2018年上海市黄浦区高三二模数学卷(含答案)
2018届黄浦区高考数学二模和参考答案
黄浦区2018年高考模拟考数学试卷(完卷时间:120分钟 满分:150分) 2018.4考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效; 2.答卷前,考生务必将姓名等相关信息在答题卷上填写清楚,并在规定的区域贴上条形码; 3.本试卷共21道试题,满分150分;考试时间120分钟.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 . 2.不等式|1|1x ->的解集是 .3.若函数()f x 是偶函数,则该函数的定义域是 .4.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 .5.已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅= .(结果用数值表示)6.方程33log (325)log (41)0x x⋅+-+=的解x = .7.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 .8.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .9.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是 人. 10.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是 .(结果用数值表示) 11.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-,若1224,51,0k a a a ===,则k = .12.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.在空间中,“直线m ⊥平面α”是“直线m 与平面α内无穷多条直线都垂直 ”的答( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )非充分非必要条件14.二项式40的展开式中,其中是有理项的项数共有 答( ). (A ) 4项 (B ) 7项 (C ) 5项 (D ) 6项15.实数x y 、满足线性约束条件3,0,0,10,x y x y x y +≤⎧⎪≥≥⎨⎪-+≥⎩则目标函数23w x y =+-的最大值是答( ).(A ) 0 (B ) 1 (C ) 2- (D ) 316.在给出的下列命题中,是假命题的是 答( ). (A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线(B )若向量a b 和是平面α上的两个不平行的向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的(C )已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d 、、、,使得其 中任意两个向量的和向量与余下两个向量的和向量相互垂直三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分. 在四棱锥P A B -中,P A A B ⊥平面,,,1,AB AD BC AD BC ⊥=045CD CDA =∠=.(1)画出四棱锥P ABCD -的主视图;(2)若PA BC =,求直线PB 与平面PCD 所成角的大小.(结果用反三角函数值表示)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10,(010)OA OB x x ==<<米米,线段BA CD 、线段与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度. (1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知动点(,)M x y 到点(2,0)F 的距离为1d ,动点(,)M x y 到直线3x =的距离为2d,且12d d =. (1)求动点(,)M x y 的轨迹C 的方程; (2)过点F 作直线:(2)(0)l y k x k =-≠交曲线C 于P Q 、两点,若OPQ ∆的面积OPQ S ∆(O 是坐标系原点),求直线l 的方程.20.(本题满分16分)本题共有2个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩(1) 求函数()f x 的反函数1()fx -;(2)试问:函数()f x 的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由; (3)若方程()|()240f x f x ax +---=的三个实数根123x x x 、、满足:123x x x <<,且32212()x x x x -=-,求实数a 的值.21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 定义:若数列{}n c 和{}n d满足*10,0,N nn n c d n +>>=∈且c ,则称数列{}n d 是数列{}n c 的“伴随数列”.已知数列{}n b 是数列{}n a 的伴随数列,试解答下列问题: (1)若*(N )nn b a n =∈,1b {}n a 的通项公式n a ;(2)若*11(N )n n n b b n a +=+∈,11b a 为常数,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (3)若*1N )n nb n +=∈,数列{}n a 是等比数列,求11a b 、的数值.黄浦区2018年高考模拟考数学试卷参考答案和评分标准2018.4说明:1.本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、填空题. 1.2 2.(,0)(2,)-∞+∞ 3.[2,2]- 4.4π5.6- 6.27.3[,],Z 88k k k ππππ-+∈ 8.3(4- 9.140 10.51611.50 12.3.二、选择题.13.()A 14.()B 15.()D 16.()D三、解答题. 17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分. 解 (1)主视图如下:(2) 根据题意,可算得1,2AB AD ==. 又1PA BC ==,按如图所示建立空间直角坐标系, 可得,(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C D P . 于是,有(1,0,1),(1,1,0),(0,2,1)PB CD PD =-=-=- . 设平面PCD 的法向量为(,,)n x y z =,则0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x y y z -+=⎧⎨-=⎩令2z =,可得1,1y x ==,故平面PCD 的一个法向量为(1,1,2)n =.设直线PB 与平面PCD 所成角的大小为θ,则||3sin 6||||n PB n PB θ⋅==. 所以直线PB 与平面PCD 所成角的大小为arcsin 6.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ). 又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=,所以,210(010)10x x x θ+=<<+.(2) 依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇化简,得2550yx x =-++25225()24x =--+. 于是,当52x =(满足条件010x <<)时,max 2254y =(2m ).答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1)结合题意,可得12|3|d d x ==-.又12d d =3=,化简得 22162x y +=. 因此,所求动点(,)M x y 的轨迹C 的方程是22162x y +=. (2) 联立方程组221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=.设点1122(,)(,)P x y Q x y 、,则2122212212,13126,130.k x x k k x x k ⎧+=⎪+⎪-⎪=⎨+⎪∆>⎪⎪⎩于是,弦||PQ == 点O 到直线l的距离d =.由OPQS ∆== 42210k k -+=,解得1k =±,且满足0∆>,即1k =±都符合题意. 因此,所求直线的方程为2020x y x y --=+-=或.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 解 (1)22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩∴当10x -≤<时,()2,0()2f x x f x =-<≤且.由2y x =-,得12x y =-,互换x y 与,可得11()(02)2f x x x -=-<≤. 当01x ≤≤时,2()1,()0f x x f x =-≤≤且-1.由21y x =-,得x =x y 与,可得1()10)f x x -=-≤≤.11, 0<2,2() 10.x x f x x -⎧-≤⎪∴=-≤≤(2) 答 函数图像上存在两点关于原点对称.设点00000(,)(01)(,)A x y x B x y <≤--、是函数图像上关于原点对称的点,则00()()0f x f x +-=,即200120x x -+=,解得001(1,)x x ==舍去,且满足01x <≤ .因此,函数图像上存在点1,2(12)A B -和关于原点对称.(3) 考察函数()y f x =与函数y =当12x -≤≤-时,有()f x ≥4240x ax ---=,解得 2+2x a =-,且由21+22a -≤-≤-,得02a ≤≤.当1x <≤时,有()f x <240ax -=,化简得 22(4)40a x ax ++=,解得24=0+4a x x a =-,或(当02a ≤≤时,24024aa -<-<+). 于是,123224,,024ax x x a a =-=-=++. 由32212()x x x x -=-,得22442=2(+)+442a a a a a -++,解得32a -±=.因为312a -=<-,故32a --=不符合题意,舍去;02a <=<,满足条件.因此,所求实数a =21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 解 (1)根据题意,有*10,0,N n n n a b a n +>>=∈且.由*(N )nn b a n =∈,1b =111n a a b +====*N n ∈.所以n a =,*N n ∈. 证明 (2)*11(N )n n n b b n a +=+∈,*10,0,N n n n a b a n +>>=∈且,∴11nn b a ++==11n n b a ++=*N n ∈.∴22111n n n n b b a a ++⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,*N n ∈.∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为211b a ⎛⎫ ⎪⎝⎭、公差为1的等差数列.解(3)*1N )n n b n +=∈,*10,0,N n n n a b a n +>>=∈且,*N n n a b n <+≤∈,得11n a +<.{}n a 是等比数列,且0n a >,设公比为(0)r r >,则1*1(N )n n a a r n -=∈.∴当1r >,即lim n n a →∞→+∞,与11n a +<≤矛盾.因此,1r >不成立. 当01r <<,即lim 0n n a →∞→,与11n a +<01r <<不成立.∴1r =,即数列{}n a 是常数列,于是,1n a a =(11a <≤).*11(N )n n b n +∴=∈. 100n b b >∴>,,数列{}n b 也是等比数列,设公比为(0)q q >,有11n n b b q +=.2n a +∴=可化为222221111111(1)2(1)0(1n n b a q a b q a a a --+-=<≤,*N n ∈.2222422111111111(1)0,20,(1)0,4(2)0b a a b a a a b a ->≠->∆=-≥,∴关于x 的一元二次方程22222111111(1)2(1)0b a x a b x a a --+-=有且仅有两个非负实数根.一方面,n q (*N n ∈)是方程22222111111(1)2(1)0b a x a b x a a --+-=的根;另一方面,若1(0)q q ≠>,则无穷多个互不相等的234,,,,,,n q q q q q 都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!1q ∴=,即数列{}n b 也是常数列,于是,1n b b =,*N n ∈.∴由*1N )n nb n +=∈,得1a =把1a =1n a +=解得1b11a b ⎧=⎪∴⎨=⎪⎩ .。
上海2018届高三二模数学卷汇总(全)
宝山2018届高三二模数学卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1. 设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .2. 设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 3. 某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).4. 函数()x x x f 4cos 4sin 2=的最小正周期为 .5. 已知球的俯视图面积为π,则该球的表面积为 .6. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 7. 在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)8. 设无穷数列{}n a 的公比为q ,则2a ()n n a a a +⋅⋅⋅++=∞→54lim ,则=q .9. 若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 10. 设奇函数()f x 定义为R ,且当0x >时,2()1m f x x x=+-(这里m 为正常数). 若()2f x m ≤-对一切0x ≤成立,则m 的取值范围是 .11. 如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .12. 将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S . 二.选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上将代表答案的小方格涂黑,选对得 5分,否则一律得零分.13. “1sin 2x =”是“6x π=”的 ( ) )(A 充分不必要条件. )(B 必要不充分条件. )(C 充要条件. )(D 既不充分也不必要条件.14.在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 ( ))(A 160- )(B 160 )(C 150- )(D 15015.若函数()()f x x R ∈满足()1f x -+、()1f x +均为奇函数,则下列四个结论正确的是( ))(A ()f x -为奇函数 )(B ()f x -为偶函数 )(C ()3f x +为奇函数 )(D ()3f x +为偶函数16. 对于数列12,,,x x L 若使得0n m x ->对一切n N *∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”。
高三数学-2018【数学】上海市黄浦区2018届高三上学期
上海市黄浦区2018届高三上学期期终基础学业测评高三数学试卷(理科) (2018.1.20)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.命题人:冯志勇 审核人:李小平 校对:胡泊一.填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.已知函数在,,且点的反函数是)12()(1)(1x f y a x xa x f -=---=)(1x f y -=的图像上,则实数=a .2.)02()12(,与,,非零向量、已知-=++=∈βαb a a R b a 平行,则a 、b 满足的条件是 .3.已知随机事件A 、B 是互斥事件,若18.0)(25.0)(==B P A P ,, 则)(B A P ⋃= . 4.不等式1|11|≥-+x x 的解集是 . 5.方程1)49(log 3+=-x x的解=x .6.已知角α(πα<<0)的顶点在原点,始边与x 轴正半轴重合,点P )34(,-是角α终边上一点,则2cosα= .7.方程1sin 3cos =+x x 的解集是 .8.=∈++++=∞→*22)]([)(lim )(321)(n f n f N n n n f n ,则若 .9.下面是用行列式解二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的程序框图,请在(1)、(2)、(3)处分别填上合适的指令.10.如图1所示,点A 、B 是单位圆(圆心在原点,半径为1的圆)上两点,OA 、OB 与x 轴正半轴所成的角分别为.和βα-,,记)sin (cos αα=OA ,,))sin()(cos(ββ--=OB 用两种方法计算OB OA ⋅后,利用等量代换可以得到的等式是 .11.在cm AB cm BC cm AC ABC 543===∆,,中,,现以BC 边所在的直线为轴把ABC ∆(及其内部)旋转一周后,所得几何体的全面积是 2cm .12.掷一枚质地均匀的硬币可能出现图案向上,也可能出现文字向上.现将一枚质地均匀的硬币连续掷3次,表示若用随机变量ξ3次中出现图案向上的次数ξE ,则数学期望= .13.给出下列4个命题,其中正确命题的序号是 . (1)在大量的试验中,事件A 出现的频率可以作为事件A 出现的概率的估计值;(2)样本标准差)2(1)()()(22221≥--++-+-=n n x x x x x x S n 可以作为总体标准差的点估计值;(3)随机抽样就是使得总体中每一个个体都有同样的可能性被选入样本的一种抽样方法;(4)分层抽样就是把总体分成若干部分,然后在每个部分指定某些个体作为样本的一种抽样方法.14.已知数列{},的值是奇数的值是偶数 ,是正整数满足⎪⎩⎪⎨⎧-==+)(13)(2)(11n nn nn n a a a a a m m a a 若的所有可能的值是,则m a 24= .二.选择题(本大题满分16分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.已知{}”成立的”是“,,则“,且、a x a a x a R x a =-∈≠∈||0[答]( )A .充要条件.B .充分非必要条件.C .必要非充分条件.D .非充分非必要条件.16.定义两种运算xx x f b a b a b a b a ⊕-⊗=-=⊗-=⊕222)(||22,则函数,的解析式是 [答]( )A .)22(4)(2,,-∈-=x x x x f . B .)22(4)(2,,-∈--=x xx x f .C .)2()2(4)(2∞+⋃--∞∈-=,,,x x x x f .D .)2()2(4)(2∞+⋃--∞∈--=,,,x x xx f .17.在空间中,给出下列4个命题(其中c b a 、、表示直线,β表示平面),则正确命题的序号是 [答]( )(1)三个点确定一个平面; (2)若;,则,b a c b c a ||||||(3)在空间中,若角21θθ与角的两边分别平行,则21θθ=;(4)若ββ⊥⊂⊥⊥≠a cbc a b a ,则、,,.A .(1)、(2)、(4).B .(2).C .(2)、(3).D .(2)、(3)、(4).18.已知函数0)()()1(1)1(|1|1)(2=++⎪⎩⎪⎨⎧=≠-=c x bf x f x x x x x f 的方程,若关于 有且仅有3个实数根=++232221321x x x x x x ,则、、 [答]( )A .5.B .2222b b +.C .3.D .2222c c +.三.解答题(本大题满分78分) 本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图3所示,已知长方体中1111D C B A ABCD -,431===AA AB AD ,,M 是11B A 的中点.(1)求1ACD BM 与平面所成的角; (2)求点M 到平面1CD A 的距离.20.(本题满分14分)的值.、,求,,,且中,在c a c a b C A C B A ABC 5644222=-==>>∆21.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知a 、b 是正整数,函数)(2)(b x bx ax x f -≠++=的图像经过点)31(,. (1)求函数f (x )的解析式;(2)判断函数f (x )在]01(,-上的单调性,并用单调性定义证明你的结论.22.(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分5分.某生产旅游纪念品的工厂,拟在2018年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x 万件与年促销费用t 万元之间满足3-x 与t +1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2018年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出x 与t 所满足的关系式;(2)请把该工厂2018年的年利润y 万元表示成促销费t 万元的函数; (3)试问:当2018年的促销费投入多少万元时,该工厂的年利润最大?23.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.已知数列{}.,满足)(22111*+∈+==N n a a a a n n n n (1)证明数列{};的通项公式列是等差数列,并求出数n n n n a a a ⎭⎬⎫⎩⎨⎧2 (2)求等差数列{}11231201)(++*=++++∈n n n n n n n n a C b C b C b C b N n b ,使对*∈N n 都成立;(3)M a c a c a c a c M N n nb c nn n n <++++∈=* 332211)(,使,是否存在正常数令*∈N n 对恒成立,并证明你的结论.黄浦区2018学年度第一学期期末教学质量检测数学试卷(理科)(2018年1月20日)参考答案和评分标准说明:1、本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分。
2018高三二模汇编(精)(带参考答案)
2018届高三数学二模典题库一、填空题1.集合1.设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= . 【答案】{}2 【来源】18届宝山二模1 【难度】集合、基础题2.集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .【答案】{}1或{}1=x x 【来源】18届奉贤二模1 【难度】集合、基础题3. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅,则实数a 的范围是【答案】1a ≥ 【来源】18届虹口二模1 【难度】集合、基础题4.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 .【答案】2 【来源】18届黄浦二模1 【难度】集合、基础题5.已知集合},2,1{m A =,}4,2{=B ,若}4,3,2,1{=B A ,则实数=m _______. 【答案】3【来源】18届长嘉二模1 【难度】集合、基础题6. 设集合1|,2xM y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .【答案】(1,0)- 【来源】18届普陀二模11 【难度】集合、中档题7.已知全集R U =,集合{}0322>--=x x x A ,则=A C U . 【答案】]3,1[- 【来源】18届徐汇二模1 【难度】集合、基础题8. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =【答案】(2,3) 【来源】18届金山二模3 【难度】集合、基础题9.已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A =【答案】{1,3} 【来源】18届崇明二模1 【难度】集合、基础题2.命题、不等式1.不等式|1|1x ->的解集是 .【答案】(,0)(2,)-∞+∞【来源】18届黄浦二模2 【难度】不等式、基础题2.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .【答案】3【来源】18届黄浦二模2 【难度】不等式、压轴题3.不等式|3|2x -<的解集为__________________. 【答案】{}15x x <<或()1,5 【来源】18届青浦二模1 【难度】不等式、基础题4.若为等比数列,0n a >,且2018a =,则2017201912a a +的最小值为 .{}n a【答案】4【来源】18届杨浦二模10 【难度】不等式、中档题5. 函数9y x x=+,(0,)x ∈+∞的最小值是 【答案】6 【来源】18届金山二模4 【难度】不等式、基础题3.函数1.给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【答案】37【来源】18届奉贤二模9 【难度】函数、中档题2.已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈若π283222212321=++++++--n n n x x x x x x ,则=θ . 【答案】9π【来源】18届奉贤二模12 【难度】函数、压轴题3.已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=【答案】-2【来源】18届虹口二模5 【难度】函数、基础题4.若函数()f x =是偶函数,则该函数的定义域是 . 【答案】[2,2]- 【来源】18届黄浦二模3 【难度】函数、基础题5.已知函数)1lg()(2ax x x f ++=的定义域为R ,则实数a 的取值范围是_________.【答案】]1,1[-【来源】18届长嘉二模10 【难度】函数、中档题6.若函数1()21f x x m =-+是奇函数,则实数m =________.【答案】12【来源】18届普陀二模2 【难度】函数、基础题7.若函数()f x =()g x ,则函数()g x 的零点为________.【答案】x =【来源】18届普陀二模3 【难度】函数、基础题8.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数 2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f xg x ≤,则实数m 的取值范围是 .【答案】5m ≥- 【来源】18届青浦二模10 【难度】函数、中档题9.若函数222(1)sin ()1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 .【答案】114⎛⎫⎪⎝⎭,【来源】18届徐汇二模11 【难度】函数、中档题10.设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是 【答案】2()log (3)f x x =- 【来源】18届崇明二模9 【难度】函数、中档题4.指数函数、对数函数1.方程33log (325)log (41)0x x ⋅+-+=的解x = . 【答案】2【来源】18届黄浦二模6 【难度】对数函数、基础题2.[]x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是【答案】12x =或1x =- 【来源】18届虹口二模11 【难度】指数函数、中档题3.若实数x 、y 满足112244+++=+y x yx,则y x S 22+=的取值范围是____________.【答案】]4,2(【来源】18届长嘉二模12 【难度】指数函数、压轴题4.函数()lg(32)x xf x =-的定义域为_____________. 【答案】(0,)+∞ 【来源】18届徐汇二模3 【难度】对数函数、基础题5.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -=【答案】2【来源】18届松江二模4 【难度】指数函数、基础题6.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围 【答案】()[)0,12,+∞【来源】18届松江二模10 【难度】指数函数、中档题7.函数lg 1y x =-的零点是 . 【答案】10x = 【来源】18届杨浦二模1 【难度】对数函数、基础题8.函数lg y x =的反函数是【答案】1()10xf x -=【来源】18届金山二模2 【难度】对数函数、基础题5. 三角函数1.已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .【答案】4π或045 【来源】18届奉贤二模5 【难度】三角函数、基础题2.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 【答案】4π【来源】18届黄浦二模4 【难度】三角函数、基础题3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.【答案】13【来源】18届青浦二模3 【难度】三角函数、基础题4.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.【答案】6π 【来源】18届普陀二模5 【难度】三角函数、基础题5..函数()x x x f 4cos 4sin 2=的最小正周期为 . 【答案】4π 【来源】18届宝山二模4 【难度】三角函数、基础题6.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 .【答案】⎣⎦【来源】18届青浦二模12 【难度】三角函数、压轴题7. 函数3sin(2)3y x π=+的最小正周期T =【答案】π【来源】18届金山二模1 【难度】三角函数、基础题8.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 【答案】2424.77-或 【来源】18届杨浦二模9 【难度】三角函数、中档题9.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =. 若B 为钝角,412cos -=C ,则ABC ∆的面积为 .【来源】18届杨浦二模11 【难度】三角函数、中档题 10. 若2018100922sin(2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=【答案】-1或1【来源】18届金山二模12 【难度】三角函数、压轴题题6. 数列1.已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q = 【答案】1或12-【来源】18届虹口二模7 【难度】数列、基础题2.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-,若1224,51,0k a a a ===,则k = .【答案】50【来源】18届黄浦二模11 【难度】数列、中档题3.设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且2462018()7f a a a a =,则22221232018()()()()f a f a f a f a ++++的值为_________.【答案】1990-【来源】18届普陀二模9 【难度】数列、中档题4.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = . 【答案】33【来源】18届青浦二模5 【难度】数列、基础题7. 向量1.如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅的值为 .【答案】-4 【来源】18届宝山二模11 【难度】向量、中档题2.已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅= .(结果用数值表示) 【答案】-6 【来源】18届黄浦二模5 【难度】向量、基础题3.在△ABC 中,M 是BC 的中点,︒=∠120A ,21-=⋅AC AB ,则线段AM 长的最小值为____________. 【答案】21 【来源】18届长嘉二模114.已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是 .11、 【答案】1,12⎡⎤-⎢⎥⎣⎦【来源】18届青浦二模11 【难度】向量、中档题5.已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 【答案】3【来源】18届松江二模7 【难度】向量、基础题6.点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MNMF MF =⋅,则122MF MF +的最大值为__________.【答案】6【来源】18届普陀二模12 【难度】向量、压轴题7.已知两个不同向量(1,)OA m =,(1,2)OB m =-,若OA AB ⊥,则实数m =____________. 【答案】1【来源】18届青浦二模48.已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为 . 【答案】34【来源】18届杨浦二模12 【难度】向量、压轴题9.已知向量,a b 的夹角为锐角,且满足||a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值为 . 【答案】815【来源】18届徐汇二模12 【难度】向量、压轴题10. 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅的值为 【答案】10【来源】18届崇明二模12 【难度】向量、压轴题8. 解析几何1.设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 【答案】24y x = 【来源】18届宝山二模2【难度】解析几何、基础题2.抛物线2y x =的焦点坐标是 .【答案】(0,14) 【来源】18届奉贤二模3 【难度】解析几何、基础题3.椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为【答案】2mn【来源】18届虹口二模10 【难度】解析几何、中档题4.角的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角的终边与曲线2522=+y x 的交点A 的横坐标是3-,角的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)11、 【答案】7241250x y ±+= 【来源】18届奉贤二模11 【难度】解析几何、压轴题5.直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a = 【答案】2 【来源】18届虹口二模2 【难度】解析几何、基础题ααα26.已知平面直角坐标系xOy 中动点),(y x P 到定点)0,1(的距离等于P 到定直线1-=x 的距离,则点P 的轨迹方程为______________. 【答案】x y 42= 【来源】18届长嘉二模4 【难度】解析几何、基础题7. 抛物线212x y =的准线方程为_______. 【答案】3y =- 【来源】18届普陀二模1 【难度】解析几何、基础题8.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a =【答案】2a = 【来源】18届松江二模1 【难度】解析几何、基础题9.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 . 【答案】2220x y x y +--= 【来源】18届徐汇二模10 【难度】解析几何、中档题10.已知抛物线2x ay =的准线方程是14y =-,则a = . 【答案】1【来源】18届徐汇二模4 【难度】解析几何、基础题11.若双曲线222161(0)3x y p p-=>的左焦点在抛物线22y px =的准线上,则p = .【答案】4【来源】18届杨浦二模8 【难度】解析几何、中档题12.平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为六个部分,则实数k 的取值组成的集合A = 【答案】{2,1,0}-- 【来源】18届金山二模10 【难度】解析几何、中档题13.已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作一直线与双曲线C 的右半支交于P 、Q 两点,使得190F PQ ∠=︒,则1F PQ ∆的内切圆的半径r = 【答案】2【来源】18届金山二模11 【难度】解析几何、中档题14.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π) 【答案】12π【来源】18届崇明二模6 【难度】解析几何、基础题15. 已知椭圆2221x y a +=(0a >)的焦点1F 、2F ,抛物线22y x =的焦点为F ,若123F F FF =,则a =【来源】18届崇明二模8 【难度】解析几何、中档题9. 复数1.设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______. 【答案】4【来源】18届奉贤二模7 【难度】复数、基础题2.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .【答案】3(4- 【来源】18届黄浦二模8 【难度】复数、中档题3.已知复数z 满足i 342+=z (i 为虚数单位),则=||z ____________. 【答案】5【来源】18届长嘉二模3 【难度】复数、基础题4.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 【答案】512i -【来源】18届青浦二模2 【难度】复数、基础题5.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【答案】-1【来源】18届松江二模3 【难度】复数、基础题6.若复数z 满足1z =,则z i -的最大值是 . 【答案】2【来源】18届杨浦二模6 【难度】复数、中档题7.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为 【答案】-2【来源】18届崇明二模3 【难度】复数、基础题10. 立体几何1.已知球的俯视图面积为π,则该球的表面积为 . 【答案】4π 【来源】18届宝山 二模5 【难度】立体几何、基础题2.已知半径为2R 和R 的两个球,则大球和小球的体积比为 .【答案】8或1:8 【来源】18届奉贤 二模2 【难度】立体几何、基础题3.长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++= 4.2【答案】2【来源】18届虹口 二模4 【难度】立体几何、中档题4.如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于【答案】3π 【来源】18届虹口 二模9 【难度】立体几何、中档题5.将圆心角为32π,面积为π3的扇形围成一个圆锥的侧面,则此圆锥的体积为___________.【答案】π322【来源】18届长嘉二模7【难度】立体几何、中档题6.三棱锥ABCP-及其三视图中的主视图和左视图如下图所示,则棱PB的长为________.【答案】24【来源】18届长嘉二模8【难度】立体几何、中档题7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为__________.【答案】4π【来源】18届青浦二模7【难度】立体几何、中档题8.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【来源】18届徐汇二模5【难度】立体几何、基础题9.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .【答案】15π【来源】18届徐汇二模8【难度】立体几何、中档题10.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【答案】16π【来源】18届松江二模8 【难度】立体几何、中档题11.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .【来源】18届杨浦二模7 【难度】立体几何、中档题12.记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【答案】23【来源】18届金山二模6 【难度】立体几何、中档题11. 排列组合、概率统计、二项式定理1.某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).【答案】1.72 【来源】18届宝山二模3 【难度】统计、基础题2.若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 【答案】310【来源】18届宝山二模9 【难度】概率、中档题3.在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示) 【答案】1688 【来源】18届宝山二模7 【难度】排列组合、中档题4.从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【答案】12【来源】18届虹口二模6 【难度】概率、中档题5.若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 【答案】20 【来源】18届虹口二模8 【难度】二项式、中档题6.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.【答案】140【来源】18届黄浦二模9【难度】概率统计、中档题7.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示) 10.【答案】5 16【来源】18届黄浦二模10 【难度】概率统计、中档题8.nxx⎪⎭⎫⎝⎛+1的展开式中的第3项为常数项,则正整数=n___________.【答案】4【来源】18届长嘉二模2【难度】二项式、基础题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________.9.【答案】167【难度】概率统计、中档题10.代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 【答案】3【来源】18届奉贤二模10 【难度】二项式、中档题11.书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示). 【答案】24【来源】18届普陀二模4 【难度】二项式、基础题12.若321()nx x-的展开式中含有非零常数项,则正整数n 的最小值为_________.5 【答案】5【来源】18届普陀二模6 【难度】二项式、基础题13.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).【答案】221【难度】概率统计、中档题14.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【答案】45【来源】18届松江二模11 【难度】排列组合、压轴题15.设*n N ∈,n a 为(4)(1)n nx x +-+的展开式的各项系数之和,324c t =-,t ∈R1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为【答案】25【来源】18届松江二模12 【难度】二项式、压轴题16.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【答案】20【来源】18届徐汇二模2 【难度】二项式、基础题 17.621(1)(1)x x++展开式中2x 的系数为______________.8、30【答案】30【来源】18届青浦二模8 【难度】二项式、中档题18.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 .【答案】151192【来源】18届青浦二模9 【难度】概率统计、中档题19.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 【答案】16【来源】18届徐汇二模9 【难度】概率统计、中档题20.若的二项展开式中项的系数是,则n = . 【答案】4【来源】18届杨浦二模3 【难度】概率统计、基础题21.掷一颗均匀的骰子,出现奇数点的概率为 .()13nx +2x 542【来源】18届杨浦二模4 【难度】概率统计、基础题22.若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是【答案】11322535C C C ⋅=【来源】18届金山二模8 【难度】概率统计、中档题23.(12)nx +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍, 则正整数n = 【答案】5【来源】18届金山二模9 【难度】二项式、中档题24.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字) 【答案】169.1【来源】18届崇明二模5 【难度】统计、基础题25. 若二项式7(2)ax x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+=3【来源】18届崇明二模7 【难度】二项式、基础题26.某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在 相邻车位的概率是【答案】47【来源】18届崇明二模10 【难度】概率、中档题12. 行列式、矩阵、程序框图1.若某线性方程组对应的增广矩阵是421m m m ⎛⎫⎪⎝⎭,且此方程组有唯一一组解,则实数m的取值范围是 【答案】0D ≠,即2m ≠±【来源】18届金山二模7 【难度】矩阵、中档题2.三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 【答案】2log 3x = 【来源】18届奉贤二模6 【难度】矩阵、中档题3.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【答案】 40【来源】18届松江二模2 【难度】矩阵、基础题4.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.【答案】π【来源】18届徐汇二模7 【难度】矩阵、基础题5.若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 【答案】9【来源】18届宝山二模6 【难度】矩阵、基础题6.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 . 【答案】3[,],Z 88k k k ππππ-+∈【来源】18届黄浦二模7 【难度】矩阵、基础题7.已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫⎪⎝⎭,则x y +=【答案】5【来源】18届崇明二模2【难度】矩阵、基础题8.若2log 1042x -=-,则x =【答案】4【来源】18届崇明二模4 【难度】行列式、基础题13. 数学归纳法、极限1.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【答案】12【来源】18届松江二模6 【难度】极限、基础题2.计算:=+∞→142limn nn .【答案】12【来源】18届杨浦二模2 【难度】极限、基础题14. 参数方程、线性规划1.已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .【答案】4 【来源】18届奉贤二模4 【难度】线性规划、中档题2.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-+≥,043,04,1y x y x x 则目标函数y x z -=3的最大值为_________.【答案】4 【来源】18届长嘉二模6 【难度】线性规划、基础题3.在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________.【答案】(24-【来源】18届普陀二模8 【难度】参数方程、中档题4.设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________. 【答案】4(0,1][,)3+∞ 【来源】18届普陀二模10 【难度】参数方程、中档题5.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.【答案】12-【来源】18届青浦二模6 【难度】参数方程、中档题6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.【答案】-1【来源】18届徐汇二模6 【难度】线性规划、基础题7.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .【答案】3【来源】18届杨浦二模5 【难度】线性规划、基础题8.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【答案】()2,1- 【来源】18届松江二模5 【难度】线性规划、基础题9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k = 【答案】5k =【来源】18届松江二模9 【难度】线性规划、中档题10.已知,x y ∈R,且满足00y y y +≤-≥≥⎪⎩,若存在θ∈R 使得cos sin 10x y θθ++=成立,则点(,)P x y 构成的区域面积为【答案】6π【来源】18届崇明二模11 【难度】线性规划、中档题15.其它1.函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于 【答案】16【来源】18届虹口二模12 【难度】其它、压轴题 二、选择题1.命题、不等式)(C 充要条件. )(D 既不充分也不必要条件.【答案】 B 【来源】18届宝山二模13 【难度】命题与条件、基础题2.在给出的下列命题中,是假命题的是 答( ). (A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线(B )若向量a b 和是平面α上的两个不平行的向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的(C )已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d 、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【来源】18届黄浦二模16 【难度】命题与条件、压轴题3.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
上海市黄浦区2018届高三上学期期末调研测试数学试题+Word版含答案
黄浦区2017学年第一学期高三年级期终调研测试 数学试卷(完卷时间:120分钟 满分:150分) 2018.1考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名等相关信息在答题卷上填写清楚,并在规定的区域贴上条形码; 3.本试卷共21道试题,满分150分;考试时间120分钟.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.已知全集U=R ,集合{}3||1|1,|01x A x x B x x -⎧⎫=->=<⎨⎬+⎩⎭,则()U C A B =I . 2.已知角θ的顶点在坐标原点,始边与x 轴的正半轴重合,若角θ的终边落在第三象限内,且3cos()25πθ+=,则cos 2θ= .3.已知幂函数的图像过点(,)124,则该幂函数的单调递增区间是 . 4.若n S 是等差数列{}()*N n a n Î:1,2,5,8,-L 的前n 项和,则2lim 1nn S n →∞=+ .5.23p 的扇形,则该圆锥体的体积是 .6.过点(2,1)P -作圆225x y +=的切线,则该切线的点法向式方程是 .7.已知二项式展开式7270127(12)x a a x a x a x -=++++L ,且复数711i 2128a z a =+,则复数z 的模||z = . (其中i 是虚数单位)8.若关于x y 、的二元一次线性方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的增广矩阵是1302m n ⎛⎫ ⎪⎝⎭,且1,1x y =⎧⎨=-⎩是该线性方程组的解,则三阶行列式1010321m n -中第3行第2列元素的代数余子式的值是 .9.某高级中学欲从本校的7位古诗词爱好者(其中男生2人、女生5人)中随机选取3名同学作为学校诗词朗读比赛的主持人.若要求主持人中至少有一位是男同学,则不同选取方法的种数是 .(结果用数值表示)10.已知ABC D 的三个内角、、A B C 所对边长分别为、、a b c ,记ABC D 的面积为S ,若()22S a b c =--,则内角=A .(结果用反三角函数值表示)11.已知函数()||11f x x =-,关于x 的方程()()20f x bf x c ++= 有7个不同实数根,则实数、b c 满足的关系式是 .12.已知正六边形ABCDEF (顶点的字母依次按逆时针顺序确定)的边长为1,点P 是CDED 内(含边界)的动点.设()、R AP x AB y AF x y =?孜u u u r u u u r u u u r ,则x y +的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知αβ、是空间两个不同的平面,则“平面α上存在不共线的三点到平面β的距离相等”是“αβP ”的 答( ). (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )非充分非必要条件14.为了得到函数sin cos ()33R y x x x =+?的图像,可以将函数3y x =的图像答( ).(A )向右平移4p 个单位 (B )向左平移4p个单位 (C )向右平移12p 个单位 (D )向左平移12p个单位15.用数学归纳法证明*111111(N )12324n n n n n n+++≥∈++++L 时,由n k =到1n k =+时,不等式左边应添加的项是 答( ). (A ) 121k + (B ) 11211k k -++ (C )112122k k +++ (D )112122k k -++16.已知函数12x y +=的图像与函数()y f x =的图像关于直线0x y +=对称,则函数()y f x =的反函数是 答( ).(A )21log ()y x =-- (B ) 2log (1)y x =-- (C ) 12x y -+=- (D ) 12x y -+=三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正方体1111ABCD A B C D -的棱长为2,点E F 、分别是所在棱A B AB 11、的中点,点1O 是面1111A B C D 的中心.如图所示.(1)求三棱锥1O FBC -的体积1O FBC V -;(2)求异面直线A F 1与CE 所成角的大小.(结果用反三角函数值表示)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数11()cos 222f x x =+,1()3sin 2g x x x =⋅,R x ∈.(1)若()0f a =,求(2)g a 的数值;(2)若02x π≤≤,求函数()()()h x f x g x =+的值域.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(1,0)F ,点(0,)B b 满足||2FB =.(1)求实数a b 、的值;(2)过点F 作直线l 交椭圆E 于M N 、两点,若BFM ∆与BFN ∆的面积之比为2,求直线l 的方程.20.(本题满分16分)本题共有2个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.定义:若函数()f x 的定义域为R ,且存在实数a 和非零实数k (a k 、都是常数),使得(2)()f a x k f x -=⋅对R x ∈都成立,则称函数()f x 是具有“理想数对(,)a k ”的函数.比如,函数()f x 有理想数对(2,1)-,即(4)()f x f x -=-,(4)()0f x f x -+=,可知函数图像关于点(2,0)成中心对称图形.设集合M 是具有理想数对(,)a k 的函数的全体.(1)已知函数()21,R f x x x =-∈,试判断函数()f x 是否为集合M 的元素,并说明理由; (2)已知函数g()2,R xx x =∈,证明:()g x M ∉;(3)数对(2,1)(1,1)-和都是函数()h x 的理想数对,且当11x -≤≤时,2()1h x x =-.若正比例函数(0)y mx m =>的图像与函数()h x 的图像在区间[0,12]上有且仅有5个交点,求实数m 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.定义运算“⊕”:对于任意y R x ∈、,(1)x y b x by ⊕=-+(R b +∈)(等式的右边是通常的加减乘运算).若数列{}n a 的前n 项和为n S ,且3n n n S a ⊕=对任意*N n ∈都成立. (1) 求1a 的值,并推导出用1n a -表示n a 的解析式;(2)若3b =,令*(N )3n n n a b n =∈,证明数列{}n b 是等差数列;(3)若3b ≠,令*(N )3n n n a c n =∈,数列{}n c 满足||2n c ≤*(N )n ∈,求正实数b 的取值范围.黄浦区2017-2018学年第一学期高三年级期终调研测试数学试卷参考答案和评分标准2018.1说明:1.本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、填空题. 1.[0,2] 2.725 3.(,0)-∞ 4.325.83π 6.2(2)1(y 1)0x -⋅++⋅-= 7.528.4 9.25 10.1588arccos(arcsin arctan )171715或、或 11.1,2.b c b +=-⎧⎨<-⎩ (或1,1.b c c +=-⎧⎨>⎩ ) 12.[3,4].二、选择题.13.()B 14.()D 15.()D 16.()C 三、解答题.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1) 联结111BC O B O C O F 、、、,依据题意可知, 三棱锥1O FBC -的高与1AA 的长相等。
2018届上海市高三(二模模拟)检测理科数学试题及答案
2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。
详解及答案:上海市黄浦区2018高三4月模拟(二模)数学试题(解析版)
1
π
【答案】
4
【解析】
由 已 知 a2 = b2 + c2 − 2bcsinA , 可 得 sinA = b2 + c2 − a2 , 2bc
= cosA b2 + c2 − a2 ,∴= cosA sin A,Q 0 < A < π= ,∴ A π .
2bc
4
π
故答案为 .
黄浦区 2018 年高考模拟考数学试卷
一、填空题:
1.已= 知集合 A {1= , 2,3},B {1, m} ,若 3 − m ∈ A ,则非零实数 m 的数值是______.
【答案】2 【解析】
由题,若 3 − m =2, 则 m = 1, 此时 B 集合不符合元素互异性,故 m ≠ 1; 若 3 − m = 1, 则 m = 2, 符合题意;若 3 − m =3, 则 m = 0, 不符合题意.
1 (450 + 750 + 900) =1 × 2100 =140,
15
15
即答案为 140.
则这次抽样调查抽取的人数是
10.将一枚质地均匀的硬币连续抛掷 5 次,则恰好有 3 次出现正面向上的概率是_____.(结果用数值表示)
5
【答案】
16
【解析】
一枚硬币连续抛掷 5 次,则恰好有 3 次出现正面向上的概率 p= 5
D. 非充分非必要条件
【答案】A
【解析】
若“直线 m ⊥ 平面α ”则“直线 m 与平面α 内无穷多条直线都垂直 ”,正确;反之,若“直线 m 与平 面α 内无穷多条直线都垂直 ”则“直线 m ⊥ 平面α ”是错误的,故直线 m ⊥ 平面 α ”是“直线 m 与
推荐-上海市2018届高三数学联合测试试卷(二期课改)含答案 精品
上海市2018届高三数学联合测试试卷(二期课改)考生注意:1. 答卷前务必将学校、班级、姓名、学号填写清楚.2. 本试卷共有22道试题,满分150分,考试时间120分钟.3. 请考生用钢笔或圆珠笔将答案直接写在试卷上.一、填空题(本大题共48分,本大题共有12题,要求直接填写出结果,每个空格填对得4分,否则一律得0分)1. 函数2log (1)(1)y x x =+>的反函数是 .2. 已知20.618x =,且[,1],x k k k ∈+∈Z ,则k = .3. 设a ,b 为非零向量,若|a +b |=|a -b |,则a 与b 夹角为 .4. 函数lg(2)y x =-的定义域是 .5. 2333lim 32n n n n →∞++⋅⋅⋅+=- . 6. 已知222cos 5cos sin 3sin 0θθθθ+⋅-=,(,)42ππθ∈,则tan θ= .7. 已知△ABC 两内角A 、B 的对边边长分别为a 、b ,且cos cos a A b B =,则ABC ∆的形状是 .8. 某人用1小时将一条信息传给2人,而这2人每人又用1小时将信息传给不知此信息的2人,如此传下去(每人仅传一次),若要传给55个不同的人,至少需要___________小时. 9. 已知函数4()||||f x x x =+;当[3,1]x ∈--时,记()f x 的最大值为m ,最小值为n ,则m n += .10.已知a b ∈R 、,定义:⑴ 设b a <,则;,b b a a b a =⊗=⊕ ⑵ 有括号的先计算括号.那么下式 (2018⊕2018)⊗(2018⊕2018) 的运算结果为 .11.已知P 是抛物线221y x =+上的动点,定点(0,1)A -,若点M 在直线PA 上,同时满足:①点M 在点P 的下方; ②||2||0PM MA -=. 则点M 的轨迹方程是__ ____. 12.函数2()43f x x x =-+,集合{(,)|()()0}M x y f x f y =+≤,{(,)|2,2}N x y x y =≤≤,x 、y ∈R ,则集合N M 在直角坐标系中对应图形的面积是 .密封线内不要题答二、选择题(本大题满分16分,共有4题. 每题都给出代号为A 、B 、C 、D 四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选或选出的代号超过一个(不论是否都写在圆括号内),一律得零分)13.函数3sin(2)2y x π=+图像的一条对称轴方程是 ( )A. 4π-=xB.2π-=xC. 8π=xD. 45π=x 14.若双曲线221(0)18x y n n-=>则双曲线的半焦距为( )A.C. 5D. 10 15. (理)是R 上的以2为周期的奇函数,已知时,,则在(1,2)上是 ( )A. 增函数且B. 减函数且C. 减函数且D. 增函数且(文)函数212()log (32)f x x x =-+的单调增区间是 ( ) A.(,1)-∞ B.3(,]2-∞ C. 3(,)2+∞ D. (2,)+∞16.互不相等的三个正数321,,x x x 成等比数列,且P 1(1log a x ,1log b y ),P 2(2log a x ,2log b y ),)log ,(log 333y x P b a 三点共线(其中0a >,1a ≠,0b >,1b ≠),则1y ,2y ,3y ( ) A. 等差数列,但不等比数列; B. 等比数列而非等差数列C. 等比数列,也可能成等差数列D. 既不是等比数列,又不是等差数列三、解答题(本大题满分86分,共有6道大题,解答下列各题必须写出必要的文字说明、证明过程或演算步骤) 17.(满分12分)已知直角坐标系中三点A (3,0),B (0,3),C (cos α,sin α),且1AC BC =-,求sin2α的值.18.(满分12分)方程0222=+-x x 的根在复平面上对应的点是A 、B , 点C 对应的复数满足()()6112-=++z i ,求ABC ∆的最大内角的大小.19.(满分14分)如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,90ABC ∠=,1PA AB ==,3AD =,且5ADC ∠=.求:(1) 三棱锥P ACD -的体积;(2)(理科)二面角P CD A --的大小;(文科)直线PC 与AB 所成角的大小.APBDC20.(满分14分)某农产品去年各季度的市场价格如下表:今年某公司计划按去年市场价格的“平衡价m ”(平衡价m 是这样的一个量:m 与去年各季度售价差的平方和最小)收购该种农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a 万吨. 政府为了鼓励收购公司多收购这种农产品,决定将税率降低x 个百分点,预测收购量可增加2x 个百分点. (1) 根据题中条件填空,m = (元/吨); (2) 写出税收y (万元)与x 的函数关系式;(3) 若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围.密封线内不要题答21.(满分16分)已知椭圆2222by a x +=1(a >b >0),c =,c 为半焦距. 过点A (0,-b )和B (a ,0)的直线与原点的距离为23.(1)求椭圆的方程.(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD 为直径的圆过E 点?若存在,请求出k 的值;若不存在,请说明理由.密封线内不要题答22.(满分18分)已知()f x 为一次函数,[(1)]1f f =-,()f x 的图像关于直线0x y -=的对称的图像为C , 若点1(,)()n na n n a *+∈N 在曲 线C 上,并有1a =1, 111(2)n nn n a a n a a +--=≥. (1 ) 求()f x 的解析式及曲线C 的方程;(2) 求数列{n a }的通项公式; (3) 设3123!4!5!(2)!n n a a a a S n =+++++,对于一切n *∈N ,都有n S m >成立,求自然数m 的最大值.上海市高三数学联合测试试卷(二期课改)参考答案一、1.y=2x-1(1)x > 2.-1 3.2π 4.(2,3] 5.326.27.等腰或直角三角形8.6或59.9 10.2018 11.y=-2x 2-6或y=6x 2-13 12. 2π二、13.B 14.C 15.D (A ) 16.C 三、17、解: AC =( cos α-3,sin α),BC =(cos α,sin α-3),AC ·BC =( cos α-3,sin α)·(cos α,sin α-3) =( cos α-3) cos α +sin α( sin α-3)=-1, ∴cos 2α+ sin 2α-3 cos α-3 sin α=-1 即sin α+ cos α=23,∴(sin α+ cos α)2=(23)2 cos 2α+ sin 2α+2cos α·sin α=49, ∴sin2α=-59.18.解:解方程0222=+-x x 得:x=1±i ,则A(1,1),B(1,-1).又由()()6112-=++z i 解得z=-1+3i ,则C (-1,3).∴AC =(-2,2),AB =(0,-2)cos A =||||AC ABAC AB ⋅= . ∴A=135O 19.解:(1)做CE ⊥AD 于E ,易得DE=2,∴BC=AE=1 ∴ACD ∆的面积为:S=131322⨯⨯=, ∴三棱锥P-ACD 的体积V=13Sh=12(2)(理科)方法一:取PC 的中点M ,过M 做MN ⊥AD ,则易证MN ⊥平面ABCD.过N 作NG ⊥CD ,连接MG ,易证MG ⊥CD ,则MGN ∠是二面角P -CD -A 的平面角.易求得:Rt ⊿MNG 得:tan MGN ∠=12∴MGN ∠=arctan 3. ∴二面角P -CD -A 的大小为arctan 3.方法二:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,3,1),P(0,0,1). 则平面ABCD 的一个法向量为1n =(0,0,1).又设平面PCD 的一个法向量为2n =(x,y,z),由2n ⊥PC ,2n ⊥PD 得:2n ·PC =0,2n ·PD =0∴(1,1,1)(,,)0(0,3,1)(,,)0x y z x y z -⋅=⎧⎨-⋅=⎩,即030x y z y z +-=⎧⎨-=⎩,∴23x y z y =⎧⎨=⎩取y=1,得2n =(2,1,3).设2n ,2n 的夹角为θ,则cos θ= 由已知图形知二面角P -CD -A 的大小为(文科)连接PE.∵AB ⊥AD ,AB ⊥PA ,AB ⊥平面PAD ,则AB ⊥PE , 又∵CE ∥AB ,∴CE ⊥PE.∴∠PCE 是直线PC 与AB 所成的角.在Rt ⊿PEC 中,CE=1∴tan ∠即直线PC 与AB 所成的角大小为20. 解:(1)200 理由:由y=(m-195.5)2+(m-200.5)2+(m-218.5)2+(m-199.5)2=4m 2-1600m+195.52+200.52+218.52+199.52∴当m=200时,y 有最小值.(2)降低税率后的税率为(10-x)%,农产品的收购量为a(1+2x%)万吨,收购总金额为200a(1+2x%),故y =200a(1+2x%)·(10-x )%=150a(100+2x)(10-x),(0<x<10). (3)原计划税收为200a ×10%=20a (万元).依题意得:150a(100+2x)(10-x)≥20a ×83.2% 即x 2+40x -84≤0,解得-42≤x ≤2,又0<x<10 ∴0<x ≤2 答:x 的取值范围是0<x ≤2.21.解:(1)直线AB方程为:bx-ay-ab=0.依题意2c⎧=⎪⎨=解得1ab⎧=⎪⎨=⎪⎩∴椭圆方程为1322=+yx.(2)(理科)假若存在这样的k值,由⎩⎨⎧=-++=33222yxkxy,得)31(2k+09122=++kxx.∴0)31(36)12(22>+-=∆kk.①设1(xC,)1y、2(xD,)2y,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112kxxkkxx,②而4)(2)2)(2(212122121+++=++=⋅xxkxxkkxkxyy.要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则1112211-=++⋅xyxy,即0)1)(1(2121=+++xxyy.∴21212(1)(21)()50k x x k x x+++++=.③将②式代入③整理解得67=k.经验证,67=k,使①成立.综上可知,存在67=k,使得以CD为直径的圆过点E.(文科)假若存在这样的k值,由22330y x kx y=+⎧⎨+-=⎩,得2246330x kx k++-=.∴22(6)44(33)0k k∆=-⨯->.①设1(xC,)1y、2(xD,)2y,则1221232334x x kkx x⎧+=-⎪⎪⎨-⎪=⎪⎩⋅②而212121212()()()y y x k x k x x k x x k=++=+++⋅.由OC ⊥OD 知0OC OD ⋅=,即 12120x x y y +=. ∴ 212122()0x x k x x k +++=. ③将②式代入③整理解得k =.经验证k =使①成立.综上可知,存在k =,使得OC ⊥OD .22.解:(1)设()f x =kx b +(k ≠0),∴[(1)]f f =k 2+kb+b=-1.①因为()f x 的图像关于直线x-y=0的对称为C ,∴曲线C 为:1()f x -=x b k k-, ∴1()f n -=n b k k -,1(1)f n --=1n b k k--, 1()f n --1(1)f n --=1k。
2018届黄浦区高考数学二模试卷(附答案)
2018届黄浦区⾼考数学⼆模试卷(附答案)黄浦区2018年⾼考模拟考数学试卷(完卷时间:120分钟满分:150分) 2018.4考⽣注意:1.每位考⽣应同时收到试卷和答题卷两份材料,解答必须在答题卷上进⾏,写在试卷上的解答⼀律⽆效; 2.答卷前,考⽣务必将姓名等相关信息在答题卷上填写清楚,并在规定的区域贴上条形码; 3.本试卷共21道试题,满分150分;考试时间120分钟.⼀、填空题(本⼤题共有12题,满分54分)考⽣应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则⼀律得零分.1.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则⾮零实数m 的数值是. 2.不等式|1|1x ->的解集是.3.若函数()f x =是偶函数,则该函数的定义域是.4.已知ABC ?的三内⾓A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内⾓A 的⼤⼩是.5.已知向量a 在向量b ⽅向上的投影为2-,且3b =,则a b ? = .(结果⽤数值表⽰) 6.⽅程33log (325)log (41)0x x ?+-+=的解x = .7.已知函数2sin cos 2()1cos x xf x x-=,则函数()f x 的单调递增区间是.8.已知α是实系数⼀元⼆次⽅程22(21)10x m x m --++=的⼀个虚数根,且||2α≤,则实数m 的取值范围是.9.已知某市A 社区35岁⾄45岁的居民有450⼈,46岁⾄55岁的居民有750⼈,56岁⾄65岁的居民有900⼈.为了解该社区35岁⾄65岁居民的⾝体健康状况,社区负责⼈采⽤分层抽样技术抽取若⼲⼈进⾏体检调查,若从46岁⾄55岁的居民中随机抽取了50⼈,试问这次抽样调查抽取的⼈数是⼈.10.将⼀枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正⾯向上的概率是.(结果⽤数值表⽰) 11.已知数列{}n a 是共有k 个项的有限数列,且满⾜11(2,,1)n n nna a n k a +-=-=- ,若1224,51,0k a a a ===,则k = .12.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成⽴,则代数式(1)(0)(1)f f f --的13.在空间中,“直线m ⊥平⾯α”是“直线m 与平⾯α内⽆穷多条直线都垂直 ”的答( ).(A )充分⾮必要条件 (B )必要⾮充分条件 (C )充要条件 (D )⾮充分⾮必要条件14.⼆项式40的展开式中,其中是有理项的项数共有答( ). (A ) 4项 (B ) 7项 (C ) 5项 (D ) 6项15.实数x y 、满⾜线性约束条件3,0,0,10,x y x y x y +≤??≥≥??-+≥?则⽬标函数23w x y =+-的最⼤值是答( ).(A ) 0 (B ) 1 (C ) 2- (D ) 316.在给出的下列命题中,是假命题的是答( ).(A )设O A B C 、、、是同⼀平⾯上的四个不同的点,若(1)(R)OA m OB m OC m =?+-?∈,则点A B C 、、必共线(B )若向量a b 和是平⾯α上的两个不平⾏的向量,则平⾯α上的任⼀向量c都可以表⽰为(R)c a b λµµλ=+∈、,且表⽰⽅法是唯⼀的(C )已知平⾯向量OA OB OC、、满⾜||||(0)OA OB OC r r ==> |=|,且0OA OB OC ++= ,则ABC ?是等边三⾓形(D )在平⾯α上的所有向量中,不存在这样的四个互不相等的⾮零向量ab c d、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直三、解答题(本⼤题满分76分)本⼤题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个⼩题,第1⼩题满分4分,第2⼩题满分10分.在四棱锥P ABCD-中,P A A B ⊥平⾯,,,1,AB AD BC AD BC ⊥=045CD CDA =∠=.(1)画出四棱锥P ABCD -的主视图;(2)若PA BC =,求直线PB 与平⾯PCD 所成⾓的⼤⼩.(结果⽤反三⾓函数值表⽰)18.(本题满分14分)本题共有2个⼩题,第1⼩题满分6分,第2⼩题满分8分.某企业欲做⼀个介绍企业发展史的铭牌,铭牌的截⾯形状是如图所⽰的扇形环⾯(由扇形OAD 挖去扇形OBC 后构成的).已知10,(010)OA OB x x ==<<⽶⽶,线段BA CD 、线段与弧BC 、弧AD 的长度之和为30⽶,圆⼼⾓为θ弧度. (1)求θ关于x 的函数解析式;(2)记铭牌的截⾯⾯积为y ,试问x 取何值时,y 的值最⼤?并求出最⼤值.19.(本题满分14分)本题共有2个⼩题,第1⼩题满分6分,第2⼩题满分8分.已知动点(,)M x y 到点(2,0)F 的距离为1d ,动点(,)M x y 到直线3x =的距离为2d,且12d d =. (1)求动点(,)M x y 的轨迹C 的⽅程; (2)过点F 作直线:(2)(0)l y k x k =-≠交曲线C 于P Q 、两点,若OPQ ?的⾯积OPQ S ?=(O 是20.(本题满分16分)本题共有2个⼩题,第1⼩题满分4分,第2⼩题满分6分,第3⼩题满分6分.已知函数22, 10,()=1, 0 1.x x f x x x --≤(1) 求函数()f x 的反函数1()f x -;(2)试问:函数()f x 的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由; (3)若⽅程()|()240f x f x ax +---=的三个实数根123x x x 、、满⾜:123x x x <<,且32212()x x x x -=-,求实数a 的值.21.(本题满分18分)本题共有3个⼩题,第1⼩题满分3分,第2⼩题满分6分,第3⼩题满分9分.定义:若数列{}n c 和{}n d 满⾜*10,0,N nn n c d n +>>=∈且c ,则称数列{}n d 是数列{}n c 的“伴随数列”.已知数列{}n b 是数列{}n a 的伴随数列,试解答下列问题: (1)若*(N )nn b a n =∈,1b {}n a 的通项公式n a ;(2)若*11(N )n n n b b n a +=+∈,11b a 为常数,求证:数列2n n b a ???????? ???????是等差数列; (3)若*1N )n nb n +=∈,数列{}n a 是等⽐数列,求11a b 、的数值.黄浦区2018年⾼考模拟考数学试卷参考答案和评分标准2018.4说明:1.本解答仅列出试题的⼀种解法,如果考⽣的解法与所列解答不同,可参考解答中的评分精神进⾏评分.2.评阅试卷,应坚持每题评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅,当考⽣的解答在某⼀步出现错误,影响了后继部分,但该步以后的解答未改变这⼀题的内容和难度时,可视影响程度决定后⾯部分的给分,这时原则上不应4π5.6- 6.27.3[,],Z 88k k k ππππ-+∈ 8.3(4- 9.140 10.516 11.50 12.3.⼆、选择题.13.()A 14.()B 15.()D 16.()D三、解答题. 17.(本题满分14分)本题共有2个⼩题,第1⼩题满分4分,第2⼩题满分10分.解 (1)主视图如下:(2) 根据题意,可算得1,2AB AD ==. ⼜1PA BC ==,按如图所⽰建⽴空间直⾓坐标系,可得,(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C D P .于是,有(1,0,1),(1,1,0),(0,2,1)PB CD PD =-=-=-.设平⾯PCD 的法向量为(,,)n x y z =,则0,0,n CD n PD ??==?? 即0,20.x y y z -+=??-=? 令2z =,可得1,1y x ==,故平⾯PCD 的⼀个法向量为(1,1,2)n =.设直线PB 与平⾯PCD 所成⾓的⼤⼩为θ,则||sin ||||n PB n PB θ?== .所以直线PB 与平⾯PCD所成⾓的⼤⼩为arcsin 6.18.(本题满分14分)本题共有2个⼩题,第1⼩题满分6分,第2⼩题满分8分.解 (1)根据题意,可算得弧BC x θ=?(m ),弧10AD θ=(m ). ⼜30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+?+=,所以,210(010)10x x x θ+=<<+.(2) 依据题意,可知2化简,得2550y xx =-++25225()24x =--+. 于是,当52x =(满⾜条件010x <<)时,max 2254y =(2m ).答所以当52x =⽶时铭牌的⾯积最⼤,且最⼤⾯积为2254平⽅⽶.19.(本题满分14分)本题共有2个⼩题,第1⼩题满分6分,第2⼩题满分8分.解 (1)结合题意,可得12|3|d d x ==-.⼜12d d == 22162x y +=. 因此,所求动点(,)M x y 的轨迹C 的⽅程是22162x y +=. (2) 联⽴⽅程组221,62(2),x y y k x ?+==-?得222设点1122(,)(,)P x y Q x y 、,则2122212212,13126,130.k x x k k x x k ?+=?+?-?=?+?>于是,弦||PQ=点O到直线l的距离d=.由OPQS==42210k k-+=,解得1k=±,且满⾜0>,即1k=±都符合题意.因此,所求直线的⽅程为2020x y x y--=+-=或.20.(本题满分16分)本题共有3个⼩题,第1⼩题满分4分,第2⼩题满分6分,第3⼩题满分6分.解(1) 2x x--≤<-≤≤∴当10x-≤<时,()2,0()2 f x x f x=-<≤且.由2y x=-,得12x y=-,互换x y 与,可得11()(02)2f x x x-=-<≤.当01x≤≤时,2()1,()0f x x f x,得x=x y与,可得1()10)f x x-=-≤≤.11, 0<2,2()10.x xf xx--≤∴=-≤≤(2) 答函数图像上存在两点关于原点对称.设点00000(,)(01)(,)A x y xB x y<≤--+-=,即200120x x-+=,解得001(1,)x x=舍去,且满⾜01x<≤.因此,函数图像上存在点1,2(12) A B-和关于原点对称.(3) 考察函数()y f x=与函数y=当12x-≤≤-x ax---=,解得2+2x a =-,且由21+2a -≤-≤,得02a ≤≤.当12x -<≤时,有()f x <240ax -=,化简得 22(4)40a x ax ++=,解得2 4=0+4a x x a =-,或(当02a ≤≤时,24024aa -<-<+). 于是,123224,,024ax x x a a =-=-=++. 由32212()x x x x -=-,得22442=2(+)+442a a a a a -++,解得32a -=.因为1a =不符合题意,舍去;02a <=<,满⾜条件.因此,所求实数a =21.(本题满分18分)本题共有3个⼩题,第1⼩题满分3分,第2⼩题满分6分,第3⼩题满分9分.解 (1)根据题意,有*10,0,N n n n a b a n +>>=∈且.由*(N )nn b a n =∈,1b =111n a a b +===,*N n ∈.所以n a =*N n ∈.证明 (2) *11(N )n n n b b n a +=+∈,*10,0,N n n n a b a n +>>=∈且,∴11n n b a ++==n n b a ++=*N n ∈.∴22111n n n n b b a a ++-= ? ?,*N n ∈.∴数列2n n b a?是⾸项为211b a ?? ???、公差为1的等差数列.解(3)*1N )n n b n +=∈,*10,0,N n n n a b a n +>>=∈且,*N n n a b n <+≤∈,得11n a +<≤.{}n a 是等⽐数列,且0n a >,设公⽐为(0)r r >,则1*1(N )n n a a r n -=∈. ∴当1r >,即lim n n a →∞→+∞,与11n a +<⽭盾.因此,1r >不成⽴.当01r <<,即lim 0n n a →∞→,与11n a +<≤01r <<不成⽴.∴ 1r =,即数列{}n a 是常数列,于是,1n a a =*11(N )n n b n +∴=∈. 100n b b >∴> ,,数列{}n b 也是等⽐数列,设公⽐为(0)q q >,有11n n b b q +=.2n a +∴=可化为222221111111(1)2(1)0(1n n b a q a b q a a a --+-=<≤,*N n ∈.2222422111111111(1)0,20,(1)0,4(2)0b a a b a a a b a ->≠->?=-≥,∴关于x 的⼀元⼆次⽅程22222111111(1)2(1)0b a x a b x a a --+-=有且仅有两个⾮负实数根.⼀⽅⾯,n q (*N n ∈)是⽅程22222111111(1)2(1)0b a x a b x a a --+-=的根;另⼀⽅⾯,若1(0)q q ≠>,则⽆穷多个互不相等的234,,,,,,n q q q q q 都是该⼆次⽅程的根.这与该⼆次⽅程有且仅有两个⾮负实数根⽭盾!1q ∴=,即数列{}n b 也是常数列,于是,1n b b =,*N n ∈.∴由*1N )n nb n +=∈,得1a =把1a =1n a +=解得1b11a b ?=?∴?。
2018届上海市黄浦区高三二模理科数学试卷及答案 精品
黄浦区2018年高考模拟考数学试卷(理科) 2018年4月11日考生注意:1.每位考生应同时收到试卷和答题纸两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚;3.本试卷共23道试题,满分150分;考试时间120分钟. 一.填空题(本大题满分56分)本大题共有14题,考生应在答题卷相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分. 1.若复数z 满足109z z-=,则z 的值为___________. 2.函数()lg(42)f x x =-的定义域为___________. 3.若直线l 过点(1,3)A -,且与直线230x y --=垂直,则直线l 的方 程为___________.4.等差数列{}n a 的前10项和为30,则14710a a a a +++=___________.5.执行右边的程序框图,则输出的a 值是___________. 6.设a 为常数,函数2()43f x x x =-+,若()f x a +在[0,)+∞上是增函[来源:学.科.网Z.X.X.K] 数,则a 的取值范围是___________.7.在极坐标系中,直线:cos 1l ρθ=被圆:4cos C ρθ=所截得的线段长 为___________.8.已知点(2,3)P -是双曲线22221(0,0)x y a b a b-=>>上一点,双曲线两个焦点间的距离等于4,则该双曲线方程是___________.9.在平行四边形ABCD 中,若2,1,60AB AD BAD ==∠=,则AB BD ⋅=___________.10.已知,,A B C 是球面上三点,且4,90AB AC cm BAC ==∠= ,若球心O到平面ABC的距离为__________3cm . 11.在ABC ∆中,120,5,7A AB BC ∠=== ,则sin sin BC的值为___________. 12.已知23230123(3)(3)(3)n x x x x a a x a x a x ++++=+-+-+- (3)n n a x ++-()n N *∈且012n n A a a a a =++++ ,则lim4nnn A →∞=___________. 13.一厂家向用户提供的一箱产品共10件,其中有1件次品. 用户先对产品进行随机抽检以决定是否接受. 抽检规则如下:至多抽检3次,每次抽检一件产品(抽检后不放回),只要检验到次品就停止继续抽检,并拒收这箱产品;若3次都没有检验到次品,则接受这箱产品,按上述规则,该用户抽检次数的数学期望是___________. 14.已知1()4f x x=-,若存在区间1[,](,)3a b ⊆+∞,使得{}(),[,][,]y y f x x a b ma mb =⊆=,则实数m 的取值范围是___________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知4cos 25θ=,且sin 0θ<,则tan θ的值为A .2425-B. 247±C. 247- D. 24716.函数21()1(2)2f x x x =+<-的反函数是A .3)y x ≤< B. 3)y x =>C .3)y x =≤< D. 3)y x => 17.下列命题:①“102a <≤”是“存在n N *∈,使得1()2n a =成立”的充分条件;②“0a >”是“存在n N *∈,使得1()2n a <成立”的必要条件;③“12a >”是“不等式1()2n a <对一切n N *∈恒成立”的充要条件. 其中所以真命题的序号是A .③ B. ②③ C. ①② D.①③18.如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ 的取值范围是A .[1,1)- B. {}1,0- C. (,1][0,1)-∞- D.[1,0](1,)-+∞ABCDA 1B 1ED 1C 1三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题卷相应编号的规定区域内写出必要的步骤19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知正四棱柱1111ABCD A BC D -的底面边长为2,1AD . (1)求该四棱柱的侧面积与体积;(2)若E 为线段1A D 的中点,求BE 与平面ABCD 所成角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知复数12sin ,(sin )z x i z x x i λ=+=-(,,x R i λ∈为虚数单位) (1)若122z z i =,且(0,)x π∈,求x 与λ的值;(2)设复数12,z z 在复平面上对应的向量分别为12,OZ OZ ,若12OZ OZ ⊥ ,且()f x λ=,求()f x 的最小正周期和单调递减区间.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某医药研究所开发一种新药,在实验药效时发现:如果成人按规定剂量服用,那么服药后每毫升血液中的含药量y (微克)与时间x (小时)之间满足211(01)2(1)41x x axx x ay a x --⎧<<⎪⎪+=⎨⋅⎪>⎪⎩+, 其对应曲线(如图所示)过点16(2,)5.[来源:学科网](1)试求药量峰值(y 的最大值)与达峰时间(y 取最大值时对应的x 值);(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效, 那么成人按规定剂量服用该药一次后能维持多长的有效时 间?(精确到0.01小时) [来源:学#科#网]22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的动直线l 交抛物线C 于点11(,)A x y ,22(,)B x y 且124y y =-.(1)求抛物线C 的方程;(2)若2()OE OA OB =+(O 为坐标原点),且点E 在抛物线C 上,求直线l 倾斜角;(3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证:当0k 为定值时,12k k +也为定值.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+;(3)若1a 为正整数,求证:当211log n a >+(n ∈N)时,都有0n a =.一、填空题1. 3i ±2. [)1,2-3. 21y x =-+4. 125. 1216. [)2,+∞7.8. 2213y x -= 9. 3-10. 64π 11. 35 12. 4313. 271014. []3,4二、选择题15. C 16. D 17. B 18. A三、解答题【题目19】【解析】⑴根据题意可得:在1Rt AA D ∆中,高13AA ==∴(222323)232S =⨯+⨯+⨯⨯=22312V =⨯⨯=⑵过E 作EF AD ⊥,垂足为F ,连结BF ,则EF ⊥平面ABCD ,[来源:学#科#网]∵BE ⊂平面ABCD ,∴EF BF ⊥∴在Rt BEF ∆中,EBF ∠就是BE 与平面ABCD 所成的角 ∵1,EF AD AA AD ⊥⊥,∴1EF AA ∥,[来源:学。
上海黄浦区2018届高三数学二模试卷有解析
上海黄浦区2018届高三数学二模试卷(有解析)黄浦区2018年高考模拟考数学试卷一、填空题:1.已知集合,若,则非零实数的数值是_________.【答案】【解析】由题,若则此时B集合不符合元素互异性,故若则符合题意;若则不符合题意.故答案为22.不等式的解集是______________.【答案】【解析】或.即答案为.3.若函数是偶函数,则该函数的定义域是_______________.【答案】【解析】因为函数是偶函数,则函数的定义域解得故函数的定义域为.及答案为.4.已知的三内角所对的边长分别为,若,则内角的大小是__________.【答案】【解析】由已知,可得由余弦定理可得故答案为.5.已知向量在向量方向上的投影为,且,则=_______.(结果用数值表示)【答案】【解析】由题向量在向量方向上的投影为,即即答案为-6.6.方程的解_________.【答案】【解析】或(舍)即,解得即答案为2.7.已知函数,则函数的单调递增区间是________.【答案】【解析】由题函数则函数的单调递增区间解得即函数的单调递增区间为.即答案为.8.已知是实系数一元二次方程的一个虚数根,且,则实数的取值范围是__________.【解析】设,则.则也是一元二次方程的一个虚数根,∵实系数一元二次方程有虚数根,∴,解得.∴的取值范围是.故答案为.【点睛】本题考查了实系数一元二次方程有虚数根的充要条件及其根与系数的关系,考查了推理能力与计算能力,属于中档础题.9.已知某市社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.【答案】【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140.10.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是_____.(结果用数值表示)【解析】一枚硬币连续抛掷5次,则恰好有3次出现正面向上的概率故答案为.11.已知数列是共有个项的有限数列,且满足,若,则_____________.【答案】【解析】由题数列是共有个项的有限数列,且满足,则,则……以上各式子同向相加,将代入可得(舍).故答案为50.12.已知函数对任意恒有成立,则代数式的最小值是___________.【答案】【解析】因为恒成立,所以,得又,所以所以【点睛】本题主要考查二次函数的性质,基本不等式的应用,以及换元法,其中对所求式子的恒等变形是解题的关键和难点,属于难题.二、选择题:13.在空间中,“直线平面”是“直线与平面内无穷多条直线都垂直”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】A【解析】若“直线平面”则“直线与平面内无穷多条直线都垂直”,正确;反之,若“直线与平面内无穷多条直线都垂直”则“直线平面”是错误的,故直线平面”是“直线与平面内无穷多条直线都垂直”的充分非必要条件.故选A.14.二项式的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【答案】B【解析】二项式式的展开式中,通项公式为时满足题意,共71个.故选B.15.实数满足线性约束条件则目标函数的最大值是()A.0B.1C.D.3【答案】D【解析】根据约束条件画出可行域如图所示,然后平移直线,当直线过点时,最大值为6.则目标函数的最大值是故选D.16.在给出的下列命题中,是假命题的是()A.设是同一平面上的四个不同的点,若,则点必共线B.若向量是平面上的两个不平行的向量,则平面上的任一向量都可以表示为,且表示方法是唯一的C.已知平面向量满足,且,则是等边三角形D.在平面上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【解析】由则点必共线,故A正确;由平面向量基本定理可知B正确;由可知为的外心,由可知为的重心,故为的中心,即是等边三角形,故C正确;故选D.三、解答题:17.在四棱锥中,平面,,.(1)画出四棱锥的主视图;(2)若,求直线与平面所成角的大小.(结果用反三角函数值表示)【答案】(1)正视图见解析;(2).【解析】试题分析:(1)根据三视图的画法,画出四棱锥的主视图;(2)如图所示建立空间直角坐标系,求出相应点和向量的坐标,求出平面平面的法向量,可求出直线与平面所成角的大小.试题解析:(1)主视图如下:(2)根据题意,可算得.又,按如图所示建立空间直角坐标系,可得,.于是,有.设平面的法向量为,则即令,可得,故平面的一个法向量为.设直线与平面所成角的大小为,则.所以直线与平面所成角的大小为.18.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧、弧的长度之和为米,圆心角为弧度.(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.【答案】(1);(2)当米时铭牌的面积最大,且最大面积为平方米.【解析】试题分析:(1)更具体求出扇形的周长,即可得到关于的函数解析式;;(2)根据扇形面积公式,求出函数解析式利用二次函数求出的值最大.试题解析:(1)根据题意,可算得弧(),弧().又,于是,,所以,.(2)依据题意,可知化简,得.于是,当(满足条件)时,().答所以当米时铭牌的面积最大,且最大面积为平方米. 19.已知动点到点的距离为,动点到直线的距离为,且.(1)求动点的轨迹的方程;(2)过点作直线交曲线于两点,若的面积(是坐标系原点),求直线的方程.【答案】(1);(2)..试题解析:(1)结合题意,可得.又,于是,,化简得.因此,所求动点的轨迹的方程是.(2)联立方程组得.设点,则于是,弦,点到直线的距离.由,得,化简得,解得,且满足,即都符合题意.因此,所求直线的方程为.20.已知函数(1)求函数的反函数;(2)试问:函数的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程的三个实数根满足:,且,求实数的值.【答案】(1);(2)存在点关于原点对称;(3). 【解析】试题分析:(1)根据分段函数的反函数的求法求出函数的反函数;(2)设点是函数图象上关于原点对称的点,则,即,解方程求出,即可说明:函数图象上存在两点关于原点对称.(3)根据函数与函数的图象,可得当时,,且.;当时,,于是,.由,解得.,满足条件.因此,所求实数.试题解析:(1)当时,.由,得,互换,可得.当时,.由,得,互换,可得.(2)答:函数图象上存在两点关于原点对称. 设点是函数图象上关于原点对称的点,则,即,解得舍去),且满足.因此,函数图象上存在点关于原点对称. (3)考察函数与函数的图象,可得当时,有,原方程可化为,解得,且由,得.当时,有,原方程可化为,化简得,解得(当时,).于是,.由,得,解得.因为,故不符合题意,舍去;,满足条件.因此,所求实数.21.定义:若数列和满足则称数列是数列的“伴随数列”.已知数列是数列的伴随数列,试解答下列问题:(1)若,,求数列的通项公式;(2)若,为常数,求证:数列是等差数列;(3)若,数列是等比数列,求的数值.【答案】(1);(2)证明见解析;(3).【解析】试题分析:(1)根据题意,由,,代入.可求得,.(2)由,代入,可得,.即可证明数列是首项为公差为的等差数列.(3).由题意可得).由是等比数列,且,设公比为,则. 可证明当,和时均不成立.故,().根据数列是等比数列,有根据可化为,.可知关于的一元二次方程有且仅有两个非负实数根.可证明,,.由,得.把,代入可得..试题解析:(1)根据题意,有.由,,得,.所以,.(2),,∴,,.∴,.∴数列是首项为、公差为的等差数列.(3),,由,得.是等比数列,且,设公比为,则.∴当,即,与矛盾.因此,不成立.当,即,与矛盾.因此,不成立.,即数列是常数列,于是,()..,数列也是等比数列,设公比为,有.可化为,.,关于的一元二次方程有且仅有两个非负实数根.一方面,()是方程的根;另一方面,若,则无穷多个互不相等的都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!,即数列也是常数列,于是,,.由,得.把,代入解得..【点睛】本题新定义题型,考查的知识是数列的递推式,是数列知识较为综合的应用,,解题时要认真审题,注意数列性质的合理运用.。
2018年浦东区高三二模数学word版(附解析)
2018年浦东区高三二模数学word版(附解析)上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.21lim1n n n →+∞+=-2. 不等式01x x <-的解集为 3. 已知{}na 是等比数列,它的前n 项和为nS ,且34a=,48a =-,则5S =4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -= 5. 91()x x二项展开式中的常数项为 6. 椭圆2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8. 函数23()cos 2f x x x =+,x ∈R 的单调递增区间为9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()mf a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分) 13. 已知方程210xpx -+=的两虚根为1x 、2x ,若12||1x x-=,则实数p 的值为( )A. 3± B.5± C.35D.3±5±以构成“P Q →恒等态射”的是( )A. R →ZB. Z →QC.[1,2](0,1)→ D.(1,2)→R三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知圆锥AO 的底面半径为2,母线长为10点C 为圆锥底面圆周上的一点,O 为 圆心,D 是AB 的中点,且2BOC π∠=. (1)求圆锥的全面积;(2)求直线CD 与平面AOB 所成角的大小. (结果用反三角函数值表示)18. 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边. (1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a BC a b A-=-+-,求角C 的大小;(2)若4sin 5A =,23C π=,3c =ABC ∆的面积.19. 已知双曲线22:1C xy -=.(1)求以右焦点为圆心,与双曲线C 的渐近线相切的圆的方程;(2)若经过点(0,1)P -的直线与双曲线C 的右支交于不同两点M 、N ,求线段MN 的中垂线l 在y 轴上截距t 的取值范围.20. 已知函数()y f x =定义域为R ,对于任意x ∈R 恒有(2)2()f x f x =-.(1)若(1)3f =-,求(16)f 的值;(2)若(1,2]x ∈时,2()22f x x x =-+,求函数()y f x =,(1,8]x ∈的解析式及值域;(3)若(1,2]x ∈时,3()||2f x x =--,求()y f x =在区间(1,2]n,*n N ∈上的最大值与最小值.21. 已知数列{}na 中11a=,前n 项和为nS ,若对任意的*n N ∈,均有nn k Sa k+=-(k 是常数,且*k N ∈)成立,则称数列{}na 为“()H k 数列”.(1)若数列{}na 为“(1)H 数列”,求数列{}na 的前n 项和nS ;(2)若数列{}na 为“(2)H 数列”,且2a 为整数,试问:是否存在数列{}na ,使得211||40n n n aa a -+-≤对一切2n ≥,*n N ∈恒成立?如果存在,求出这样数列{}na 的2a 的所有可能值,如果不存在,请说明理由;(3)若数列{}na 为“()H k 数列”,且121k a aa ==⋅⋅⋅==,证明:211(1)2n kn kk a -+-≥+.上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.21lim1n n n →+∞+=-【解析】22. 不等式01x x <-的解集为【解析】(1)0(0,1)x x x -<⇒∈3. 已知{}na 是等比数列,它的前n 项和为nS ,且34a=,48a =-,则5S =【解析】512481611S =-+-+=4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f-=【解析】12log (1)2(2)3x f -+=⇒=5.91()x x二项展开式中的常数项为【解析】3984C=6. 椭圆2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为 【解析】22143x y +=,右焦点为(1,0)7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为 【解析】交点25(,)33代入最大,16323f x y =+= 8. 函数23()cos 2f x x x =+,x ∈R 的单调递增区间为 【解析】1()sin(2)62f x x π=++,∴单调递增区间为[,]36x k k ππππ∈-+,k ∈Z9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水面的宽为 米【解析】设2y ax =,代入(4,2)-,∴18a =-,∴21368x x -=-⇒=4610. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为【解析】2111463-⨯= 11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是【解析】|1|3ax x +≤-在[1,2]x ∈恒成立,|1|2a +≤且|21|1a +≤,解得[1,0]a ∈-12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()mf a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为【解析】min59()2n n+=,∴在区间9[1,]2上最大值为919()24f =,最小值为53()24f =, 19316444÷=⋅⋅⋅⋅⋅⋅,即m 的最大值为6二. 选择题(本大题共4题,每题5分,共20分) 13. 已知方程210xpx -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A. 3± B.5± C.35D.3±5±【解析】由0∆<,排除B 、C 、D ,选A14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z zz z ⋅=⋅;(3)123123()()z z zz z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 3【解析】① 正确,②③错误,选B15. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
2018黄浦二模答案
黄浦区2018年九年级学业考试模拟考评分标准参考一、选择题(本大题6小题,每小题4分,满分24分)1.A ;2.B ;3.B ;4.B ;5.C ;6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.21+; 8.()()34x x +-; 9.2; 10.166x <≤; 11.8y x =; 12.减小; 13.124; 14.70; 15.3; 16.2233b a - .; 17.5; 18.2∶1. 三、解答题:(本大题共7题,满分78分)19.解:原式=()121233+--—————————————————————(6分) =231233+-+————————————————————————(2分) =4————————————————————————————————(2分)20. 解:由(1)得:3x y -=±——————————————————————(3分)代入(2)得:2320y y ±+=———————————————————(3分) 解得:11y =-,22y =-,31y =,42y =—————————————(2分) 所以方程组的解为:1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩————(2分) 21. 解:(1)由AB =AC =6,AH ⊥BC ,得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH =226425-=,————————————(2分) 则BC =8, 所以△ABC 面积=1258852⨯⨯=.——————————————(1分) (2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分) 22. 解:(1)()1.51150%-÷=.—————————————————————(2分) 答:大白菜涨幅最大,为50%. —————————————————————(1分)(2)设买了x 斤菠菜,———————————————————————(1分) 则303051x x =++,——————————————————————(3分)化简得:260x x +-=——————————————————————(1分) 解得:12x =,23x =-(不合题意,舍去)—————————————(1分) 答:这天王大爷买了2斤菠菜. —————————————————————(1分)23. 证:(1)∵四边形ABCD 为菱形,∴AB =BC =AD =CD ,∠A =∠C ,——————————————————(2分)又E 、F 是边的中点,∴AE =CF ,——————————————————————————(1分)∴△ABE ≌△CBF ———————————————————————(2分) ∴BE =BF . ——————————————————————————(1分)(2)联结AC 、BD ,AC 交BE 、BD 于点G 、O . ——————————(1分)∵△BEF 是等边三角形,∴EB =EF ,又∵E 、F 是两边中点,∴AO =12AC =EF =BE .——————————————————————(1分) 又△ABD 中,BE 、AO 均为中线,则G 为△ABD 的重心, ∴1133OG AO BE GE ===, ∴AG =BG ,——————————————————————————(1分)又∠AGE =∠BGO ,∴△AGE ≌△BGO ,———— ——————————————————(1分)∴AE =BO ,则AD =BD ,∴△ABD 是等边三角形,—— —————————————————(1分) 所以∠BAD =60°,则∠ADC =120°,即∠ADC =2∠BAD . ——— ——————————————————(1分)24. 解:(1)由题意得:013b c c =++⎧⎨=⎩,———————————————————(2分) 解得:43b c =-⎧⎨=⎩,—————————————————————————(1分)所以抛物线的表达式为243y x x =-+. ——————————————(1分)(2)由(1)得D (2,﹣1),———————————————————(1分) 作DT ⊥y 轴于点T ,则△ABD 的面积=()11124131211222⨯⨯-⨯⨯-⨯+⨯=.————————(3分) (3)令P ()()2,432p p p p -+>.————————————————(1分) 由△DPH 与△AOB 相似,易知∠AOB =∠PHD =90°,所以243132p p p -++=-或2431123p p p -++=-,————————————(2分) 解得:5p =或73p =, 所以点P 的坐标为(5,8),78,39⎛⎫- ⎪⎝⎭.————————————————(1分) 25. 解:(1)过A 作AH ⊥BC 于H ,————————————————————(1分) 由∠D =∠BCD =90°,得四边形ADCH 为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°,则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则221411724AD CA x x AC CB x x -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或1172+.——————————————————(1分)。
【高三数学试题精选】2018黄浦区高三数学第二次模拟考试试题(理附答案)
2018黄浦区高三数学第二次模拟考试试题(理附答案)
5 黄浦区2018年高考模拟考
数学试卷(理科)(2018年4月)
考生注意
1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行并在规定的位置书写,写在试卷、草稿纸上的解答一律无效;
2.答卷前,考生务必将学校、姓名、准考证号等相关信息填写清楚,并贴好条形码;
3.本试卷共23道试题,满分150分;考试时间120分钟.
一、填空题(本大题满分56分)本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.
1.已知集合,集合.若,则实数.
2.计算.
3.函数的反函数.
4.函数的最小正周期为.
5.在极坐标系中,直线与直线的夹角大小为(结果用反三角函数值表示).
6.已知菱形,若,,则向量在上的投影为.
7.已知一个凸多面体的平面展开图由两个正六边形和六个正方形构成,如右图所示,若该凸多面体所有棱长均为,则其体积.8.已知函数,若的定义域中的、满足,则.
9.在代数式的展开式中,常数等于.
10.若椭圆上的点到其一个焦点的距离的最小值为,最大值为,则该椭圆的短轴长为.
11.有红、黄、蓝三种颜色,大小相同的小球各个,在每种颜。
届上海市黄浦区高三数学模拟试卷及答案
届上海市黄浦区高三数学模拟试卷及答案2018届上海市黄浦区高三数学模拟试卷及答案高考即将来临,多做一些高考数学模拟试卷可以熟悉知识点和积累知识点,以下是店铺为你整理的2018届上海市黄浦区高三数学模拟试卷,希望能帮到你。
2018届上海市黄浦区高三数学模拟试卷题目一、填空题(本大题共有12题,满分54分. 其中第1~6题每题满分4分,第7~12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.[1.函数的定义域是 .2.若的方程组有无数多组解,则实数 _________.3.若“ ”是“ ”的必要不充分条件,则的最大值为 .4.已知复数, (其中i为虚数单位),且是实数,则实数t等于 .5.若函数 (a>0,且a≠1)是R上的减函数,则a的取值范围是 .6.设变量满足约束条件则目标函数的最小值为 .7. 已知圆和两点,若圆上至少存在一点,使得,则的取值范围是 .8. 已知向量,,如果∥ ,那么的值为 .9.若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是.10.若将函数的图像向左平移个单位后,所得图像对应的函数为偶函数,则的最小值是 .11.三棱锥满足:,,,,则该三棱锥的体积V的取值范围是 .12.对于数列,若存在正整数,对于任意正整数都有成立,则称数列是以为周期的周期数列.设,对任意正整数n都有若数列是以5为周期的周期数列,则的值可以是 .(只要求填写满足条件的一个m值即可)二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.下列函数中,周期为π,且在上为减函数的是 ( )A.y = sin(2x+B.y = cos(2x+C.y = sin(x+D.y = cos(x+14.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A. B.C. D.15.已知双曲线的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为 ( )A. B.C. D.16.如图所示,,圆与分别相切于点,,点是圆及其内部任意一点,且,则的取值范围是 ( )A. B.C. D.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的`规定区域内写出必要的步骤.17.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在直棱柱中,,,分别是的中点.(1)求证: ;(2)求与平面所成角的大小及点到平面的距离.18.(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分.在中,角的对边分别为,且成等差数列.(1)求角的大小;(2)若,,求的值.19.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.如果一条信息有n 种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为,则称 (其中 )为该条信息的信息熵.已知 .(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n位选手(分别记为 )参加,若当时,选手获得冠军的概率为,求“谁获得冠军”的信息熵关于n的表达式.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.设椭圆M: 的左顶点为、中心为,若椭圆M过点,且 .(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点作两条斜率分别为的直线交椭圆M于两点,且,求证:直线恒过一个定点.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若函数满足:对于任意正数,都有,且,则称函数为“L函数”.(1)试判断函数与是否是“L函数”;(2)若函数为“L函数”,求实数a的取值范围;(3)若函数为“L函数”,且,求证:对任意,都有2018届上海市黄浦区高三数学模拟试卷答案一、填空题:(1~6题每题4分;7~12题每题5分)1. ;2. ;3. ;4. ;5. ;6. ;7. ; 8. ; 9. ; 10. ; 11. ; 12. (或,或 ).二、选择题:(每题5分)13.A 14.D 15. C 16. B三、解答题:(共76分)17.解:(1)以A为坐标原点、AB为x轴、为y轴、为z轴建立如图的空间直角坐标系.由题意可知,故,…………………4分由,可知,即. …………………6分(2)设是平面的一个法向量,又,故由解得故. …………9分设与平面所成角为,则,…………12分所以与平面所成角为,点到平面的距离为. …………………14分18.解:(1)由成等差数列,可得,…………………2分故,所以,………4分又,所以,故,又由,可知,故,所以 . …………………6分(另法:利用求解)(2)在△ABC中,由余弦定理得,…………………8分即,故,又,故,………………10分所以…………………12分,故 . …………………14分19.解:(1)由,可得,解之得 . …………………2分由32种情形等可能,故,……………………4分所以,答:“谁被选中”的信息熵为. ……………………6分(2) 获得冠军的概率为,……………8分当时,,又,故,……………………11分,以上两式相减,可得,故,答:“谁获得冠军”的信息熵为 . ……………………14分20.解:(1)由,可知,又点坐标为故,可得,……………………………2分因为椭圆M过点,故,可得,所以椭圆M的方程为 . (4)分(2)AP的方程为,即,由于是椭圆M上的点,故可设,……………………………6分所以……………………………8分当,即时,取最大值.故的最大值为. ……………………………10分法二:由图形可知,若取得最大值,则椭圆在点处的切线必平行于,且在直线的下方. …………………………6分设方程为,代入椭圆M方程可得,由,可得,又,故. …………………………8分所以的最大值 . ……………………………10分(3)直线方程为,代入,可得,,又故,,………………12分同理可得,,又且,可得且,所以,,,直线的方程为,………………14分令,可得 .故直线过定点 . ………………16分(法二)若垂直于轴,则,此时与题设矛盾.若不垂直于轴,可设的方程为,将其代入,可得,可得,………12分又,可得,………………14分故,可得或,又不过点,即,故 .所以的方程为,故直线过定点 . ………………16分21.解:(1)对于函数,当时,,又,所以,故是“L函数”. ………………2分对于函数,当时,,故不是“L函数”. ………………4分(2)当时,由是“L函数”,可知,即对一切正数恒成立,又,可得对一切正数恒成立,所以. ………………6分由,可得,故,又,故,由对一切正数恒成立,可得,即. ………………9分综上可知,a的取值范围是. ………………………10分(3)由函数为“L函数”,可知对于任意正数,都有,且,令,可知,即,………………………12分故对于正整数k与正数,都有,………………………………14分对任意,可得,又,所以,…………………16分同理,故. ……………………………18分【2018届上海市黄浦区高三数学模拟试卷及答案】。
黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案
黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 直线:(为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心2. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定3. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤4. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图 5. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .± 6. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .27. 如图,空间四边形OABC 中,,,,点M 在OA上,且,点N 为BC 中点,则等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)9. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}10.已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.611.已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .12.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .二、填空题13.函数y=lgx 的定义域为 .14.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且所成的角为,则的值是 所示的框图,输入,则输出的数等于17.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.18.设α为锐角,若sin (α﹣)=,则cos2α= .三、解答题19.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.21.已知,数列{a n }的首项(1)求数列{a n }的通项公式;(2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .22.已知椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,设F 1,F 2是椭圆的左、右焦点,过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△F 2PQ 面积的最小值.23.(本小题满分12分)已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.24.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
黄浦区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
黄浦区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FNA .B .C .D 2)21:(1+2. 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .B .C .D .3. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A .B .C .D .4. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣35. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .66. 集合,,,则,{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )N P A .B .C .D .M P N =⊆N P M =⊆M N P =⊆M P N==7. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x 9. 若,则下列不等式一定成立的是( )A .B .C .D .10.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>11.下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=12.设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(){}n a A .1B .2C .4D .6二、填空题13.设抛物线的焦点为,两点在抛物线上,且,,三点共线,过的中点作24y x =F ,A B A B F AB M y 轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .P 32PF =M 14.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 . 15.若函数y=ln (﹣2x )为奇函数,则a= .16.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号). 17.【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经()32f x x x =-()f x ()()1,1f 过圆的圆心,则实数的值为__________.()22:2C x y a +-=a 18.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.三、解答题19.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足:①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n].则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值. 20.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点,(Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.21.已知函数.(1)求f(x)的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.22.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.23.已知函数g(x)=f(x)+﹣bx,函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.24.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.黄浦区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题M得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.2.【答案】A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.3.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力. 4.【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.故选A.5.【答案】A【解析】解:因为向量=(3,m),=(2,﹣1),∥,所以﹣3=2m,解得m=﹣.故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查. 6. 【答案】A 【解析】试题分析:通过列举可知,所以.{}{}2,6,0,2,4,6M P N ==±±=±±±L L M P N =⊆考点:两个集合相等、子集.17. 【答案】B【解析】解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则B (2,0,0),E (0,0,1),A (0,0,0),C (2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE 与AC 所成角为θ,则cos θ===.故选:B .8. 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 9. 【答案】D 【解析】因为,有可能为负值,所以排除A ,C ,因为函数为减函数且,所以,排除B ,故选D 答案:D10.【答案】 C 【解析】,,且当时,,函数递减,当时,,22212'()x f x x x x-=-+='(2)0f =02x <<'()0f x <2x >'()0f x >函数递增,因此是的极小值点,A 正确;,2x =()f x ()()g x f x x =-221'()1g x x x=-+-,所以当时,恒成立,即单调递减,又,2217()24x x -+=-0x >'()0g x <()g x 11()210g e e e =+->,所以有零点且只有一个零点,B 正确;设,易知当2222()20g e e e =+-<()g x 2()2ln ()f x xh x x x x==+2x >时,,对任意的正实数,显然当时,,即,222ln 21112()x h x x x x x x x x =+<+<+=k 2x k >2k x <()f x k x<,所以不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草()f x kx <()f x kx >图可看出(0,2)的时候递减的更快,所以124x x +>11.【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数;B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确.故选:C . 12.【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.二、填空题13.【答案】2【解析】由题意,得,,准线为,设、,直线的方程为2p =(1,0)F 1x =-11(,)A x y 22(,)B x y AB ,代入抛物线方程消去,得,所以,.又(1)y k x =-y 2222(24)0k x k x k -++=212224k x x k ++=121x x =设,则,所以,所以.00(,)P x y 01212112()[(1)(1)]22y y y k x k x k =+=-+-=021x k =212(,P k k 因为,解得,所以点的横坐标为2.0213||112PF x k =+=+=22k =M 14.【答案】 ③ .【解析】解:①、终边在y 轴上的角的集合是{a|a=,k ∈Z},故①错误;②、设f (x )=sinx ﹣x ,其导函数y ′=cosx ﹣1≤0,∴f (x )在R 上单调递减,且f (0)=0,∴f (x )=sinx ﹣x 图象与轴只有一个交点.∴f (x )=sinx 与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x ﹣)+]=3sin2x ,故③正确;④、由y=sin (x ﹣)=﹣cosx 得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键. 15.【答案】 4 .【解析】解:函数y=ln (﹣2x )为奇函数,可得f (﹣x )=﹣f (x ),ln (+2x )=﹣ln (﹣2x ).ln (+2x )=ln ()=ln ().可得1+ax 2﹣4x 2=1,解得a=4.故答案为:4. 16.【答案】 ②④ 【解析】解:根据题意得:圆心(k ﹣1,3k ),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k :圆心(k ﹣1,3k ),半径为k 2,圆k+1:圆心(k ﹣1+1,3(k+1)),即(k ,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R ﹣r=(k+1)2﹣k 2=2k+,任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误;若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4(k ∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题. 17.【答案】2-【解析】结合函数的解析式可得:,()311211f =-⨯=-对函数求导可得:,故切线的斜率为,()2'32f x x =-()2'13121k f ==⨯-=则切线方程为:,即,()111y x +=⨯-2y x =-圆:的圆心为,则:.C ()222x y a +-=()0,a 022a =-=-18.【答案】 0.9 【解析】解:由题意, =0.9,故答案为:0.9 三、解答题19.【答案】【解析】解:(1)∵y=x 2在区间[0,1]上单调递增.又f (0)=0,f (1)=1,∴值域为[0,1],∴区间[0,1]是y=f (x )=x 2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值20.【答案】【解析】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.21.【答案】【解析】解:(1)由,∴f(x)的周期为4π.由,故f(x)图象的对称中心为.(2)由(2a﹣c)cosB=bcosC,得(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴.∴,故函数f(A)的取值范围是.22.【答案】【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,∴,∴对一切n∈N*,<.(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.23.【答案】【解析】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,x1+x2=b﹣1,x1x2=1,∵x>0,设μ(x)=x2﹣(b﹣1)x+1,则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2] =ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)=ln﹣(﹣),∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣(1+)=<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,由x1+x2=b﹣1,x1x2=1,可得t+≥,∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,故g(x1)﹣g(x2)的最小值为﹣2ln2.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.24.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE ⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区2018年高考模拟考数学试卷(完卷时间:120分钟 满分:150分) 2018.4考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名等相关信息在答题卷上填写清楚,并在规定的区域贴上条形码; 3.本试卷共21道试题,满分150分;考试时间120分钟.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 . 2.不等式|1|1x ->的解集是 .3.若函数()f x =是偶函数,则该函数的定义域是 . 4.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 .5.已知向量a r 在向量b r 方向上的投影为2-,且3b =r,则a b ⋅r r = .(结果用数值表示)6.方程33log (325)log (41)0x x⋅+-+=的解x = .7.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 .8.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .9.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是 人.10.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是 .(结果用数值表示)11.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-L ,若1224,51,0k a a a ===,则k = .12.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.在空间中,“直线m ⊥平面α”是“直线m 与平面α内无穷多条直线都垂直 ”的答( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )非充分非必要条件14.二项式40的展开式中,其中是有理项的项数共有 答( ). (A ) 4项 (B ) 7项 (C ) 5项 (D ) 6项15.实数x y 、满足线性约束条件3,0,0,10,x y x y x y +≤⎧⎪≥≥⎨⎪-+≥⎩则目标函数23w x y =+-的最大值是答( ).(A ) 0 (B ) 1 (C ) 2- (D ) 316.在给出的下列命题中,是ggg假命题的是 答( ).(A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈u u u r u u u r u u u r,则点A B C 、、必共线(B )若向量a b r r 和是平面α上的两个不平行的向量,则平面α上的任一向量c r都可以表示为(R)c a b λμμλ=+∈r r r、,且表示方法是唯一的(C )已知平面向量OA OB OC u u u r u u u r u u u r、、满足||||(0)OA OB OC r r ==>u u u r u u u r u u u r |=|,且0OA OB OC ++=u u u r u u u r u u u r r , 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d r r r u r、、、,使得其 中任意两个向量的和向量与余下两个向量的和向量相互垂直三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.在四棱锥P ABCD-中,PA ABCD⊥平面,,,1,AB AD BC AD BC⊥=P2,45CD CDA=∠=.(1)画出四棱锥P ABCD-的主视图;(2)若PA BC=,求直线PB与平面PCD所成角的大小.(结果用反三角函数值表示)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知10,(010)OA OB x x==<<米米,线段BA CD、线段与弧BC、弧AD的长度之和为30米,圆心角为θ弧度.(1)求θ关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知动点(,)M x y到点(2,0)F的距离为1d,动点(,)M x y到直线3x=的距离为2d,且126dd=.(1)求动点(,)M x y的轨迹C的方程;(2)过点F作直线:(2)(0)l y k x k=-≠交曲线C于P Q、两点,若OPQ∆的面积3OPQS∆(O是坐标系原点),求直线l的方程.20.(本题满分16分)本题共有2个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩(1) 求函数()f x 的反函数1()fx -;(2)试问:函数()f x 的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由; (3)若方程()|()240f x f x ax +---=的三个实数根123x x x 、、满足: 123x x x <<,且32212()x x x x -=-,求实数a 的值.21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.定义:若数列{}n c 和{}n d满足*10,0,N n n n c d n +>>=∈且c ,则称数列{}n d 是数列{}n c 的“伴随数列”.已知数列{}n b 是数列{}n a 的伴随数列,试解答下列问题: (1)若*(N )nn b a n =∈,1b ={}n a 的通项公式n a ;(2)若*11(N )n n n b b n a +=+∈,11b a 为常数,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (3)若*1N )n nb n +=∈,数列{}n a 是等比数列,求11a b 、的数值.黄浦区2018年高考模拟考一、填空题.1.2 2.(,0)(2,)-∞+∞U 3.[2,2]- 4.4π5.6- 6.27.3[,],Z 88k k k ππππ-+∈ 8.3(4- 9.140 10.51611.50 12.3.二、选择题.13.()A 14.()B 15.()D 16.()D三、解答题. 17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分. 解 (1)主视图如下:(2) 根据题意,可算得1,2AB AD ==. 又1PA BC ==,按如图所示建立空间直角坐标系, 可得,(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C D P .于是,有(1,0,1),(1,1,0),(0,2,1)PB CD PD =-=-=-u u u r u u u r u u u r. 设平面PCD 的法向量为(,,)n x y z =r,则0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即0,20.x y y z -+=⎧⎨-=⎩ 令2z =,可得1,1y x ==,故平面PCD 的一个法向量为(1,1,2)n =r.设直线PB 与平面PCD 所成角的大小为θ,则||3sin ||||n PB n PB θ⋅==r u u u r r u u u r . 所以直线PB 与平面PCD 所成角的大小为3.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ). 又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=,所以,210(010)10x x x θ+=<<+.(2) 依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇化简,得2550yx x =-++25225()24x =--+. 于是,当52x =(满足条件010x <<)时,max 2254y =(2m ).答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1)结合题意,可得12|3|d d x ==-.又12d d =3=,化简得22162x y +=. 因此,所求动点(,)M x y 的轨迹C 的方程是22162x y +=. (2) 联立方程组221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=.设点1122(,)(,)P x y Q x y 、,则2122212212,13126,130.k x x k k x x k ⎧+=⎪+⎪-⎪=⎨+⎪∆>⎪⎪⎩于是,弦||PQ == 点O 到直线l的距离d =.由OPQS ∆== 42210k k -+=,解得1k =±,且满足0∆>,即1k =±都符合题意. 因此,所求直线的方程为2020x y x y --=+-=或.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.解 (1)22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩Q∴当10x -≤<时,()2,0()2f x x f x =-<≤且.由2y x =-,得12x y =-,互换x y 与,可得11()(02)2f x x x -=-<≤. 当01x ≤≤时,2()1,()0f x x f x =-≤≤且-1.由21y x =-,得x =x y 与,可得1()10)f x x -=-≤≤.11, 0<2,2() 10.x x f x x -⎧-≤⎪∴=-≤≤(2) 答 函数图像上存在两点关于原点对称.设点00000(,)(01)(,)A x y x B x y <≤--、是函数图像上关于原点对称的点,则00()()0f x f x +-=,即200120x x -+=,解得001(1,)x x =舍去,且满足01x <≤ .因此,函数图像上存在点1,2(12)A B --和关于原点对称. (3) 考察函数()y f x =与函数y =当12x -≤≤-时,有()f x ≥4240x ax ---=,解得 2+2x a =-,且由21+22a -≤-≤-,得02a ≤≤.当12x -<≤时,有()f x <240ax -=,化简得 22(4)40a x ax ++=,解得24=0+4ax x a =-,或(当02a ≤≤时,24024a a -<-<+). 于是,123224,,024a x x x a a =-=-=++. 由32212()x x x x -=-,得22442=2(+)+442a a a a a -++,解得a =.因为1a =<-,故a =022a -<=<,满足条件.因此,所求实数2a -=.21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.解 (1)根据题意,有*10,0,N n n n a b a n +>>=∈且.由*(N )nn b a n =∈,1b =111n a a b +====*N n ∈.所以n a =,*N n ∈. 证明 (2) Q *11(N )n n n b b n a +=+∈,*10,0,N n n n a b a n +>>=∈且,∴11n n b a ++==11n n b a ++=*N n ∈.∴22111n n n n b b a a ++⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,*N n ∈∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为211b a ⎛⎫ ⎪⎝⎭、公差为1的等差数列.解(3)Q *1N )n n b n +=∈,*10,0,N n n n a b a n +>>=∈且,*N n n a b n <+≤∈,得11n a +<.Q {}n a 是等比数列,且0n a >,设公比为(0)r r >,则1*1(N )n n a a r n -=∈.∴当1r >,即lim n n a →∞→+∞,与11n a +<≤1r >不成立.当01r <<,即lim 0n n a →∞→,与11n a +<≤矛盾.因此,01r <<不成立.∴1r =,即数列{}n a 是常数列,于是,1n a a =(11a <≤).*11(N )n n b n +∴=∈. 100n b b >∴>Q ,,数列{}n b 也是等比数列,设公比为(0)q q >,有11n n b b q +=.2n a +∴=可化为222221111111(1)2(1)0(1n n b a q a b q a a a --+-=<≤,*N n ∈.Q 2222422111111111(1)0,20,(1)0,4(2)0b a a b a a a b a ->≠->∆=-≥,∴关于x 的一元二次方程22222111111(1)2(1)0b a x a b x a a --+-=有且仅有两个非负实数根.一方面,n q (*N n ∈)是方程22222111111(1)2(1)0b a x a b x a a --+-=的根;另一方面,若1(0)q q ≠>,则无穷多个互不相等的234,,,,,,nq q q q q L L 都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!1q ∴=,即数列{}n b 也是常数列,于是,1n b b =,*N n ∈.∴由*1N )n nb n +=∈,得1a =把1a =1n a +=解得1b =11a b ⎧=⎪∴⎨=⎪⎩ .。