大一下学期高等数学期中考试试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一下学期高等数学期中考试试卷及答案
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
大一第二学期高等数学期中考试试卷
一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。
1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________
2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为
3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为
4、2222222(,)(0,0)(1cos())sin lim ()e
x y x y x y xy
x y +→-+=+ 5、设二元函数y x xy z 3
2+=,则=∂∂∂y x z 2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。
1、旋转曲面1222=--z y x 是( )
(A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成;
(B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成;
(C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成;
(D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成.
2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( )
其中3212211,,,,,,d d d b a b a 都是待定常数.
(A).212211sin )(cos )(x d x b x a x x b x a x ++++;
(B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++;
(C).32212211)sin cos )((d x d x d x b x a b x a x +++++;
(D).322111)sin )(cos (d x d x d x x b x a x +++++
3、已知直线π
22122:-=+=
-z y x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交;
(C).L 与π正交; (D).L 与π斜交.
4、下列说法正确的是( ) (A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=;
(B) 二元函数()y x f z ,=的两个二阶偏导数22x z ∂∂,22y
z ∂∂在区域D 内连续,则在该区域内两个二阶混合偏导必相等;
(C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条
件;
(D) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微 的必要条件.
5、设),2,2(y x y x f z -+=且2
C f ∈(即函数具有连续的二阶连续偏导数),则=∂∂∂y x z 2( )
(A)122211322f f f --; (B)12221132f f f ++;
(C)12221152f f f ++; (D)12221122f f f --.
三、计算题(本大题共29分)
1、(本题13分)计算下列微分方程的通解。
(1)(6分)221xy y x y +++='
(2)(7分)x xe y y y 223=+'-''
2、(本题8分)设u t uv z cos 2+=,t e u =,t v ln =,求全导数
dt dz 。 3、(本题8分)求函数()()y y x e y x f x 2,22++=的极值。
四、应用题(本题8分)
1、某工厂生产两种型号的机床,其产量分别为x 台和y 台,成本函数为
xy y x y x c -+=222),( (万元),若市场调查分析,共需两种机床8台,求如何安排生产使其总成本最少最小成本为多少
五、综合题(本大题共21分)
1、(本题10分)已知直线⎪⎩⎪⎨⎧==+011x c z b y l :,⎪⎩⎪⎨⎧==-0
12y c z a x l :,求过1l 且平行于2l 的平面
方程.
2、(本题11分)设函数(,,)ln ln 3ln f x y z x y z =++ 在球面
22225(0,0,0)x y z R x y z ++=>>>上求一点,使函数(,,)f x y z 取到最大值.
六、证明题(本题共12分)
1、设函数⎪⎭
⎫ ⎝⎛=x y x z F x u k ,,其中k 是常数,函数F 具有连续的一阶偏导数.试证明:z u z y u y x u x ∂∂+∂∂+∂∂⎪⎭⎫ ⎝⎛=x y x
z F kx k ,
第二学期高等数学期中考试试卷答案
一、填空题(本题满分15分,共有5道小题,每道小题3分)
1.、 ()()()211132
22=-+++-z y x 2、12
. 3、2450x y z +--=.
4、0
5、232x y +;
二、选择填空题(本题满分15分,共有5道小题,每道小题3分)
1(A )
2(B )
3(C )
4(C )
5(A )
三、计算题(本大题共29分)
1、(1)解:将原微分方程进行分离变量,得:x x y y d )1(1d 2
+=+ 上式两端积分得c x x x x y y y ++=+==+⎰⎰2)d 1(arctan 1d 2
2
即 : c x x y ++=2
arctan 2
其中c 为任意常数. (2)解:题设方程对应的齐次方程的特征方程为,0232=+-r r 特征根为,11=r ,22=r 于
是,该齐次方程的通解为,221x e C x C Y +=因2=λ是特征方程的单根,故可设题设方程的特解:.)(210*x e b x b x y +=代入题设方程,得,22010x b b x b =++比较等式两端同次幂的系数,得,2
10=b ,11-=b
于是,求得题没方程的一个特解*y .)121
(2x e x x -=