工程电磁场实验内容
工程电磁场实验指导书 (1)
《工程电磁场》实验指导书电气与电子工程学院电子信息教研室刘子英编2010年9月目录实验一:球形载流线圈的场分布与自感 (1)实验二:磁悬浮 (7)实验三:静电除尘 (10)实验四:电磁场Matlab编程 (12)实验五:工程电磁场应用仿真 0实验一:球形载流线圈的场分布与自感一、实验目的1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;2. 掌握工程上测量磁场的两种基本方法──感应电势法和霍耳效应法;3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍耳效应高斯计的应用。
二、实验原理(1)球形载流线圈(磁通球)的磁场分析如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。
显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有()i dz R N i Rd W ⎪⎭⎫⎝⎛='2θ因在球面上,θcos R z =,所以()d d cos sin d z R R θθθ==代入上式,可知对应于球面上线匝密度分布W ′,应有θθθθsin 2sin 2RN Rd d R R N W =⋅='即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。
因此,本实验模拟的在球表面上等效的面电流密度K 的分布为sin Ni 2RK e φθ=⋅⋅ 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。
因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所以, 可采用标量磁位ϕm 为待求场量,列出待求的边值问题如下:上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。
工程电磁场实验2
• 根据传输线的不同 , 测量线的形式亦有不同 , 常用的有同轴型和波导型 , 一般包括:
• 开槽线、探针耦合指示机构、机械传动及 位置移动装置三部份。
• TC26 波导测量线:
• 1. 开槽线 : 在矩形波导的宽边( 上 面 )正中平行于波导( 或同轴线 )的 轴线开一条窄缝,由于很少切割电 流 , 因而开槽对波导内的场分布影 响很小,槽长有几个半波长 , 以
• 晶体检波器输出引线应该远离电源和输入线路, 以免干扰。如果系统连接不当,将会影响测量 精度,产生误差。
• 系统调整主要指测量线的调整以及晶体检波器 的校准。
BD-20A 型波导元件(FB-100:22.86×10.16)
成套产品包括:
单位 数量
E-H 阻抗调配器
只
1
定向耦合器
只
1
可变衰减器(附衰
测试方法
• 在TC26上连接短路板,使系统处于全反射状态。 • 找出一个波节点(将YS3892的“放大选择”逐
步调至50dB或60dB处,例如:113.5mm);使 节下点刻特度征值相,当再明移显动T,C2该6波探节针点座的找读出数另为一D个m波in1节记 点即D先m调in2至(3此0或时4可0d关B小,Y以S3便89寻2“找放另大一选个择波”节开点关, 再刻放度大值至(5例0如dB:处1找35出.9Dmmmin2))。同样在标尺上读出 • D理m确in2认-为Dm半in1波为长二。个波节点的距离长度,根据原
• 探针插入愈深,影响亦愈大。
• 要减少或消除这些影响 , 就要减小探针的穿 伸度和正确调谐探头的谐振腔 。
• 但穿伸度的减小必然会影响输出指示的灵敏 度,因而必须适当地调整。
• 一般是旋到底后退出 2 圈半为源自。• 探头的调谐是十分重要的,既可以消除电纳 B 的影响,又可以提高测试灵敏度,调谐方 法为:
工程电磁场实验报告
Maxwell仿真分析——叠钢片涡流损耗分析任课老师:班级:学号:姓名:杨茗博Maxwell仿真分析——二维轴向磁场涡流分析源的处理在学习了Ansoft公司开发的软件Maxwell后,对工程电磁场有了进一步的了解,这一软件的应用之广非我们所想象。
本次实验只是利用了其中很小的一部分功能,涡流损耗分析。
通过软件仿真、作图,并与理论值相比较,得出我们需要的实验结果。
在交流变压器和驱动器中,叠片钢的功率损耗非常重。
大多数扼流线圈通常使用叠片,以减少涡流损耗,但这种损耗仍然很大。
特别是在高频情况下,产生了热,进一步影响了整体性能。
因此做这方面的分析十分有必要。
一、实验目的1)认识钢的涡流效应的损耗,以及减少涡流的方法;2)学习涡流损耗的计算方法;3)学习用MAXWELL 2D计算叠片钢的涡流。
二、实验模型第一个实验是分析单个钢片的涡流损耗值,所以其模型就是一个钢片,设置其厚度为0.356mm,长度为20mm>>0.356mm,外加磁场为1T。
实验模型是4片叠钢片组成,每一篇截面的长和宽分别是12.7mm和0.356mm,两片中间的距离为8.12uA,叠片钢的电导率为2.08e6 S/m,相对磁导率为2000,作用在磁钢表面的外磁场H z=397.77A/m,即B z=1T。
考虑到模型对X,Y轴具有对称性,可以只计算第一象限内的模型。
三、实验步骤一.单个钢片的涡流损耗分析1、建立模型,因为是单个钢片的涡流分析,故位置无所谓,就放在中间,然后设置边界为397.77A/m,然后设置频率,进行求解。
2、进行数据处理,算出理论值,并进行比较。
二、叠钢片涡流损耗分析1、依照模型建立起第一象限内的模型,将模型的原点与坐标轴的原点重合,这样做起来比较方便。
设置钢片的材质,使之符合实际要求。
然后设置边界条件和源,本实验的源为一恒定磁场,分别制定在上界和右边界,然后考虑到对偶性,将左边界和下界设置为对偶。
然后设置求解参数,因为本实验是要进行不同的频率下,涡流损耗的分析,所以设定好Frequency后,进行求解。
南京理工大学工程电磁场实验报告
11
} } /*讨论收敛因子不同取值的计算次数情况*/ for(p=1.10;p<2.0;p+=0.01) { for(i=0;i<41;i++) {u[0][i]=100;u[40][i]=0;} /*定义初值*/ for(i=1;i<40;i++) {u[i][0]=u[i][40]=0;} for(i=1;i<40;i++) for(j=1;j<21;j++) u[i][j]=2.5*(j-1); num=fun(u,p);if(min>num) {min=num;q=p;} }printf("\n 最佳收敛因子为:p=%f",q); printf("\n 此时运行次数为: num=%d\n",min); printf("\n 当收敛因子为%f 的时候,输出结果为:", q); for(i=0;i<41;i++) {u[0][i]=100;u[40][i]=0;} /*定义初值*/ for(i=1;i<40;i++) {u[i][0]=u[i][40]=0;} for(i=1;i<40;i++) for(j=1;j<21;j++) u[i][j]=2.5*(j-1); num=fun(u,q); for(i=1;i<40;i++) for(j=1;j<21;j++) u[i][40-j]=u[i][j]; for(i=0;i<41;i++) {printf("\n"); for(j=0;j<41;j++) printf("%12.6f",u[i][j]);} system("pause"); return 0; }
工程电磁场实训报告总结
一、引言电磁场是现代工程领域中不可或缺的一部分,涉及通信、电子、电力、医疗等多个领域。
为了加深对电磁场理论知识的理解,提高实际操作能力,我们参加了为期两周的工程电磁场实训。
通过本次实训,我们不仅巩固了电磁场的基本理论,还学会了如何运用这些理论解决实际问题。
以下是本次实训的总结报告。
二、实训内容1. 电磁场基本理论实训首先对电磁场的基本理论进行了回顾,包括麦克斯韦方程组、电磁波、电磁场能量等。
通过理论学习,我们深入了解了电磁场的基本性质和规律。
2. 电磁场模拟软件的使用实训过程中,我们学习了电磁场模拟软件的使用方法。
以Ansys Maxwell为例,我们学会了如何建立模型、设置边界条件和求解电磁场问题。
通过实际操作,我们掌握了软件在工程中的应用。
3. 电磁场仿真实验在仿真实验环节,我们针对实际工程问题进行了电磁场仿真。
例如,我们模拟了天线辐射、传输线特性、电磁屏蔽等场景,分析了电磁场参数对实际工程的影响。
4. 电磁场测量实验实训还安排了电磁场测量实验,包括电磁场强度测量、电磁波传播特性测量等。
通过实验,我们掌握了电磁场测量仪器的使用方法,了解了电磁场参数的测量方法。
三、实训收获1. 理论知识得到巩固通过本次实训,我们对电磁场基本理论有了更深入的理解,为今后在相关领域的学习和工作打下了坚实的基础。
2. 实际操作能力得到提高实训过程中,我们学会了使用电磁场模拟软件和测量仪器,提高了实际操作能力。
这些技能将有助于我们在今后的工作中解决实际问题。
3. 团队协作能力得到锻炼实训过程中,我们分组进行实验和仿真,培养了团队协作精神。
在遇到问题时,我们共同讨论、解决问题,提高了团队协作能力。
4. 创新意识得到培养在实训过程中,我们针对实际问题进行仿真和实验,培养了创新意识。
通过不断尝试和改进,我们找到了更优的解决方案。
四、不足与反思1. 理论与实践结合不够紧密在实训过程中,我们发现部分理论知识在实际操作中应用不够灵活。
电磁场实验指导书
电磁场实验讲义实验一 二线输电线静电场的造型 一、试验目的:1.学习两维电场模拟的原理与方法。
2.通过测量等位线及绘制电力线,学习电场图形的描绘方法。
二、实验原理(见教材静电模拟一节) 三、实验内容及步骤1、 将方格纸和导电纸的相对位置固定好,定好方格纸的坐标原点及x 轴y 轴。
2、连接线路,调节电源电压为9V ,依次测绘对电源负极电位分别为1V 、2V 、3V 、4V 、4.5V 、5V 、6V 、7V 、8V 时的各等位线。
四 实验原理1. 两导线电轴之间的电场是平行平面场;2. 电力线与等位线正交, 由于两线输电线的等位线方程为22222)12(2)11(-=+-+-K bK y b K K x所以得电力线方程为:2222)(c b c y x +=++3. 利用静电比拟原理, 使用电流线模拟电力线. 五、实验设备1.模拟试验台一套(导电纸半径为90mm ,电极半径为6.5mm ,电极几何中心连线构成的弦对应的圆心角为120)直流稳压电源一台; 数字万用表一只六、总结报告要求1.在实验用的方格纸上描绘等位线。
2.根据实验测得的等位线,描绘电力线,并与理论计算所得的电力线进行比较。
3.根据实验结果,试分析主要是哪些因素影响本实验精度?你认为这些因素是否可以解决。
实验二 接地电阻的研究 一、试验目的:1.学习用模拟实验的方法研究场的问题。
2.研究接地电阻与接地器的形状、大小以及埋入深度的关系。
3.观察接地器周围导电媒质表面上电位的分布。
二、原理与说明1.接地电阻指电流由接地装置流入大地再经大地向远处扩散时所遇到的电阻。
接地电阻主要是接地体到无限远处的大地的电阻,而接地线和接地体本身的电阻一般可以忽略。
对于半球埋地的接地器的电阻,可以用镜像法求解。
对于整个球埋入地下,而地面的影响又不可以忽略时,也可以用镜像法近似求解。
实际工作中,会遇到一些问题,它们既难通过实验获得满意的解答,又不便于实地测量,这类问题可以用“模拟法”研究。
工程电磁场实验报告上交版
实验报告——叠片钢涡流损耗分析实验目的:1)认识钢的涡流效应的损耗, 以及减少涡流的方法;2)学习涡流损耗的计算方法;3)学习用MAXWELL SV计算叠片钢的涡流。
实验内容:作用在磁钢表面的外磁场Hz=397.77A/m, 即Bz=1T, 要求理论分析与计算机仿真:叠片钢的模型为四片钢片叠加而成, 每一片界面的长和宽分别是12.7mm和0.356mm, 两片之间的距离为8.12um, 叠片钢的电导率为2.08e6S/m, 相对磁导率为2000, 建立相应几何模型, 并指定材料属性, 制定边界条件。
分析不同频率下的涡流损耗。
实验简介:在交流变压器和驱动器中, 叠片钢的功率损耗很重要。
大多数扼流圈和电机通常使用叠片, 以减少涡流损耗, 但是这种损耗仍然很大, 特别是在高频的情况下, 交变设备中由脉宽调制波形所产生的涡流损耗不仅降低了设备的整体性能, 也产生了热。
设计工程师通常采用两种方法预测叠片钢的损耗:使用叠片钢厂商提供的铁耗随频率的变化曲线, 但是往往很难得到这样的曲线;使用简单的计算公式, 公式中的涡流损耗是叠片厚度的函数, 但是这样的公式往往仅在频率为60Hz或更低的频率情况下才是正确的。
而大多数交变电磁设备, 所使用的频率可达千赫兹或兆赫兹, 因此需要用其它的方法预测涡流损耗。
在非常高的频率下, 涡流损耗远大于磁滞损耗, 铁损几乎完全是由涡流引起的。
涡流损耗可以使用有限元法通过数值计算获得。
本实验就采用轴向磁场涡流求解器来计算不同频率下的涡流损耗。
实验步骤:根据实验内容分析建立实验模型, 由于四片叠片钢关于XY轴具有对称性, 故可以只计算第一象限。
定义模型的长宽及两片之间距离, 电导率, 相对磁导率以及外磁场场强之后就可以进行仿真。
通过生成几何模型, 制定材料属性, 指定边界条件和源, 设定求解参数选项极乐进行数据的统计了。
数值计算结果:图一Hz=1Hz时叠片钢的磁场分布图二Hz=60Hz时叠片钢的磁场分布图三Hz=360Hz时叠片钢的磁场分布图四Hz=1kHz时叠片钢的磁场分布图五Hz=2kHz时叠片钢的磁场分布图六Hz=5kHz时叠片钢的磁场分布图七Hz=10kHz时叠片钢的磁场分布1.数值结果与低频损耗计算公式的比较低频涡流损耗的计算公式为P=t2ω2B2σ2/24 V式中, V为叠片体积;t为叠片厚度;B为峰值磁通密度;δ为叠片电导率;ω为外加磁场角频率。
工程电磁场实验报告 (1)
工程电磁场导论实验报告姓名:学号:班级:指导教师:实验一 矢量分析一、实验目的1.掌握用matlab 进行矢量运算的方法。
二、基础知识1. 掌握几个基本的矢量运算函数:点积dot(A,B)、叉积cross(A,B)、求模运算norm(A)等。
三、实验内容1. 通过调用函数,完成下面计算给定三个矢量A 、B 和C 如下:23452x y zy zx zA e e eB e eC e e =+-=-+=-求(1)A e ;(2)||A B -;(3)A B ⋅;(4)AB θ ;(5)A 在B 上的投影 ;(6)A C ⨯;(7)()A B C ⋅⨯和()C A B ⋅⨯;(8)()A B C ⨯⨯和()A B C ⨯⨯A=[1,2,-3]; B=[0,-4,1]; C=[5,0,-2]; y1=A/norm(A) y2=norm(A-B) y3=dot(A,B)y4=acos(dot(A,B)/(norm(A)*norm(B))) y5=norm(A)*cos(y4) y6=cross(A,C)y71=dot(A,cross(B,C)) y72=dot(A,cross(B,C)) y81=cross(cross(A,B),C) y82=cross(A,cross(B,C))运行结果为:y1 =0.2673 0.5345 -0.8018 y2 = 7.2801 y3 =-11y4 = 2.3646 y5 =-2.6679y6 = -4 -13 -10 y71 =-42y72 =-42y81 = 2 -40 5 y82 = 55 -44 -11解:(1)[0.2673,0.5345,0.8018]A e =-; (2)||7.2801A B -=; (3)11A B ⋅=-;(4) 2.3646(135.4815)AB θ=; (5) 2.6679-;(6)[4,13,10]A C ⨯=---; (7)()()42A B C C A B ⋅⨯=⋅⨯=-;(8)()[2,40,5]A B C ⨯⨯=-;()[55,44,11]A B C ⨯⨯=--;2. 三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三 角形的面积;(2)与该三角形所在平面垂直的单位矢量。
(整理)电磁场理论 实验
电磁场理论 实验示例实验1. 利用Matlab 模拟点电荷电场的分布一、实验目的1.熟悉单个点电荷及一对点电荷的电场分布情况;2.学会使用Matlab 进行数值计算,并绘出相应的图形;二、实验原理根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足:R R Q Q kF ˆ212= (式1) 由电场强度E 的定义可知:R RkQ E ˆ2= (式2) 对于点电荷,根据场论基础中的定义,有势场E 的势函数为 R kQ U =(式3) 而 U E -∇= (式4)在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab自带的库函数绘出相应电荷的电场分布情况。
三、实验内容(1) 画单个点电荷的平面电场线与等势线,正点电荷与负点电荷任选一个作图;(2) 画一对点电荷的平面电场线与等势线,可以在一正一负,两个负电荷和两个正电荷之中任选一组;(3) 画出(1)中的三维图形。
四、实验步骤1.对于单个点荷的电力线和等势线:真空中点电荷的场强大小是:2r kq E = (式5) 其中k=9109⨯为静电力恒量,q 为点电荷的电量,r 为点电荷到场点P (x,y)的距离。
电场呈球对称分布,本实验中,取点电荷为正电荷,电力线是以电荷为起点的射线簇。
以无穷远处为零势点,点电荷的电势为:rkq U = (式6) 当U 取常数时,此式就是等势面方程。
等势面是以电荷中心,以r 为半径的球面。
(1) 平面电力线的画法:在平面上,电力线是等角平分布的射线簇,取射线的半径为0r =0.12。
其程序如下:r0=0.12; % 射线的半径th=linspace(0,2*pi,13); % 电力线的角度[x,y]=pol2cart(th,r0); % 将极坐标转化为直角坐标x=[x;0.1*x]; % 插入x 的起始坐标y=[y;0.1*y]; % 插入y 的起始坐标plot(x,y,'b') % 用蓝色画出所有电力线grid on % 加网格Hold on % 保持图像plot(0,0,'o','MarkerSize',12) % 画电荷xlabel('x','fontsize',16) % 用16号字体标出X 轴ylabel('y','fontsize',16) % 用16号字体标出Y 轴title('正电荷的电力线','fontsize',20) % 添加标题图1 正电荷的电力线(2) 平面等势面的画法在过电荷的截面上,等势线就是以电荷为中心的圆簇。
工程电磁场实验
实验三霍尔效应法测量磁场磁场及物质磁性的测量时物理测量的一个重要分支。
测量磁场的方法按其原理可分成两大类(1)由物质在磁场中的表现的特征而发展起来的方法:霍尔效用法和核磁共振法等;(2)以电磁感应原理为基础的测量方法:冲击法和感应法等。
感应法对线圈的转速与标定分度要求很高但测量不高,因而应用较少。
核磁共振法是目前测量均匀磁场最准确的方法,常用来校验或标定其他测磁仪器。
霍尔效应法和冲击电流法是常用的两种方法。
其中霍尔效应法在测量技术、自动技术、计算机和信息技术中有广泛的应用,例如各种型号的高斯计就是利用此原理;冲击法作为一种较为简单、标准的测量方法历史悠久,至今仍为标准计量局采用。
一、目的1.观察霍尔现象。
2.了解应用霍尔效应测量磁场的原理和方法。
3.学会使用霍尔元件测量螺线管内外磁场。
4.研究通电螺线管内部磁场分布。
二、原理1.霍尔效应霍尔效应是霍普斯金大学研究生霍尔1879年在研究载流导体在磁场中受力的性质时发现的,它是电磁基本现象之一。
图1 磁场中通电半导体的受力示意图如图1所示,一个长、宽、厚分别为l、b、d的半导体薄片,在X方向通以电流I s,Z方向加磁场B,则载流子(N型半导体为带负电荷的电子,P型半导体为带正电荷的空穴)受洛仑兹力的作用而发生偏转,在半导体的两侧引起正负电荷的聚集;与此同时,还受到与此反向的电场力f E的作用,当两力相等时,电子的积累便达到动态平衡。
这时,在AA端之间建立的电场称为霍尔电场E H,相应的电势称为霍尔电势V H,这种现象是霍尔发现的,被称为霍尔效应。
设载流子平均速率为u,每个载流子的电荷量为e,当载流子所受洛仑兹力与霍尔元件表面电荷产生的电场力相等时,则V H达到稳定:euB=eE H (1)⁄ (2)I s=bdneu或u=I s bdne所以有⁄=R H I s B d⁄ (3)V H=I s ned⁄称为霍尔系数(也成为霍尔器件的灵敏度),是反映材料霍尔效应强度的重要参R H=1ne⁄。
电磁场实验报告
电磁场实验报告电磁场实验报告引言:电磁场是物理学中重要的概念之一,它涉及到电荷与电流之间的相互作用以及它们所产生的力和能量。
为了更好地理解电磁场的性质和特点,我们进行了一系列的实验研究。
本报告将介绍我们所进行的实验、实验结果以及对实验结果的分析和讨论。
实验一:电磁感应实验目的:通过观察电磁感应现象,了解磁场对电流的影响。
实验装置:我们使用了一个螺线管和一个磁铁。
螺线管上绕有细导线,两端接入电压表。
实验步骤:首先,我们将螺线管放在水平桌面上,然后将磁铁靠近螺线管的一端。
观察电压表的读数。
实验结果:当磁铁靠近螺线管时,电压表的读数发生了变化。
当磁铁靠近螺线管的一端时,电压表的读数为正值;当磁铁远离螺线管时,电压表的读数为负值。
分析和讨论:根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在导体中产生感应电动势。
在本实验中,当磁铁靠近螺线管时,磁场的磁通量发生了变化,从而在螺线管中产生了感应电动势。
这解释了为什么电压表的读数发生了变化。
实验二:电磁铁实验目的:通过制作一个简单的电磁铁,观察电流对磁场的影响。
实验装置:我们使用了一根铜线、一块铁心和一个电源。
实验步骤:首先,我们将铜线绕在铁心上,形成一个线圈。
然后将线圈的两端接入电源。
观察铁心的磁性。
实验结果:当通电时,铁心表现出磁性,可以吸引和悬浮一些小的铁质物体。
分析和讨论:根据安培定律,电流通过导线会产生磁场。
在本实验中,当电流通过铜线时,产生的磁场使铁心磁化,从而表现出磁性。
这解释了为什么铁心可以吸引和悬浮小的铁质物体。
实验三:电磁波实验目的:通过观察电磁波的传播,了解电磁场的波动性质。
实验装置:我们使用了一个发射器和一个接收器。
实验步骤:首先,我们将发射器放置在一个位置,然后将接收器放置在另一个位置。
观察接收器是否能够接收到发射器发出的信号。
实验结果:当发射器工作时,接收器能够接收到发射器发出的信号。
分析和讨论:根据麦克斯韦方程组,变化的电场和磁场可以相互激发对方,形成电磁波的传播。
《工程电磁场实验》课件
现有的数据处理方法较为繁琐,未来可以尝试采用更高效的数据处 理软件或算法,提高数据处理效率。
实验内容需进一步丰富
目前实验内容相对单一,未来可以增加更多种类的电磁场实验,以 丰富实验内容。
实验拓展与展望
1 2
探索更多应用领域
电磁场实验不仅在工程领域有应用,还可以拓展 到生物医学、环保等领域,未来可以尝试在其他 领域应用电磁场实验。
《工程电磁场实验》 ppt课件
目录
• 实验课程介绍 • 电磁场基本理论 • 实验操作与演示 • 实验数据处理与分析 • 实验总结与思考
01
实验课程介绍
实验课程目标
01
掌握电磁场的基本原理和实验技能
02
培养学生对电磁场现象的观察、分析和解决问题的 能力
03
提高学生的实践能力和创新思维
实验课程内容与安排
描述了磁场在不同介质交界处的行为 ,包括磁场的切向分量和法向分量。
03
实验操作与演示
电场与电通密度实验
总结词
01
了解电场与电通密度之间的关系
实验目的
02
通过测量电场强度和电通密度,探究它们之间的关系,加深对
电场理论的理解。
实验原理
03
利用高斯定理计算电通密度,通过测量电场强度分布来验证电
通密度与电场强度的关系。
电磁场基本实验
包括电场、磁场和电磁波的测量和观察
电磁场应用实验
涉及电磁场在通信、雷达、电子对抗等领域的 应用
综合性实验
结合理论知识和实验技能,进行综合性实验设计和操作
实验课程要求
01 实验前充分准备,了解实验目的、原理和 步骤
02 严格遵守实验室安全规定,注意实验操作 安全
工程电磁场实验报告
工程电磁场实验报告【实验名称】:工程电磁场实验报告【实验目的】:1. 学习电磁场的基本概念和理论知识,了解电磁场的产生、传播和作用。
2. 掌握电磁场的测量方法和仪器设备,学会使用电磁场测试仪对不同环境下的电磁场进行测量。
3. 通过实验验证电磁场与周围环境的关系,研究电磁场对人体健康的影响。
【实验原理】:电磁场是由运动电荷所激发出来的一种物理场。
在任何电路中,电子都在自己周围创造了一个细微的电磁场。
当这些电子流动时,它们产生一个磁场,这个磁场又会影响电子的运动,从而形成一个电磁波,这就是我们常见的无线电波。
电磁场可以分为静电场和磁场两种。
静电场是由电荷间的相互作用所产生的电场,具有电势能,可用库仑定律来描述;磁场是由运动电荷所产生的,具有磁通量,可用安培定律来描述。
当电子加速或减速时,会产生辐射场,辐射场也是一种电磁场。
【实验步骤】:1. 准备实验所需的电磁场测试仪器,并对其进行校准和调试。
2. 在室内、室外、地下等不同环境下进行电磁场测量,并记录数据。
3. 将测量结果进行统计和分析,得出电磁场与周围环境的关系。
4. 通过文献资料和相关研究了解电磁场对人体健康的影响,并将实验结果与理论知识相结合,分析电磁场对人体健康的影响因素和防护措施。
【实验结果】:经过多组数据的测量和分析,我们发现电磁场的大小与周围环境有很大的关系。
在室内环境中,电磁场主要来自于电器设备、灯具等电子设备;在室外环境中,电磁场主要来自于手机信号塔、广播电视塔等无线电波源。
此外,在地下建筑物中,电磁场主要来源于电力线路和照明设施。
同时,我们也发现电磁场的大小会对人体健康产生影响。
高强度电磁场会导致头痛、恶心、疲劳等身体不适,长期暴露在电磁场中还可能引起神经系统和免疫系统的损伤。
因此,为了保障人体健康,应该加强对电磁辐射的监测和控制,采取科学有效的防护措施。
【实验结论】:通过本次实验,我们深入了解了电磁场的基本概念和理论知识,掌握了电磁场的测量方法和仪器设备,验证了电磁场与周围环境的关系,并研究了电磁场对人体健康的影响。
工程电磁场课设实验报告永磁体
工程电磁场课设实验报告永磁体一、实验目的本次实验旨在通过对永磁体的研究,探究其在电磁场中所表现出的特性,并通过实验数据分析得出结论。
二、实验原理1.永磁体的定义永磁体是指在外界电场或磁场作用下,不会失去自身磁性的物质。
常见的永磁体有钕铁硼、铝镍钴等。
2.电磁场中永磁体的特性在电磁场中,永磁体会受到一定程度的影响。
当永磁体置于交变电场中时,其内部会产生感应电流和感应电动势;当置于静态磁场中时,则会受到力和力矩的作用。
3.实验装置本次实验采用了由直流稳压电源、直流万用表、万用表夹子、U形铜线圈、恒温水槽等组成的实验装置。
4.实验步骤(1)将U形铜线圈放入恒温水槽中,并将恒温水槽加以控制使其保持在恒定温度下。
(2)连接直流稳压电源和U形铜线圈,将电源输出电压调整至一定值。
(3)用万用表夹子夹住永磁体,将其置于U形铜线圈中央。
(4)记录下永磁体在不同电压下的磁场强度及其变化情况。
三、实验结果与分析通过实验数据的收集和分析,我们得出了以下结论:1.当电压较小时,永磁体内部产生的感应电流和感应电动势较小,因此对其磁性影响不大。
2.随着电压的增加,永磁体内部产生的感应电流和感应电动势逐渐增大,其磁性也随之改变。
3.当达到一定电压时,永磁体内部产生的感应电流和感应电动势已经达到饱和状态,此时再增加电压也无法使其磁性发生更大的改变。
四、实验结论通过本次实验我们得出了以下结论:1.在交变电场中,永磁体会产生感应电流和感应电动势,并对其磁性产生一定影响。
2.在静态磁场中,永磁体会受到力和力矩的作用。
3.随着电压的增加,永磁体内部产生的感应电流和感应电动势逐渐增大,其磁性也随之改变。
4.当达到一定电压时,永磁体内部产生的感应电流和感应电动势已经达到饱和状态,此时再增加电压也无法使其磁性发生更大的改变。
五、实验总结本次实验通过对永磁体在电磁场中的特性进行了探究,为我们深入了解永磁体的相关知识提供了重要的实验数据和结论。
同时,在实验过程中我们也学习到了如何正确使用实验装置以及如何准确记录和分析实验数据。
工程电磁场实验指导材料
工程电磁场实验指导材料实验一用模拟法测绘静电场带电导体(有时称电极)在空中形成的静电场,除极简单的情况外,大都不能求出它的数学表达式,往往借助实验的方法来确定静电场的分布。
如果采用仪器直接测量静电场,设备比较复杂,对测量技术的要求也很高。
本实验介绍一种间接的测定方法(称模拟法)来测量静电场。
模拟法的特点是仿造另一个电场(称模拟场),使它与原电场完全一样,当用探针去测模拟场时,它不受干扰,因此可间接地测出被模拟的静电场。
一、目的1.学习用模拟法描述和研究静电场分布的概念和方法;2.测绘等位线,根据等位线画出电力线,加深对电场强度和电位要领的理解及静电场分布规律的认识。
二、原理1.用电流场模拟静电场用模拟法测量静电场的方法之一是用电流场代替静电场。
由电磁学理论可知,电解质(或水液)中稳恒电流的电流场与电介质(或真空)中的静电场具有相似性。
在电流场的无源区域中,电流密度矢量j满足∮j∙ds=0∮j∙dl=0(1)在静电场的无源区域中,电场强度矢量E满足∮E∙ds=0∮E∙dl=0 (2)由(1)式和(2)式可看出电流场中的电流密度矢量j和静电场中的电场强度矢量E所遵从的物理规律具有相同的数学形式,所以这两种场具有相似性。
在相似的场源分布和相似的边界条件下,它们的解的表达式具有相同的数学模型。
如果把连接电源的两个电极放在不良导体如稀薄溶液(或水液)中,在溶液中将产生电流场。
电流场中有许多电位彼此相等的点,测出这些电位相等的点,描绘成面就是等位面。
这些面也是静电场中的等位面。
通常电场分布是在三维空间中,但在水液中进行模拟实验时,测出的电场是在一个水平面内的分布。
这样等位面就变成了等位线。
根据电力线与等位线正交的关系,即可画出电力线,这些电力线上每一点切线方向就是该点电场强度E的方向。
这样就可以用等位线和电力线形象地表示静电场的分布了。
检测电流中各等位线时,不影响电力线的分布。
测量支路不能从电流场中取出电流,因此,必须使用高内阻电压表或平衡电桥法进行测绘。
工程电磁场实验报告
工程电磁场实验报告电磁场实验报告姓名:咳咳学号:201230254咳咳咳咳班级:电气工程学院2012级1班问题:有一极长的方形金属槽,边宽为1米,除顶盖电位为100V外,其他三面的电位均为零,试用差分法求槽内的电位分布。
有限差分法(Finite Differential Method,FDM)是基于差分原理的一种数值计算法。
其基本思想是:将场域离散为许多小网格,用差分代替微分,用差商代替求导,将求解连续函数泊松方程的问题转换为求解网格节点上的差分方程组的问题。
用所求网格的数值解代替整个场域的真实解。
因而数值解即是所求场域的离散点的解。
虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点的数目也愈多,近似解(数值解)也就愈逼近于真实解。
设求解二维静电场边值问题:①网格划分将场域划分为小的网格。
设为正方形网格,边长h。
② 方程离散 将节点上的电位值作为求解变量,把微分方程化为关于的线性代数方程组。
21032202()x h ϕϕϕϕ-+∂≈∂ 22042202()y h ϕϕϕϕ-+∂≈∂ a ) 对内部节点12340024F hϕϕϕϕϕ+++-=b)对边界节点(只考虑节点位于边界上的情况)i fϕ=③ 求解线性代数方程组N 个方程联立成为线性代数方程组求解得到节点上的电位值。
当内点数较少时,可直接用代元消去法或列式法,张弛法等少算;当内点较多时,即内点不是几个,十几个而是成百个,上千个时,手算几乎不可能,这就必须借助计算机进行计算。
求解高阶方程有赛德尔迭代法等方法。
解:对于本例而言,用差分法可直接求得场域中离散点上电位的近似值。
首先对场域进行等距剖分,此处取步长h=0.1米,对于正方形场域则可使用网络格线自边界处起始, 边界节点的电位值(i=0,10;j=0,10)由边界条件给出,其内部节点的电位值(i=1,2,...9;j=1,2,...9)则待求。
由于槽内部电流密度为0所以电位函数所满足的拉普拉斯方程的差分离散格式为j i j i j i j i j i ,1,,11,,14ϕϕϕϕϕ=+++--++)(411,,11,,1,--+++++=j i j i j i j i ji ϕϕϕϕϕ 对于本例的网络剖分,i,j=1,2,3…9,则上式即为待求的内部节点上的电位值所应满足的代数方程组。
工程电磁场实验报告
工程电磁场实验报告姓名:学号:联系式:指导老师:实验一螺线管电磁阀静磁场分析一、实验目的以螺线管电磁阀静磁场分析为例,练习在 MAXWELL 2D 环境下建立磁场模型,并求解分析磁场分布以及磁场力等数据。
二、主要步骤a) 建立项目:其中包括生成项目录,生成螺线管项目,打开新项目与运行MAXWELL 2D。
b) 生成螺线管模型:使用MAXWELL 2D 求解电磁场问题首先应该选择求解器类型,静磁场的求解选择Magnetostatic,然后在打开的新项目中定义画图平面,建立要求尺寸的螺线管几模型,螺线管的组成包括Core 、Bonnet 、Coil 、Plugnut、Yoke。
c) 指定材料属性:访问材料管理器,指定各个螺线管元件的材料,其中部分元件的材料需要自己生成,根据给定的BH 曲线进行定义。
图1 元件材料图2 B-H曲线d) 建立边界条件和激励源:给背景指定为气球边界条件,给线圈Coil 施加电流源。
e) 设定求解参数:本实验中除了计算磁场,还需要确定作用在螺线管铁心上的作用力,在求解参数中要注意进行设定。
f) 设定求解选项:建立几模型并设定其材料后,进一步设定求解项,在对话框Setup Solution Options 进入求解选项设定对话框,进行设置。
三、实验要求建立螺线管电磁阀模型后,对其静磁场进行求解分析,观察收敛情况,画各种收敛数据关系曲线,观察统计信息;分析 Core 受的磁场力,画磁通量等势线,分析P lugnut 的材料磁饱和度,画出其B H 曲线。
通过工程实例的运行,掌握软件的基本使用法。
四、实验结果1.螺线管模型图32.自适应求解图4 收敛数据3.三角单元与收敛次数关系图54.总能量与收敛次数关系图65.磁场能量百分比与收敛次数关系图76.磁场力与收敛次数关系图87.统计信息图98.所受磁场力图10大小为118.2N,向为Core负向。
9.磁通等势线图1110.材料Plugnut的B-H曲线图12五、实验总结通过建立螺线管模型,熟悉了MAXWELL2D软件的使用法,为以后的工程求解积累了经验。
工程电磁场实验报告
越大。涡流损耗可以通过使用有限元法通过数值计算获得。本实验采 用轴向涡流求解器来计算不同频率下的涡流损耗。 四、实验要求 如图所示,模型由 4 片叠片钢组成,每一片的截面长和宽分别为 12.7mm 和 0.356mm,两片之间的距离为 8.12um,叠片钢的电导率为 2.08e6S/m,相对磁导率为 2000,作用在磁钢表面的外磁场 Hz=397.77A/m,即 Bz=1T。求不同频率下的涡流损耗。 叠片钢模型如图所示:
进行理论计算时,可用以下公式: 1、低频涡流损耗计算公式: P=
t² ω² B² σ 24
V
式中,V 为叠片体积;t 为叠片厚度;B 为峰值磁通密度;σ 为 叠片电导率;ω 为外加磁场角频率。 本实验中,V=12.7*0.001*0.356*0.001*1=4.5212*10-6m3 根据低频数值计算公式,求得不同频率下的理论计算值如表所示: F(Hz) 1 60 360 1k 2k 5k 10k Bmin(T) 1.000 0.999 0.987 0.912 0.743 0.396 0.191 P(W) 1.9605e-6 7.0578e-3 2.5408e-1 1.9605 7.8420 4.9012e1 1.9605e2
比较实验值与理论计算时,分析结果如下: F(HZ) 1 60 360 1K 2K 5K 10K P 实(W) P 理(W) 误差 E 1.58% 1.75% 3.85% 16.34% 41.63% 80.67% 93.64%
1.92947E-006 1.9605e-6 6.93405E-003 7.0578e-3 2.44296E-001 2.5408e-1 1.64331E+000 4.57748E+000 9.47548E+000 1.24500E+001 1.9605 7.8420 4.9012e1 1.9605e2
工程电磁场实验讲义最新
THQXF-1型 磁悬浮实验仪实验一、实验目的1. 观察磁悬浮物理现象。
2. 深化对磁场能量、电感参数和电磁力等知识点的理解。
二、实验仪器THQXF-1型 磁悬浮实验仪及配件。
三、实验原理根据法拉第电磁感应定律,闭合导体回路中的磁通量变化时,回路中就会产生感应电动势,如果回路的电阻较小,则感应电动势将使回路中产生很大的感应电流。
在大块导体中,因感应电流呈涡漩状,故称为电涡流。
电涡流可使导体发热,也可以产生电磁力效应。
本实验装置中,如图所示利用扁平盘状线圈在调压器提供的50Hz 交变电流激励下产生交变磁场。
铝板自身构成闭合回路,在励磁磁场的作用下铝板中感生涡流。
励磁线圈产生的磁场与铝板中涡流产生的感应磁场存在相互斥力,当电流增大到使两磁场间的作用力大于线圈自身的重力时,线圈便会浮起呈现磁悬浮状态。
图1 磁悬浮示意图图2 线圈驱动电流与涡流的对应关系当线圈中通过电流1i 时, t i ωsin 1=ω为驱动电流的角频率; 则铝盘中涡流2i 可以表示为 )sin(2ϕω+=t M i式中M 为涡流的感应系数,其值与线圈与导电铝板之间的距离相关;ϕ为涡流与线圈驱动电流之间的相位差。
取驱动电流与感生涡流之间的相互作用系数为M ',则线圈与铝板之间的作用力可表示为 )sin(sin )('ϕωω+-=t t M M t f令A=M ’M ,由)]2cos([cos 21)sin(sin ϕωϕϕωω+-=+t t t 可得)]2cos([cos 2)(ϕωϕ+--=t At f 由上式可知,作用力F 分为两部分,一部分为交变力,其频率为驱动电流的两倍(100Hz ),另一部分为常量,表示为平均斥力,当平均斥力与重力平衡时,导体即可悬浮于空中振动。
四、实验步骤1.电磁悬浮实验1) 将铁质圆立柱安装在塑料底座上。
2) 将线圈放置于塑料底座上。
3) 将调压器调节手柄逆时针旋到底,使指针指向0V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程电磁场实验前言1.实验总体目标熟练掌握常用实验仪器的使用方法,加深对工程电磁场课程内容的理解,熟悉ANSYS 软件平台的使用。
⒉适用专业电气工程及其自动化专业⒊先修课程高等数学、电路、工程电磁场⒌实验环境基于ANSYS平台的电磁场数值仿真实验要求每人一台计算机,共约70台。
⒍实验总体要求完成实验指导书中各项实验内容,并认真回答思考题。
⒎本实验的重点、难点及教学方法建议本实验的重点是利用恒定磁场的计算方法计算通电线圈周围的磁场,并与实测值比较,检验测量方法的正确性。
实验一 通电线圈磁场测量一、实验目的1.通过测量通电线圈周围产生的磁场及单匝线圈的感应电动势,加深对时变电磁场的理解。
2.掌握高斯计、万用表和电流表的使用方法。
3.了解电压、电流和磁场的一般测量方法。
二、实验类型本实验为综合型教学实验。
三、实验仪器1.变压器220V/36V (实验台仪表屏上)。
2.主线圈200匝,线圈内直径400mm ,线圈导线(铜漆包线)直径 0.5mm ,线圈自身高度 10mm ,径向厚度10mm ,置于骨架下部靠下挡板。
3.单匝线圈,靠近上挡板,用于测量感应电动势。
4.高斯计频率范围30Hz~2kHz ,可实现三维磁场测量,测量上限2000mG/200μT 。
5.万用表、电流表、毫伏表、卷尺。
四、实验原理通电线圈周围将产生变化的磁场,该变化磁场又会在单匝线圈回路产生感应电动势。
电磁感应定律:线圈回路中感应电动势的大小与穿过回路的磁通随时间的变化律成正比,即dtd e Φ-= 五、实验内容1.测量变压器一次侧和二次侧开路电压,确定变压器变比(实验台变压器不需此步)。
2.测量主线圈回路直流电阻、变压器二次侧负载电压和主线圈回路电流。
3.测量线圈周围磁场的沿线分布,并与解析解进行比对。
4.测量单匝线圈感应电动势。
六、实验步骤1.接通电源,将变压器低压侧调节到11V 。
2.使用万用表测量主线圈和单匝线圈回路直流电阻。
3.连通主线圈回路,测量变压器二次侧负载电压和主线圈回路电流。
4.选定两条测量线,利用高斯计测量线圈周围磁场的沿线分布,并与解析解进行比对。
5.使用毫伏表测量单匝线圈感应电动势。
七、实验注意事项1.实验过程中注意人员安全,请勿带电时触摸变压器抽头。
2.通过测量回路直流电阻,区分主线圈和单匝线圈,避免接线时将变压器短路。
3.使用万用表和电流表时,注意量程选择,防止毁坏仪表。
八、实验数据表格表1表2 磁感应强度数据图1 磁场测量线示意图九、思考题1.主线圈回路电阻是否等于主线圈负载电压与回路电流的比值?2.分析本次测量产生误差的原因,考虑单匝线圈感应电动势的测量方法是否严谨?实验二基于ANSYS平台的电磁场数值仿真一、实验目的1.在仿真过程中学会使用ANSYS软件。
2.学会边值问题的建模方法。
3.学会用仿真软件检验对电磁场分布的猜测。
二、实验类型本实验为验证型教学实验。
三、实验仪器配备有ANSYS软件平台的台式计算机。
四、实验原理本实验是在ANSYS平台上开发的。
ANSYS是国际上著名的有限元软件包,可对结构力学、流体力学、传热学和电磁学等领域的问题进行求解。
其特点是图形界面友好,易学,前后处理功能强大。
在ANSYS平台上开发电磁场数值仿真实验,只需将问题的求解过程描述清楚,按照给定步骤上机操作,即可得到预期结果。
五、实验内容图1 仿真计算模型(图中a、D可自定)仿真实验包括静电场实验和恒定磁场实验,可任选一个。
对于静电场实验,图1中两导体电位分别为100V和-100V(可自定);对于恒定磁场实验,图1中两导体电流密度分别为10000A/m2和-10000A/m2。
根据几何结构和源分布的对称性,仿真实验可选用1/4或1/2平面进行建模。
实验分为两步:第一步,按照给定步骤和给定参数上机操作;第二步,尝试改变某些参数,观察仿真结果的变化。
六、实验步骤1.开始→程序→ansys5.6→license status→server(等待)→quit(不能按其他选择)2.开始→程序→ansys5.6→interactive(出现界面)→run(出现界面)→3.ANSYS Main Menu(左侧主菜单)→preferences→electric(点击白框打勾)→ok(预设问题归属)→4.ANSYS Main Menu→preprocessor→material props→-constant-isotropic→1→ok→perx 1→ok(给定材料相对介电常数)→5.ANSYS Main Menu→preprocessor→element type →add/edit/delete→add→electrostatic →2D quard 121→ok(设定内部单元类型)→6.(ANSYS Main Menu→preprocessor→element type →)add/edit/delete→add→infiniteboundary→2D infquard 110→ok→option→AZ改为volt, 4noded quard改为8noded→(设定外部无限单元类型)close→7.(ANSYS Main Menu→preprocessor→modeling→create→-Area- circle→partialannulus→wp x 1, wp y 0, rd-1 0, theta-1 0, rd-2 0.2, theta-2 180, apply→ wp x -1, wp y 0, rd-1 0, theta-1 0, rd-2 0.2, theta-2 180, apply→wp x 0, wp y 0, rd-1 0, theta-1 0, rd-2 5, theta-2 180, apply→wp x 0, wp y 0, rd-1 0, theta-1 0, rd-2 10, theta-2 180,ok(创建几何模型)→8.(ANSYS Main Menu→preprocessor→modeling→operate→-booleans- overlap→area→pick all(模型各部分之间集合运算)→9.(ANSYS Main Menu→preprocessor→modeling→delete→area and below→光标选中两个小圆,ok(删除导体部分)→10.(ANSYS Main Menu→preprocessor→-attributes- define→pick areas→光标选中有两个小圆缺口的内半圆,apply→apply→光标选中外半圆,ok→1 plane121改为 2 infin110→ok(定义区域属性)→11.(ANSYS Main Menu→preprocessor)→mesh tool→lines set→光标选中外层两条弧线,apply→ndiv 50 →apply→光标选中外层扇形左右两条底边,apply →ndiv 1 →apply→光标选两小圆弧,apply → ndiv 20 →apply→光标选中两小圆弧之间的两条小线段,apply→ndiv 20→apply→光标选中两小圆弧与大扇形之间两条长线段,ok→ndiv 20→ok→12.mesh tool菜单中选中quad 和 mapped,点击mesh →光标选中外部大扇形,ok(外部无限单元划网格)→13.mesh tool菜单中选中tri 和 free,点击mesh →光标选中有两个小圆缺口的内半圆,ok(内部有限单元划网格)→14.(ANSYS Main Menu)→solution→-loads- apply→-elecric- boundary→-voltage- online→光标选中右小半圆,apply, 100,apply→光标选中左小半圆,ok, -100 ,ok(导体表面加电位)→15.(ANSYS Main Menu)→solution→-loads- apply→-elecric- flag→-infinite surf- online→光标选中最外边的半圆,ok(无限边界加标志)→16.(ANSYS Main Menu)→solution→-solve- current ls→ok(求解,等待)→close(关闭黄框)→关闭status command文件(白框)17.(ANSYS Main Menu)→general postproc→plot results→-contour plot- nodal solu→dof solution elec poten volt ok(显示电位9色云图)→18.emag 3d utility menu→plot ctrls→device options→shading win32 点击改为contours win32c , vocter mode off 点击改为on, ok→19.emag 3d utility menu→plot ctrls→style→contours→uniform contours→ncont100 ,ok(显示等电位线分布)→20.(ANSYS Main Menu)→general postproc→plot results→-vector plot-predefined→flux and gradient→选择D或EF(箭头显示电位移矢量或电场强度)→21.emag 3d utility menu→plot ctrls→pan, zoom, rotate→(可以移动、放大、缩小图形)22.ansys toolbar→选择quit-no save!ok→(退出ANSYS)七、实验注意事项为了避免仿真过程中重复建模,应对数值仿真的中间过程适当保存备份。
八、实验结果实验过程中需要记录如下仿真结果:1.网格剖分图。
2.等电位线分布图或等A线分布图。
3.电场强度矢量图或磁场强度矢量图。
九、思考题1.仿真过程中,采用1/4或者1/2平面建模,有何理论依据?2.网格剖分的疏密程度对仿真结果是否有影响?试解释原因。