仪器分析红外光谱实验
红外光谱操作规程
红外光谱操作规程
《红外光谱操作规程》
一、实验目的
本实验旨在通过红外光谱仪对样品进行测试,得出样品的红外光谱图谱,从而分析样品的成分和结构。
二、实验原理
红外光谱仪是利用物质对红外光的吸收、散射、反射等现象,来研究物质的结构和成分的一种分析仪器。
样品在受到红外光照射后,会产生红外光谱图谱,不同物质的谱图会呈现出不同的特征峰,通过比对标准谱图,可以得出样品的成分和结构。
三、实验步骤
1. 将样品放置在红外光谱仪的样品台上,调整仪器参数使得样品受到适当的红外光照射。
2. 开始测试,观察样品的红外光谱图谱,并记录相关数据。
3. 根据记录的数据,对谱图进行分析,得出样品的成分和结构。
四、实验注意事项
1. 操作人员需穿戴好实验服和防护眼镜,确保个人安全。
2. 在操作过程中,需注意样品的处理和测试,避免样品受到污染或损坏。
3. 操作人员应熟悉红外光谱仪的使用方法,并了解处理紧急情况的应急措施。
五、实验结果处理
根据实验得出的数据和谱图,分析得出样品的成分和结构,并将结果记录下来。
六、实验结论
根据实验结果,得出样品的成分和结构,并对实验过程中的问题进行总结和改进。
以上就是《红外光谱操作规程》的相关内容,希望可以对进行红外光谱实验的人员提供一些参考。
仪器分析实验有机化合物的红外光谱分析解读
仪器分析实验有机化合物的红外光谱分析 2015年4月21日有机化合物的红外光谱分析开课实验室:环境资源楼312【实验目的】1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作;2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程;3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。
【基本原理】• 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对物质进行定性和定量分析。
特别是对化合物结构的鉴定,应用更为广泛。
• 红外吸收法:类型:吸收光谱法;原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。
这是因为分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。
当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对化合物进行定性和定量分析;条件:分子具有偶极矩。
【仪器与试剂】1、仪器:傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机;玛瑙研钵;红外灯。
2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。
【实验步骤】1、样品制备(1)固体样品:KBr压片法在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。
在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。
KBr压片形成后,若已透明,可用夹具固定测试;(2)液体样品:液膜法取一对NaCl窗片,用刮勺沾取液体滴在一块窗片上,然后用另一块窗片覆盖在上面,形成一个没有气泡的毛细厚度薄膜,用夹具固定,即可放入仪器光路中进行测试,此法适用于高沸点液体样品。
仪器分析-红外吸收光谱法
第 6 章红外吸收光谱法6.1 内容提要6.1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。
红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。
振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。
不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。
分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。
转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。
分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。
伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。
弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。
红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。
诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。
共轭效应——分子中形成大键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。
氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。
溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。
基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。
振动偶合一一两个相邻基团的振动之间的相互作用称为振动偶合。
基团频率区一一红外吸收光谱中能反映和表征官能团(基团)存在的区域。
仪器分析课件-第10章-红外光谱分析法
13:15:17
红外光谱分析基本原理
三、 分子的振动形式
两类基本振动形式:变形振动和伸缩振动。以甲烷为例:变形振动
13:15:17
红外光谱分析基本原理
五. 红外光谱峰的吸收强度 P297
这种方法适用于组分简单,样品厚度一定(一般在液体样品 池中进行),特征吸收谱带重叠较少,而浓度与吸光度不成线性 关系的样品。
13:15:17
红外光谱的应用
3 .吸收度比法 该发适用于厚度难以控制或不能准确测定其厚度的样品,例如厚度不均匀 的高分子膜,糊状法的样品等。这一方法要求各组分的特征吸收谱带相互 不重叠,且服从于郎伯 — 比尔定律。 如有二元组分 X 和 Y ,根据 朗伯 -比尔定律 ,应存在以下关系;
1.位置:由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低 波数区(高波长区); 2.峰数:分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子 组成的分子,其自由度为3 n
3n= 平动自由度+振动自由度+转动自由度 分子的平动自由度为3,转动自由度为:非线性分子3,线性分子2
13:15:17
红外光谱的应用
二、定性分析
定性分析大致可分为官能团定性和结构定性两个方面。 定性分析的一般过程: 1. 试样的分离和精制 2.了解与试样性质有关的其它方面的材料 3. 谱图的解析 4. 和标准谱图进行对照 5. 计算机红外光谱谱库及其检索系统 6. 确定分子的结构
13:15:17
红外光谱的应用
仪器分析第十五章红外吸收光谱法
苯的衍生物在2000-1650cm-1区域出现C-H面外弯曲变 形振动的倍频或者组合频吸收,但因为强度较弱,只有在加 大样品浓度时才呈现出来。可以根据该区的吸收情况,判断 苯环的取代情况。
影响基团频率位移的因素-外部因素和内部因素
(1)电子效应-包括诱导效应、共轭效应和中介 效应,是由于化学键的电子分布不均匀引起的。
诱导效应(I效应)-由于取代基的不同的电负性, 通过静电诱导作用,引起分子中的电子分布的变化, 改变了键的力常数,使特征频率发生位移。例如有 电负性较强的元素如Cl与羰基相连时,由于诱导效 应,发生氧上电子转移,使C=O的力常数变大,吸 收向高波数移动。元素电负性越强,移动越厉害。
组频——如果分子吸收一个红外光子,同时激 发了基频分别为v1和v2的两种跃迁,此时所产 生的吸收频率应该等于上述两种跃迁的吸收频 率之和,故称组频。
对谐振子,倍频、组频均为禁阻跃迁。
但由于真实分子的非谐性,倍频、组频跃迁几 率并不为零。但强度都很弱。
分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定, 则由N个原子组成的分子就有了3N个坐标,或称为 有3N个运动自由度。分子本身作为一个整体,有三 个平动自由度和三个转动自由度。
线性分子只有两个转动自由度,因为总有一个 轴心于双原子分子的键轴重合,原子在空间的 坐标并不改变。线性分子的振动自由度为3N-5, 非线性为3N-6。
例如苯分子的振动自由度为3×12-6=30,即30 种简正振动。任何一个分子的振动,都可看成 3N-6或者3N-5个简正振动的叠加而成。
实验报告红外光谱测定物质结构实验
实验报告红外光谱测定物质结构实验实验报告:红外光谱测定物质结构实验引言:本实验旨在通过红外光谱仪器对给定的物质进行测试,以确定其分子结构和功能基团。
红外光谱是分析有机和无机物质结构的重要方法之一,通过测定物质在红外光波长上的吸收区域,可以了解物质分子的振动和转动信息,从而推断出物质的结构和组成。
1. 实验设计1.1 实验目的通过红外光谱测定给定物质的吸收峰和特征波数,确定物质的结构和功能基团。
1.2 实验原理红外光谱的原理是利用红外光波长下光的吸收特性与物质的振动和转动状态相关。
物质中的化学键和功能基团会吸收特定波数的红外光,在红外光谱图上形成吸收峰。
这些吸收峰的位置和强度可以提供物质结构和功能基团的信息。
1.3 实验步骤1. 首先,将待测物质样品制备成适当形式,如将其压片或溶解于适宜的溶剂中。
2. 将样品放入红外光谱仪器中,调整仪器的参数,如光源强度、扫描范围等。
3. 启动仪器开始扫描,记录红外光谱数据。
4. 根据红外光谱数据分析吸收峰的位置和形状,推断物质分子的结构和功能基团。
2. 实验结果与讨论2.1 实验结果根据实验操作,得到了物质A的红外光谱图,如下图所示。
(插入红外光谱图)2.2 结果分析根据红外光谱图,我们可以看到在波数范围X到Y之间出现了多个吸收峰。
根据化学键的特性和功能基团的吸收特点,我们可以推测物质A的结构和功能基团如下:(根据实际情况,增加关于物质A的结构和功能基团的推测)2.3 讨论红外光谱的分析结果对于确定物质结构和功能基团具有重要意义。
然而,在实际操作中可能会存在一些误差和限制。
例如,有些物质吸收峰重叠或弱,导致结构和功能基团的推断不够准确。
此外,样品制备和仪器参数的选择也会对结果产生影响。
因此,在进行红外光谱分析时,需要综合考虑多种因素。
3. 结论通过红外光谱测定,我们成功确定了物质A的结构和功能基团。
这一实验结果对于进一步研究物质的性质以及开展相关领域的科学研究具有重要意义。
仪器分析红外光谱法
仪器分析红外光谱法红外光谱法是一种常用的仪器分析方法,可以用于分析物质的组成和结构。
本文将详细介绍红外光谱法的原理、仪器设备和应用领域,并对其中的一些关键技术进行探讨。
红外光谱法是一种基于化学键振动的分析技术。
通过测量样品在红外辐射下的吸收光谱,可以获得有关样品分子的信息。
红外辐射的波长范围为0.78-1000微米,对应的频率范围为12.82-3000THz。
在这个频率范围内,物质的分子会吸收特定波长的辐射能量,这些吸收峰对应着不同的化学键振动。
通过比较样品的吸收光谱和标准库中的光谱,可以确定样品的组分或结构。
红外光谱仪是进行红外光谱分析的关键设备。
它主要由光源、样品室、光谱分束系统和探测器组成。
常见的光源有红外灯、光纤波导和测量系统本体产生的光源,它们的特点是辐射能量可见、红外或拉曼光谱区域。
光谱分束系统可以将样品吸收的红外光谱分解为连续光的波长与光强分布的结果,常用的分束器有棱镜和光栅两种。
光谱分束系统将被分解的光聚集到一个探测器上进行测量,常见的探测器有热电偶、焦平面阵列、差分红外探测器等。
根据实际需要,还可以配备测光计、计算机等辅助设备,以提高测量的准确性和效率。
红外光谱法在实际应用中有广泛的用途。
它可以用于各种领域的研究和分析,如化学、材料科学、制药、食品科学等。
红外光谱法可以用于分析有机化合物、无机物质、生物大分子等类型的样品。
在有机化合物分析中,红外光谱法可以确定化学键的类型、鉴别不同的功能基团、判断化学结构等。
在材料科学中,红外光谱法可以用于表面分析、结构表征、聚合物反应动力学等研究。
在制药和食品科学中,红外光谱法可以用于药物质量控制、药物配方优化、食品成分分析等。
为了提高红外光谱法的测量精度和灵敏度,一些关键技术被引入到了仪器分析中。
其中,ATR技术(全反射红外光谱技术)是一种常用的技术。
它通过将样品直接置于晶体表面进行测量,避免了传统方法中液体制备和气体膜片制备的麻烦。
此外,荧光红外光谱技术也是一项重要的技术。
红外光谱实验报告
红外光谱实验报告1.基本原理1.1概述红外光谱法⼜称“红外分光光度分析法”。
简称“IR”,是分⼦吸收光谱的⼀种。
它利⽤物质对红外光区的电磁辐射的选择性吸收来进⾏结构分析及对各种吸收红外光的化合物的定性和定量分析的⼀法。
被测物质的分⼦在红外线照射下,只吸收与其分⼦振动、转动频率相⼀致的红外光谱。
对红外光谱进⾏剖析,可对物质进⾏定性分析。
化合物分⼦中存在着许多原⼦团,各原⼦团被激发后,都会产⽣特征振动,其振动频率也必然反映在红外吸收光谱上。
据此可鉴定化合物中各种原⼦团,也可进⾏定量分析。
1.2⽅法原理1.2.1红外光谱产⽣条件每种分⼦都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分⼦进⾏结构分析和鉴定。
红外吸收光谱是由分⼦不停地作振动和转动运动⽽产⽣的,分⼦振动是指分⼦中各原⼦在平衡位置附近作相对运动,多原⼦分⼦可组成多种振动图形。
当分⼦中各原⼦以同⼀频率、同⼀相位在平衡位置附近作简谐振动时,这种振动⽅式称简正振动(例如伸缩振动和变⾓振动)。
分⼦振动的能量与红外射线的光量⼦能量正好对应,因此当分⼦的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分⼦⽽振动⽽产⽣红外吸收光谱。
分⼦的振动和转动的能量不是连续⽽是量⼦化的。
但由于在分⼦的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。
所以分⼦的红外光谱属带状光谱。
分⼦越⼤,红外谱带也越多总之,要产⽣红外光谱需要具备以下两个条件:a.辐射应绝缘且能满⾜物质产⽣振动跃迁所需要的能量;b.辐射与物质见⼜相互耦合作⽤,分⼦啊在振动过程中必须有瞬间偶极矩的改变。
1.2.2应⽤范围红外光谱对样品的适⽤性相当⼴泛,固态、液态或⽓态样品都能⽤该⽅法进⾏分析,⽆机、有机、⾼分⼦化合物也都可检测。
红外光谱分析可⽤于研究分⼦的结构和化学键,也可以作为表征和鉴别化学物种的⽅法。
红外光谱具有⾼度特征性,可以采⽤与标准化合物的红外光谱对⽐的⽅法来做分析鉴定。
利⽤化学键的特征波数来鉴别化合物的类型,并可⽤于定量测定。
红外光谱分析实验报告
红外光谱分析实验报告摘要:本实验旨在通过对苯甲酸与红外光谱仪进行红外光谱分析,探究它在红外光谱图上的不同吸收峰和峰位,从而得到苯甲酸的结构信息。
实验结果表明,苯甲酸在红外光谱图上有多个不同的吸收峰,每个峰对应不同的化学键振动,从而可以推测出苯甲酸的结构。
1.引言红外光谱分析是一种常用的分析方法,通过测量分子在红外光谱范围内的吸收光谱,可以得到分子的结构信息。
红外光谱通常分为三个区域:波长大于4000 cm-1的区域为近红外区,波长在4000-400 cm-1之间的区域为中红外区,波长小于400 cm-1的区域为远红外区。
每个区域内的吸收峰和峰位都对应不同的化学键振动,通过分析吸收峰的位置和强度,可以推测出分子的结构。
2.实验方法2.1实验仪器本实验使用的是红外光谱仪,包括光源、样品室、分光仪和检测器等部分。
2.2实验样品本实验使用的样品为苯甲酸,是一种有机化合物,化学式为C7H6O22.3实验步骤(1)将样品固态苯甲酸粉末放入红外吸收基片中。
(2)将基片放入红外吸收仪的样品室中。
(3)调节仪器到合适的波长范围,并选择合适的分辨率。
(4)开始记录红外光谱。
3.实验结果与分析通过实验记录的红外光谱图,我们可以看到苯甲酸在红外光谱上有多个吸收峰。
3.1振动峰的解释根据已知的红外光谱对照表,我们可以将各个峰位与不同化学键的振动相对应。
(1)在3100-2850 cm-1的范围内,我们观察到了一个强吸收峰,对应C-H的伸缩振动。
(2)在1700-1580 cm-1的范围内,我们观察到了一个强吸收峰,对应羧基的伸缩振动。
(4)在740-690 cm-1的范围内,我们观察到了一个强吸收峰,对应苯环上的C-H的弯曲振动。
3.2结构推测根据各个化学键的振动峰对应,在苯甲酸的红外光谱图上,我们可以推测出该化合物的结构。
苯甲酸的结构中含有C-H键、C-C键和C=O键。
根据实验结果,我们可以观察到C-H和C=O的伸缩振动峰位,以及苯环上的C-H的变形和弯曲振动峰位。
整理仪器分析—红外光谱分析法课件
仪器分析红外光谱分析法课件
整理表
姓名:
职业工种:
申请级别:
受理机构:
填报日期:
A4打印/ 修订/ 内容可编辑
教学日历(2020 至2021 学年第一学期)
课程名称现代仪器分析课程性
质必修
总学时48 讲授40 实验8 上机0
授课班级环科18-1,18-2 学生人
数51
任课教师王广利职称副教授
开课学院地球科学学院系(教研室)盆地中心教材名称仪器分析(第四版)编/著者朱明华
出版单位高等教育出版社出版时
间2008
中国石油大学(北京)教务处制
第1页共6页
第2页共6页
整理丨尼克
本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。
第3页共6页。
仪器分析红外光谱法
一 官能团区和指纹区
官能团区:4000-1300 cm-1 (伸缩振动) 1) 4000-2500 cm-1 x-H伸缩振动(x: O, N, C, S)
O-H: 3700-3200 cm-1 COO-H: 3600-2500 cm-1 N-H: 3500-3300 cm-1
{ C-H >3000 cm-1, 不饱和,=C-H或≡C-H <3000 cm-1, 饱和,-C-H
2. 影响吸收峰强度的因素
振动能级的跃迁几率 基态(v=0)至第一激发态(v=1)跃迁几率大, 基频吸收带较强
基态(v=0)至第二激发态(v=2)跃迁几率小, 倍频吸收带较弱
振动过程中偶极矩的变化
0
0
r•q
O C O 0
C、O电负性差别大, 伸缩振动时, 偶极矩变化大
CO强度 CC强度,
O=C=O反对称伸缩振动偶极矩发生变化 红外吸收。 O=C=O对称伸缩振动偶极矩无变化 无红外吸收峰产生
1: OH 2: CO
CC16 9155c4m 0 1
1640cm-1
1613cm-1
(二)外部因素
物质状态 溶剂
§5-4 红外光谱仪及制样方法
一 色散型红外分光光度计
1 基本组成
1) 光源
能斯特灯 稳定, 不需用水冷却。但需预热, 机械强度差。
硅碳棒 使用波数范围较宽, 坚固, 发光面积大。电极接
触部分需用水冷却。
1730
1800
.. O R C Cl
O RCF
1920
共轭效应I(M效应)
CO(cm1)
O RБайду номын сангаасC NH2
1680
O R C OR
仪器分析_红外光谱法
C
C
C
C
C
C
2220 cm-1
1667 cm-1
1430 cm-1
2 原子的折合质量 反映了基团质量特性,折合
质量越小,则基频峰波数越大。
39
C
C
C
N
C
O
1430 cm-1
1330 cm-1
1280 cm-1
利用实验得到的化学键力常数和计算式,可以 估算各种类型基团的基频吸收峰的波数。
由于各种有机化合物的结构不同。它 们的原子质量和化学健力常数各不相同, 红外吸收频率也不相同,因此,不同有 机化合物的红外光谱具有高度特征性。
(转动自由度)
29
2、振动自由度
设分子原子数目为 N 个,在空间确定一个原子的 位置,需要3个坐标( x, y, z ),所以,N 个原子需要 3N个坐标或自由度,分子中N 个原子自由度总数:
3 N = 平动自由度 + 振动自由度 + 转动自由度
振动自由度数目: 振动自由度 = 3 N — 平动自由度— 转动自由度 显然,分子整体可以分别沿 x, y, z 三个方向移动, 所以,分子平动自由度为 3;
27
二、分子的振动自由度与红外吸收的理论峰数
理论上讲,分子的每一种振动形式都会产生一 个基频吸收峰,即对于一个多原子分子:
基频吸收峰的数目 = 分子所有的振动形式的数目
(振动自由度)
28
1、分子的运动形式
A 分子中各原子在其平衡位置附近的振动(振动自由度)
B 分子作整体的平动 (平动自由度)
C 分子围绕 x, y, z 轴的转动
第十章 红外吸收光谱分析 (红外吸收光谱法)
Infrared Spectrometry (IR)
仪器分析实验报告红外(3篇)
第1篇一、实验目的1. 掌握红外光谱仪的使用方法。
2. 学会利用红外光谱分析物质的结构和组成。
3. 熟悉红外光谱图的基本分析方法。
二、实验原理红外光谱分析是利用物质分子中的化学键和官能团在红外光区吸收特定波长的红外光,产生振动和转动能级跃迁,从而获得物质的红外光谱图。
红外光谱图中的吸收峰可以提供有关物质结构的信息,如官能团、化学键、分子构型等。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、移液器、烘箱等。
2. 试剂:待测样品、溶剂、干燥剂等。
四、实验步骤1. 样品制备:将待测样品用电子天平称量,移入样品池中,并加入适量溶剂,使样品充分溶解。
将样品池放入烘箱中,在规定温度下烘干,直至样品池中的溶剂完全挥发。
2. 样品池清洗:将烘干的样品池用去离子水冲洗,并用干燥剂干燥。
3. 红外光谱扫描:将干燥后的样品池放入红外光谱仪中,进行红外光谱扫描。
设置合适的扫描范围、分辨率和扫描次数。
4. 数据处理:将扫描得到的红外光谱图导入数据处理软件,进行基线校正、平滑处理、峰位和峰强分析等。
五、实验结果与分析1. 红外光谱图:在红外光谱图中,可以看到多个吸收峰。
根据峰位和峰强,可以初步判断待测样品的官能团和化学键。
2. 官能团分析:在红外光谱图中,3350-3400 cm^-1处的宽峰属于O-H伸缩振动,说明样品中含有羟基;2920-2850 cm^-1处的峰属于C-H伸缩振动,说明样品中含有烷基;1730-1750 cm^-1处的峰属于C=O伸缩振动,说明样品中含有羰基。
3. 化学键分析:在红外光谱图中,1500-1600 cm^-1处的峰属于C=C伸缩振动,说明样品中含有烯烃;1200-1300 cm^-1处的峰属于C-O伸缩振动,说明样品中含有醚键。
4. 分子构型分析:根据红外光谱图中的峰位和峰强,可以初步判断待测样品的分子构型。
六、实验讨论1. 实验过程中,应注意样品池的清洗和烘干,以保证实验结果的准确性。
红外光谱实验报告
红外光谱实验报告本次实验旨在通过红外光谱分析的方法,对一系列有机化合物进行鉴定和分析,以探究其结构和特性。
1. 实验目的通过红外光谱仪器,对不同有机化合物进行红外光谱分析,探究不同官能团的特征峰位和吸收强度,以此为基础,对有机化合物的结构进行分析和鉴定。
2. 实验原理红外光谱法是一种无损的分析手段,通过对物质吸收、散射、透射红外光谱的能力进行测量,从而分析物质的结构和官能团。
在红外光谱图上,不同官能团产生特征峰位,通过比对特征峰位和吸收强度,可以初步确定有机化合物的结构。
3. 实验步骤3.1 样品准备根据实验需求,选择不同有机化合物作为样品,将样品制备成固态或液态,确保样品无杂质和水分干扰。
3.2 仪器准备将红外光谱仪器打开,进行预热和标定操作,确保仪器的正常运行,并调整仪器的参数。
3.3 样品测量将样品放置在红外光谱仪器的样品室,并启动测量程序,开始进行样品的红外光谱测量。
在测量过程中,要确保样品与光线的路径一致,避免因位置不准确而造成谱图的不准确。
3.4 数据分析将测量得到的红外光谱曲线导入数据处理软件,进行谱图的分析和解读。
根据谱图上的特征峰位和吸收强度,结合有机化合物的结构特点,推测样品中的官能团和结构。
4. 实验结果与讨论通过对实验数据的处理和分析,得到了红外光谱图。
根据图中的特征峰位和吸收强度,初步判断了样品中存在的官能团和化学键。
进一步,比对标准红外光谱图,推导出有机化合物的结构和特性。
5. 实验总结本次实验利用红外光谱分析的方法,通过对不同有机化合物的红外光谱测量和分析,初步鉴定了官能团和化学结构。
同时,实验过程中注意了样品制备、仪器操作和数据分析的关键步骤,以确保实验结果的准确性。
6. 参考文献[1] XXX, XXX. 红外光谱分析原理与应用[M]. 北京:科学出版社,2000.[2] XXX, XXX. 有机化学实验指导[M]. 北京:化学出版社,2015.通过本次实验,我们进一步了解了红外光谱分析的原理和应用。
仪器分析 阿司匹林的红外光谱测绘
六、注意事项
KBr极易受潮,因此使用前应充分干燥,制样操作应在低湿度环境中或在红外灯下进行。
在压片制样过程中,固体试样必须磨细并混合均匀,加入模具中需均匀平整。
最终压制得到的晶片,透明均匀,必须无裂缝。
晶片局部发白,表示压制的晶片厚薄不匀;晶片模糊,表示晶片吸潮。
样品室保持关闭状态,里面需放置变色硅胶,当其变红时应及时更换。
七、思考题
1.利用红外光谱仪进行化合物定性分析的基本原理是什么?
2.红外吸收光谱测绘时,对固体试样的制样有何要求?
3.红外光谱实验室为什么对温度和相对湿度要维持一定的指标?。
红外光谱法(仪器分析课件)
z
目录
Contents
1 红外光谱法基本原理 2 红外光谱仪 3 红外光谱实验技术 4 红外光谱仪虚拟仿真训练 5 红外光谱法在结构分析中的应用
红外光谱法
能力目标
• 能够熟练的操作傅立叶红外光谱仪; • 能够根据样品的状态、性质选择合适
的样品处理方法; • 能够根据谱图确定常见有机化合物的
—NH2,—NH(游离) —NH2,—NH(缔合)
—SH
C—H伸缩振动
一
不饱和C—H
≡C—H(叁键) ═C—H(双键) 苯环中C—H
区
饱和C—H
域
—CH3 —CH3
—CH2
—CH2
吸收频率 (cm-1)
3650—3580 3400—3200 3500—3300 3400—3100 2600—2500
近红外、中红外、远红外区域。
概述
红外谱图的表示法
样品的红外吸收曲线称为红外吸收光谱,多用百分透射比与波数或百分透
射比与波长曲线来描述。
纵坐标为吸收强度,横坐标为波长λ (μm)和波数1/λ,单位:cm-1
有机化合物的结构解析;定性(基团的特征吸收频率);定量(特征峰的强度)
红外光谱法原理 红外吸收光谱产生的条件
C=O、C=C、C=N、NO2、苯环等的伸缩振动
1500~400cm-1
C-C、C-O、C-N、C-X等的伸缩振动及含氢基团的弯曲振动
• 基团特征频率区的特点和用途
• 吸收峰数目较少,但特征性强。不同化合物中的同种基团振动吸收 总是出现在一个比较窄的波数范围内。
• 主要用于确定官能团。
• 指纹区的特点和用途
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
仪器分析实验有机化合物的红外光谱分析
仪器分析实验有机化合物的红外光谱分析有机化合物的红外光谱分析开课实验室:环境资源楼312【实验⽬的】1、初步掌握两种基本样品制备技术及傅⾥叶变换光谱仪器的简单操作;2、通过谱图解析及⽹上标准谱图的检索,了解由红外光谱鉴定未知物的⼀般过程;3、掌握有机化合物红外光谱测定的制样⽅法,回顾基础有机化学光谱的相关知识。
【基本原理】原理概述:物质分⼦中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发⽣振动能级之间的跃迁,形成各⾃独特的红外吸收光谱。
据此,可对物质进⾏定性和定量分析。
特别是对化合物结构的鉴定,应⽤更为⼴泛。
红外吸收法:类型:吸收光谱法;原理:电⼦的跃迁:电⼦由于受到光、热、电等的激发,从⼀个能级转移到另⼀个能级的现象。
这是因为分⼦中的电⼦总是处在某⼀种运动状态中,每⼀种状态都具有⼀定的能量,属于⼀定的能级。
当这些电⼦有选择地吸收了不同频率的红外辐射的能量,发⽣振动能级之间的跃迁,形成各⾃独特的红外吸收光谱。
据此,可对化合物进⾏定性和定量分析;条件:分⼦具有偶极矩。
【仪器与试剂】1、仪器:傅⾥叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher公司,Nicolet 6700型);压⽚机;玛瑙研钵;红外灯。
2、试剂:NaCl窗⽚、KBr晶体,待分析试样液体及固体。
【实验步骤】1、样品制备(1)固体样品:KBr压⽚法在玛瑙研钵将KBr晶体充分研磨后加⼊其量5%左右的待测固体样品,混合研磨直⾄均匀。
在⼀个具有抛光⾯的⾦属模具上放⼀个圆形纸环,⽤刮勺将研磨好的粉末移⾄环中,盖上另⼀块模具,放⼊油压机中进⾏压⽚。
KBr压⽚形成后,若已透明,可⽤夹具固定测试;(2)液体样品:液膜法取⼀对NaCl窗⽚,⽤刮勺沾取液体滴在⼀块窗⽚上,然后⽤另⼀块窗⽚覆盖在上⾯,形成⼀个没有⽓泡的⽑细厚度薄膜,⽤夹具固定,即可放⼊仪器光路中进⾏测试,此法适⽤于⾼沸点液体样品。
2、仪器测试与解析(1)打开红外光谱测试软件→进⼊测试对话框→背景测试→样品测试→标峰值→打印谱图→取出样品;(2)解析谱图,推出可能的结构式。
仪器分析实验三 傅立叶变换红外光谱仪的使用及未知物的测定
实验四傅立叶变换红外光谱仪的使用及未知物的测定一、实验目的1.了解傅立叶变换红外光谱仪的使用方法。
2.学会利用谱图检索未知物分析的方法。
二、基本原理红外定性分析的依据是:若两种物质在相同测定条件下得到的红外吸收光谱完全相同,则两种物质应为同一种化合物。
据此,可以将鉴定未知物的红外吸收光谱与仪器计算机所储存的谱图库中的标准红外光谱进行检索、比对,进而推断未知物可能的结构式。
在现代红外光谱分析中,傅立叶变换红外光谱仪利用其强大的各种谱图库,通过计算机对红外光谱的检索、比对,广泛应用于许多物质的定性鉴定。
三、仪器与试剂1.仪器美国PE公司BX-Ⅱ型红外光谱仪压片机玛瑙研钵2.试剂溴化钾(光谱纯或分析纯)130℃下干燥24h,存于干燥器中,备用。
四、实验步骤1.采用薄膜法,将未知薄膜进行扫描,并与谱图中的红外标准光谱进行检索、比对。
五、结果处理1.通过将聚苯乙烯薄膜或聚乙烯薄膜的红外光谱与谱图库中聚苯乙烯薄膜的标准光谱进行比对,主要对2850.7cm-1、1601.4cm-1及906.7cm-1的吸收峰进行检验。
在2000—4000cm-1范围内,波数误差不大于±10cm-1。
在650—2000cm-1范围内,波数误差不大于±3cm-1。
2.通过将未知物的红外光谱与谱图库中的标准光谱进行检索、比对,推断未知有机物可能的结构式。
实验结论:由上图可以推断出该未知物的可能结构为:聚苯乙烯六、讨论和总结傅立叶变换红外光谱法的特点主要有:1、多路有点。
狭缝的废除大大提高了光能的利用率。
样品置于全部辐射波长下,因此全波长的范围下的吸收必然改进信噪比,使测量灵敏度和准确度大大提高。
2、分辨率提高。
分辨率决定于动镜的线性移动距离,距离增加,分辨率提高。
3、波数准确度高。
由于引入激光参比干涉仪,用激光干涉条纹准确测定光程差,从而使波数更加准确。
4、测定的光谱范围宽。
5、扫描速度极快,在不到1s 的时间里可获得图谱,比色散型仪器高几百倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪器分析实验报告
实验名称:红外光谱分析(IR)实验学院:化学工程学院
专业:化学工程与工艺
班级:化工112
姓名:王文标学号11402010233 指导教师:张宗勇
日期:2014.4.29
一、 实验目的
1、掌握溴化钾压片法制备固体样品的方法;
2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法;
3、初步学会对红外吸收光谱图的解析。
二、实验原理
红外光是一种波长介于可见光区和微波区之间的电磁波谱。
波长在0.75~1000μm 。
通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。
其中中红外区是研究、应用最多的区域。
红外区的光谱除用波长λ表征外,更常用波数σ表征。
波数是波长的倒数,表示单位厘米波长内所含波的数目。
其关系式为:
)(10)(4
1
cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。
它最广泛的应用还在于对物质的化学组成进行分析。
用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。
其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。
它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。
而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。
因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。
根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。
因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。
只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。
红外光谱仪可分为色散型和干涉型。
色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没
有色散元件。
本实验所演示的是傅立叶变换红外光谱仪(FTIR)。
所得的红外谱图的横坐标是波数(或波长),纵坐标是吸光度。
三、仪器和试剂
1、仪器:美国尼高立IR-6700
2、试剂:溴化钾,聚乙烯,苯甲酸
3、傅立叶红外光谱仪(FTIR)的构造及工作原理
−
−→
−
−→
−→
−
检测器
−
样品室
计算机
干涉仪
光源−→
图1 FTIR工作原理框图
四、实验步骤
1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。
2、测绘苯甲酸的红外吸收光谱——溴化钾压片法
取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。
取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。
将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。
五、注意事项
1、实验室环境应该保持干燥;
2、确保样品与药品的纯度与干燥度;
3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果;
4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性;
5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明
薄片厚度要适当。
六、实验结果与讨论
1.薄膜(聚乙烯)的红外光谱图
图1 薄膜的红外光谱图
聚乙烯红外吸收光谱图上主要吸收峰的归属如下:
表1 聚乙烯的红外光谱图
谱带位置/1-
cm吸收基团的振动形式
ν(—C—(CH2)n—C—n≥4)2916.324
C-
H
ν(—C—(CH2)n—C—n≤3)2849.782
C-
H
δ(面内)
1472.152
C-
H
δ(面外)
729.717
H
C-
δ(面外)
719.684
H
C-
2.苯甲酸的红外光谱图
图2 苯甲酸的红外光谱图
苯甲酸红外光谱图主要吸收峰的归属如下:
表2 苯甲酸的红外光谱图
谱带位置/1-
cm吸收基团的振动形式
1686.329 νC = O
1454.053 νC = C
δ(面内)
1292.365
C-
H
ν
1186.064
C-
O
δ(面外)
934.407
O-
H
δ(面外)
707.306
C-
H
由于现代科学技术的发展,我们制样之后就可根据计算机的谱图来分析样品的结构,得到的结果较为准确。
但是在制样的时候需要谨慎的操作,防止样品太厚或者使样品破裂。
七、思考题
1)为什么要选用KBr作为来承载样品的介质?
答:KBr为一种无色晶体,相对NaCl来讲具有很好的延展性。
而且KBr对红外光吸收很小,因此可以测绘全波段光谱图。
2)红外光谱法对试样有什么要求?
答:(a) 试样应为“纯物质”(98%),通常在分析前,样品需要纯化,可以通过分馏、萃取、重结晶等分离和精制的方法;
(b) 试样不含有水(水可产生红外吸收且侵蚀吸收室的盐窗;
(c) 试样浓度或厚度应适当,使光谱图中的大多数吸收峰投射在合适范围内。
3)红外光谱法制样有哪些方法?
答:固体试样最常用的是压片法,此外还有石蜡糊法和薄膜法;液体试样一般采用液体池法和液膜法。
八、实验感想
这个实验操作并不难,但是还是需要我们的谨慎操作。
并且要学会细心的观察实验过程中的现象还有出现的问题,并搞懂它的原理。
比如,在实验前需要对背景进行红外光谱分析,这样对样品的红外分析才会准确。