第五课时 利用导数研究函数零点专题
第5讲 大题专攻——利用导数研究函数零点问题 2023高考数学二轮复习课件
目录
设函数 f(x)=x2-2mln x,g(x)=32x2-(m+1)x-mln x(m≥1)时,讨论函数 f(x)
与 g(x)图象的交点个数. 解:令 F(x)=f(x)-g(x)=-12x2+(m+1)x-mln x,x>0, 问题等价于求函数F(x)的零点个数. F′(x)=-(x-1)x(x-m),
目录
(a)若 g′(-1)≥0,则-21e≤a<0,∴-21e≤a<0 时,g′(x)>0 在(-1,+ ∞)上恒成立, ∴g(x)在(-1,+∞)上单调递增, ∵g(-1)=e-1>0,∴g(x)>0在(-1,+∞)上恒成立, ∴f′(x)>0在(-1,+∞)上恒成立, ∴f(x)在(-1,+∞)上单调递增,∵f(0)=0, ∴f(x)在(-1,0),(0,+∞)上均无零点,不符合题意. (b)若 g′(-1)<0,则 a<-21e,∴a<-21e时,存在 x0∈(-1,0),使得 g′(x0) =0.
123 4
目录
2.已知函数 F(x)=xln-x1-x+a 1. (1)设函数h(x)=(x-1)F(x),当a=2时,证明:当x>1时,h(x)>0; 解:证明:当 a=2,x>1 时,h′(x)=x((xx-+11))22>0, 所以h(x)在(1,+∞)上单调递增,且h(1)=0,
所以当x>1时,h(x)>0. (2)若F(x)有两个不同的零点,求a的取值范围. 解:设函数 f(x)=ln x-a(xx+-11),则 f′(x)=x2+x2((x1+-1a))2x+1. 令g(x)=x2+2(1-a)x+1,当a≤1,x>0时,g(x)>0,
目录
函数 f(x)=ln x- x,x∈(0,+
∞)
利用导数研究函数的零点讲义 解析版
利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
利用导数探究函数的零点问题专题讲座-PPT
函数 f (x) 的图象与 g(x) 的图象有且只有三个不同的交点,
等价于函数 h(x) 的图象与 x 轴的正半轴有且只有三个不同的交点.
h(x) 2x 8 6 2(x 1)(x 3) ,由 h(x) 0 得 x 1或 x 3.
x
x
当 x 变化时, h(x) , h(x) 的变化情况如下表:
(2)若过点 P(1,t)存在 3 条直线与曲线 y=f(x)相切,求 t 的取值
范围.
解 (1)由 f(x)=2x3-3x 得 f′(x)=6x2-3.
令
f′(x)=0,得
x=-
22或
x=
2 2.
因为 f(-2)=-10,f
-
22=
2,f
22=-
2,f(1)=-1,
所以 f(x)在区间[-2,1]上的最大值为 f
f(x)与f′(x)在区间(0,+∞)上的变化情况如下表:
x
(0, k)
k
f′(x)
-
0
k(1-ln k)
f(x)
2
( k,+∞) +
所以,f(x)的单调递减区间是(0, k).单调递增区间是( k,+∞),
f(x)在 x=
k处取得极小值 f(
k)=k(1-2ln
k) .
(2)证明 由(1)知,f(x)在区间(0,+∞)上的最小值为 f( k)=
k(1-ln k)
2
.
因为 f(x)存在零点,所以k(1-2ln k)≤0,从而 k≥e, 当 k=e 时,f(x)在区间(1, e)上单调递减,且 f( e)=0, 所以 x= e是 f(x)在区间(1, e]上的唯一零点. 当 k>e 时,f(x)在区间(0, e)上单调递减,且 f(1)=12>0,f( e)=e-2 k <0, 所以 f(x)在区间(1, e]上仅有一个零点.
第2讲 第5课时 利用导数探究函数的零点问题
利用导数探究函数的零点问题【考点一】研究函数零点个数(师生共研)(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明: (1)f ′(x )在区间⎝⎛⎭⎫-1,π2存在唯一极大值点; (2)f (x )有且仅有2个零点.【证明】 (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝⎛⎭⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝⎛⎭⎫π2<0,可得g ′(x )在⎝⎛⎭⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝⎛⎭⎫α,π2时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎝⎛⎭⎫α,π2单调递减, 故g (x )在⎝⎛⎭⎫-1 ,π2存在唯一极大值点,即f ′(x )在⎝⎛⎭⎫-1,π2存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点. (ⅱ)当x ∈⎝⎛⎦⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝⎛⎭⎫α,π2单调递减,而f ′(0)=0,f ′⎝⎛⎭⎫π2<0,所以存在β∈⎝⎛⎭⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝⎛⎭⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝⎛⎭⎫β,π2单调递减. 又f (0)=0,f ⎝⎛⎭⎫π2=1-ln ⎝⎛⎭⎫1+π2>0,所以当x ∈⎝⎛⎦⎤0,π2时,f (x )>0.从而f (x )在⎝⎛⎦⎤0,π2没有零点.(ⅲ)当x ∈⎝⎛⎦⎤π2,π时,f ′(x )<0,所以f (x )在⎝⎛⎭⎫π2,π单调递减.而f ⎝⎛⎭⎫π2>0,f (π)<0,所以f (x )在⎝⎛⎦⎤π2,π有唯一零点.(ⅳ)当x ∈()π,+∞时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点.判断函数零点个数的3种方法直接法令f (x )=0,则方程解的个数即为零点的个数画图法 转化为两个易画出图象的函数,看其交点的个数 定理法利用零点存在性定理判定,可结合最值、极值去解决设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2, 由f ′(x )=0,得x =e.所以当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, 所以当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,所以f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. 所以x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. 所以φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图), 可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.已知零点存在情况求参数范围(师生共研)(2020·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R ). (1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎣⎡⎦⎤13,3上有两个零点,求实数a 的取值范围. 【解】 (1)函数f (x )的定义域为(0,+∞), 当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x ,令f ′(x )=0,得x =12(负值舍去).当0<x <12时,f ′(x )>0.当x >12时,f ′(x )<0,所以f (x )的单调递增区间为⎝⎛⎭⎫0,12,单调递减区间为⎝⎛⎭⎫12,+∞. (2)令f (x )=-x 2+ax +ln x =0,得a =x -ln xx ,令g (x )=x -ln xx,其中x ∈⎣⎡⎦⎤13,3, 则g ′(x )=1-1x ·x -ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0,当1<x ≤3时,g ′(x )>0,所以g (x )的单调递减区间为⎣⎡⎭⎫13,1,单调递增区间为(1,3],所以g (x )min =g (1)=1,由于函数f (x )在⎣⎡⎦⎤13,3上有两个零点,g ⎝⎛⎭⎫13=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33, 所以实数a 的取值范围是⎝⎛⎦⎤1,3-ln 33.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.设函数f (x )=ln x -x ,若关于x 的方程f (x )=x 2-103x +m 在区间[1,3]上有解,求m 的取值范围.解:方程f (x )=x 2-103x +m 在区间[1,3]上有解,即ln x -x 2+73x =m 在区间[1,3]上有解.令h (x )=ln x -x 2+73x ,即h ′(x )=1x -2x +73=-(3x +1)(2x -3)3x.所以当x ∈[1,3]时,h ′(x ),h (x )随x 的变化情况如下表:x 1 ⎝⎛⎭⎫1,32 32 ⎝⎛⎭⎫32,3 3 h ′(x ) +0 -h (x )43极大值ln 3-2因为h (1)=43,h (3)=ln 3-2<43,h ⎝⎛⎭⎫32=ln 32+54,所以当x ∈[1,3]时,h (x )∈⎣⎡⎦⎤ln 3-2,ln 32+54, 所以m 的取值范围为⎣⎡⎦⎤ln 3-2,ln 32+54.函数零点的综合问题(师生共研)(2019·高考全国卷Ⅱ)已知函数f (x )=ln x -x +1x -1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x的切线.【解】 (1)f (x )的定义域为(0,1)∪(1,+∞).因为f′(x)=1x+2(x-1)2>0,所以f(x )在(0,1),(1,+∞)单调递增.因为f(e)=1-e+1e-1<0,f(e2)=2-e2+1e2-1=e2-3e2-1>0,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又0<1x1<1,f⎝⎛⎭⎫1x1=-ln x1+x1+1x1-1=-f(x1)=0,故f(x)在(0,1)有唯一零点1x1.综上,f(x)有且仅有两个零点.(2)证明:因为1x0=e-ln x0,故点B⎝⎛⎭⎫-ln x0,1x0在曲线y=ex上.由题设知f(x0)=0,即ln x0=x0+1x0-1,连接AB,则直线AB的斜率k=1x0-ln x0-ln x0-x0=1x0-x0+1x0-1-x0+1x0-1-x0=1x0.曲线y=e x在点B⎝⎛⎭⎫-ln x0,1x0处切线的斜率是1x0,曲线y=ln x在点A(x0,ln x0)处切线的斜率也是1x0,所以曲线y=ln x在点A(x0,ln x0)处的切线也是曲线y=ex的切线.(1)问应先判断函数的单调性,然后结合零点存在性定理证明函数f(x)有且仅有两个零点.(2)问要证明曲线y=ln x在点A(x0,ln x0)处的切线也是曲线y=e x的切线,首先求得这条切线的斜率k=1x0,所以必须在曲线y=ex上找一点B(x1,e x1),使e x1=1x0,从而求得B点的坐标为⎝⎛⎭⎫-ln x0,1x0,然后证明曲线y=ln x在点A(x0,ln x0)处切线的斜率等于曲线y=e x在点B⎝⎛⎭⎫-ln x0,1x0处的切线斜率即可.已知函数f(x)=12x2+(1-a)x-a ln x,a∈R.(1)若f(x)存在极值点为1,求a的值;(2)若f(x)存在两个不同的零点x1,x2,求证:x1+x2>2.解:(1)由已知得f′(x)=x+1-a-ax,因为f(x)存在极值点为1,所以f′(1)=0,即2-2a =0,a=1,经检验符合题意,所以a=1.(2)证明:f ′(x )=x +1-a -ax=(x +1)⎝⎛⎭⎫1-a x (x >0), ①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意; ②当a >0时,由f ′(x )=0得x =a , 当x >a 时,f ′(x )>0,所以f (x )单调递增, 当0<x <a 时,f ′(x )<0,所以f (x )单调递减, 所以当x =a 时,f (x )取得极小值f (a ). 又f (x )存在两个不同的零点x 1,x 2, 所以f (a )<0,即12a 2+(1-a )a -a ln a <0, 整理得ln a >1-12a ,作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ),令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -xx,则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2-(x -a )2+a 2≥0,所以h (x )在(0,2a )上单调递增, 不妨设x 1<a <x 2,则h (x 2)>h (a )=0, 即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 2<x 1,即x 1+x 2>2a ,又ln a >1-12a ,易知a >1成立,故x 1+x 2>2.[学生用书P345(单独成册)][基础题组练]1.(2020·江西赣州模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .⎝⎛⎭⎫0,1e C.()-∞,0D .()0,+∞解析:选D.函数f (x )=a e x -x -2a 的导函数f ′(x )=a e x -1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a ,函数f (x )在⎝⎛⎭⎫-∞,ln 1a 上单调递减,在⎝⎛⎭⎫ln 1a ,+∞上单调递增,所以f (x )的最小值为f ⎝⎛⎭⎫ln 1a =1-ln 1a-2a =1+ln a -2a .令g (a )=1+ln a -2a (a >0),则g ′(a )=1a -2.当a ∈⎝⎛⎭⎫0,12时,g (a )单调递增;当a ∈⎝⎛⎭⎫12,+∞时,g (a )单调递减,所以g (a )max =g ⎝⎛⎭⎫12=-ln 2<0,所以f (x )的最小值为f ⎝⎛⎭⎫ln 1a <0,函数f (x )=a e x -x -2a 有两个零点.综上所述,实数a 的取值范围是(0,+∞),故选D.2.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32.则方程f (x )=0的解的个数是________.解析:因为f (x )=3ln x -12x 2+2x -3ln 3-32,所以f ′(x )=3x -x +2=-x 2+2x +3x=(-x +3)(x +1)x,当x ∈(0,3)时,f ′(x )>0,f (x )单调递增, 当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减, 当x →0时,f (x )→-∞,当x →+∞时,f (x )→-∞, 所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0,所以方程f (x )=0只有一个解. 答案:13.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点当且仅当h (x )在(0,+∞)只有一个零点. (ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)单调递减,在(2,+∞)单调递增. 故h (2)=1-4ae 2是h (x )在[0,+∞)的最小值.①若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点;②若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点;③若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0. 故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,f (x )在(0,+∞)只有一个零点时,a =e 24.4.(2020·武汉调研)已知函数f (x )=e x -ax -1(a ∈R )(e =2.718 28…是自然对数的底数). (1)求f (x )的单调区间;(2)讨论g (x )=f (x )⎝⎛⎭⎫x -12在区间[0,1]上零点的个数. 解:(1)因为f (x )=e x -ax -1, 所以f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,所以f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,令f ′(x )<0,得x <ln a , 令f ′(x )>0,得x >ln a ,所以f (x )的单调递减区间为(-∞,ln a ),单调递增区间为(ln a ,+∞). (2)令g (x )=0,得f (x )=0或x =12,先考虑f (x )在区间[0,1]上的零点个数,当a ≤1时,f (x )在(0,+∞)上单调递增且f (0)=0,所以f (x )在[0,1]上有一个零点; 当a ≥e 时,f (x )在(-∞,1)上单调递减,所以f (x )在[0,1]上有一个零点; 当1<a <e 时,f (x )在(0,ln a )上单调递减,在(ln a ,1)上单调递增,而f (1)=e -a -1,当e -a -1≥0,即1<a ≤e -1时,f (x )在[0,1]上有两个零点, 当e -a -1<0,即e -1<a <e 时,f (x )在[0,1]上有一个零点. 当x =12时,由f ⎝⎛⎭⎫12=0得a =2(e -1), 所以当a ≤1或a >e -1或a =2(e -1)时,g (x )在[0,1]上有两个零点; 当1<a ≤e -1且a ≠2(e -1)时,g (x )在[0,1]上有三个零点. 5.(2020·长春市质量监测(二))已知函数f (x )=e x +bx -1(b ∈R ). (1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围. 解:(1)由题意可得f ′(x )=e x +b ,当b ≥0时,f ′(x )>0,f (x )在(-∞,+∞)上单调递增.当b <0时,若x ≥ln(-b ),则f ′(x )≥0,f (x )在[ln(-b ),+∞)上单调递增; 若x <ln(-b ),则f ′(x )<0,f (x )在(-∞,ln(-b ))上单调递减.(2)令g (x )=e x +bx -1-ln x ,则g ′(x )=e x +b -1x ,易知g ′(x )单调递增且一定有大于0的零点,设g ′(x )大于0的零点为x 0,则g ′(x 0)=0,即e x 0+b -1x 0=0,b =1x 0-e x 0.方程f (x )=ln x 有两个实数根,即g (x )有两个零点,则需满足g (x 0)<0, 即e x 0+bx 0-1-ln x 0=e x 0+⎝⎛⎭⎫1x 0-e x 0x 0-1-ln x 0=e x 0-e x 0x 0-ln x 0<0, 令h (x )=e x -e x x -ln x (x >0),则h ′(x )=-e x x -1x <0,所以h (x )在(0,+∞)上单调递减,又h (1)=0,所以e x 0-e x 0x 0-ln x 0<0的解集为(1,+∞),所以b =1x 0-e x 0<1-e.当b <1-e 时,e x +bx -1-ln x >x +bx -ln x ,有g (e b )>e b +b e b -ln e b =(b +1)e b -b , 令G (x )=(x +1)e x -x =(x +1)(e x -1)+1,x <1-e ,所以x +1<2-e<0,0<e x <1, 故G (x )=(x +1)e x -x >0,所以g (e b )>0,故g (e b )g (x 0)<0,g (x )在(0,x 0)上有唯一零点,另一方面,在(x 0,+∞)上,当x →+∞时,因为e x 的增长速度快,所以g (x )>0,g (x )在(x 0,+∞)上有唯一零点.综上,b 的取值范围是(-∞,1-e).6.(2020·江西八所重点中学联考)已知函数f (x )=12ax -a +1-ln xx (其中a 为常数,且a ∈R ).(1)若函数f (x )为减函数,求实数a 的取值范围;(2)若函数f (x )有两个不同的零点,求实数a 的取值范围,并说明理由. 解:(1)因为f (x )=12ax -a +1-ln x x ,所以f ′(x )=12a -1-ln xx 2,若函数f (x )为减函数,则f ′(x )≤0对x ∈(0,+∞)恒成立,即12a ≤1-ln xx 2对x ∈(0,+∞)恒成立.设m (x )=1-ln x x 2,则m ′(x )=2ln x -3x 3,令m ′(x )=0,得x =e 32,可得m (x )在区间(0,e 32)上单调递减,在区间(e 32,+∞)上单调递增,所以m (x )min =m (e 32)=-12e 3,所以12a ≤-12e3,即a ≤-e -3,故实数a 的取值范围是(-∞,-e -3].(2)易知函数f (x )的定义域为(0,+∞),因为f (x )=12ax 2-(a -1)x -ln x x,所以可设h (x )=12ax 2-(a -1)x -ln x ,则函数f (x )有两个不同的零点等价于函数h (x )有两个不同的零点.因为h ′(x )=ax -(a -1)-1x =ax 2-(a -1)x -1x =(ax +1)(x -1)x,所以当a ≥0时,函数h (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以h (x )在(0,+∞)上有最小值为h (1).若函数h (x )有两个不同的零点,则必有h (1)=-12a +1<0,即a >2,此时,在x ∈(1,+∞)上有h (2)=2a -2(a -1)-ln 2=2-ln 2>0,在x ∈(0,1)上,h (x )=12a (x 2-2x )+x -ln x ,因为-1<x 2-2x <0,所以h (x )>-12a +x -ln x ,所以h (e-12a)>-12a +e -12a a -ln(e -12a )=e -12a>0,所以h (x )在区间(0,1),(1,+∞)上各有一个零点,故a >2符合题意.当a =-1时,h ′(x )≤0,所以函数h (x )在区间(0,+∞)上单调递减,所以函数h (x )至多有一个零点,不符合题意.当-1<a <0时,函数h (x )在区间(0,1)上单调递减,在区间⎝⎛⎭⎫1,-1a 上单调递增,在区间⎝⎛⎭⎫-1a ,+∞上单调递减, 所以函数h (x )的极小值为h (1)=-12a +1>0,所以函数h (x )至多有一个零点,不符合题意;当a <-1时,函数h (x )在区间⎝⎛⎭⎫0,-1a 上单调递减,在区间⎝⎛⎭⎫-1a ,1上单调递增,在区间(1,+∞)上单调递减,所以函数h (x )的极小值为h ⎝⎛⎭⎫-1a =12a +1a (a -1)-ln ⎝⎛⎭⎫-1a =1-12a +ln(-a )>0, 所以函数h (x )至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是(2,+∞).。
2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)
2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。
利用导数研究函数的零点
利用导数研究函数的零点【一】知识要点1.零点的定义: 函数的零点方程的根(解) 与轴的交点的横坐标(注意函数的零点是一个实数)2.零点的推广: 函数的零点方程的根(解)方程的根(解)函数与函数图像交点的横坐标. 【二】微专题之函数趋势图函数趋势图的剖析角度用导数来判断函数的零点个数,常通过研究函数的图象,再借助图象加以判断。
若要相对完整研究函数趋势图应从以下几个方面:(1)关注函数三要素、特殊点,函数的性质等;(2)结合导数来研究单调性、极值、最值、渐近线等,描绘出函数的趋势图;(3)要求证一个函数存在零点,要用“函数零点的存在性定理”证明(4)要求证一个函数“有且只有一个”零点,先要证明函数为单调函数,即存在零点;再用“函数零点的存在性定理”求证函数零点的唯一性。
例:已知函数()xf x e mx =-在()+∞,0上没有零点,求的取值范围;【小试一把】设函数()ln f x x =,若方程()f x mx =在区间2[1,]e 上有唯一实数解,求实数m 的取值范围;m【三】题型分类题型:已知零点个数求参数取值范围例题1、设函数329()62f x x x x a =-+-,若方程()0f x =有且仅有一个实根,求a 的取值范围.【小试一把】奇函数cx bx ax x f ++=23)(的图象E 过点)210,22(),2,2(B A -两点.(1)求)(x f 的表达式;(2)求)(x f 的单调区间;(3)若方程0)(=+m x f 有三个不同的实根,求m 的取值范围.例题2、已知函数3()310f x x ax a =--≠,(),若()f x 在1x =-处取得极值,直线y=m与()y f x =的图象有三个不同的交点,求m 的取值范围。
【小试一把】已知函数2()sin cos f x x x x x =++,若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围.题型:讨论零点个数(判断零点个数,证明)例题1、已知函数()e ,x f x x =∈R . 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点.【小试一把】已知函数322()4361f x x tx t x t =+-+-,证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.例题2、已知函数3()sin 2f x x x =-,判断函数f(x)在(0,π)内的零点个数,并加以证明。
(高中段)专题微课(五)利用导数研究函数零点的三种策略
易知函数 h(x)在(0,+∞)上单调递增, 且当 x→0 时,h(x)→-∞,h(1)=4e3-1>0, 从而存在 x0∈(0,1),使得 h(x0)=0, 所以当 x∈(0,x0)时,g′(x)<0,g(x)单调递减; 当 x∈(x0,+∞)时,g′(x)>0,g(x)单调递增. 所以 g(x)在(0,+∞)上的最小值为 g(x0)=x20e3x0-3xx0-0 2ln x0-1. 由 h(x0)=x20(1+3x0)e3x0+2ln x0-1=0, 得 x20e3x0=1-1+2l3nx0x0.
专题微课(五)|利用导数研究函数零点的三种策略 策略一 设而不求解决函数的零点问题 [典例] 设函数 f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中 a>0. (1)设函数 g(x)是 f(x)的导函数,讨论函数 g(x)的单调性; (2)证明:存在 a∈(0,1),使得 f(x)≥0 在(1,+∞)内恒成立,且方程 f(x) =0 在(1,+∞)内有唯一解.
已知函数 f(x)=1+lnxx+1,当 x>0 时,f(x)>x+k 1恒成立,求正整数 k 的最
大值.
解:由已知有
k
<
x+1[1+lnx+1] x
在
(0
,
+
∞)
上
恒
成
立
,
令
h(x) =
x+1[1+xlnx+1],x>0,则只需 k<h(x)min.h′(x)=x-1-xln2 x+1,
令 φ(x)=x-1-ln(x+1),x>0,
+ 1-4a),且满足 0<x1<x2<1,此时 g(x)在(0,x1)上单调递增,在(x1,x2) 上单调递减,在(x2,+∞)上单调递增.
(2)证明:由(1)可知,函数 g(x)在区间(1,+∞)上单调递增,又由于函数 g(x)在区 间(1,+∞)上的图象是连续的,且 g(1)=-4a<0,g(e2)=-22+ea2-e2+a+1> -22+e12-e2+1+1>0, 因此函数 g(x)在区间(1,+∞)上有唯一的零点 x0, 且 g(x0)=0⇒ln x0+xa0-x0+a+1=0⇒-ln x0=xa0-x0+a+1. 从而,函数 f(x)在区间(1,x0)上单调递减,在区间(x0,+∞)上单调递增. 所以函数 f(x)在区间(1,+∞)上的最小值为 f(x0)=-2(x0+a)ln x0+x20-2ax0-2a2 +a=2(x0+a)·xa0-x0+a+1+x20-2ax0-2a2+a=-x20+2(1-a)x0+2xa02+5a.
2025年高考数学总复习课件26第三章第二节第5课时利用导数研究函数的零点问题
又因为x1ln x1=x2ln x2,即证x1ln x1-k
x1+
1 e2x1
>x2ln x2-k
x2+
1 e2x2
,k>0.
设h(x)=x ln x-kx-ek2x,
要使x1>x2时,h(x1)>h(x2),则h(x)在(0,+∞)上单调递增,
所以有h′(x)=ln x+1-k+e2kx2≥0在(0,+∞)上恒成立. 令H(x)=ln x+1-k+e2kx2,则H′(x)=1x - e22xk3(x>0).
ln
x
x,
令g′(x)=0,可得x=e2<16.
当x变化时,g′(x),g(x)的变化情况如下表:
x
(0,e2)
e2
(e2,16]
g′(x)
+
0
-
g(x)
单调递增
2
单调递减
e
所以函数g(x)在区间(0,16]上的极大值为g(e2)=2e,且g(16)=ln 2,g(x)的大体图
象如图所示.
由图可知,当ln 2≤2a<2e,即当e<a≤ln22时,直线y=2a与曲线y=g(x)在(0,16]上
所以f (1)=-2,f ′(1)=1, 因此,曲线y=f (x)在x=1处的切线方程为y+2=x-1,即x-y-3=0.
第5课时 利用导数研究函数的零点问题
核心考点 提升“四能”
课时质量评价
(2)若函数f (x)在(0,16]上有两个零点,求a的取值范围.
解:由题可得f ′(x)=ax - 1x(x>0).
所以f (x)在(-∞,0),(0,1)上单调递减,在(1,+∞)上单调递增.
第5课时 利用导数研究函数的零点问题
高考数学一轮复习第二篇函数、导数及其应用第11节第五课时利用导数研究函数零点专题课件理新人教版
因此 x=1 也是 (x)的最大值点.所以 (x)的最大值为 (1)= 2 . 3
又 (0)=0,结合 y= (x)的图象(如图),可知①当 m> 2 时,函数 g(x)无零点; 3
②当 m= 2 时,函数 g(x)有且只有一个零点; 3
③当 0<m< 2 时,函数 g(x)有两个零点; 3
所以当 x=e 时,f(x)取得极小值 f(e)=ln e+ e =2, e
所以 f(x)的极小值为 2.
(2)讨论函数g(x)=f′(x)- x 零点的个数.
3
解:(2)由题设 g(x)=f′(x)- x = 1 - m - x (x>0), 3 x x2 3
令 g(x)=0,得 m=- 1 x3+x(x>0). 3
④当 m≤0 时,函数 g(x)有且只有一个零点.综上所述,当 m> 2 时,函数 g(x)无零点; 3
当 m= 2 或 m≤0 时,函数 g(x)有且只有一个零点;当 0<m< 2 时,函数 g(x)有两个零点.
3
3
考点二 利用函数性质研究函数零点 【例2】 导学号 38486073 (2017·江西临川质检)已知函数f(x)=(x2-3x+3)·ex. (1)试确定t的取值范围,使得函数f(x)在[-2,t](t>-2)上为单调函数;
跟踪训练2:(2017·衡阳质检)设函数f(x)=aln x+bx2,其中实数a,b为常数.
(1)已知曲线y=f(x)在x=1处取得极值 1 .
2
①求a,b的值;
解:(1)①f′(x)= a +2bx, x
f 1 a 2b 0, a 1,
专题05 利用导数研究函数零点问题 (解析版)
导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
高三数学总复习优质课件 第五课时 利用导数研究函数的零点
所以当 x=e 时,函数 g(x)有最大值,且最大值为 g(e)=1+ ,
又 g(1)=1,g(4)=1+
所以当 1+
.
2
≤m<1+ 时,方程 f(x)=2x 在区间[1,4]上有两个实数解.
所以实数 m 的取值范围为[1+
特殊点从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定
参数的取值范围或根据函数零点的存在性定理列出关于参数的不等式求
出参数的范围.
考点二
利用函数零点研究函数图象的交点(综合性、应用性)
[例 4] 已知直线 y=x- 与曲线 y=xln x 有交点,求实数 k 的取值范围.
解:“直线 y=x- 与曲线 y=xln x 有交点”等价于“方程 x- =xln x”有解.
解:(2)①当m=0时,由h(x)=0可得x=±1,
有1∈(0,4e),故m=0满足题意.
②当 m>0 时,若 ∈(0,4e),即 m> 时,
由(1)知函数 y=h(x)在(0, )上单调递增,在( ,4e)上单调递减.
而 h(0)=-1<0,令 h(x)max=h( )=(
所以x=0是函数f(x)的极小值点,也是最小值点,即f(x)min=f(0)=1-a.
当1-a>0,即a<1时,f(x)在R上没有零点.
当1-a=0,即a=1时,f(x)在R上只有一个零点.
2024年高考复习数学第3章第2节第5课时利用导数研究函数的零点问题
所以f(x)max=f(1)=-1.
3
−
1 1−
= 2.
1
第5课时 利用导数研究函
数的零点问题
例2
关键能力·研析考点强“四翼”
2
3
一题N解·深化综合提“素养” 课时质量评价
1
(2022·全国乙卷)已知函数f(x)=ax- -(a+1)ln
所以h(x)在(0,+∞)单调递增,
e ln
又h(x)=
∈R,a∈R,
e ln
所以y=a与h(x)=
的图象只有一个交点,
所以a∈R,g(x)只有唯一一个零点.
2
3
一题N解·深化综合提“素养” 课时质量评价
第5课时 利用导数研究函
数的零点问题
考点2
例2
1
关键能力·研析考点强“四翼”
2
式可确定参数范围.
(2)分类讨论法:结合单调性,先确定参数的分类标准,在每个小范
围内研究零点的个数是否符合题意,将满足题意的参数的小范围并
在一起,可得参数的范围.
1
第5课时 利用导数研究函
数的零点问题
关键能力·研析考点强“四翼”
1
2
已知函数f(x)=x +ax+1-
1−
2
3
一题N解·深化综合提“素养” 课时质量评价
1
e
1
②当 <a< 时,则 <2,则g(x)在
2
2
1
0,
上单调递增,在
1
,2
上单
调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),
第二节第5课时利用导数研究函数零点问题课件
而 g(0)=0,故当 x≥0 时,g(x)≤0,即 f(x)≥1. (4 分) (2) 解:设函数 h(x)=1-ax2e-x. f(x)在(0,+∞)只有一个零点等价于 h(x)在(0,+∞)上只 有一个零点. (6 分)
关键 1:构造函数 h(x),将 f(x)的零点情况转化为 h(x) 的零点情况. (ⅰ)当 a≤0 时,h(x)>0,h(x)没有零点.
当 x∈(-1,ln a)时,f′(x)<0,f(x)单调递减. 又 f(-1)=-1e<0,所以函数 f(x)在(-∞,+∞)上至多 有一个零点,故不符合题意. 综上,实数 a 的取值范围是(-∞,0). 法二 (数形结合法) 令 f(x)=0,即 xex-12a(x+1)2=0, 得 xex=12a(x+1)2. 当 x=-1 时,方程为-e-1=12a×0,显然不成立,
x (-∞,-1)
-1
(-1,10
-
0
+
f(x)
↗
极大值-1e
↘ 极小值-e
↗
所以当 x=-1 时,f(x)取得极大值-1e;当 x=1 时,
f(x)取得极小值-e.
(2)法一 (分类讨论法)
f′(x)=(x+1)ex-a(x+1)=(x+1)(ex-a),
若 a=0,易知函数 f(x)在(-∞,+∞)上只有一个零
真题示例 (2018·全国卷Ⅱ)已知函数 f(x)=ex-ax2. (1)若 a=1,证明:当 x≥0 时,f(x)≥1; (2)若 f(x)在(0,+∞)只有一个零点,求 a.
关键步骤与规范解答 (1)证明:当 a=1 时,f(x)≥1 等价于(x2+1)e-x-1≤0. (1 分) 设函数 g(x)=(x2+1)e-x-1,则 g′(x)=-(x2-2x+1)e-x= -(x-1)2e-x. (2 分) 当 x≠1 时,g′(x)<0,所以 g(x)在(0,+∞)上单调递减(3 分)
教版数学ppt课件利用导数研究函数零点专题部编版语文ppt课件
【典例】(12分)(2017·全国Ⅰ卷)已知函数f(x)=ae2x+(a-2)ex-x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围.
解:(1)f(x)的定义域为(-∞,+∞), f′(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1), …………………………2分 (ⅰ)若a≤0,则f′(x)<0, 所以f(x)在(-∞,+∞)上单调递减. …………………………………3分 (ⅱ)若a>0,则由f′(x)=0得x=-ln a. 当x∈(-∞,-ln a)时,f′(x)<0; 当x∈(-ln a,+∞)时,f′(x)>0, ……………………………………5分 所以f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增. 6分
=
4-e2ln 2e2
2
=
ln
e4-ln 2e2
2e2
<
ln
81-ln 2e2
27<0,
所以 φ(e)<φ( 2).
所以 φ(x)min=φ(e),
如图可知 φ(x)=a 有两个不相等的解时,需ln22≤a<1e.
即 f(x)=g(x)在[ 2,e]上有两个不相等的解时 a 的取值范围为
[ln22,1e).
F ( 2 ) 0, F (
ln 2 a 1
2
e
1 ) 0, F (e) 0 a
变式一:
已知f(x)=ax2(a∈R),g(x)=2ln x.若方程f(x)=g(x)在区间 [ 2,e]上有两个不相等的解,求a的取值范围.
由 φ(e) - φ(
导数专题:利用导数研究函数零点的4种常见考法(原卷版)
导数专题:利用导数研究函数零点的4种常见考法一、函数零点问题常规求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x 轴(或y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图象;第三步:结合图象判断零点或根据零点分析参数。
二、利用导数确定函数零点的常用方法1、图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需要使用极限);2、利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数。
三、利用函数的零点求参数范围的方法1、分离参数(a=g(x))后,将原问题转化为y=g(x)的值域(最值)问题或转化为直线y=a 与y=g(x)的图象的交点个数问题(优先分离、次选分类)求解;2、利用函数零点存在定理构造不等式求解;3、转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解。
四、导函数的零点不可直接求时的应对策略1、“特值试探法”:当导函数的零点不可求时,可尝试利用特殊值试探,此时特殊值的选取应遵循一下原则:①当含有ln x 的函数中,通常选取k x e =,特别的,选当0k =时,1x =来试探;②在含有x e 的函数中,通常选取ln x k =,特别的,选取当1k =时,0x =来试探,在探得导函数的一个零点后,结合导函数的单调性,确定导函数在零点左右的符号,进而确定原函数的单调性和极值,使问题得到解决。
2、“虚设和代换法”:当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点的存在,再虚设为0x ,接下来通常有两个方向:①由0()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入0()f x ,从而求得0()f x ,然后解决相关的问题;②根据导函数()f x '的单调性,得出0x 两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解。
第2讲 第5课时 利用导数探究函数的零点问题
所以 g(x)在(-1,α)是增加的,在α,π2是减少的,
故 g(x)在-1
,π2存在唯一极大值点,即 f′(x)在-1,π2存在唯一极大值点.
上一页
返回导航
下一页
第三章 导数及其应用
4
(2)f(x)的定义域为(-1,+∞). (ⅰ)当 x∈(-1,0]时,由(1)知,f′(x)在(-1,0) 是增加的,而 f′(0)=0,所以当 x∈(- 1,0)时,f′(x)<0, 故 f(x)在(-1,0) 是减少的.又 f(0)=0,从而 x=0 是 f(x)在(-1,0]的唯一零点.
上一页
返回导航
下一页
第三章 导数及其应用
16
由于函数 f(x)在13,3上有两个零点,g13=3ln 3+13,g(3)=3-ln33,3ln 3+13>3-ln33, 所以实数 a 的取值范围是1,3-ln33.
上一页
返回导航
下一页
第三章 导数及其应用
17
与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合 特殊点,从而判断函数的大致图象,讨论其图象与 x 轴的位置关系,进而确定参数的取 值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
上一页
返回导航
下一页
第三章 导数及其应用
18
设函数 f(x)=ln x-x,若关于 x 的方程 f(x)=x2-130x+m 在区间[1,3] 上有解,求 m 的取值范围. 解:方程 f(x)=x2-130x+m 在区间[1,3]上有解, 即 ln x-x2+73x=m 在区间[1,3]上有解. 令 h(x)=ln x-x2+73x, 即 h′(x)=1x-2x+73=-(3x+13)x(2x-3).
第3章 导数的应用 第5课时导数与函数的零点(1)——函数零点的存在性与零点个数的探究课件
所以 g(a)在区间(e,+∞)上单调递增, 所以 g(a)>g(e)=e-2>0,所以 f(a)>0. 又 f( a)<0,且 f(x)的图象不间断, 所以 f(x)在区间( a,+∞)上有且仅有一个零点, 所以当 a>e 时,函数 f(x)存在两个零点. 综上,当 0≤a<e 时,函数 f(x)的零点个数为 0;当 a<0 或 a=e 时, 函数 f(x)的零点个数为 1;当 a>e 时,函数 f(x)的零点个数为 2.
1 lnx≤x-1<x;lnx≤1ex.
2 ex≥x+1>x;ex≥ex.
3 当x>0时,①ex>x2;②ex>x2+1.
内容索引
内容索引
活动一 基础训练
1. (2023 全国高三专题练习)已知函数 f(x)=lxn+x,1,x>0x,≤0, g(x)= f(x)+f(-x),则函数 g(x)的零点个数为( )
内容索引
因为f′(1)=-1<0,f′(2)=ln2-=>0,
所以存在唯一的x0∈(1,2),使得f′(x0)=0, 所以当x<x0时,f′(x)<0,f(x)单调递减; 当x>x0时,f′(x)>0,f(x)单调递增, 所以f(x)存在唯一的极值点.
内容索引
(2) 由(1)知 f(x0)<f(1)=-2. 又 f(e2)=e2-3>0, 所以存在唯一的 α∈(x0,+∞),使得 f(α)=0. 由 α>x0>1,得α1<1<x0. 又 fα1=α1-1lnα1-α1-1=fαα=0, 故 x=α1是 f(x)=0 在区间(0,x0)上的唯一根. 综上,f(x)=0 有且仅有两个实根,且两个实根互为倒数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
h′(x) h(x)
( 1 ,1) e -
单调递减
1
0 极小值(最小值)
(1,e)
+ 单调递增
又 h( 1 )= 1 +3e-2,h(1)=4,h(e)= 3 +e+2.且 h(e)-h( 1 )=4-2e+ 2 <0.所以实数 a 的
ee
e
e
e
取值范围为 4<a≤e+2+ 3 ,即 a 的取值范围为(4,e+2+ 3 ].
义域内 h′(x)>0,即 h(x)在(0,+∞)上单调递增.又 h(1)=-1<0,而 h(e)=- 1 +1+ 1 = ee
1>0,因此,函数 h(x)在(1,e)上必有零点,又 h(x)在(0,+∞)上单调递增,故函数 h(x) 只有一个零点,即方程 ln x= 1 - ln x 只有一个根,因此函数 f(x)=ln x 与 g(x)=
根据零点存在性定理,f(x)在(0,+∞)上有唯一的零点.
当 a<0 时,当 x∈(0,- 1 )时,f′(x)>0,当 x∈(- 1 ,+∞)时,f′(x)<0,
a
a
故 f(x)有极大值,也是最大值 f(- 1 ),因为 x→0 和 x→+∞时,f(x)→-∞, a
因此 f(x)有唯一零点等价于其最大值 f(- 1 )=0,即 aln (- 1 )+a=0,解得 a=-e.
理数
反思归纳
含参数的函数零点个数,可转化为方程解的个数,若能分离参
数,可将参数分离出来后,用x表示参数的函数,作出该函数图象,根据图象特
征求参数的范围.
理数
【即时训练】 已知函数f(x)=x3-3ax-1,a≠0. (1)求f(x)的单调区间;
解:(1)f′(x)=3x2-3a=3(x2-a), 当 a<0 时,对 x∈R,有 f′(x)>0, 所以当 a<0 时,f(x)的单调递增区间为(-∞,+∞); 当 a>0 时,由 f′(x)>0,解得 x<- a 或 x> a ,由 f′(x)<0,解得- a <x< a , 所以当 a>0 时,f(x)的单调递增区间为(-∞,- a ),( a ,+∞),单调递减区间为 [- a , a ].
(ln x
x) 2x
= 1 2ln x
x
(x>0),由于函数
x2
x4
x3
h(x)=1-2ln x-x 在(0,+∞)上为减函数,且 h(1)=0,所以当 0<x<1 时,h(x)>0,当 x>1
时,h(x)<0,则 y= ln x x 在(0,1)上为增函数,在(1,+∞)上为减函数,所以函数 y= x2
解:(2)由 g(x)=2exf(x),可得 2xln x=-x2+ax-3,a=x+2ln x+ 3 .设 h(x)=x+2ln x+ 3
x
x
(x>0),所以
h′(x)=1+
2 x
-
3 x2
=
(x 3)(x 1) x2
,所以 x
在
1 e
,
e
上变化时,h′
(x),h(x)的变化如下:
x
1
(1,2)
2
(2,4)
4
g′(x)
-
0
+
g(x)
-b- 5 4
↘
极小值
↗
2ln 2-b-2
所以 g(x)极小值=g(2)=ln 2-b-2,g(1)=-b- 5 ,g(4)=2ln 2-b-2, 4
g(1) 0, 因为方程 g(x)=0 在[1,4]上恰有两个不相等的实数根,所以 g(2) 0,
【例1】 已知函数f(x)=2x3-3x.若过点P(1,t)存在三条直线与曲线y= f(x)相切,求t的范围.
解:设切点为(x0,y0),则 y0=2 x03 -3x0,由 y′=6x2-3 知 k=f′(x0)=6 x02 -3. 故切线方程为 y-y0=(6 x02 -3)(x-x0),将点 P(1,t)代入得 t-y0=(6 x02 -3)(1-x0) 整理得 4 x03 -6 x02 +t+3=0,即 t=-4 x03 +6 x02 -3, 令 h(x)=-4x3+6x2-3,则 h′(x)=-12x2+12x.
理数
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点, 求m的取值范围.
解:(2)因为f(x)在x=-1处取得极值, 所以f′(-1)=3×(-1)2-3a=0,所以a=1. 所以f(x)=x3-3x-1,f′(x)=3x2-3. 由f′(x)=0,解得x1=-1,x2=1. 由(1)中f(x)的单调性,可知f(x)在x=-1处取得极大值f(-1)=1, 在x=1处取得极小值f(1)=-3. 因为直线y=m与函数y=f(x)的图象有三个不同的交点,又f(-3)=-19<-3, f(3)=17>1, 结合f(x)的单调性,可知m的取值范围是(-3,1).
(1)解:f′(x)=3x2-6x+a,f′(0)=a. 曲线 y=f(x)在点(0,2)处的切线方程为 y=ax+2. 由题设得- 2 =-2,
a 所以 a=1.
理数
(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
(2)证明:由(1)知,f(x)=x3-3x2+x+2. 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.由题设知1-k>0. 当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增, g(-1)=k-1<0,g(0)=4, 所以g(x)=0在(-∞,0]有唯一实根. 当x>0时,令h(x)=x3-3x2+4, 则g(x)=h(x)+(1-k)x>h(x). h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)单调递减,在(2,+∞)单调递增, 所以g(x)>h(x)≥h(2)=0. 所以g(x)=0在(0,+∞)没有实根. 综上,g(x)=0在R有唯一实根, 即曲线y=f(x)与直线y=kx-2只有一个交点.
4
2
实数 b 的取值范围.
解:(2)当 a=- 1 时,f(x)=- 1 x+b 可变形为 1 x2- 3 x+ln x-b=0.
4
2
42
令 g(x)= 1 x2- 3 x+ln x-b(x∈[1,4]),则 g′(x)= (x 2)(x 1) .
42
2x
当 x 在[1,4]上变化时,g(x),g′(x)变化情况如下表.
解:(1)当a=4时,g(x)=(-x2+4x-3)ex,g(0)=-3, g′(x)=(-x2+2x+1)ex,g′(0)=1, 所以,所求的切线方程为y+3=x-0,即y=x-3.
理数
(2)如果关于x的方程g(x)=2exf(x)在区间
1 e
,
e
上有两个不等实根,求实数a的取
值范围.
a
a
综上,若函数 f(x)有唯一零点,则 a 的取值范围为{a|a=-e 或 a>0}.
理数
法二 问题等价于 aln x= 1 有唯一实根,显然 a≠0,则关于 x ,构造函数 (x)=xln x,则 (x)=1+ln x,由 (x)=1+ln x=0,得 x=e-1,
ln x x 在 x=1 处取得最大值为 1.所以当 1 =1,即 m= 1 时,方程 2mf(x)=x2 有唯一
x2
2m
2
实数解.
理数
考点三 构造函数法研究函数零点问题 【例4】 (2014·全国Ⅱ卷)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点 (0,2)处的切线与x轴交点的横坐标为-2. (1)求a;
1 4
, 2
时恒
成立,即 2a≥ 1 2x =( 1 -1)2-1,
x2
x
在
x∈
1 4
, 2
时恒成立,即
2a≥[(
1 x
-1)2-1]max,
当 x= 1 时,( 1 -1)2-1 取得最大值 8,
4
x
所以实数 a 的取值范围是[4,+∞).
理数
(2)当 a=- 1 时,关于 x 的方程 f(x)=- 1 x+b 在[1,4]上恰有两个不相等的实数根,求
e
e
理数
【例3】 导学号 18702143 已知函数f(x)=aln x-(其中a∈R).若函数f(x) 有唯一零点,求a的取值范围.
解:法一 f′(x)= a + 1 = ax 1 (x>0),当 a=0 时,f(x)=- 1 =0 无实根,
x x2 x2
x
即函数 f(x)无零点;当 a>0 时,f′(x)>0,f(1)=-1<0,当 x→+∞,f(x)→+∞,
当 x>e-1 时, (x)>0, (x)单调递增,
当 0<x<e-1 时, (x)<0, (x)单调递减,
所以 (x)的极小值为 (e-1)=-e-1,
如图,为函数 (x)的图象,
则要使 1 =xln x 有唯一实根, a