高一数学函数经典题目及答案

合集下载

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用2.在R上定义运算,若不等式成立,则实数a的取值范围是().A.{a|}B.{a|}C.{a|}D.{a|}【答案】C【解析】由题知∴不等式对任意实数x都成立转化为对任意实数x都成立,即恒成立,解可得.故选A.【考点】本题考查了在新定义下对函数恒成立问题的应用.关于新定义型的题,关键是理解定义,并会用定义来解题.3.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.4.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.函数的最小值是【答案】【解析】,则函数的最小值为。

【考点】函数的性质点评:本题通过构造形式用基本不等式求最值,训练答题都观察、化归的能力.7.已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是()A.B.C.D.【答案】D【解析】因为,f(x)是实数集上的偶函数,且在区间上是增函数,所以,函数的图象关于y 轴对称,在区间是减函数。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。

高一函数考试题及答案

高一函数考试题及答案

高一函数考试题及答案一、选择题(每题3分,共30分)1. 函数y=f(x)的定义域是所有实数,若f(2)=3,则f(-2)的值为()。

A. 3B. -3C. 1D. 02. 函数f(x)=2x+1的值域是()。

A. (-∞, +∞)B. [1, +∞)C. (-∞, 1]D. [0, +∞)3. 若函数f(x)=x^2-4x+3,求f(1)的值是()。

A. 0B. 1C. 2D. 34. 对于函数f(x)=\frac{1}{x},当x=2时,f(x)的值是()。

A. 0.5B. 1C. 2D. 45. 函数f(x)=\sqrt{x}的定义域是()。

A. (0, +∞)B. (-∞, 0)C. [0, +∞)D. (-∞, +∞)6. 函数f(x)=x^3-3x^2+2的单调递增区间是()。

A. (-∞, 1) ∪ (2, +∞)B. (-∞, 0) ∪ (3, +∞)C. (1, 2)D. (0, 3)7. 函数f(x)=\log_2(x)的值域是()。

A. (-∞, +∞)B. [0, +∞)C. (0, +∞)D. [1, +∞)8. 若函数f(x)=\sin(x),求f(\frac{π}{2})的值是()。

A. 0B. 1C. -1D. \frac{1}{2}9. 函数f(x)=x^2-6x+8的最小值是()。

A. -8B. 2C. 8D. 010. 函数f(x)=\frac{1}{x}在区间(0, +∞)上是()。

A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、填空题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的顶点坐标是()。

2. 若函数f(x)=x^3-3x^2+2x+1,求f'(x)的值是()。

3. 函数f(x)=\log_2(x)的定义域是()。

4. 函数f(x)=\sqrt{2x-1}的值域是()。

5. 若函数f(x)=\sin(x)+\cos(x),求f(0)的值是()。

高一数学函数经典练习题(含答案)

高一数学函数经典练习题(含答案)

精心整理《函数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-+-2为34、 求实数5⑴y =⑸y =⑼y =6三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y =261y x x =--789⑴1=y ⑶x f (。

A 10 A 1112 (A)02x << (B)0x <或2x > (C)1x <或3x > (D)11x -<<13、函数()f x =A 、[2,2]-B 、(2,2)-C 、(,2)(2,)-∞-+∞D 、{2,2}-14、函数1()(0)f x x x x=+≠是()A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =16、已知函数的定义域是,则的定义域为。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知函数在处取得最大值,则可能是( )A.B.C.D.【答案】【解析】根据函数解析式的特点,设,则根据正弦和角公式,可知函数,则其最值在处取得,所以.【考点】正余弦特殊值,正弦和角公式,正弦函数最值.2.下列函数在区间是增函数的是A.B.C.D.【答案】D【解析】(A)函数是上的减函数;(B)函数是R上的减函数;(C)的对称轴为,所以该函数是上的增函数;(D)是上的增函数,所以在区间是增函数,故D为正确答案.【考点】函数的单调性.3.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.4.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。

5.方程有唯一解,则实数的取值范围是()A.B.C.或D.或或【答案】D【解析】方程有唯一解,即半圆与直线只有一个公共点。

结合几何图形分析知,实数的取值范围是或或,选D。

【考点】直线与圆的位置关系点评:简单题,利用转化与化归思想,将方程解的个数问题,转化成直线与半圆的公共点个数问题。

6.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高一数学函数经典题目及答案

高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅I ,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x 1则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。

答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。

函数考试题库及答案高一

函数考试题库及答案高一

函数考试题库及答案高一一、选择题(每题3分,共30分)1. 函数f(x) = 2x + 3的定义域是:A. (-∞, +∞)B. [0, +∞)C. (0, +∞)D. [3, +∞)答案:A2. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:A3. 函数y = 3x^2 - 6x + 2的图像开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A4. 下列哪个函数是奇函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 - 1D. f(x) = x答案:B5. 函数y = 2x + 1的反函数是:A. y = (x - 1) / 2B. y = (x + 1) / 2C. y = 2x - 1D. y = 2x + 1答案:A6. 若函数f(x) = x^3 + 2x^2 - 5x + 1,则f'(x)是:A. 3x^2 + 4x - 5B. 3x^2 + 4x + 5C. 3x^2 - 4x + 5D. 3x^2 - 4x - 5答案:A7. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:B8. 若函数f(x) = ln(x),则f'(x)是:A. 1/xB. xC. ln(x)D. x^2答案:A9. 函数y = e^x的图像是:A. 直线B. 抛物线C. 指数曲线D. 对称曲线答案:C10. 函数y = 3x^2 - 6x + 2的顶点坐标是:A. (1, -1)B. (1, 5)C. (3, 5)D. (3, -1)答案:B二、填空题(每题4分,共20分)1. 函数f(x) = x^2 - 6x + 9的最小值是______。

答案:02. 若f(x) = 2x - 3,则f(-1) = ______。

答案:-53. 函数y = 1 / x的图像关于______对称。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知【答案】512【解析】主要考查对数运算。

2.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。

【答案】4或8【解析】主要考查对数方程解法。

解:原方程可变形为:3.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;4.求函数的定义域【答案】【解析】解:∵,∴定义域为5.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。

解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当6.函数在区间上是[ ]A.增函数B.既不是增函数又不是减函数C.减函数D.既是增函数又是减函数【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。

解:此函数在随增大,逐渐减小,减小,反而增大,所以函数是增函数;而在,随增大,逐渐增大,增大,反而减小,所以函数是减函数;所以函数在区间上,既不是增函数又不是减函数。

故选B。

7.函数在上的单调性为()A.减函数B.增函数.C.先增后减.D.先减后增【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。

由定义法或利用结论x的系数为正,一次函数是增函数,故选B。

8.函数的单调增区间为()A.B.C.D.【答案】A【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。

解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。

由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。

【答案】4或8【解析】主要考查对数方程解法。

解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。

解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。

解答过程中巧妙地转化为求函数的值域。

解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。

7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。

解:当时为减函数。

为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。

高一数学函数经典题目及答案

高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f 2函数值域的特殊求法例1.求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

高一函数的测试题及答案

高一函数的测试题及答案

高一函数的测试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=2x+1的值域是()。

A. (-∞, +∞)B. {x|x≠0}C. {x|x≠1}D. {x|x≠-1}2. 若函数f(x)=x^2-2x+2,x∈R,则f(x)的最小值是()。

A. 0B. 1C. 2D. 33. 函数y=|x-1|+|x+1|的图象与x轴的交点坐标是()。

A. (1,0), (-1,0)B. (0,1), (2,0)C. (0,-1), (2,0)D. (1,0), (-1,0), (0,1)4. 函数f(x)=x^3-3x^2+4在区间[1,2]上是()。

A. 单调递增B. 单调递减C. 先减后增D. 先增后减5. 函数f(x)=3x-1,g(x)=2x+1,若f[g(x)]=5x+2,则x的值是()。

A. 0B. 1C. 2D. 36. 若函数f(x)=x^2-4x+3,x∈R,则f(x)的零点个数是()。

A. 0B. 1C. 2D. 37. 函数f(x)=x^2-2x+1在区间[0,3]上的最大值是()。

A. 0B. 1C. 3D. 48. 函数y=|x-2|+|x-3|的最小值是()。

A. 1B. 2C. 3D. 49. 函数f(x)=x^3-3x^2+4在区间[0,3]上的零点个数是()。

A. 0B. 1C. 2D. 310. 若函数f(x)=x^2-2x+2,x∈R,则f(x)的值域是()。

A. [0, +∞)B. (-∞, 2]C. (-∞, +∞)D. [1, +∞)二、填空题(每题4分,共20分)1. 函数f(x)=x^2-4x+3的对称轴方程是。

2. 函数y=|x-1|的反函数是。

3. 若函数f(x)=x^2-6x+8,x∈R,则f(x)的值域是。

4. 函数f(x)=x^3-3x^2+4在区间[1,2]上的最小值是。

5. 函数y=|x-2|+|x-3|+|x-4|的最小值是。

三、解答题(每题10分,共50分)1. 已知函数f(x)=x^2-2x+2,求证:对于任意实数x,都有f(x)≥0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f精选2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅I ,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).精选答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

解法一(换元法):令t=1+x 则x=t 2-1, t ≥1代入原式有1)1(2)1()(22-=-+-=t t t t f∴1)(2-=x x f (x ≥1)解法二(定义法):1)1(22-+=+x x x ∴1)1()1(2-+=+x x f 1+x ≥1∴1)(2-=x x f (x ≥1)4代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 ,Θ点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='y y x x 64代入得:整理得672---=x x y ∴67)(2---=x x x g例5构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

精选∵已知x xf x f 3)1()(2=+ ①, 将①中x 换成x 1得xx f x f 3)()1(2=+ ②, ①×2-②得x x x f 36)(3-= ∴xx x f 12)(-=. 值域求法例1 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]2. 判别式法例2. 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例3求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y -1),其定义域为y ≠1的实数,故函数y 的值域为{y ∣y ≠1,y ∈R }。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x -10-x)的值域。

(答案:函数的值域为{y ∣y<-1或y>1}5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例4. 求函数1e 1e y x x +-=的值域。

解:由原函数式可得:1y 1y e x -+= ∵0e x > ∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例1(定义域不同)(定义域不同) (定义域、值域都不同)例3解: (1)()()()6,f a b f a f b +=+- 令0a b ==,得(0)6f =令2,2a b ==-,得(2)0f =(2)证明:设12,x x 是R 上的任意两个实数,且12x x <,即210x x ->,精选从而有21()6f x x -<,则212111()()[()]()f x f x f x x x f x -=-+-2111()()6()f x x f x f x =-+-- 21()60f x x =--< ∴21()()f x f x <即()f x 是R 上的减函数(3)()()()6,f a b f a f b +=+-令1,1a b ==,得(1)3f = ∵(2)(2)3f k f k -<- ∴(2)3(2)f k f k -+<,又(1)3f =,(2)0f =即有(2)(1)(2)(2)f k f f k f -+<+∴(2)(1)6(2)(2)6f k f f k f -+-<+-∴[(2)1][(2)2]f k f k -+<+又∵()f x 是R 上的减函数 ∴(2)1(2)2k k -+>+即3k <-(A)∴实数k 的取值范围是3k <-例4分析:假设存在,a b 使得(1)成立,得到a 与b 的关系后与22x y +≤14联立,然后讨论联立的不等式组.解:假设存在实数,a b ,使得A B ≠∅I ,(,)a b C ∈同时成立,则集合{(,)|,,A x y x n y an b n ===+∈Z }与集合2{(,)|,315,B x y x m y m m ===+∈Z }分别对应集合1{(,)|,A x y y ax b x ==+∈Z }与21{(,)|315,B x y y x x ==+∈Z },1A 与1B 对应的直线y ax b =+与抛物线2315y x =+至少有一个公共点,所以方程组2315y ax b y x =+⎧⎨=+⎩有解,即方程2315x ax b +=+必有解. 因此212(15)a b ∆=--≥20a ⇒-≤12180b -,①又∵22a b +≤14 ②由①②相加,2b 得≤1236b -,即2(6)b -≤0.∴6b =. 将6b =代入①得2a ≥108,再将6b =代入②得2a ≤108,因此a =±将a =±6b =代入方程2315x ax b +=+得2390x ±+=,解得x =Z .所以不存在实数,a b ,使得(1),(2)同时成立.证明题1精选 1解:设F (x )=()f x -121[()()]2f x f x +, 则方程 ()f x =121[()()]2f x f x + ① 与方程 F (x )=0 ② 等价∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+ ∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠ ∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在.。

相关文档
最新文档