 3 1 3
Z AB:m
s
1
.中国科学技术大学化学物理系屠兢
Z AB d
14
2 AB
NB 2 2 u A uB V

若体系中只有一种 A 分子,则单位体积内某 一 A i 分子与其它 A j ( j i ) 分子的碰撞频率:
ZAA d
2 AA
b)无效碰撞频率远大于(高能分子的)有效

基础化学第三版习题答案1-8章

基础化学第三版习题答案1-8章

习 题 答 案第一章 绪论1、求0.010kgNaOH 、0.100kg (21Ca 2+)、0.10kg (21Na 2CO 3)的物质的量。

解:(1)m (NaOH) = 0.010kg M (NaOH) = 40g ·mol -1n (NaOH) =4010= 0.25 (mol) (2)m (21Ca 2+) = 0.100kg M (21Ca 2+) = 40g ·mol -1 n (21Ca 2+) =20100= 5.0(mol) (3)m (21Na 2CO 3) = 0.10kg M (21Na 2CO 3) = 53g ·mol -1 n (Na 2CO 3) =53100= 1.89 (mol) 2、下列数值各有几位有效数字?(1)1.026 4位 (2)0.0208 3位 (3)0.003 1位(4)23.40 4位 (5)3000 无数位 (6)1.0×10-3 2位 3、应用有效数字计算规则,计算下列各式:(1)21.10 - 0.263 + 2.3 = 23.1 (2)3.20×23.45×8.912 = 667(3)31026.117.2322.3⨯⨯= 5.93×10-3(4)=⨯⨯⨯-15.2325.21032.44.52 4.6×10-2 4、(1) 以H 2SO 4为基本单元,M(H 2SO 4)=98g/mol ; (2) 以HSO 4-为基本单元,M(HSO 4-)=97g/mol ; (3) 以3H 2SO 4为基本单元,M(3H 2SO 4)=294g/mol 。

5、答:甲的报告更为合理,百分比小数点后保留两位有效数字。

第二章 溶液与胶体1、在25o C 时,质量分数为0.0947的稀硫酸溶液的密度为1.06g ·L -1,在该温度下纯水的密度为0.997 g ·L -1。

生物化学第8章 酶促反应动力学

生物化学第8章 酶促反应动力学

10.2 酶的抑制作用
酶的失活与抑制的区别
酶抑制程度的表示方法
酶抑制作用的类型
可逆与不可逆抑制作用的鉴别
可逆抑制作用动力学
一些重要的抑制剂
10.2 酶的抑制作用
10.2.1 酶的失活与抑制的区别
凡是使酶蛋白质变性而引起酶活力 丧失的作用称为失活作用;由于酶 必需基团化学性质的改变,但酶未 变性,而引起酶活力的降低或丧失 而称为抑制作用。
酶与底物的亲和力。
10.1.3 Km的意义
酶 底物 Km/moLL-1 1.2 2.0 2.5 1.8 10-4 10-3 10-5 10-5
谷氨酸脱氢酶 谷氨酸 -酮戊二酸 NAD+ NADH
丙酮酸羧化酶 丙酮酸 HCO3ATP
4.0 10-4 1.0 10-3 6.0 10-5
酶的非竞争性抑制作用
酶的反竞争性抑制作用
酶只有与底物结合后才能与抑制剂结
合。L-Phe,L-Arg等对碱性磷酸酶的
作用是反竞争性抑制,肼类化合物抑 制胃蛋白酶、氰化物抑制芳香硫酸酯 酶的作用也属此类。
10.2.4 可逆与不可逆抑制的鉴别
Shi, G., et al. Environ Health Perspect, 2009. 117(3): p. 379-86
最适温度 受诸多因 素影响
温度系数Q10:2左右 温度升高反应速率加快,但过高酶蛋白变性
10.3 温度对酶反应的影响
rate of reaction (µmol /min)
1 min incubation
10 min incubation
0 20 40 60 80 100
temperature (° C)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①微分式
dC 2 A kC A dt
21
②积分式
dCA 2 kdt CA
1 1 0 kt CA CA
1 1 kt 0 CA CA
1 / CA
k
t
以1/CA对t作图为一直线,斜率为k。
(1) Br2 + M(器壁) 2 Br + M (2) Br + H2 HBr + H (3) H + Br HBr (4) H + HBr H2 + Br (5)(5) Br + Br Br2 + M
其中每一反应步骤称为一个基元反应
11
4. 基元反应与反应分子数 基元反应:反应物在碰撞中相互作用 直接转化为生成物的反应。 非基元反应:反应物在碰撞中需经过 若干步骤才转化为产物的反应。 反应分子数:在基元反应中参加反应 的反应物微粒数目。 反应机理或反应历程:反应所经历的 具体步骤。
dc 1 dc 1 dc 1 dc C 1 A B v D a dt b dtc dtd dt
反应物是消耗速率,产物为生成速率。
4
2. 反应速率的测定
1 dc i v i dt
浓度-时间 的关系曲线
5
(1) 化学法(直接) 如骤冷、冲稀、加阻化剂等方法。 (2) 物理法(间接) 已知:物质浓度—某物理量 测定:体系的某物理量随时间的变化关系。 如电动势、电导、吸光光谱、折射率、 压力、体积等。
1 /2 d [ H ] k [ H ][ Br ] 2 2 2 ' dt 1 k [ HBr ] /[ Br ] 2
无反应级数
c. 反应级数由实验确定,与化学反应计 量式没有必然关系。化学反应计量式 不能说明反应所经历的具体途径。
10
反应: H2 + Br2 == 2HBr 实验测得由5 步骤组成:
6
3. 化学反应的速率方程
在一定温度下,反应速率v与化学反应 体系中物质的浓度之间的关系称为该化学 反应的速率方程。 对于一些较简单的情况,可得到经验速 率方程形式为: v kC C
A B
7
v kC C A B
k为速率常数,各浓度的方次、分别称 为物质A、物质B的反应级数。 + + … = n,n称反应的总级数。
14
§8.2 速率方程的积分形式
1. 一级反应
(1) 定义:凡是反应速率只与反应物浓度的 一次方成正比的反应称为一级反应。
如放射性元素的蜕变反应、分子重排 反应:
N2O5 = 2NO2 + (1/2)O2等。
15
(2) 特征
对某一级反应
A P
k 1
t=0 t=t
a. 微分式
CA 0 = a CA 18
d. 反应转化率与半衰期
1 1 t ln k1 1 y
反应转化率与反应物的初始浓度无关,仅 与反应时间有关。 半衰期t1/2:反应物消耗一半所需的时 间,即y = ½时所需时间
ln2 0 .6932 t1/2 k1 k1
19
一级反应的半衰期t1/2与反应速率常数成 反比,与反应物的初始浓度无关。
12
5. 质量作用定律 在基元反应中,反应速率与各反应物的浓度 成正比,各物质浓度的幂指数即为反应式中 对应物质的计量系数---质量作用定律。 如基元反应:H + Br HBr v1 = k1[H][Br]
13
说明:
a. 质量作用定律只适用于基元反应。
b. 基元反应的反应分子数等于反应级数。 c. 速率常数的大小反映了反应速度的快慢, 它不受浓度的影响。

8
说明:
v kC C A B

a. 反应级数可为整数、分数、正数、负数或 零,它的大小反映了物质浓度对反应速率的 影响情况。 如 2O3 ==3O2
vk C C
2 O 3
1 O 2
b. 当反应速率以幂函数的形式表示时,该反 应有反应级数,否则没有反应级数。
9
如反应为 H2 + Br2 == 2HBr,实验测得
2
§8.1 化学反应速率及速率方程
1. 反应速率定义 化学反应进行时,反应物或生成物的浓 度随时间的变化率。 定义:
1 d v V dt
dn i d i
dn d ( n V ) 1 dc 1 1 1 i i/ i v V dt i dt i i dt
3
说明:
a. 单位:浓度时间-1 b. 对任意反应 aA + bB = cC +dD
ln2 0 .6932 t1/2 k1 k1 ln 3 t 2/3 k1 ln 4 2 ln 2 t3 2 t /4 1 /2 k k 1 1 ln 16 4 ln 2 t 4 t 1/ 5 16 1 /2 k k 1 1
20
2. 二级反应 (1) 对某反应物A为二级反应(其余为0级或 浓度视为不变) A+BP+…
d ( a x ) v k ( a x ) 1 dt
dx k1(a x) dt
17
定积分:
dx k1dt (a x)
a ln k1t a x
0 1 a 1 C A k ln ln 1 t ax t C A
lnCA = -k1t + lnCA0 令y为反应物的转化率,y = x/a,代入,则
第八章 化学动力学 §8.0 化学动力学的任务和目的
1. 目的和任务 (1) 研究:反应速率和各种影响因素。 (2) 研究:反应历程,找出关键因素。 反应历程:反应物转化为产物所经历的 具体途径和步骤。
1
2. 意义 (1)找出控制反应速率的因素,寻求合适的反 应条件。 (2)了解反应历程可帮助了解物质结构、加深 对物质结构的理解。 (3)多、快、好、省地使化学反应按所希望方 向进行。
CP0 = 0 C P0 = x
dC dC A v P k C 1 A dt dt
16
b. 速度常数单位
因反应速度的单位是(浓度时间-1),故k1的单 位为时间-1。
dC dC A v P k C 1 A dt dt
c. 积分式:
dC dC A v P k C 1 A dt dt
相关文档
最新文档