探索两条直线平行的条件
七年级下册数学第一课探索直线平行的条件
七年级下册数学第一课探索直线平行的条件1.直线平行是指两条直线永远不会相交。
Parallel lines refer to two lines that will never intersect.2.直线平行的条件是它们具有相同的斜率。
The condition for lines to be parallel is that they have the same slope.3.斜率是指直线上任意两点的纵坐标差与横坐标差的比值。
Slope refers to the ratio of the vertical difference to the horizontal difference between any two points on a line.4.如果两条直线的斜率相同,那么它们是平行的。
If two lines have the same slope, then they are parallel.5.两条直线的斜率相同但不相交,则它们平行。
Two lines with the same slope but do not intersect are parallel.6.另一种判断直线平行的方法是它们的斜率乘积为-1。
Another way to determine if lines are parallel is if the product of their slopes is -1.7.这个方法适用于垂直线。
This method applies to perpendicular lines.8.垂直线是指它们的斜率互为倒数的直线。
Perpendicular lines are lines with slopes that are reciprocal of each other.9.如果两条直线的斜率互为倒数,那么它们是垂直的。
If two lines have slopes that are reciprocal, then they are perpendicular.10.平行线和垂直线在几何图形中有着重要的应用。
《探索两直线平行的条件》课例评议记录
《探索两直线平行的条件》课例评议记录观课后评课会议纪要会议时间:202X年12月20日上午主持人:赵鹏、李秀辉参会人员:云鹏,刘同军,郑廷伟,赵鹏,张云先,赵本敬,韩乃美,侯玉泉,姜立新,于卫东,邢学峰,王金霞,翟海燕,韦凤莲,边文豔,季勇,娄建民,李秀辉,苏霞记录人:姜立新会议主题:《探索两直线平行的条件》课例评议记录会议记录:苏霞:在这节课的设计上,得到了全组同仁们的帮助,可以说这节课是全组智慧的结晶。
反思这节课,个人认为:基于研究问题是有利于学生髮现问题和提出问题的教学设计,对于怎样才能更有利于学生髮现、提出问题,我认为只有情境设计好了,才能有利于学生髮现问题和提出问题。
另外对教材内容的整合、向学生渗透数学思想方法都要重点注意,但是在收集资源方面还不够灵活,引导还不够深刻,希望以后的课堂上能够弥补这节课的遗憾。
赵鹏:本节课苏老师提问比较多,具体分布情况怎幺样?教师追问有几次?是否有效?娄建民:苏老师的课堂提问共25次,其中,提问a层学生9次,b层学生5次,c层学生11次,从这些资料中看出,苏老师在每个环节面向全体。
季勇:在环节3有位学生画出两个45°的内错角而得到平行线时,老师追问“利用30°的角能画出平行线吗?让学生互相质疑,在思维碰撞中引出问题。
于卫东:自主学习时间为5分,合作学习、交流展示时间为20分钟,交流展示时间这说明:学生学习活动的时间比较充分,充分体现了课堂上学生的主体地位。
张云先:在探索画平行线的方法时,有的同旁内角相等两直线平行,老师没有急于否定,而是发动学生积极**,让学生解决。
然后通过让学生髮现问题提出问题,继而分析解决问题,达成了教学目标,加深了对知识的理解,同时为学生髮现问题提出问题提供了时机。
边文豔:得出“过直线外一点有且只有一条直线与已知直线平行”的準确结论,教师没有及时点评引导,从而错过了烘托学生髮现问题解决问的良机。
侯玉泉:有许多精彩之处,老师应给予恰当、多元化的评价。
《6.3.1两条直线平行》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册
《两条直线平行》教学设计方案(第一课时)一、教学目标1. 理解两条直线平行的概念,掌握判断两条直线平行的条件。
2. 能够正确判断两条直线的位置关系。
3. 培养学生的空间想象能力及逻辑思维能力。
二、教学重难点1. 教学重点:理解两条直线平行的概念,掌握判断两条直线平行的条件。
2. 教学难点:培养学生的空间想象能力,正确判断两条直线的位置关系。
三、教学准备1. 准备教学PPT,准备相关教具(如直尺、三角板等)。
2. 设计课堂互动环节,引导学生积极参与。
3. 安排学生预习课本相关内容,提前准备问题。
四、教学过程:本节课的教学设计以培养学生逻辑推理及数学抽象思维能力为目标,以观察、操作、探究、猜想、证明为活动主线,设计了四个环节:导入新课、探索新知、探究证明、课堂小结。
1. 导入新课:通过展示生活中两条直线平行的实例,引导学生观察思考,引入课题,激发学生的学习兴趣。
2. 探索新知:通过动手操作,让学生观察两条直线的位置关系,探索平行线的性质,培养学生的观察能力和动手操作能力。
3. 探究证明:通过引导学生观察两条直线的位置关系,探究证明两条直线平行的条件,培养学生的逻辑推理能力和数学抽象思维能力。
环节一:导入新课通过PPT展示生活中的两条直线平行的实例,如房屋的窗框和门框,引出课题“两条直线平行”。
引导学生思考:两条直线的位置关系有哪些?如何判断两条直线平行?激发学生的兴趣和求知欲。
环节二:探索新知通过动手操作,让学生观察两条直线的位置关系,探索平行线的性质。
教师准备教具:直尺、三角板、白纸等。
学生动手操作,将三角板的一条直角边与直尺靠在桌面上,移动三角板,观察两条直线的位置关系变化。
教师引导学生归纳出平行线的性质:两条直线都垂直于同一条直线,则这两条直线互相平行。
环节三:探究证明教师提出问题:如何证明两条直线平行?引导学生思考:在几何图形中,有哪些条件可以用来证明两条直线平行?学生讨论交流,提出猜想:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】
《探索直线平行的条件》教学设计第2课时一、教学目标1.了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”两种判定方法.2.灵活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间想象、推理能力和有条理的表达能力.4.在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.二、教学重难点重点:了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补两直线平行”两种判定方法.难点:活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计2.平行于同一条直线的两条直线平行.教师活动:引导学生思考,不能用同位角的数量关系直接判断两直线是否平行时,我们该怎么办?【情境引入】小明有一块小画板,他想知道它的上、下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)小明利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行,你知道他是怎么做的吗?预设:可以测量∠1与∠2,也可以测量∠1与∠3....教师活动:进一步提出思考,这样做的理由呢?【合作探究】如何利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行?教师活动:演示测量过程,说明∠1=∠3,由此小明判断上下两个边缘是平行的.∠1+∠2=180°,由此他也能判断上下两个边缘是平行的.提出思考问题:你知道小明的判断依据吗?【探究】内错角与同旁内角的定义如图,具有∠1与∠2这样的位置关系的角称为内错角.具有∠1与∠3这样的位置关系的角称为同旁内角.请找出图中其他的内错角与同旁内角.预设:∠3与∠4是内错角;∠2与∠4是同旁内角.问题:你能说出内错角与同旁内角的特征吗?教师活动:引导学生观察内错角的位置特征,思考并说出内错角的特征.预设:内错角指在两条被截直线的内部,在截线的两侧,位置是交错的两个角.内错角是Z形状教师活动:引导学生观察同旁内角的位置特征,思考并说出同旁内角的特征.预设:同旁内角指在两条被截直线的内部,在截线的同旁的两个角.同旁内角是U形状【归纳】“三线八角”小结①位于两条被截直线同一方、且在截线同一侧的两个角,叫做同位角;如∠1与∠2.同位角是 F 形状②位于两条被截直线的内部,且在截线的两侧的两个角,叫做内错角;如∠7与∠2.内错角是Z形状③位于两条被截直线内部,且在截线的同侧的两个角,叫做同旁内角.如∠5与∠2.同旁内角是U形状.【议一议】(1)内错角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1 = ∠2 . 求证:a∥b证明:∵∠1 = ∠2 (已知)∠1 = ∠3 (对顶角相等)∴∠3 = ∠2 (等量代换)∴直线a∥b (同位角相等,两直线平行) 得出结论:内错角相等,两直线平行(2)同旁内角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1+∠2=180°,求证:a∥b∠1,∠2互补(已知)∠1,∠3互补(邻补角定义)∴∠3 =∠2 (同角的补角相等)∴直线a∥b (内错角相等,两直线平行) 教师活动:提示证明方法不唯一,证明过程中的∠3换成∠4就可以利用同位角相等,两直线平行来证明.得出结论:同旁内角互补,两直线平行【归纳】平行线的判定方法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称为:内错角相等,两直线平行.同旁内角互补,两直线平行.【做一做】如图,三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由.教师活动:以举例的方式提示学生如何寻找.一位同学说:BC与AE是平行的,因为∠BCA与∠EAC是内错角,而且又相等.提问你能看懂她的意思吗?再找到另一组平行线,说说你的理由.预设:BA与CE是平行的,因为∠ACE 与∠BAC是内错角,而且又相等.AC与ED是平行的,因为∠ACE与∠CED 是内错角,而且又相等.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,∠1+∠2=180°,请用不同的方法说明:AB∥CD.分析:两条直线平行,可以利用同位角相等、内错角相等或同旁内角互补来证明.观察可知∠1的对顶角∠EHB与∠2是同旁内角,结合已知可证;∠2的补角∠CGH 与∠1是同位角,利用同角的补角相等可得同位角相等,从而证出两直线平行;同理可证∠1的补角∠AHG与∠2这对内错角相等,也可以证出结论.解题过程:2.下列条件能判断l1∥l2的是( )A. ∠2=∠3B. ∠1=∠3C. ∠4+∠5=180°D. ∠2=∠43.观察图中所标记的五个角,完成题目:(1)∠1 与是同位角;(2)∠5 与是同旁内角;(3)∠2 与是内错角.4.图中各角分别满足下列条件时,你能判断是哪两条直线平行吗?①∠1=∠4②∠2 =∠4③∠1+∠3 =180°答案:1.B ;2.B3.∠4;∠3;∠14.①a∥b;②l∥m;③l∥n.思维导图的形式呈现本节课的主要内容:。
《探索直线平行的条件》教案
《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。
激发学生对探索直线平行条件的兴趣。
1.2 教学内容:直线平行的定义及实例。
直线平行的实际应用场景。
1.3 教学方法:通过图片、实例等方式引入直线平行的概念。
引导学生思考直线平行的实际应用场景。
1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。
2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。
3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。
第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。
培养学生运用判定方法解决实际问题的能力。
2.2 教学内容:直线平行的判定方法。
判定方法的证明和解释。
2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。
通过证明和解释来说明判定方法的合理性。
2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。
2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。
3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。
第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。
培养学生运用性质解决实际问题的能力。
3.2 教学内容:直线平行的性质。
性质的证明和解释。
3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。
通过证明和解释来说明性质的合理性。
3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。
2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。
3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。
第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。
培养学生的实际问题解决能力。
4.2 教学内容:直线平行的条件在实际问题中的应用。
《探索直线平行的条件》教案
《探索直线平行的条件》优秀教案一、教学目标1. 让学生理解直线平行的概念,掌握直线平行的条件。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生逻辑思维能力和团队协作能力。
二、教学内容1. 直线平行的定义2. 直线平行的条件3. 平行线的性质4. 平行线的判定5. 直线平行在实际问题中的应用三、教学重点与难点1. 教学重点:直线平行的概念、条件、性质和判定。
2. 教学难点:直线平行条件的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探索直线平行的条件。
2. 利用几何画板软件,直观展示直线平行的过程,增强学生直观感知。
3. 组织小组讨论,培养学生团队协作能力和口头表达能力。
4. 运用例题讲解,让学生在实践中掌握直线平行的应用。
五、教学准备1. 教学课件:包括直线平行的图片、动画、例题等。
2. 几何画板软件:展示直线平行的过程。
3. 练习题:巩固直线平行的知识和应用。
4. 小组讨论卡片:分配给各小组,用于记录讨论成果。
教案一、导入新课1. 展示生活中常见的平行现象,如的道路、书本排版等。
2. 引导学生思考:这些平行现象背后有什么共同的规律?3. 引入本节课的主题:《探索直线平行的条件》。
二、自主学习1. 让学生阅读教材,了解直线平行的定义。
三、课堂讲解1. 讲解直线平行的条件,引导学生通过几何画板软件直观展示。
2. 利用几何画板软件,展示直线平行的过程,引导学生观察、思考。
3. 讲解平行线的性质,如同位角相等、内错角相等等。
4. 讲解平行线的判定方法,如同位角相等、内错角相等等。
四、巩固练习1. 让学生运用几何画板软件,自主探究直线平行的条件。
2. 学生完成练习题,教师点评并讲解答案。
五、小组讨论1. 发放小组讨论卡片,让学生分组讨论直线平行的应用。
六、课堂小结2. 强调直线平行在实际问题中的应用。
七、作业布置1. 让学生完成课后练习题,巩固直线平行的知识。
2. 选择一道实际问题,运用直线平行的知识解决。
2.2.2探索直线平行的条件(教案)
此外,我还注意到,在总结回顾环节,有些同学仍然存在疑问。这说明我在课堂上的讲解可能还不够透彻,或者是课堂互动不够充分。因此,我需要在课后及时了解学生的掌握情况,针对性地进行辅导,确保每位同学都能跟上教学进度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探索了直线平行的条件,我发现学生们对于这个概念的理解程度不尽相同。有的同学能够迅速抓住同位角、内错角、同旁内角这些关键点,但也有一些同学对这些概念感到困惑。我意识到,在接下来的教学中,我需要采取更加多样的教学方法,以帮助不同水平的学生更好地理解平行线的性质。
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
课堂上,我通过引入日常生活中的例子来激发学生的兴趣,这是一个不错的开始。然而,我发现在理论介绍部分,我的语言可能过于专业化,导致一些同学难以跟上。在今后的教学中,我需要用更贴近学生生活的语言来解释抽象的几何概念,使它们更加直观易懂。
《探索直线平行的条件》教学反思(最新)
《探索直线平行的条件》教学反思人们在生活中存在着丰富的几何图形。
探索直线平行的条件就是在生动有趣的问题情境中,让学生经历探索直线平行的全过程。
通过观察、操作、推理、交流等数学活动中,得到同位角的概念和“同位角相等,两直线平行”。
同时此教材在探索直线平行的条件中自然引入了“三线八角”,而不是孤立地处理这些内容。
学生从口头表达理由到书写理由需要一定的过渡。
创设丰富的情境,体现数学与现实世界的联系。
注重学生探索和交流的活动,充分发挥教师的主导、学生的主体、课堂的示范作用。
在使用多媒体的教学活动中,精湛的板书对全课起着画龙点睛的作用。
由教学实际出发,将内容系列化,给学生清晰、明快的感受。
本节课通过学生自己动手制作实验、动手折、设计方案,让每个学生得到充分的发展。
以一些开放题激活学生的创造性,有意识的培养学生有条理的思考和语言表达。
教后记我承认呢开学的第一节课很重要,尽管这是下学期,学生对你已经很熟悉了,我还是好好的备了开学的第一节课,把书带回了家,细细研读一下,去年一直没有叫参书,很不方便,这次我老早就去把书借来,叫参数还是很有用处的,第一节课是承接上学期的几何的证明开始来的,上学期学生刚刚接触几何,特别对于证明的题目过程写的不理想,那么我看新的教材里面比老的教材里面多了对于证明过程的写法,也就是因果关系的阐述,我觉得尤为重要,我也在课堂上强调了证明的时候要注重因果关系,要有因有果,还举了实例给学生说:“因为今天是十六号,所以我们上学,原因是学校规定十六号上学。
”我觉得这里面的因果关系的讲解,就是三井活力课堂上面的精讲,对于学生来说这个东西他们是讲不出来的,而这又对他们很重要,所以要由老师来讲。
在情景的引入方面也还可以,就按照课本,从回忆平行线的画法,慢慢说明同位角,但是其中一定要强调同位角不一定是平行线,因为我在教学中发现很多学生都认为同位角是在两条直线平行的基础上的,在者在批改补充习题的时候我发现,学生对于这三条直线还是找的不熟练,就是哪两条直线被哪条直线所截的问题,这个我在讲课的时候没有细讲,觉得这个是失误之一。
2.2探索两直线平行的条件(精讲)(学生版)
2.2探索两直线平行的条件“三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图.同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角..判定方法1:同位角相等,两直线平行.如图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)题型2:平行线的判定1(同位角相等)2.如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠3+∠5=180°.(用“>”,“<”或“=”填空)平行线的画法(【变式3-1】如图.直线a.点B.点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【变式3-2】如图,在方格纸上∶(1)已有的四条线段中,哪些是互相平行的?(2)过点M画AB的平行线(3)过点N画GH的平行线平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.题型5:内错角、同旁内角的概念及识别5.如图,下列两个角是内错角的是()A.∠1与∠2B.∠1与∠3C.∠1与∠4D.∠2与∠4【变式5-1】如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠5【变式5-2】如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有()A.2个B.3个C.4个D.5个判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)6.补全下面的证明过程,并在括号内填上适当的理由.【变式6-1】如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠2=∠4D.∠3=∠5判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)证明:∵“内错角”或“同旁内角”)【变式8-1】如图,(1)∠1和∠3是直线和被直线所截而成的角;(2)能用图中数字表示的∠3的同位角是;(3)图中与∠2是同旁内角的角有个.的位置关系,并说明理由.题型10:平行线的判定简单综合10.光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.试判断。
两条直线平行的条件公式
两条直线平行的条件公式
在解析几何中,两条直线平行的条件可以表述为公式。
假设有两条直
线L1和L2,我们可以用以下三种条件之一来确定它们是否平行。
1.斜率相等:如果两条直线的斜率相等,则它们是平行线。
斜率可以
通过线的倾斜角度来衡量。
设直线L1的斜率为m1,直线L2的斜率为m2,则可以表示为:m1=m2、这意味着两条线在同一方向上的倾斜程度相同,
因此它们平行。
这是最常用的条件之一。
2.两条直线上有一个共同的点,并且它们的切线斜率相等:如果两条
直线上有一个共同的点,并且它们的切线斜率相等,则这两条直线是平行的。
假设直线L1通过点P(某1,y1),直线L2通过点Q(某2,y2),且它们
的切线斜率分别为m1和m2,则可以表示为:m1=m2、这意味着两条直线
在它们通过共同点的那一点的切线斜率相等,因此它们平行。
3.两条直线的法向量相等:如果两条直线的法向量相等,则它们是平
行的。
法向量是与直线垂直的向量,可以通过直线的一般方程来计算。
设
直线L1的一般方程为A某1+By1+C1=0,直线L2的一般方程为A某
2+By2+C2=0,则可以表示为:A1=A2,B1=B2,C1=C2、这意味着两条直线
的一般方程的系数相等,因此它们平行。
这些是两条直线平行的三个常见条件。
根据具体问题的要求,可以选
择其中之一来判断两条直线是否平行。
需要注意的是,这些条件适用于解
析几何中的笛卡尔坐标系统,其中直线可以用斜率或一般方程来表示。
在
其他几何系统中,可能有不同的条件用于判断直线的平行性。
探索两直线平行的条件
∴ ∠3 =∠1= 55°
∴ AB∥CD.
D
第2题图
本节课你的收获是什么?
找同位角的关键是抓住第三线, 在第三线同侧,另两线的同一方位的两 个角。 “同位角相等,两直线平行” 是判断两直线平行的公理。
每得出一个两直线平行的结论, 都要依序完成下列三个过程:
①找出同位角; ②说明这两个同位角相等; ③用公理得出“平行”的结论。
∠1和∠2是同位角, ∵∠1和∠2有一边共线、 同向, 且不共顶点。
回到两直线平行的判断来
当∠1>∠2时
当∠1=∠2时
当∠1<∠2时
∠1、∠2是 同位 角。
b ①直线a和b 不平行 , ②直线a ∥ ; ③直线a和b不平行。
由此可猜想:
判断两条直线平行的方法:
同位角相等,两直线平行。
你还记得怎样用移动三角尺的方法画两 条平行线吗? 试用这种方法 过已知直线外一点画它的平行线. 由此可得到判定两条直线的方法:
作业
作业
教材p.55 习题2.2 第1、2题。
如图,三根木条相交成 ∠1, ∠2,固定木条b、c, 转动木条a , 观察∠1, ∠2满 足什么条件时直线a与b平行.
做一做
当∠1>∠2时
当∠1=∠2时
当∠1<∠2时
①直线a和b不平行
②直线a∥b
③直线a和b不平行
同位角定义的理解:
C 3
7构成的八个角中,位于两直 线同一方、且在第三直线同 一侧的两个角,叫做同位角.
同位角相等,两直线平行.
●
一、放
0
1
2 0
3 1
4 2
5 3
6 4
7 5
8 6
判断两直线平行的方法
判断两直线平行的方法
一、满足以下条件的两条直线平行:
1.两直线都具有相同的斜率;
2.两直线的正切值相等;
3.两直线的法线方向相同;
4.两直线的倾斜角度相同;
二、根据斜率判断两直线平行:
1.先求出两条直线的斜率,斜率的计算公式是 y=kx+b,可以把两条直线分别写成 y1=k1x+b1,y2=k2x+b2 ,其中 k1,k2 分别就是这两条直线的斜率;
2.如果 k1=k2 的话,就说明这两条直线是平行的,反之则不是平行的。
三、根据正切值判断两直线平行:
1.正切值可以使用公式tan θ = y/x 来计算出来,正切值θ 就是两直线之间的夹角;
2.如果tan θ1=tan θ2 说明这两条直线是平行的,反之则不是平行的。
四、根据法线方向判断两直线平行:
1.首先要先求出两条直线的法线方向,可以计算出来两条直线的斜率,然后进行弦传递变换,就能得到两条直线的法线方向;
2.如果两条直线的法线方向完全一致,就说明这两条直线是平行的,反之则不是平行的。
五、根据倾斜角度判断两直线平行:
1.可以使用数学公式tan θ = y/x 来算出两条直线之间的倾斜角度;
2.如果倾斜角度θ1=θ2,就说明这两条直线是平行的,反之则不是平行的。
两条直线平行的条件平行线的特征
两条直线平行的条件平行线的特征主讲:方敏文一周强化一、一周知识概述1、两条直线平行的条件(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.上述方法可表述为:如图.(1)如果∠1=∠2,那么AB∥CD;(2)如果∠3=∠2,那么AB∥CD;(3)如果∠2+∠4=180°,那么AB∥CD.关键是-定要看清哪两条直线被哪-条直线所截形成的同位角或同旁内角或内错角相等或互补,才能正确判断是哪两条直线平行.2、平行线的特征(1)两条平行直线被第三条直线所截,同位角相等,简单地说成“两直线平行,同位角相等”.可表述为:如图,因为a∥b(已知),所以∠l=∠2(两直线平行,同位角相等).(2)两条平行直线被第三条直线所截,内错角相等,简单地说成“两直线平行,内错角相等”.可表述为:如图,因为a∥b(已知),所以∠2=∠3(两直线平行,内错角相等).(3)两条平行直线被第三条直线所截,同旁内角互补,简单地说成“两直线平行,同旁内角互补”.可表述为:如图,因为a∥b(已知),所以∠2+∠4=180°(两直线平行,同旁内角互补).注意:①只要两条直线被第三条直线所截,都存在这三类角,但同位角、内错角不-定相等,同旁内角也不-定互补;②同位角相等、内错角相等、同旁内角互补,都是平行线的特有性质,在使用时,切不可忽略前提条件“两直线平行”.当两直线不平行时,同位角与内错角就不相等,同旁内角也不互补.3、直线平行的条件与平行线的特征区分几何中,图形之间的“位置关系”-般都与某种“数量关系”有着内在联系,常有“位置关系”决定其“数量关系”,反之也可以由“数量关系”去确定“位置关系”.正确区分平行线的判定方法和平行线的特征是十分重要的.从表中可以看出,由角的相等或互补关系,得到两直线平行的结论是判定方法;而由两条直线平行,得到角相等或互补关系的结论是平行线的特征.二、典型例题剖析例1、如图,下列条件中,不能判断直线l 1∥l 2的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°分析:主要考查平行线的判定条件,在辨认三种角时,抓住截线是关键,即“先辨截线,再判位置”.当∠1=∠3时,由内错角相等,两直线平行可得l 1∥l 2;当∠4=∠5时,由同位角相等,两直线平行可得l 1∥l 2;当∠2+∠4=180°时,由同旁内角互补可得l 1∥l 2. 答案:B例2、如图,已知AC 平分∠DAB ,∠BAC =∠ACB ,那么AD 与BC 平行吗?请写出推理过程.分析:要判定AD与BC平行,应先观察AD与BC被哪条直线所截,然后设法由已知条件推出同位角或内错角相等,或同旁内角互补.本例把AB看作截线,不能得出结论,而把AC看作截线即可推出∠ACB=∠CAD,从而得出AD∥BC.(关键是要找准截线)解:∵AC平分∠DAB(已知),∴∠BAC=∠CAD(角平分线定义),∵∠BAC=∠ACB(已知),∴∠CAD=∠ACB(等量代换),∴AD∥BC(内错角相等,两直线平行).例3、如图,如果两个角满足某种关系,就可以判断AE∥BF.请你将这样的相关的角写出几组,并说明理由.分析:本题属于条件开放性问题,由于图形比较复杂,很容易找不全所有符合条件的答案.解题时要紧紧抓住判定两条直线平行的三种判定方法,以顶点为出发点来寻找符合条件的两个角.由以B为顶点的∠B,可以得到以下条件:∠B=∠7,∠B=∠6,∠B+∠BAE=180°;然后再找以C为顶点的角有∠1,∠3,∠BCE和∠ACF(∠2不能和其他角构成符合条件的-组角),可以得到以下条件:∠1=∠5,∠l+∠CAG=180°,∠3=∠E,∠BCE+∠E=180°,∠ACF=∠CAG,∠ACF+∠5=180°,由此可以得到符合条件的全部答案.解:满足条件的两个角有:(1)∠B=∠7(内错角相等,两直线平行);(2) ∠B=∠6(同位角相等,两直线平行);(3) ∠B+∠BAE=180°(同旁内角互补,两直线平行);(4) ∠1=∠5(内错角相等,两直线平行);(5) ∠1+∠CAG=180°(同旁内角互补,两直线平行);(6) ∠3=∠E(内错角相等,两直线平行);(7) ∠BCE+∠E=180°(同旁内角互补,两直线平行);(8) ∠ACF=∠CAG(内错角相等,两直线平行);(9) ∠ACF十∠5=180°(同旁内角互补,两直线平行).小结:以顶点为出发点,有规律、有顺序地寻找符合条件的两角,关键是要从简单情形入手,逐步过渡到复杂情形.例4、如图(1),线段AB//CD,点P是AB、CD间的-个点.(1)试判断∠A、∠C与∠APC的数量关系;(2)如果点P移动到线段AC的左侧,那么你发现的上述结论还成立吗?说明理由;(如图(2))(3)如果点P移到两平行线的同侧,那么你发现的上述结论还成立吗?说明理由.(如图(3))分析:图中虽然有平行线,但是缺少和两条平行线都相交的第三条直线,因此也就没有同位角、内错角的相等关系以及同旁内角的互补关系,如何构造出这三类角,充分利用平行线的性质是解决问题的关键,因此,需要构造满足平行线的性质的基本图形.解:(1) ∠A+∠C=∠APC.理由:如图(1),过P作直线PM∥AB.由AB//PM,得∠A=∠APM.由AB//CD,PM//AB,得CD//PM.于是∠C=∠CPM.而∠APC=∠CPM+∠APM,故∠APC=∠A+∠C;(2)不成立,∠BAP+∠PCD+∠APC=360°.理由:如图(2),过P作PM//AB,而AB∥CD,所以AB∥PM∥CD.所以∠1+∠BAP=180°,∠2+∠PCD=180°.所以∠1+∠BAP+∠2+∠PCD=180°×2=360°,即∠APC+∠BAP+∠PCD=360°;(3)不成立.∠APC=∠C-∠A.理由:如图(3),过P作PM∥AB,从而知PM∥AB∥CD,于是有∠MPA=∠A,∠MPC=∠C,而∠MPC=∠MPA+∠APC,故∠C=∠A+∠APC.即∠APC=∠C-∠A.小结:两条平行线中出现折线时,过折线的折点作平行线是解决问题的关键.。
苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2
苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2一. 教材分析《探索直线平行的条件》是苏科版数学七年级下册第七章第一节的内容。
本节课主要让学生通过探索,理解并掌握直线平行的条件。
学生在学习了直线、射线、线段的基础上,进一步探索直线平行的条件,有助于提高他们的空间想象能力和抽象思维能力。
教材通过实例引入,引导学生探究并发现直线平行的条件,然后通过练习巩固所学知识。
二. 学情分析七年级的学生已经学习了直线、射线、线段等基础知识,对图形的认识有一定的基础。
但是,他们对直线平行的条件的理解和应用还需要进一步的引导和培养。
此外,学生的空间想象能力和抽象思维能力有待提高,因此,在教学过程中,需要通过实例和操作活动,让学生在实践中理解和掌握直线平行的条件。
三. 教学目标1.理解直线平行的概念,掌握直线平行的条件。
2.能够运用直线平行的条件判断两直线是否平行。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.重点:直线平行的条件。
2.难点:直线平行的条件的运用和理解。
五. 教学方法1.实例引入:通过生活中的实例,引导学生关注直线平行的现象,激发学生的学习兴趣。
2.合作学习:分组讨论,让学生在合作中发现问题、解决问题,培养学生的团队协作能力。
3.操作活动:让学生动手操作,通过实践加深对直线平行条件的理解。
4.引导发现:教师引导学生发现直线平行的条件,培养学生的抽象思维能力。
六. 教学准备1.准备实例:收集生活中的直线平行的实例。
2.准备教学工具:黑板、粉笔、直尺、三角板等。
3.准备练习题:设计一些有关直线平行的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如自行车的车轮、铁轨等,引导学生关注直线平行的现象,激发学生的学习兴趣。
提问:你们在生活中还见过哪些直线平行的例子?2.呈现(10分钟)展示直线平行的图片,让学生观察并说出直线平行的特点。
教师引导学生用语言描述直线平行的条件。
探索直线平行的条件
探索直线平行的条件一、知识点概述(一)同位角、内错角、同旁内角1、同位角:如右图所示,具有∠1和∠6这样位置关系的角称为同位角,同位角还有∠2和∠5.同位角的特征:①在被截两直线的同一方;②在截线的同侧。
形如字母“F”.2、内错角:如右图所示,具有∠1和∠3这样位置关系的角称为内错角,内错角还有∠2和∠4。
内错角的特征:①在被截两直线之间;②在截线的两侧。
形如字母“Z”.3、同旁内角:如右图所示,具有∠1和∠4这样位置关系的角称为同旁内角,同旁内角还有∠2和∠3.同位角的特征:①在被截两直线之间;②在截线的同侧。
形如字母“U”. (二)两条直线平行的条件1、两条直线平行的条件1:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行。
简称为:同位角相等,两直线平行。
2、两条直线平行的条件2:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。
简称为:内错角相等,两直线平行。
3、两条直线平行的条件3:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。
简称为:同旁内角互补,两直线平行。
(三)平行线基本公理1、过直线外一点有且只有一条直线与已知直线平行。
2、平行于同一条直线的两条直线平行。
二、典型例题讲解例1、如图,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角例2、指出下图中的同位角、内错角、同旁内角。
例3、如图,在下列条件中,不能判定判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°例4、如图,下列能判定AB‖CD的条件有()个。
(1)∠B+∠BCD=180°(2)∠1=∠2(3)∠3=∠4 (4)∠B=∠5A.1B.2C.3D.4例4、如图,直线AB与CD相交于点O,∠AOD+∠C=180°,直线AB与CE一定平行吗?试说明你的理由.例5:如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC‖AB.例6、如图,∠1=∠2,∠3=∠4,试说明b‖c.例6、如图所示,有平面镜A与B,光线由水平方向射来,传播线路为a⟶ b⟶ c,已知a⊥b,b⊥c,∠1=∠3=45°,你知道平面镜A与平面镜B之间的位置关系吗?例7:如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB‖EF.练习1、如图,直线a,b被直线c所截,则下列说法中错误的是()A.∠1和∠2是邻补角B.∠1和∠3是对顶角C.∠2和∠4是同位角D.∠3和∠4是内错角2、下列图形中,∠1和∠2是同位角的是()4、过一点画一只直线的平行线()A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条5、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.两直线被第三条直线所截,同旁内角互补C.不相交的两条直线叫平行线D.邻补角的平分线互相垂直2、如图,直线a,b被直线c所截,下列条件能使a‖b的是()A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠73、如图,能判定EC‖AB的条件是()A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD. ∠A=∠ACE4、如图,点E是AD延长线上一点,如果添加一个条件,使BC‖AD,则可添加的条件为____________________.(写出一个符合题意的条件即可)5、如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是____________________.4、如果a‖b,a‖c,那么b与c的位置关系式()A.不一定平行B.一定平行C.一定不平行D.以上都有可能5.下列说法正确的个数为()(1)过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交A.1个B.2个C.3个D.4个6.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据是()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④4、如图,在四边形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于点E,CF平分∠BCD交AB于点F,求证:AE‖CF.5、如图所示,如果∠ACE=∠BDF,那么CE‖DF吗?6、如图是一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.7、如图,已知直线l1、l2、l3被直线l所截,∠1=72°,∠2=108°,∠3=72°,试说明:l1‖l2‖l3.8、如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.7.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为_______________;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索两条直线平行的条件
课题探索直线平行的条件(一)
教学目标(一)知识与技能
1.掌握直线平行的条件:同位角相等.
2.会用三角板过已知直线外一点画这条直线的平行线.
(二)过程与方法
1.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.
2.会用三角尺过已知直线外一点画这条直线的平行线.
3.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.
(三)情感、态度与价值观
1.在探索和交流的活动中,培养学生与人协作的习惯.
2.培养学生理论联系实际的观点.
教学重(一)教学重点
在操作、观察的基础上总结出直线平行的条件.
难
点(二)教学难点同位角的概念.
前置作业学生课前准备直尺,一副三角板,三根小木条,两颗钉子。
引入
Ⅰ.创设现实情景,引入新课
[师]在日常生活中,人们经常用到平行线,那什么是平行线呢?
[生]在同一平面内,不相交的两条直线叫做平行线.
[师]好,在上册书中,我们简单了解了平行线,下面我们来复习回顾一下.(展示课件——实物展示平行)判断正误:
1.两条直线不相交,就叫平行
线.( )
2.与一条直线平行的直线只有一条. ( )
3.如果直线a、b都和直线c平行,
那么a、b就互相平行.( )
[生甲]第1句话是错的.只有在同一平面内的两条不相交的直线才是平行线.
(也可举例:如异面直线.学生只要说清即可).
[生乙]第2句话是错的.因为一条直线的平行线有无数条,只有经过直线外一点,才有且只有一条直线与已知直线平行.
[生丙]第3句是对的,它是平行线的一个性质.
[师]同学们分析得很好.下面我们来看一个生活中的实例
如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
(同学们讨论)
[师]大家可以用课前裁好的线条在桌子上演示.
[生]木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.
[师]大家经过讨论,得到了:若木条b与墙壁边缘垂直时,只有木条a 也与墙壁边缘垂直时,才能使木条a与木条b平行.那么在同一平面内,两条直线除不相交外,还可能在什么情况下平行呢?这节课我们就来探索直线平行的条件.
新课讲
[师]大家拿出准备好的纸条,按如下方法来做一做
授如图(1)所示,三根木条相交成∠1,∠2,固定木条b、c,转动木条a.
(1)(2)(3)
(4)
图2-11
如图(2),在木条a的转动过程中,观察∠2的变化以及它与∠1的大小关
系,你发现木条a与木条b的位置关系
发生了什么变化?木条a何时与木条b
平行?
改变图(1)中∠1的大小,按照上面的方式再做一做.∠1与∠2的大小
满足什么关系时,木条a与木条b平
行?
[师]同学们先独立操作、观察,找出结论,然后前后四人讨论,得出结
论.
(学生动手操作,然后交流,教师
指导、巡视)
新课活动
[生甲]在转动木条a的过程中,看到∠1与∠2的大小关系为三种情况:大于、等于、小于;木条a与木条b的位置关系有两种情况:相交与平行;当∠1=∠2时,木条a与木条b平行.
[师]你们同意他的说法吗?
[生齐声]同意.
[师]好,这只是一种情况下得出的结论.如果改变∠1的大小,情况又如何呢?
[生乙]我们观察到的情况与甲同学说的一样.
[生丙]我注意到:只要∠2与∠1的大小相等,那么木条a、b就平行.
[师]是这样的吗?
[生齐声]是.
[师]好.由此可以看到:木条a、
b的位置关系与∠1、∠2的大小关系密切相关,当∠1等于∠2时,木条a、b 所在的直线就平行.那么∠1、∠2是什么样的角呢?
看图:
图2-12
直线AB、CD与直线l相交(或者说两条直线AB、CD被第三条直线l所截),构成八个角.∠1与∠2这两个角分别
在直线CD、AB的上方,并且都在直线l的右侧,像这样具有位置相同的一对角称为同位角(corresponding angles),∠3与∠4也是同位角.
辨别同位角时要注意位置上的两个“同”字,在第三条直线的同旁,被截两直线的同方向.
下面大家看这个图中,还有没有其他的同位角呢?
[生甲]∠5与∠6是同位角.这两个角在直线l的右侧,又在直线CD、AB的下方.
[生乙]∠7与∠8是同位角.这两个角分别在直线CD、AB的下方,并且在直线l的左侧.
[师]很好,大家了解了同位角后,想一想刚才我们得到的:“当∠1=∠2时,木条a、b所在的直线平行”这个结论应该怎么叙述?
[生]从图中可知:∠1与∠2是同位角.所以可以这样说:同位角相等,两条直线平行.
[师]好,这样我们就得到直线平行的条件:同位角相等.即:平行线的判定:
同位角相等,两直线平行.
用几何符号表示:∠1=∠2→a∥b
在上学期,我们学过了利用移动三角尺的方法来画平行线,那现在大家来分组讨论讨论.
怎样用移动三角尺的方法画两条平行线?你能用这种方法过已知直线外一点画它的平行线吗?请说出其中的道理.(课件——画平行线)
(学生分组操作、讨论)
[生甲](学生一边操作,一边叙述).先画一条直线,用一个三角尺的一边与这条直线重合,然后把第二个三角尺紧靠第一个三角尺,第二个三角尺不动,移动第一个三角尺,这样就可以画出与已知直线平行的直线.
用这种方法可以作:过已知直线外一点画它的平行线.
(图如下:AB∥CD,点P在CD上.)
图2-13
[生乙]画直线CD与AB平行的过程中,实际上使用了一个三角尺的一边和另一个三角尺的一个角.一个三角尺不动,在另一个三角尺平移的过程中,那个角的大小不变,而且从一个位置平移到另一个位置,两个位置上的那个角构成了同位角关系.“同位角相等,两直线平行.”
[师]同学们分析得很好.在画已知直线的平行线时,实际就用到了“同位角相等,两直线平行”这个直线平行的条件.(参看课件——同位角相等,两直线平行)
好,下面大家动手画一画:过直线外一点画这条直线的平行线.
(学生动手操作,教师指导)
[师]好,同学们画得很好.接下来我们做练习,以巩固本节所学内容.
小结提升
本节课我们主要探讨了直线平行的条件:“同位角相等,两直线平行”.还认识了同位角,并且会用三角尺过已知直线外一点作这条直线的平行线.
到现在为止,我们就有了几种判定两直线平行的方法:小组讨论交流,人人讨论,人人发言总结所学判定方法:
(1)定义(不常用)
(2)如果两条直线都与第三条直线平行,那么这两条直线互相平行.
(3)同位角相等,两直线平行.
课堂达标
已知如图2-16,直线AB、CD被MN所截,∠1=∠2,则直线AB与CD的位置关系如何?还有没有其他的证明方法?
图2-16
[过程]让学生观察、思考、猜想、验证.培养学生初步的论证能力.假设AB 与CD 平行.则需要∠3=∠2,但∠1=∠3(对顶角相等)且∠1=∠2(已知),所以∠3=∠2.这样猜想得以论证.其他的论证方法与前面一样,只是找的同位角不一样.在讨论过程中,要让学生找到其他的三对同位角,并可验证.
[结果]AB →∠=∠→⎭
⎬⎫∠=∠∠=∠323121∥CD. 还有其他的证明方法.用另外三对同位角相等证出.下面给出其中的一种.
图2-17
如图2-17,∠1=∠2(已知) ∠1+∠5=180°,∠2+∠4=180°(平角定义)
所以:∠4=∠5(等角的补角相等)
因此:AB∥CD(同位角相等,两直线平行)
教后思考1.针对课上出现的学生存在的质疑,课后及时标注记录,下一节课采取补救措施。
2.针对本节课重难点及易错点设计针对性问题,把所学知识点进一步巩固提高。