次序统计量与分布
3-次序统计量
F ( z ) F ( y )
j i 1
n k
( X (1) , X ( 2 ) ,, X ( n ) )的联合密度函数为
p( n ) ( y1 , y2 ,, yn ) n! p( y1 ) p( y2 ) p( yn ), y1 y2 yn
二、与次序统计量相关的常用统计量
样本中位数m0.5的渐近分布为
m0.5
1 ~ N x , 0 . 5 2 4 n p ( x ) 0.5
例5 设总体分布为柯西分布 ,密度函数为
1 p( x; ) , x 2 (1 ( x ) )
若X 1 , X 2 ,, X n 来自该总体的样本,求 样本中位数 的渐近分布.
1、样本均值 X 总体均值
估计
2、样本中位数 估计 总体中位数
样本均值容易受离群值 的干扰,离群值会把样 本 均值拉向自己一侧,而 样本中位数不受此害 .
若有离群值时,可用截 尾均值代替样本均值 . 何为截尾均值? 把样本排序,并截去两 端一定比例的样本后求 得的 其余值的平均 .
m0.25 x([290.251]) x(8) 60
m0.5 x(15) 67 m0.75 x([290.751]) x(22) 73
五值 18 , 60 , ,67 , ,73 , 97
箱线图
18
60 67 73
97
1、样本中位数 设x(1) ,x(2) , , x( n) 是有序样本,则样本中 位数m0 .5为
m0 .5 x n 1 , n为奇数; ( ) 2 1 ( x n x n ), n为偶数. ( 1) 2 2 (2)
次序统计量及其分布
N
x1
2
, n[
f
1 (x1
2
)]2
18
例5-3-2: 设总体 X 为柯西分布,其密度函数为
f(x;)(1(1 x ))2, x
其分布函数为
F(x;)1 21arctan(x)
易知,θ是该总体的中位数,即 x ½ = θ.
设
X1,X2,
,X 是来自该总体的样本,则 n
当样本容量 n 较大时,样本中位数 m 0.5 的渐近分布为
P { T t ( n ) } P { T t ( n ) } 1 P { T t ( n ) } 1
即
t(n) h t1 (n) (5-3-9)
15
3)对于 F—分布
F(n1,n2)
由于
1 F ~ F(n2,n1)
所以
PF
F
1 (n2,n1)
PF1
F
(n2,n1)
1PF1 F(n2,n1)
p 2 (x ) (2 1 ) 5 ! ( ! 5 2 )! [F (x ) ] 2 1 p (x ) [ 1 F (x ) ] 5 2
2 0 x 3 3 x 2 ( 1 x 3 ) 3 6 0 x 5 ( 1 x 3 ) 3 , 0 x 1
于是
P (x(2)1 2)0 1 260x5(1x3)3dx
h
20
下面就通过一个具体的实例说明之。
例 5-3-4 :表 5—5 是某厂 160 名销售人员某月的销售量数据的有序样本,由该 批数据可计算得到:
xm in45, xm ax319,m 0.5181 , Q 1144,Q 3212
五数概括的图形表示称为箱线图,由箱子和线段组成。图5-11 是该例中样本数据的箱 线图,其作法如下
次序统计量及其分布
种,于是,若以 Fk (x) 记 x (k) 的分布函数,则由多 项分布可得
F k(x x ) F k(x )
n ! [F (x )]k 1 [F x x F (x )][1 F (x x )]n k
(k 1 )!(n k)!
.
两边同除以 x , 并令 x→0 , 即有
pk(x) lixm 0F k(x xx )F k(x) n ! [ F ( x ) ] k 1 p ( x ) [ 1 F ( x ) ] n k ( k 1 ) ! ( n k ) !
p ij(y,z)(i 1 )!(jin ! (y)]j i 1
[1F (z)]njf(y)f(z), ayzb
(5-3-6) 证明:对增量 y, z 以及 y < z , 事件
x ( i ) ( y ,y y ] ,x ( j .) ( z ,z z ]
§5.3 次序统计量及其分布
定义
定义 5-3-1: 设 X1,X2,L,Xn 为取自总体X的样本, 将其按大小顺序排序 X (1 ) X (2 ) L X (n )
则称 X(k) 为第 k 个次序统计量( No.k Order Statistic)
特别地,称
X(1) m 1iinnXi
(5-3-1)
为最小顺序统计量(Minimum order Statistic)
称
X(n) m 1iaxn Xi
(5-3-2)
为最大顺序统计量(Maximum order Statistic) 。
.
例5-3-1:设总体X的分布为仅取 0, 1, 2 的离散均
匀分布,其分布列为
x0 1 2
p
1 3
1 3
1 3
次序统计量及其分布通用课件
在大量独立同分布随机变量的样本中,任意一个样本的平均值(或 中位数)都将趋近于正态分布。
次序统计量
在给定样本中,按照大小排序后得到的顺序统计量。
关系
中心极限定理为次序统计量提供了理论基础,因为次序统计量是样本 中排序后的变量,其分布情况与中心极限定理密切相关。
次序统计量与大数定律的关系
次序统计量在统计学中的重要性
01
02
03
描述数据分布特征
次序统计量可以帮助我们 快速了解数据分布情况, 如数据的最大值、最小值 、中位数等。
进行统计分析
在统计分析中,次序统计 量常被用作描述变量或样 本的特性,如计算相关性 、进行回归分析等。
数据排序与筛选
通过次序统计量可以对数 据进行排序和筛选,以便 更好地理解和处理数据。
计算方法
通过概率密度函数或概率质量函 数积分得到。
03
次序统计量的应用场景
金融数据分析
风险评估
次序统计量可以用于评估投资组合的风险,通过分析历史收益率 数据,确定投资组合在不同市场环境下的风险水平。
市场趋势判断
利用次序统计量对市场数据进行排序,可以判断市场趋势,例如通 过分析股票价格指数的排序来判断市场的整体走势。
次序统计量及其分 布通用课件
目录
• 次序统计量的定义与性质 • 次序统计量的分布 • 次序统计量的应用场景 • 次序统计量的计算方法 • 次序统计量与其他统计量的关系 • 次序统计量在数据分析中的应用
01
次序统计量的定义与性质
次序统计量的定义
定义
次序统计量是指一组数 据中按照大小顺序排列
的统计量。
在数据异常值检测中的应用
总结词
次序统计量在异常值检测中具有重要应用,能够识别出离群 点,帮助分析者了解数据分布和潜在问题。
次序统计量的分布及其在均匀分布中的应用
次序统计量的分布及其在均匀分布中的应用次序统计量是描述研究对象的一种广泛使用的抽样方法,它是通过从研究对象中抽取多个单位来评估整体指标的序列。
次序统计量的分布及其在均匀分布中的应用已成为受到统计学界普遍认可的重要
课题,它可以看作是模型参数估计和推断的基石。
次序统计量是指抽样单位之间相对次序关系,其分布取决于抽样过程的抽样方法、抽样单位的状态和抽样环境。
次序统计量的分布可以表示为离散型、连续型或者混合型;这三种分布最终可以归结为三种基本分布:正态分布、均匀分布和二项分布。
均匀分布是指抽取单位的概率分布均匀,抽取结果在可接受范围内没有明显偏差。
在均匀分布下,次序统计量可以直接应用到概率分布函数下,有助于统计模型参数估计和推断。
例如,在一个均匀分布下,计算概率分布函数的期望值时,可以使用次序统计量。
另外,次序统计量在均匀分布的应用不仅仅限于模型参数估计和推断,也可以用于检验假设。
通常,在使用次序统计量作为统计证据的时候,会涉及到潜在的假设检验。
假设检验的结果可以为研究者提供有价值的结论,例如检验样本是否遵循某一分布。
因此,次序统计量的分布及其在均匀分布中的应用对统计数据分析具有重要意义。
首先,次序统计量的分布可以通过概率分布函数估计统计模型参数,为推断研究提供有效可靠的依据。
其次,均匀分布的应用可以帮助我们检验研究感兴趣的假设,即样本是否遵循某分布,从而提供正确的解释。
总之,次序统计量的分布及其在均匀分布中的应用对统计学有着重要的意义,在统计模型参数估计和推断,以及假设检验中均有重要作用。
1-4 次序统计量
显然有
X (1) ≤ X (2) ≤ L ≤ X ( n )
称为最小次序统计量 它的值 x(1) 是样本 最小次序统计量, 其中 X (1) = min X i 称为最小次序统计量, 1≤i≤n 值中最小的一个; 称为最大次序统计量 最大次序统计量, 值中最小的一个;而 X (n) = max X i 称为最大次序统计量, 1≤i≤n 是样本值中最大的一个。 它的值 x(n) 是样本值中最大的一个。
米的小河中淹死了,他觉得不可思议。 平均水深为 1 米的小河中淹死了,他觉得不可思议。 这件事情是否是一个玩笑? 这件事情是否是一个玩笑?
8
思考2. 一位统计学家把一只脚放进 100℃ 的开水里, 思考 ℃ 的开水里, 另一只脚放进冰水中。然后宣布:现在, 另一只脚放进冰水中。然后宣布:现在,在平均值的 意义上,我感觉很舒服。 意义上,我感觉很舒服。
16
乙同学毕业后求职于一家公司。总经理说, 例 乙同学毕业后求职于一家公司。总经理说, 公司平均月薪是 3000 元。一个月后乙同学得到 工资1000元,据了解,公司共有21人,和自己 元 据了解,公司共有 人 工资 职位相同的业务员共有 10 人,每人的月薪都是 1000 元。应该如何理解乙同学的遭遇 ? 总经理 15,000 ;两个副总经理每人 8,000 ; , , 3 个部门经理每人 4000;5 个财务等行政人员 ; 每人 2000;10 个业务员每人 1000 。 ; 一共 21 人,每月支出工资 63,000。 , 。 平均值 3000,中位数 2000,众数 1000,极差 14,000 , , , ,
2
定义
样本 X 1 , X 2 ,L , X n 按由小到大的顺序重排为
X (1) ≤ X (2) ≤ L ≤ X ( n )
次序统计量及其分布通用课件
3. 健康状况评估:通过 对个体的多项生理指标 进行监测,并利用次序 统计量进行分析,可以 对个体的健康状况进行 综合评估。
环境科学领域应用案例
总结词:环境科学领 域中,次序统计量可 用于环境监测、污染 物排放评估、气候变 化研究等。
详细描述
1. 环境监测:通过在 环境中布置传感器, 并利用次序统计量分 析传感器数据,可以 实时监测环境的空气 质量、水质等情况。
次序统计量的特点
次序统计量具有简单直观、可操 作性强、易于理解等优点,是统 计分析中常用的一种方法。
次序统计量的种类
简单次序统计量
只对总体或样本的视察值进行排序, 不涉及其他数据处理。
加权次序统计量
将总体或样本的视察值进行加权处理 后再进行排序,可以更准确地反应数 据的散布特征。
次序统计量的应用场景
统计模型
参数统计模型
在这种模型中,次序统计量被视为一个随机变量,并假定其 具有某种已知或可估计的散布情势(例如正态散布、泊疏松 布等)。然后通过参数估计和假设检验等方法对总体参数进 行推断。
非参数统计模型
在这种模型中,总体被视为非参数的,并不假定其具有某种 特定的散布情势。然后通过核密度估计、分位数回归等方法 对总体散布进行推断。
未来应用前景展望
金融风险管理
次序统计量在金融风险管理领域有着广泛的应用。例如,可以利用次序统计量分析股票市场的波动性 ,为投资决策提供支持。未来,随着金融数据的日益复杂化,次序统计量的应用将更加重要。
环境监测与保护
次序统计量可以用于环境监测和保护领域。例如,可以利用次序统计量分析空气质量、水质等环境指 标的变化趋势,为制定环境保护政策提供根据。
07
参考文献
参考文献
1-4 次序统计量
等于极差的四分之一。
(3). 大多数情况下,数据基本上落在“均值±2个 标准差”的区间内,否则这个数据就被认为是
异常的大或异常的小。
在绝大多数情况下,一组正常的数据基本上 落在“均值±3个标准差”的区间内。
14
例
从总体中抽取容量为6的样本,测得样本值为 32, 65, 28, 35, 30, 29,
特别,最小次序统计量X (1) 和最大次序统计量X ( n ) 的分布 密度为
f X (1) ( x) n[1 F ( x)]n1 f ( x), f X ( n ) ( x) n[ F ( x)]n1 f ( x).
5
定理 1.20
设总体 X 的分布密度为 f(x)(分布函数为
F(x)), X 1 , X 2 ,, X n 为其样本, 则次序统计量的分布 密度为 ( X (1) , X (2) ,, X ( n) ) 的联合分布密度为
n n! f ( yi ), y1 y2 yn f ( y1 , y2 ,, yn ) i 1 0, 其他
6
定理 1.21
设总体 X 的分布密度为 f(x)(分布函数为
F(x)), X 1 , X 2 ,, X n 为其样本, 则次序统计量的分布 密度为 ( X (1) , X ( n ) ) 的联合分布密度为
定理
证明
次序统计量是充分统计量。
当给定 X (1) x(1) ,, X ( n ) x( n ) 时,由于X 1 , X 2 ,, X n
1 P( X i1 x(1) ,, X in x( n) ) n!
独立同分布,所以
此条件分布与总体分布无关,故次序统计量是充分统计量。
3
关于正态分布的次序统计量的随机序
正态分布的次序统计量的随机序
正态分布是概率论和统计学中最重要的分布之一,它在自然界和社会现象中广泛存在。
正
态分布的次序统计量是指从正态分布中抽取样本后,按照大小顺序排列后得到的统计量。
本文将介绍正态分布的次序统计量的随机序,以及它在实际应用中的重要性。
一、正态分布的次序统计量
正态分布的次序统计量是指从正态分布中抽取样本后,按照大小顺序排列后得到的统计量。
正态分布的次序统计量可以用来描述样本中的极值和中位数等特征。
二、次序统计量的随机序
次序统计量的随机序是指将次序统计量按照一定的规则排列后得到的序列。
次序统计量的
随机序是一个随机变量,它的概率分布可以用于估计样本中的极值和中位数等特征。
三、次序统计量的应用
次序统计量在实际应用中有着广泛的应用。
例如,在医学研究中,次序统计量可以用于评
估药物的效果。
在金融领域中,次序统计量可以用于分析股票市场的波动性。
在天气预报中,次序统计量可以用于预测气温的变化。
四、次序统计量的计算方法
次序统计量的计算方法有多种,其中最常用的是基于样本的排序方法。
首先,将样本按照
大小顺序排列,然后根据次序统计量的定义,计算出相应的统计量。
由于次序统计量的计
算方法比较简单,因此在实际应用中得到了广泛的应用。
五、结论
正态分布的次序统计量的随机序在实际应用中具有重要的作用。
通过对次序统计量的计算
和分析,可以得到样本中的极值和中位数等特征,从而为各个领域的研究提供了重要的参考。
伽马分布次序统计量分布
伽马分布次序统计量分布伽马分布是一种连续概率分布,通常用来对正值的随机变量进行建模。
伽马分布的次序统计量分布是对多个伽马分布变量进行排序后的概率分布。
在本文中,我们将讨论伽马分布次序统计量的定义、性质以及在统计学和概率论中的应用。
首先,让我们回顾一下伽马分布的定义。
伽马分布的概率密度函数如下所示:f(x; k, λ) = (λ^k * x^(k-1) * e^(-λx))/(Γ(k))其中,x是一个正值,k是形状参数,λ是比例参数,Γ表示伽马函数。
伽马函数定义为:Γ(k) = ∫[0, +∞] t^(k-1) * e^(-t) dt伽马分布是一族分布,包括多个参数值。
不同的参数值会导致不同的形状和尺度。
伽马分布的均值为k/λ,方差为k/λ^2。
当k=1时,伽马分布退化为指数分布。
次序统计量是从一个随机样本中选择出的排序值。
假设我们有一个大小为n的样本x1, x2, ..., xn,其中每个样本都是从同一个分布中独立取出的。
那么第i个次序统计量定义为样本中第i小的值。
我们用X(i)表示第i个次序统计量,即X(i) = x(i)。
那么伽马分布次序统计量的分布是什么样子呢?为了回答这个问题,我们需要使用概率密度函数转换法。
假设Y(i)是第i个次序统计量的概率密度函数。
我们可以通过计算概率密度函数的导数来得到Y(i)。
具体计算方法可以在概率论和数理统计的教材中找到。
通过计算可以得到,伽马分布的次序统计量的概率密度函数可由下面的公式给出:g(x; n, k, λ) = n! * (λ^k * x^(k-1) * e^(-λx))/(x(1)^(k-1) * x(2)^(k-1) * ... * x(n)^(k-1)) 其中,x(i)是第i个次序统计量,n是样本大小。
现在我们来讨论一下伽马分布次序统计量的一些性质。
首先,伽马分布次序统计量的均值和方差可以通过计算得到。
均值为k/nλ,方差为k/(n^2λ^2)。
次序统计量
次序统计量次序统计量是统计学中重要的概念,又被称为次序统计学或秩序统计学,它广泛应用于热点问题的统计研究。
次序统计量是一种从原始数据中可以提取出来的数值,这些数值可以用来衡量样本中变量的排序。
它们经常被用来构建常见的统计插图或报告,以便对研究的结果作出准确的统计描述。
次序统计量有很多种形式,包括排序、中位数、分位数、众数和四分位数。
排序次序统计量是根据变量的相对大小对数据进行排序的结果。
排序可以提供原始数据的整体概貌和波动趋势。
中位数是指数据集中所有数据项排列好后对数据集中间位置的数值,它是没有偏差的。
分位数是指数据集中具有特定比例的数据值,它们可以提供数据的分布情况。
众数是指一组数据集中出现次数最多的数值,可以体现数据集最常见的数值。
四分位数是指数据集中25%、50%、75%的数值,它们可以衡量一个数据集中特定比例数值的大小。
次序统计量有一系列用于统计检验和分析的方法。
首先,它可以用于确定数据是否是正态分布的,以及观测样本中变量的分布情况。
其次,它可以用于判断两个样本之间的差异,以及样本中变量的分布情况。
此外,次序统计量还可以用于工具的建模,对多变量研究提供重要的信息,并可用于预测和估计数据。
次序统计量还可以用于衡量抽样技术的效果,例如随机抽样、分层抽样和自然系统抽样。
它们还可以用于确定不同类别的抽样结果,从而推断出某种测量程序的有效性。
最后,次序统计量可用于确定统计显著性,确定样本的推断参数和定量方法。
总之,次序统计量无处不在,是统计研究的基础。
它们可以用于描述变量的分布情况,确定统计显著性,比较两个样本的差异,用于数据建模,并可用于抽样技术的分析。
它们可以有助于研究人员做出准确的分析和统计推断,并充分发挥其对统计研究的价值。
2.5 次序统计量
图
9
例 设总体F具有一个样本值1, 1, 2,则经验分布函数 F3 ( x )的观察值为 0, 若 x 1 2 F3 ( x ) , 若1 x 2 3 若x 2 1,
10
经验分布函数Fn(x)从样本直观得到描述性分布.
样本直方图可以描述. (2). 经验分布函数的性质 10. 具有通常分布函数的三个性质,图形呈跳跃上升; 20. Fn(x)是一个随机变量;
4
定理
设总体 X 的分布密度为 f(x)(分布函数为 F(x)),
, X ( n ) ) 的联合分布密度为
X 1 , X 2 ,, X n 为其样本,则次序统计量的分布密度为
( X (1) , X (2) ,
n n! f ( yi ), y1 y2 f ( y1 , y2 , , yn ) i 1 0, 其他
这件事情是否是一个玩笑?
14
中位数定义
设 ( X 1 , X 2 , , X n ) 是总体 X 中的样本 , ( X (1) , X (2) , , X ( n ) ) 为其次序统计量,则样本中位数定义为
X n 1 ,n奇 ( ) 2 X 1 [ X n X n 1 ],n偶 ( ) ( ) 2 2 2
vn ( x) Fn ( x) n
为子样的为经验分布函数.
7
设总体 X 的分布函数 F(x)未知, x1 , x2 , , xn 为总体 X 的一个样本观察值,将它们按大小 排列为: x1 x 2
x n ,令
0, 如果x x(1) , k Fn x , 如果x( k ) x x( k 1) , k 1, 2,..., n 1, n 1, 如果x( n ) x .
1.4 次序统计量及其分布
1 , n!
二、单个次序统计量的分布
定理2 设总体X的密度函数为f(x), 分布函数为F(x), X1, X2,…, Xn为样本, 则第k个次序统计量X(k)的密度函 数为
n! k 1 n k fk ( x) ( F ( x )) (1 F ( x )) f ( x ) ( k 1)!( n k )!
F1n ( x , y ) P { X (1) x , X ( n ) y } P{ X ( n ) y } P{ x X (1) X ( n ) y } ( F ( y )) P{ x X i y } ( F ( y ))n ( F ( y ) F ( x ))n
1.4 次序统计量及其分布
一、次序统计量。
定义 设 ) 称为
该样本的第i 个次序统计量,它的取值是将样本观测
值由小到大排列后得到的第 i 个观测值。其中 X(1)=minX1, X2, …, Xn 称为该样本的最小次序统计量, X(n)=maxX1, X2, …, Xn
可给出的 X(1) , X(2), X(3) 分布列如下:
X (1)
0
19 27
1
7 27
2
1 27
X (2)
0
7 27
1
13 27
2
7 27
p
X (3)
p
0
1 27
1
7 27
2
19 27
p
这三个次序统计量的分布是不相同的。
进一步, 给出两个次序统计量的联合分布, 如:
X(1) 和X(2) 的联合分布列为
证明:k 1,n时,直接可得 F1 ( x ) P ( X (1) x ) 1 P (min( X i ) x ) 1 (1 F ( x ))n Fn ( x ) P ( X ( n ) x ) P (max( X i ) x ) ( F ( x ))
次序统计量及其分布
§5.3次序统计量及其分布次序统计量在近代统计推断中起着重要的作用,这是由于次序统计量有一些性质不依赖于母体的分布并且计算量很小,使用起来较方便。
因此在质量管理、可靠性等方面得到广泛的应用,现在我们在本节中扼要地介绍有关次序统计量的内容。
gjzsj设1ξ,2ξ,…,n ξ是取自分布函数为F (x )的母体ξ的一个子样,x 1,x 2,… ,x n 表示这子样的一组观测值。
这些观测值,由小到大的排列用x )1(,x )2(,… ,x )(n 表示,即x )1(≤x )2(≤… ≤x )(n ,若其中有两个分量x 1与x 2相等,它们先后次序的安排是可以任意的。
定义5.3 第i 个次序统计量ξ)(i 是上述子样1ξ,2ξ,…,n ξ这样的一个的一个函数,不论子样1ξ,2ξ,…,n ξ取得怎样一组观测值x 1,x 2,… ,x n ,它总是取其中的x )(i 为观测值。
显然,对于容量为n 的子样可以得到n 个次序统计量ξ)1(≤ξ)2(≤… ≤ξ)(n ,其中ξ)1(称做最小次序统计量,ξ)(n 称做最大次序统计量。
如果1ξ,2ξ,…,n ξ是来自同一母体的n 个相互独立随机变量,那么次序统计量1ξ,2ξ,…,n ξ是否也相互独立呢?这可以从下述例子中看出(例略)。
定理5.5 设母体ξ有密度函数f (x)>0,a ≤x ≤b ,并且1ξ,2ξ,…,n ξ为取自这母体的一个子样,则第i 个次序统计量的密度函数为g i (y)=⎪⎩⎪⎨⎧≤≤-----其他,0),()](1][)([)!()!1(!1b y a y f y F y F i n i n i n i(5.24) 例5.3 设母体ξ有密度函数⎩⎨⎧<<=其他,010,2)(x x x f 并且ξ)1(<ξ)2(<ξ)3(<ξ)4(为从ξ取出的容量为4的子样的次序统计量。
求ξ)3(的密度函数)(3x g 和分布函数)(3x G ,并且计算概率)21()3(>ξP 。
1.4 次序统计量和分布
C
i n
(
F
(
x
))i
(1
F
(
x
))n
i
ik
n!
F ( x) t k1(1 t )nk dt
(k 1)!(n k)! 0
fk ( x)
(Fk ( x))'
(k
n! 1)!(n
(F ( x))k1(1 k)!
F ( x))nk
f
(x)
当k 1, k n时,可得 f1( x) n(1 F ( x))n1 f ( x) fn ( x) n(F ( x))n1 f ( x)
n
,
yn
)
n!
i 1
f ( yi ), y1
y2 L
yn
0
样本中位数和样本极差
• 设( X1, X2 ,L , Xn )T是来自总体 X 的样本,(X(1), X(2),L , X(n))T
是次序统计量,则样本中位数定义为
X n1 ,
X%
1
2
2
(Xn
2
定理3: ( X(1) , X(n) )的联合分布密度为(连续型)
n(n 1)(F( y) F ( x))n2 f ( x) f ( y), x y
f
X ( 1 ),
X( n )
(
x,
y)
0
x y
证明:当x y时,显然成立。
当x y时{X(n) y} { X(1) x, X(n) y} { X(1) x, X(n) y}
nCnk11(F ( x))k1(1 F ( x))nk f ( x) d x
dFk ( x) nCnk11(F ( x))k1(1 F ( x))nk f ( x)dx
应用数理统计—顺序统计量的分布
x0 x
f (x)
证明:考虑“第k个次序统计量 X(k) 落入很小的区间 (x, x+x]内”这一事件的概率。记X(k) 的分布函数为 Fk(x)。则该概率为Fk(x +x)- Fk(x)。
另外,该事件等价于“容量为n的样本X1,X2,…,Xn中
有k-1个分量小于或等于x,1个分量落入(x, x+x]内,余 下的n-k个分量大于x+x。
为f(x). X1, X 2,..., X n 是取自X的样本。则最小次
序统计量 X(1) 的概率密度函数为
f1(x) n[1 F(x)]n1 f (x)
分布函数为
F1(x) 1[1 F(x)]n
例4 设某型号电子元件的寿命 X 服从参数为的指
数分布,X1,…,Xn是对X 进行n次独立观测的寿命。 求n次观测中(1)最大寿命小于b的概率;(2)最
例5 设X1, X2,…, Xn是取自[0, 1]上均匀分布的样本 ,求第 k 个次序统计量 X(k) 的数学期望。
解:由于
由定理知,X(k) 的概率密度为 于是有
, X2,…, Xn是取自该总体的样本。则(X(1), X(n))的联 合密度函数为
小寿命大于a的概率。(a>0, b>0)
解:由于
F(x) 1 ex , x 0
所以,最大次序统计量 X(n) 的分布函数为
于是
Fn (x) [F (x)]n [1 ex ]n , x 0
P( X(n) b) Fn (b) [1 eb ]n
例4 设某型号电子元件的寿命 X 服从参数为的指
数分布,X1,…,Xn是对X 进行n次独立观测的寿命。 求n次观测中(1)最大寿命小于b的概率;(2)最
3-次序统计量解读
F ( z ) F ( y )
j i 1
n k
( X (1) , X ( 2 ) ,, X ( n ) )的联合密度函数为
p( n ) ( y1 , y2 ,, yn ) n! p( y1 ) p( y2 ) p( yn ), y1 y2 yn
二、与次序统计量相关的常用统计量
X ( n )称为该样本的最大次序 统计量
在一个简单随机样本中 ,X 1 ,X 2 , ,X n独立同分布, 注:
次序统计量X (1),X (2), ,X ( n )既不独立,分布也不相 同.
而且任何两个次序统计 量分布也不相同 .
1、单个次序统计量的分布 定理1 设X 1 ,X 2 , ,X n 是来自总体X的样本,且X的 密度函数为p( x ), 分布函数F ( x ), 则第k个次序统计 量x( k )的密度函数为 n! pk ( x ) ( F ( x )) k-1 (1 - F ( x )) n-k p( x ) ( k-1)! ( n-k )!
j2 -j1 1
[ F ( y jr ) - F ( y jr 1 )]
jr jr 1 1
1 F ( y )
jr
n jr
p( y j1 ) p( y j2 ) p( y jr ),
y j1 y j2 y jr
证明:
j1 1
1
y j1
j1 j2 1 y j1 y j1 yj
次序统计量和经验分布 函数
一、次序统计量(或称顺序统计量)及其分布 定义 设X 1 ,X 2 , ,X n是来自总体X的样本,将X 1 ,
X 2 , ,X n按从小到大的顺序排列 为 X (1) X ( 2 ) X ( n ) 则X ( i ) 称为该样本的第 i个次序统计量,
均匀分布最大次序统计量
均匀分布最大次序统计量在统计学的世界里,有一种有趣的概念,叫做均匀分布最大次序统计量。
听起来是不是有点高深?其实就像生活中的种种情况,咱们每天都在做选择,碰到的各种事儿都是一种“排序”。
想象一下,夏天的西瓜,一个个摆在摊位上,你可能会挑选最红最甜的那个,这就是在做一个最大次序的选择!均匀分布,简单说,就是每个选择都有同样的机会被选中,咱们可以把它想成一个公平的游戏。
什么是最大次序统计量呢?这就像你在班级里,选出成绩最好的同学。
你把所有的分数拿出来,看看谁的分数最高,那个最高分的同学就是你的“最大次序统计量”。
简单吧?这种方式不仅适用于考试成绩,生活中处处可见,比如买东西时,挑最便宜的,或者找朋友时,选最靠谱的。
人生的每一个选择其实都是在找那个“最大值”。
想象一下,你和朋友们去聚餐,每个人点了一道菜。
最后上桌的时候,大家的目光都在那道看起来最美味的菜肴上。
对吧,那道菜就是那一桌子里的“最大次序统计量”。
就像是一个不成文的规则,大家都希望吃到最好的,最丰盛的那一份。
这种“挑选”的心理,其实反映了我们在生活中对优质选择的追求。
均匀分布的概念在这个过程中又有何作用呢?简单来说,均匀分布就像是一个公平的抽奖,每道菜都有相同的机会成为“最大”。
如果有一道菜长得特别丑,味道又特别好,可能它就错失了机会。
就像生活中,咱们常常被表象迷惑,忽视了真正的价值。
所以,生活教给我们的道理就是,外表可能不代表一切,内在的美才是最重要的。
再聊聊这个统计量的性质。
最大的次序统计量有它独特的分布特性。
当我们拿到一组数据,最大的那个数值,它的期望值、方差等都可以用公式来表示。
这就好比你去超市买东西,常常能看到打折标签。
明明是同样的商品,打折的那个就是“最大”的选择。
说不定买回家后发现,虽然便宜,但质量也很不错。
这里的概率思维,就是统计学在生活中的应用,处处都能找到它的身影。
均匀分布的概念还可以延伸到其他领域,像经济学、心理学等。
想想看,大家都在争抢限量版的东西,这种竞争其实就像是最大次序的争夺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以表述为“容量为 n 的样本 x1, x2, … , xn 中有 i-1 个观测值小于等于 y , 一个落入区间 ( y , y + y ] , j –i -1 个落入区间 ( y + y , z ] , 一个落入区间 ( z,
z+z ] ,而余下的 n—j 个大于 z + z ”
i-1
j
n! i 1)!(n
[F ( y)]i1[F (z) j)!
F ( y)] ji1
[1 F (z)]n j f ( y) f (z), a y z b
(5-3-6)
证明:对增量 y, z 以及 y < z , 事件
x(i) ( y, y y], x( j) (z, z z]
下面就通过一个具体的实例说明之。
例 5-3-4 :表 5—5 是某厂 160 名销售人员某月的销 售量数据的有序样本,由该批数据可计算得到:
xmin 45, xmax 319, m0.5 181, Q1 144, Q3 212
五数概括的图形表示称为箱线图,由箱子和线段组成。 图5-11 是该例中样本数据的箱线图,其作法如下
p1(x) n [F (x)]n1 p(x)
(5-3-5)
例 5-3-2 :设总体X 的密度函数为
p(x) 3x2, 0 x 1
现从该总体中抽得一个容量为 5 的样本,试计算
P( x( 2)
1) 2
解: 我们首先应求出 x (2) 的分布。由总体密度函数 不难求出总体分布函数为
p1,n ( y, z) n(n 1)(z y)n2 , 0 y z 1
令 R x(n) x(1) 由 R > 0 可以推出
0 x(1) x(n) R 1 R
则
pR (r)
1r n(n 1)[( y r) y]n2 dy
0
n(n 1)rn2 (1 r)
图 5-9
这里要注意到如下几个有用的事实。
1) 若 X ~ N (, 2 ) ,要求的分位数 xα, 可化成求
N ( 0, 1 )的分位数 .
P{X
x }
P{ X
x
}
此时, X ~ N (0,1)
故
x
u
从而
x u
(5-3-8)
2) 对于 T ~ t (n) ,由密度函数的对称性可知
P{T t (n)} P{T t (n)} 1 P{T t (n)} 1
即
t (n) t1 (n) (5-3-9)
3)对于 F—分布 F (n1, n2 )
由于
1 F
~
F (n2, n1)
X(2)
0
1
2
P 7/27 13/27 7/27
X(3)
0
1
2
P 1/27 7/27 19/27
可见这三个次序统计量的分布是不相同的。
进一步,我们可以给出两个次序统计量的联合分布, 如 x(1) 和 x(2) 的联合分布列为
x(2) x(1) 0
0 7/27
1 9/27
2 3/27
1
0
4/27
3/27
该分布参数为 ( n-1, 2 ) 的贝塔分布。
总体分位数与样本分位数
(一)总体分位数
定义5-3-2: 设总体 X 的分布函数为 F (x) ,满足
F (x ) P{X x } ,0 1
(5-3-7)
的 xα称为 X 的 α—分位数,如下图所示。
几种常用分布 (N (0,1), 2 (n),t(n), F(n1, n2)) 的分位数
考虑到 F (x) 的连续性,当 y 0, z 0 有 F ( y y) F ( y), F (z z) F (z)
于是
pij
(
y,
z
)
lim
y0,z0
P(
x(i
)
(
y,
y
y), x( yz
j
)
(
z,
z
z))
n!
[F ( y)]i1[F (z)
2
0
0
1/27
易于看出
P( x(1)
0)
P( x( 2)
0)
19 27
7 27
不等于
P( x(1)
0,
x(2)
0)
7 27
即 x(1) 和 x(2) 是不独立的。
次序统计量的分布
(一)单个次序统计量的分布
定理 5-3-1:设总体X的密度函数为 p (x) ,分布函数
为 F (x) ,x1, x2, …, xn 为样本,则第 k 个次序统计 量 x (k) 的密度函数为
§5.3 次序统计量及其分布
定义
定义 5-3-1: 设 X1, X 2 , , X n 为取自总体X的样本, 将其按大小顺序排序 X (1) X (2) X (n)
则称 X(k) 为第 k 个次序统计量( No.k Order Statistic)
特别地,称
X (1)
min
1in
Xi
(
x)
lim
x0
Fk
(ቤተ መጻሕፍቲ ባይዱ
x
x) x
Fk
(
x)
n!
[F (x)]k1 p(x)[1 F (x)]nk
(k 1)!(n k)!
推论1 :最大次序统计量 x (n) 的概率密度函数为
pn (x) n [1 F (x)]n1 p(x) (5-3-4)
推论2 :最小次序统计量 x (1) 的概率密度函数为
其分布函数为
F (x; ) 1 1 arctan(x ) 2
易知,θ是该总体的中位数,即 x ½ = θ.
设 X1, X 2, , X n 是来自该总体的样本,则
当样本容量 n 较大时,样本中位数 m 0.5 的渐近分布
为
m0.5
~
N
,
2
4n
五数概括与箱线图
k-1
1
n-k
x
x+x
图 5—8 x (k) 的取值示意图
样本的每一分量小于等于 x 的概率为 F (x) , 落入区
间 ( x , x + x ] 概率为F(x+ x)-F(x),落入区间 (x+
x, b]的概率为 1-F(x+x) ,而将 n 个分量分成这
样的三组,总的分法有
n!
(k 1)!1!(n k)!
都在书后附表中可以查到。其中 N ( 0, 1 )是分布函 数表Φ ( x ) 反过来查,而其它几个分布,则是分别 对给出 α 的几个的常用值如 α=0, 0.25, 0.05, 0.1, 0.9, 0.95, 0.975 等等,列出相应分布对应值的 α 分位点。 图 5-9 给出了四种常用分布的 α 分位点表示方法, 其中 N ( 0, 1 ) 的 α 分位点通常记成 uα .
次序统计量的应用之一就是五数概括与箱线图。在 得到有序样本后,容易计算如下五个值:
最小观测值 x min = x (1) ; 最大观测值 x max = x (n); 中位数 m 0.5 ; 第一 4 分位数 Q 1 = m 0.25 第三 4 分位数 Q3 = m 0.75 。 所谓五数概括就是指用这五个数来大致描述一批数 据的轮廓。
1 3
现从中抽取容量为 3 的样本,其一切可能取值有
33 27 种,现将它们以及由它们所构成的次序统
计量 X (1) , X (2) , X (3) 的一切可能值列在表中(P243), 由此可给出 X (1) , X (2) , X (3) 的分布列如下:
X(1)
0
12
P 19/27 7/27 1/27
于是
P( x( 2)
1) 2
1
2 60x5 (1 x3)3 dx
0
yx3
1
8 20 y(1 y)3 dy
1
20(
z3
z4
)dz
0
7 8
5(1 (7)4 ) 4(1 (7)5) 0.1207
8
8
(二)多个次序统计量的联合分布
仅讨论任意二个次序统计量的情形。
1
j-i-1
y
y+y
于是由多项分布得
1
n-j
z
z+z
P(x(i) ( y, y y), x( j) (z, z z)) pij ( y, z)yz
n!
[F ( y)]i1 f ( y)y
(i 1)!1!( j i 1)!(n j)!
[F (z) F ( y y)] ji1 f (z)z[1 F (z z)]n j
mp
~
N
xp
,
p(1 p) n[ f ( xp )]2
(5-3-13)
特别地,对样本中位数有
m1
2
~
N
x1
2
, n[
f
1 (x1
2
)]2
例5-3-2: 设总体 X 为柯西分布,其密度函数为
f
(x;
)