备战中考数学锐角三角函数(大题培优 易错 难题)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)

【答案】AB 的长约为0.6m .

【解析】

【分析】

作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可.

【详解】

解:作BF CE ⊥于F ,

在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,

3.85CF BC cos BCF ⋅∠≈=,

在Rt ADE ∆E 中,3 1.73tan 3

AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=

由勾股定理得,22BH AH 0.6(m)AB =+≈,

答:AB 的长约为0.6m .

【点睛】

考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

2.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:

(1)当 t 为何值时,点 E 在 BAC 的平分线上?

(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;

(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.

【答案】(1)4s t =;(2)PEGO S 四边形23

15688

t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165

t =

时,OE OQ ⊥. 【解析】

【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.

(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.

(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出

EC GQ OC OG

=,由此构建方程即可解决问题.

【详解】

(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,

∴22108-=6(cm ),

∵OD 垂直平分线段AC ,

∴OC=OA=3(cm ),∠DOC=90°,

∴∠BAC=∠DCO ,

∵∠DOC=∠ACB ,

∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD

==, ∴CD=5(cm ),OD=4(cm ),

∵PB=t ,PE ⊥AB , 易知:PE=34

t ,BE=54t , 当点E 在∠BAC 的平分线上时,

∵EP ⊥AB ,EC ⊥AC ,

∴PE=EC ,

34

t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.

(2)如图,连接OE ,PC .

S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )

=1414153154338838252

524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =28

1516(05)33

t t t -+

+<<. (3)存在. ∵2

8568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=

52

时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .

∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,

∴tan∠EOC=tan∠QOG,∴EC GQ

OC OG

=,

3

5

8

5

4

4

34

5

t

t

t

-

=

-

整理得:5t2-66t+160=0,

解得

16

5

t=或10(舍弃)

∴当16

5

t=秒时,OE⊥OQ.

【点睛】

本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.

3.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.

(1)求证:∠AEC=90°;

(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;

(3)若DC=2,求DH的长.

【答案】(1)证明见解析;

(2)四边形AOCD为菱形;

(3)DH=2.

【解析】

试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得

,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出

∠AEC=90°;

相关文档
最新文档