等腰三角形培优提高试题

合集下载

培优专题等腰三角形(含答案)

培优专题等腰三角形(含答案)

3等腰三角形【知识精读】〔-〕等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等〔简写成“等边对等角〞〕。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;推论2:等边三角形的各角都相等,并且每一个角都等于60°。

2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一〞的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

〔二〕等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等〔简写成“等角对等边〞。

〕推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时那么需要作高或中线,这要视具体情况来定。

【分类解析】例1. 如图,在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

等腰三角形培优专题

等腰三角形培优专题

等腰三角形【等腰三角形存在性问题】1.如图4×4的正方形网格中,网格线的交点叫格点,已知点A、B是格点,若C也是格点且△ABC 为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个2.如图,正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.8C.9D.103.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个4.如图,△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.【等腰三角形分类讨论】1.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°2.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为()A.30°B.36°C.45°D.60°3.等腰三角形的两边a,b满足|a﹣7|+=0,则它的周长是()A.12 B.15 C.17 D.194.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为.5.若等腰三角形一腰上的中线将其周长分成9和6两部分,则这个等腰三角形的三边长分别为.页1【等腰三角形性质的应用】6.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.7.如图,在△ABC中,AB=AC,过点C的直线EF∥AB.若∠ACE=30°,则∠B的度数为()A.30°B.65°C.75°D.85°9.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°10.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°11.如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为()A.75°B.70°C.40°D.35°12.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,BE和CE交于点E,过点E作MN∥BC 交AB于点M,交AC于点N.若MN=8,则BM+CN的长为()A.6.5B.7.2C.8D.9.513.如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为()A.6B.8C.10D.1214.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=BC,若△ABC的面积为2,则△CDE的面积为()A.B.C.D.页215.如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED 与△DFC的周长的和为()A.34B.32C.22D.2016.如图,已知△ABC,点D、E分别在边AC、AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是()A.AE=AD B.BD=CE C.∠ECB=∠DBC D.∠BEC=∠CDB.17.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm218.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED的度数为()A.108°B.120°C.126°D.144°21.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=44°,则∠CDB的度数是.22.如图,已知△ABC中,AB=AC,∠CAB的角平分线与外角∠CBD的角平分线交于点M,且∠AMB=35°,则∠CAB=.24.如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED =2,GC=5,则△ABC的周长为.【最短路径】页326.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.27.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得PA+PB的和最小.【等腰三角形的性质的应用综合题】28.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.29.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.页430.如图,△ABC中,AB=AC,D,E,F分别为AB,BC,CA上的点,且BD=CE,∠DEF=∠B(1)求证:△BDE≌△CEF;(2)若∠A=40°,求∠EDF的度数.31.如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC于点E.(1)求证:CB=CE;(2)若∠CEB=80°,求∠DBC的大小.32.如图,在△ABC中,∠B=90°,AB=8厘来,BC=6厘米P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动速度为1厘米/秒,点Q从点B开始沿B→C→A方向运动速度为2厘米/秒,若它们同时出发,设出发的时阃为t秒.(1)求出发2秒后,PQ的长;(2)点Q在CA边上运动时,当△BCQ成为等腰三角形时,求点Q的运动时间.33.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.页5(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,34.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.35.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE =∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.页6页 736.如图,在等腰三角形△ABC 中,AB =AC ,BD 平分∠ABC ,在BC 的延长线上取一点E ,使CE =CD ,连接DE ,求证:BD =DE .37.如图所示,△ABC 中,BA =BC ,点D 为BC 上一点,DE ⊥AB 交AB 于点E ,DF ⊥BC 交AC 于点F .(1)若∠AFD =160°,则∠A=°; (2)若点F 是AC 的中点,求证:∠CFD =∠B .38.如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AC 边上的一点,且∠CBE =∠CAD .求证:BE ⊥AC .39.如图,△ABC 中,∠ABC =∠ACB ,点D 在BC 所在的直线上,点E 在射线AC 上,且∠ADE =∠AED ,连接DE .(1)如图①,若∠B =∠C =30°,∠BAD =70°,求∠CDE 的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.40.如图,等腰△ABC的底边长为16cm,腰长为10cm,一个动点P在底边上从B向C以0.25cm/s 的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.页8。

《等腰三角形》培优专题

《等腰三角形》培优专题

等腰三角形【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

求证:M 是BE 的中点。

E例2. 如图,已知:AB C ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。

ABCD例3. 已知:如图,AB C ∆中,AB CD AC AB ⊥=,于D 。

求证:DCB 2B AC ∠=∠。

C4、中考题型:1.如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个A 36° E DFBC 2.)已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。

求证:AE =AF 。

AE F BDC5、题形展示:例1. 如图,AB C ∆中, 100=∠=A AC AB ,,BD 平分ABC ∠。

求证:B C B D AD =+。

【实战模拟】1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( ) A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对2. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠, ,则1∠的度数是________。

CA 1DB2 33. 求证:等腰三角形两腰中线的交点在底边的垂直平分线上.4. AB C ∆中, 120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。

【试题答案】(实战模拟) 1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。

解:因为AB C ∆是等边三角形 所以 60ABC BC AB =∠=, 因为B C B D =,所以B D A B = 所以23∠=∠在AB D ∆中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以 152=∠ 所以 75ABC 21=∠+∠=∠3. 分析:首先将文字语言翻译成数学的符号语言和图形语言。

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。

人教版八年级数学13.3《等腰三角形》同步提高测试(有答案)

人教版八年级数学13.3《等腰三角形》同步提高测试(有答案)

八年级数学人教版13.3《等腰三角形》同步提高测试一、选择题:1、如图,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分线,则图中的等腰三角形共有()A.8个B.7个C.6个D.5个2、如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.若∠CDE=35°,则∠A的度数为().A.30°B.40°C.44°D.60°3、(2019天水)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(1,)C.(,1)D.(,)4、如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=11,则线段MN的长为( ).A.11 B.9 C.8 D.125、如图,在△ABC中,BD平分∠ABC,ED∥BC,若AB=4,AD=2,则△AED的周长是()A.6 B.7 C.8 D.106、如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。

则原来的纸带宽为()A. 1B.C.D. 27、如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.其中正确的是( ).A.①②③B. ①②④C. ④②③D.①④③8、已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为( )cm.A.14 B.17 C.18 D.109、如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点10、如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,∠B=55°,则∠DEF=( ).A.40°B.50°C.35°D.55°11、(2019衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。

中考数学等腰三角形培优辅导训练试题

中考数学等腰三角形培优辅导训练试题

中考数学等腰三角形培优辅导训练试题D AF21EDCA B等腰三角形培优专练一、选择题1、下列命题正确的是[ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何角都是轴对称图形 2、等腰三角形一腰上的高与底所夹的角等于[]A.顶角B.顶角的21C.顶角的2倍 D 底角的213、如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[]A.∠A =∠BB.∠A =∠ACDC.∠A =∠DCBD.∠A =2∠BCD 4、如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°第3题第4题5、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有() A .①②③ B .①②④ C .①③ D .①②③④6、如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF?的形状是()A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形第6题第8题7、Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是() A .2cm B .4cm C .8cm D .16cm8、如图,E 是等边△A BC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是()A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 9、正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于()A .60°B .90°C .120°D .150°10、如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有() A. 6个 B. 7个 C. 8个 D. 9个A36°E DFB CCA1DB23第10题第12题11、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为()A. 2cmB. 8cmC. 2cm或8cmD. 以上都不对二、填空题12、如图,ABC是等边三角形,BCBD90CBD==∠,,则1∠的度数是________。

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。

等腰三角形培优提高练习题

等腰三角形培优提高练习题

一.选择题(共6小题)1.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或152.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个(第2题)(第3题)(第4题)3.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A.1个B.2个C.3个D.4个4.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.3cm2B.4cm2C.5cm2D.6cm25.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或106.如图:D,E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则()A.当∠B为定值时,∠CDE为定值B.当∠α为定值时,∠CDE为定值C.当∠β为定值时,∠CDE为定值D.当∠γ为定值时,∠CDE为定值二.填空题(共8小题)7.已知等腰三角形一腰上的中线将三角形周长分成2:1两部分,已知三角形底边长为5cm,则腰长为cm.8.如图,在△ABC中,EG∥BC,BF平分∠ABC,CF平分∠ACB,AB=10,AC=12,△AEG的周长为.(第8题)(第9题)(第10题)9.如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC=°.10.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=cm.11.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.12.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是.(第12题)(第14题)(第14题)13.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=时,△POQ是等腰三角形.14.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.三.解答题(共15小题)15.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.16.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC交AD于点F,交AC 于点E.求证:△AEF为等腰三角形.17.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.18.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.19.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.22.如图,已知在△ABC中,∠ACB=90°,在AB上截取AE=AC,BD=BC.求证:∠DCE=45°.23.如图,在△ABC中,AB=AC,∠BAC=80°,O为△ABC内一点,且∠OBC=10°,∠OCA=20°,求∠BAO的度数.24.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.25.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.26.如图:(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R.请观察AR与AQ,它们有何关系?并证明你的猜想.(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.27.(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE=;(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).28.如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠FAC的角平分线交BC边于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?。

中考数学专题等腰三角形培优试题试题

中考数学专题等腰三角形培优试题试题

等腰三角形班别:姓名:1、△ABC中,OA平分∠BAC,∠1=∠2。

求证:△ABC是等腰三角形。

2、如图,在△ABC中,AB=AC,D,E在BC上,AD=AE,求证:BD=CE。

3、等腰三角形腰上的高与另一腰的夹角为40°,那么底角为。

4、如图,在△ABC中,AB=AC,∠A=30°,BF=CE,BD=CF,求∠DFE的度数。

5、如图,等边△ABC的三条角平分线相关于点O,过点O作EF∥BC,分别交AB于E,交AC于F,那么图中的等腰三角形有个。

6、根据以下条件解答①在△ABC中,AB=AC,∠BAC=100°,ME和NF分别垂直平分AB和AC,求∠MAN的度数。

②在①中,假设无AB=AC的条件,你还能求出∠MAN的度数吗?假设能,恳求出,假设不能,请说明理由。

③在②的情况下,假设BC=10cm,试求出△AMN的周长。

7、,如图,△ABC中,AB=AC,D点在AB上,E点在AC的延长线,且BD=CE,连接DE,交BC于F。

求证:DF=EF。

8、如图,直线m⊥直线n于点O,点A到mn的间隔相等,在直线m或者n上确定一点P,使OAP为等腰三角形。

试答复:①符合条件的点P一共有个。

②假设符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数。

9、如图,点B,F,D在身线AM上,点G,C,E在射线AN上,且AB=BC=CD=EF=FG=GA,求∠A的度数。

10、,如图,△ABC,△CDE都是等边三角形,AD,BE相交于点O,点M、N分别是线段AD、BE的中点。

①求证:AD=BE。

②求∠DOE的度数。

③求证:△MNC是等边三角形。

11、,如图,P为等边三角形ABC外一点,且∠BPC=120°,试猜测线段PB、PC、PA之间的数量关系,并证明你的猜测。

12、等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的间隔 分别为321,,h h h ,△ABC 的高为h ,假设点P 在一边BC 上〔如图1〕,此时03=h ,可得结论:h h h h =++321,请解决以下问题:①当点P 在△ABC 内〔如图2〕,②点P 在△ABC 外〔如图3〕这两种情况时,上述结论是否成立?假设成立,请给予证明,假设不成立,321,,h h h 与h 之间的关系如何?请写出你的猜测并证明。

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________1.如图已知ABC △中AB=3,AC=5,BC=7,若过点A 的一条直线将ABC △分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.1条B.2条C.3条D.4条2.如图在ABC △中AB=AC ,D 是BC 边上的中点30B ∠=︒,则DAC ∠等于( )A.30°B.40°C.50°D.60°3.等腰三角形的一个内角是40︒,则它的顶角度数为( )A.100︒B.40︒或100︒C.70︒D.40︒4.如图,a//b,AB=AC,若162∠=︒,则A ∠的度数为( )A.56︒B.59︒C.62︒D.76︒5.已知等腰三角形的周长为19,其中一边长为3,则该等腰三角形的底边是( )A.3B.8C.3或8D.136.如图在ABC △中AC DC DB ==,100ACD ∠=︒则B ∠等于( )A.50°B.40°C.25°D.20°7.如图在Rt ABC △中90ACB ∠=︒,35ABC ∠=︒将ABC △绕点C 顺时针旋转至A B C '''△,使点A '恰好落在AB 上,则旋转角度为( )A.35︒B.55︒C.70︒D.90︒8.如图在ABC △中点D 在AC 上,点E 在AB 上,且AB AC =,BC BD =,AD DE EB ==,则A ∠等于( )A.45°B.30°C.60°D.75°9.如图点A 、B 、C 三点在O 上40OCB ∠=︒,则A ∠=_____________10.已知等腰三角形的一个外角是80︒,则它顶角的度数为________.11.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为__________cm .12.如图52ABC ∠=︒,AD 是线段BC 的垂直平分线,垂足为点D ,ABC ∠的平分线BE 交AD 于点E ,连接EC ,则AEC ∠的度数是__________.13.如图将ABC △绕点A 逆时针旋转140︒得到ADE △,B ,C ,D 三点恰好在同一直线上.(1)判断ACE △的形状;(2)连接CE ,若CE BD ⊥,求BAC ∠的度数.14.如图在ABC △中AC 边的垂直平分线分别交BC 、AC 于点E 、F ,连接AE ,作AD BC ⊥于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C ∠=︒,求BAC ∠的度数.参考答案及解析1.答案:C解析:如图所示,当3AB AF ==,3BA BD ==与BG AG =时,都能得到符合题意的等腰三角形.综上,这样的直线最多可画3条.2.答案:D解析:在ABC △中已知AB AC =,D 是BC 边上的中点AD BC ∴⊥90ADC ∴∠=︒30B C ∠=∠=︒ 60DAC ∴∠=︒ 故选:D.3.答案:B解析:当40︒为等腰三角形的底角时,顶角为1804040100︒-︒-︒=︒;当40︒为等腰三角形的顶角时,则顶角为40︒.所以该等腰三角形的顶角度数为40︒或100︒.4.答案:A解析:AB AC =如图A B ABC C ∴=∠∠如图//a b 如图162ABC ∴∠=∠=︒如图180A ABC ACB ∠+∠+∠=︒如图18026256A ∠=⨯∴︒-︒=︒如图故选:A.5.答案:A解析:当3是腰长时,底边为193213-⨯=此时33613+=<,不能组成三角形;当3是底边时,腰长为()119382-=此时3,8,8三边能够组成三角形. 所以等腰三角形的底边是3.故选:A.6.答案:D解析:AC DC DB == 100ACD ∠=︒180100402CAD -∴︒︒∠==︒ CDB ∠是ACD △的外角10040100140CDB A ACD ︒∴∠=∠+∠=︒=+=︒︒DC DB =180140202B ︒︒-∴∠==︒.7.答案:C 解析:90ACB ∠=︒ 35ABC ∠=︒∴180903555A ∠=︒-︒-︒=︒将ABC △绕点C 顺时针旋转至A B C '''△,即其中一个旋转角为ACA '∠A C AC '∴=∴CAA '△是等腰三角形∴55CA A CAA ''∠=∠=︒∴180555570ACA '∠=︒-︒-︒=︒故选:C.8.答案:A解析:设EBD x ∠=DE EB =EBD EDB x ∴∠=∠=2AED EBD EDB x ∴∠=∠+∠=AD DE =2A AED x ∴∠=∠=3BDC A EBD x ∴∠=∠+∠=BC BD =3BDC C x ∴∠=∠=AB AC =3ABC C x ∴∠=∠=在ABC △中有180A ABC C ∠+∠+∠=︒,则233180x x x ++=︒22.5x ∴=︒245A x ∴∠==︒故选:A.9.答案:50︒解析:OB OC = 40OCB ∠=︒40OBC OCB ∴∠=∠=︒1804040100BOC ∴∠=︒-︒-︒=︒1502A BOC ∴∠=∠=︒.故答案为:50︒.10.答案:100︒.解析:等腰三角形一个外角为80︒,那相邻的内角为100︒如图三角形内角和为180︒,如果这个内角为底角,内角和将超过180︒如图所以100︒︒只可能是顶角.故答案为:100︒.11.答案:6或8. 解析:①6cm 是底边时,腰长()12067cm 2=-=此时三角形的三边分别为7cm 7cm 6cm 、、能组成三角形②6cm 是腰长时,底边20628cm =-⨯=此时三角形的三边分别为6cm 6cm 8cm 、、能组成三角形综上所述,底边长为6或8cm .故答案为:6或8.12.答案:116︒解析:52ABC ∠=︒,ABC ∠的平分线BE 交AD 于点E 11522622EBD ABC ∴∠=∠=⨯︒=︒点E 在BC 的垂直平分线上BE CE ∴= 90EDC ∠=︒26C EBD ∴∠=∠=︒2690116AEC C EDC ∴∠=∠+∠=︒+︒=︒.故答案为:116︒.13.答案:(1)顶角为140︒的等腰三角形(2)90︒解析:(1)ABC △绕点A 逆时针旋转140︒得到ADE △ AC AE ∴= 140CAE ∠=︒ ACE ∴△是以顶角为140︒的等腰三角形;(2)ABC △绕点A 逆时针旋转140︒得到ADE △ 140BAD CAE ∴∠=∠=︒ AB AD = AC AE = ∴在ABD △中180140202ABC ADB ︒-︒∠=∠==︒ 在ACE △中180140202ACE AEC ︒-︒∠=∠==︒ CE BD ⊥90ECB ∴∠=︒902070ACB ECB ACE ∴∠=∠-∠=︒-︒=︒在ABC △中180180207090BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒ BAC ∴∠的度数为90︒.14.答案:(1)见解析(2)84︒解析:(1)D 为BE 的中点BD DE ∴=AD BC ⊥ AB AE ∴=EF 是AC 的垂直平分线AE CE ∴=AB CE ∴=; (2)32C ∠=︒ AE CE =32C EAC ∴∠=∠=︒64AEB C EAC ∴∠=∠+∠=︒AB AE =64B AEB ∴∠=∠=︒180180646452BAE B AEB ∴∠=︒-∠-∠=︒-︒-︒=︒ 523284BAC BAE EAC ∴∠=∠+∠=︒+︒=︒.。

(完整word版)八上等腰三角形精品提高题系列

(完整word版)八上等腰三角形精品提高题系列

1.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.( I)探究:线段BM,MN,NC之间的关系,并加以证明.(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.2.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC的度数.3.如图,已知P是△ABC边BC上一点,且PC=2PB,若∠ABC=45°,∠APC=60°,求∠ACB的大小.5.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°-α,请直接写出∠ADB的度数(用含α的式子表示).6.如图,已知△ABC中,AB=AC,D是△ABC外一点且∠ABD=60°,求证:AC=BD+CD.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.如图,过△ABC的边BC的中点M作直线垂直于∠A的平分线AA′,且分别交直线AB,AC于点E,F,已知:如图在△ABC中,BD,CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.(1)请你判断△AFG的形状并证明.(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不变,(1)中的结论是否仍然成立?请你画出图形,并证明你的结论.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点E,F为线段BC上的两点,且CE=BF,连接AF,过点C 作CD⊥AF于点G,交AB于点D,连接DE,交AF于点M.(1)求证:∠ACD=∠AFC;(2)求证:ME=MF在△ABC中,BD为∠ABC的平分线.(1)如图1,∠C=2∠DBC,∠A=60°,求证:△ABC为等边三角形;(2)如图2,若∠A=2∠C,BC=8,AB=4.8,求AD的长度;(3)如图3,若∠ABC=2∠ACB,∠ACB的平分线OC与BD相交于点O,且OC=AB,求∠A的度数.1.如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E,则AB、AD、BE三条线的长度之间存在何种等量关系?请直接写出关系式_______(2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.已知△ABC,∠BAC=45°,以AB、AC为边在△ABC外作等腰△ABD和△ACE,AD=AB、AE=AC,且∠BAD=∠CAE,连CD、BE交于F,连AF.(1)①如图1,若∠BAD=60°,则∠AFE=_______度;②如图2,若∠BAD=90°,则∠AFE=_______度;(2)如图3,若∠BAD=a°,猜想∠AFE的度数(用a表示),并予以证明.4.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论1.如图,点D是△ABC三条角平分线的交点,∠ABC=68°(1)求证:∠ADC=124°;(2)若AB+BD=AC,求∠ACB的度数2.已知:在△ABC中,AB=3AC,AD平分∠BAC,BE⊥AD交AD的延长线于点E.设△ACD的面积是S.(1)求△ABD的面积;(2)求证:AD=DE;(3)探究BE-AC和BD-CD之间的大小关系并证明你的结论3.在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.4.已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),(1)如图(1),当x为何值时,PQ∥AB;(2)如图(2),若PQ⊥AC,求x;(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.1.在锐角三角形ABC中,AF是BC边上的高,分别以AB、AC为一边,向外作△ABD和△ACE,使得AB=AD,AC=AE,∠BAD=∠CAE=90°,连接BE、DE、DC,DE与FA的延长线交于点G,下列结论:①BE=DC;②BE⊥DC;③AG是△ADE的中线;④∠DAG=∠ABC.其中正确的结论有哪些?2.在△ABC中,AB≠AC,分别以AB,AC为边作等腰△ABD和△ACE,AD=AB,AC=AE,且∠ACB=∠BAD=∠CAE=α,连接DE,交CA延长线于点M,求证:M为DE中点3.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,求∠AFG与α的数量关系.4.如图,△ABC中,AB=AC,∠BAC=90°,点D在CB上,连接AD,EA⊥AD,∠ACE=∠ABD.(1)求证:AD=AE;(2)若点F为CD中点,AF交BE于点G,求∠AGE的度数.1.如图△ABD和△ACE是△ABC外两个等腰直角三角形,∠BAD=∠CAE=90°.(1)判断CD与BE有怎样的数量关系;(2)探索DC与BE的夹角的大小;(3)求证:FA平分∠DFE;(4)取BC的中点M,连MA,探讨MA与DE的数量关系和位置关系2.如图1,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.(1)求证:△DAC≌△BAE;(2)F、H分别是BE与DC的中点;①如图2.当∠DAB=∠CAE=90°时,求∠AFH的度数;②请探究当∠DAB等于多少度时,AF=FH?请说明理由.3.如图,△ABC向外侧作等腰Rt△ABD与Rt△ACE,∠BAD=∠CAE=90°,F为BC的中点,连接F、A并延长交DE于G点,请问:AF与DE之间存在怎样的数量关系和位置关系?4.已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=_______;如图2,若∠DAB=90°,则∠AFG=_______.(2)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明;(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90°,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)5.在等腰△ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过B点作∠BDE=90°,且点D 在直线MN上(不与点A重合).(1)如图①,当DE与AC交于P时,求证:BD=DP;(2)如图②,当DE与AC的延长线交于点P时,(1)中的结论还成立吗?请说明理由.(3)如图③,当DE与CA的延长线交于点P时,请直接写出DB与PD的数量关系,此时过D作DF⊥AB于F,求证:AP+AB=2AF.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.1.已知:在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图①).(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE、CG的数量关系是否发生变化,请直接写出你的结论;(3)过点A作AH垂直于直线CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE 相等的线段,并证明.2.如图,已知在△ABC中,AB=AC,P是BC边上的-点,过点P引直线分别交AB于点M,交AC的延长线于点N,且PM=PN.(1)写出图中除AB和AC,PM和PN外的其他相等的线段.(2)证明你的结论3.在Rt△ABC中,∠BAC=90°,AB=AC,D,E为边AC上的两动点,以相同的速度D从A向C,E从C 向A运动,AM⊥BD交BC于N,连NE并延长交BD延长线于F.①说明∠ABD=∠NAC②当D,E运动到如图2所示的位置时,试作出图形,并判断FD与FE的数量关系,请写出你的结论.(不要求证明)③对图1证明△FED为等腰三角形.4.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是_______(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.5.如图,△ABD与△ACE中,AB=AC,∠ACE+∠ABD=180°,BD=CE,BC延长线交ED于F.(1)求证:∠DBF=∠ECF;(2)图中是否存在与DF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由6.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)DG=CF;(3)直接写出CF与DE的数量关系.1.已知等腰直角△ABC和等腰直角△CDE中,AB=BC,CD=DE,∠ABC=90°,∠CDE=90°,CD>BC,取线段AE的中点M,连结BM、DM、BD.(1)如图1,当BC⊥CE时,连接AE,试猜想BM与MD的数量关系和位置关系,请直接写出答案;(2)如图2,当点A、C、E三点在同一条直线上时,其他条件不变,试探究BM与MD的数量关系和位置关系,请说明理由.2.如图1,△ABC中,AB=AC,连B,C分别作BD⊥AB,CD⊥AC,BD、CD相交于D点,P为BC上一点,过P的直线交AB于E,AC延长线于F,且满足PE=PF,连结DP.(1)求证:DP⊥EF;(2)如图2,若P为BC延长线上,其它条件不变,(1)中结论是否成立?3.(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.4.如图,D是Rt△ABC斜边AB上一点,且BD=BC=AC=1,P为CD上任意一点,PF⊥BC于点F,PE⊥AB于点E,则PE+PF的值是()A.B.C.D.5.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB6.已知:在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F.(1)当点P在BD上时(如图①),求证:CF=BE+EF;(2)当点P在DC上时(如图②),CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF、BE、EF之间的关系(不需要证明).(3)若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.9.在△ABC中,AB=AC,D在AC上,AE=AC交BD的延长线于点E,AF平分∠CAE交BE于F. (1)如图1,连CF,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,且BD平分∠ABC,请写出AF、EF、BF的数量关系,不需证明;(3)如图3,若∠BAC=90°,且BD平分∠ABC,求证:BD=2EF.1.在△ABC中,∠ACB=90°,AC=BC,点D为线段AC上的一点(不和点A、C重合),点E在线段BD 的延长线上,点F在线段BD上,连接CE、CF、AE,且∠ECF=90°,CE=CF,过点F作FG⊥BD分别交线段BC、线段AC的延长线于点P、G.(1)如图l,求证:AC=CG;(2)如图2,延长线段GF交线段AB于点H,连接DH,当AH=BH时,求证:∠BHG=∠AHD.2.如图,在△ABC中,AB=AC,BC=6,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,当点P运动到A时,点P、Q随即停止运动,若点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P自点B出发在线段BA上运动是,过点P作AC的平行交BC于点F,连接PC、FQ,判断四边形PFQC的形状,并证明你的结论.(2)如图②,过点P作PE⊥BC,垂足为E,请说明在点P、Q在移动的过程中,DE长度保持不变.4.如图,等腰三角形ABC中,∠AC=90°,D,E分别为AB,AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD,交BE于点G,交AC于点M.(1)求证:GM=GE;(2)求证:BG=AF+FG.1.在Rt△ABC中,∠ACB=90°,AC=BC,D为直线AC上一点,直线AE⊥直线BD,垂足为E,直线AE 和直线BC交于点H,过点C作AB的平行线,交直线AE于F,连DF.(1)若D在线段AC上(如图1),求证:∠CDB=∠CDF;(2)若D在AC延长线上(如图2),求证:∠CDB+∠CDF=180°.2.已知:如图,△ABC中,AB=AC,占M在线段AC上(不与C重合),BM延长线与过点C的直线交于D,连接AD,∠MAD=∠DBC,AE⊥BM于E,当M在线段AC上时,求证:BD-CD=2DE3.已知△ABC,∠BAC=90°,等腰直角△BDE,∠BDE=90°,BD=DE,点D在线段AC上.(1)如图1,当∠ACB=30°,点E在BC上时,试判断AD与CE的数量关系,并加以证明;(2)如图2,当∠ACB=45°,点E在BC外时,连结EC、BD并延长交于点F,设ED与BC交于点N,(完整word版)八上等腰三角形精品提高题系列图中是否存在与BN相等的线段?若存在.请加以证明.若不存在,请说明理由.。

等腰三角形培优题目有答案

等腰三角形培优题目有答案

等腰三⾓形培优题⽬有答案2014.3.29 等腰三⾓形1.等腰三⾓形⼀腰上的⾼与另⼀腰的夹⾓为30°则顶⾓的度数为什么?2.等腰三⾓形顶⾓为α,⼀条腰上的⾼与底边所夹的⾓是β,则β与α的关系式为β=___________。

图1解答:如图1,AB=AC ,BD ⊥AC 于D ,作底边BC 上的⾼AE ,E 为垂⾜,则可知∠EAC=∠EAB =12α,⼜∠EAC C C =-=-9090°∠,∠°∠β,所以∠,EAC ==ββα12。

3.如图1,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE=BC ;(2)如图(2),过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转⾓α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,⼜∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.4.如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三⾓形.证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三⾓形.5.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂⾜为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直⾓三⾓形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).6.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OC=6,OA=8,直线MN的解析式为y=﹣x+6 在直线MN上存在点P,使以点P,B,C三点为顶点的三⾓形是等腰三⾓形,请直接写出P点的坐标.解答:(1)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三⾓形是等腰三⾓形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(﹣a+6﹣6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).8.已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE BC12,E在△ABC外,求证:∠ACE=∠B。

第1讲 等腰三角形的性质与判定(培优)

第1讲  等腰三角形的性质与判定(培优)

1.如图1,在ABC ∆中,点M ,N 为AC 边上的两点,AM NM =,BM AC ⊥,ND BC ⊥于点D ,且NM ND =,若70A ∠=︒,则(C ∠=)A .40︒B .50︒C .60︒D .70︒2.等腰ABC ∆的周长为m ,一腰上的中线将周长分成3:5两部分,则这个等腰三角形底边长为()A .6m B .2m C .6m 或2m D .35m3.如图2,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,4BC =.则BD 的长为()A .1B .32C .2D .524.如图3,在ABC ∆中,AB AC =,点M 在CA 的延长线上,MN BC ⊥于点N ,交AB 于点O ,若3AO =,4BO =,则MC 的长度为()A .12B .9C .10D .115.如图4,在ABC ∆中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG CE ⊥于点G ,CD AE =.若8BD =,5CD =,则DCG ∆的面积是()A .52B .54C .154D .1526.如图5,ABC ∠的平分线BD 与ACB ∠邻补角的平分线CD 相交于点D ,CE 平分ACB ∠于点E ,//CD BA ,5DE =,3CE =,则AB 的长度为().A .2825B .5625C .125D .527.如图6,在ABC ∆中,//ED BC ,ABC ∠和ACB ∠的平分线分别交ED 于点G ,F .若2FG =,4ED =,则EB DC +的值为.8.如图7,在ABC ∆中,AD ,BD 分别是BAC ∠,ABC ∠的平分线,过点D 作//EF AB ,分别交AC ,BC 于点E ,F .若4AE =,6BF =,则EF 的长为.9.如图8,在ABC ∆中,D 为边AC 上一点,且BD 平分ABC ∠,过A 作AE BD ⊥于点E .若64ABC ∠=︒,29C ∠=︒,4AB =,10BC =,则AE =.10.如图9,ABC ∆中,D 为AC 中点,E 为BC 上一点,连接DE ,且2ABC DEC ∠=∠,若7AB =,12CE =,则BC 的长度为.11.如图10,直线44y x =+与坐标轴交于A 、B 两点,点C 为x 轴负半轴上一点,45CAB ∠=︒.则点C 的坐标是.12.如图11,等腰ABC ∆中,AB AC =,CD AB ⊥于D ,点E 在AC 上,连接BE 交CD 于F ,2ABE DCB ∠=∠,10BF CE +=,22CD =,则ABE ∆的面积为.13.如图,在锐角ABC ∆中,点E 是AB 边上一点,BE CE =,AD BC ⊥于点D ,AD 与EC 交于点G .(1)求证:EA EG =;(2)若10BE =,3CD =,G 为CE 中点,求AG 的长.14.如图,已知ABC ∆中,BE 平分ABC ∠,且BE BA =,点F 是BE 延长线上一点,且BF BC =,过点F 作FD BC ⊥于点D .(1)求证:BEC BAF ∠=∠;(2)判断AFC ∆的形状并说明理由.(3)若2CD =,求EF 的长.15.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接CD 、DE ,已知EDB ACD ∠=∠.(1)求证:DEC ∆是等腰三角形.(2)当5BDC EDB ∠=∠,8EC =时,求EDC ∆的面积.16.如图,在四边形ABCD 中,AC 与BD 相交于点E ,AC AD =,BAC BDC α∠=∠=,CAD β∠=.(1)求证:ABD ADC ∠=∠;(2)当65AED ∠=︒时,求2βα-的度数;(3)2180αβ+=︒时,求证:BD CD =.17.经过三角形一个顶点及其对边上一点的直线,若能将此三角形分割成两个等腰三角形,称这个三角形为“钻石三角形”,这条直线称为这个三角形的“钻石分割线”.(1)如图1,ABC ∆中,AB AC =,36A ∠=︒,CD 平分ACB ∠,请说明ABC ∆是“钻石三角形”.(2)如图2,已知Rt ABC ∆中,90B ∠=︒,60C ∠=︒,则Rt ABC ∆“钻石三角形”(填“是”或者“不是”);若是,其“钻石分割线”必过顶点(填A 或B 或)C .若不是,请说明理由.(3)在ABC ∆中,20BAC ∠=︒,若存在过点C 的“钻石分割线”,使ABC ∆是“钻石三角形”,请直接写出满足条件的B ∠的度数.。

八年级数学下----等腰三角形和等边三角形培优练习题

八年级数学下----等腰三角形和等边三角形培优练习题

八年级数学下----等腰三角形和等边三角形培优练习题一、填空选择题:1.如下图1,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( ) A .32 B .23C .12D .342.如上图2,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC =6, 则DF 的长是( )(A )2 (B )3 (C )25(D )4 3.如上图3,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标 不可能...是( )A .(4,0) B .(1.0) C .(-22,0) D .(2,0)4.如上图1,AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( )A .20B .30C .35D .405.如上图2,△ABC 中,AB =AC =6,BC =8,AE 平分么BAC 交BC 于点E ,点D 为AB 的中点,连结DE ,则△BDE 的周长是( ) A .7+5 B .10 C .4+25 D .126.如上图3,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线, 则图中的等腰三角形有 ( ) (A)5个 (B)4个 (C)3个 (D)2个7.在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或108.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm ,则其腰上的高为 cm . 9.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 10.在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°, 则∠B 等于_ 度.AD CP60°ED CBA(第6题) BA D C11.如下图1,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定12.如下图2,等腰△ ABC 中,AB=AC ,∠A=20°。

等腰三角形培优提高练习题

等腰三角形培优提高练习题

等腰三角形提高训练题1、 如图AOB 是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管根.2、 的周长是3、 如图,△ABC 中,AD ⊥BC 于D ,∠B=2∠C ,求证:AB 十BD =CD .4、 如图甲,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F .(1)求证:AN=BM ; (2)求证:△CEF 是等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图乙中补出符合要求的图形,并判断第(1)、(2)两小属结论是否仍然成立(不要求证明).5、 在五边形ABCDE 中,∠B =∠E ,∠C=∠D ,BC=DE ,M 为CD 中点,求证:AM ⊥CD .6、 如图,在△ABC 中,已知∠A=90°,AB=AC ,D 为AC 上一点,AE ⊥BD 于E ,延长AE 交BC 于F ,问:当点D 满足什么条件时,∠ADB =∠CDF ,请说明理由. (安徽省竞赛题改编题)培优训练1.等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形 底边的长为.2.△ABC 中,AB =AC ,∠A=40°,BP=CE ,BD=CP ,则∠DPF=度.3.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC 的大小是. (烟台市中考题)4.△ABC 的一个内角的大小是40°,且∠A=∠B ,那么∠C 的外角的大小是( )A .140°B .80°或100°C .100°或140°D .80°或140°5.已知△ABC 中,AB =AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点F 、F ,给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形,③S AEPF 四边形=21 S ABC ;④EF=AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的是( )A .1个B .2个C .3个D . 4个 (苏州市中考题)6.如图,在△ABC 中,∠ACB=90°,AC =AE ,BC =BF ,则∠ECF =( )O E G F H M AB 5题A .60°B .45°C .30°D .不确定7.如图,在△ABC 中,∠B 、∠C 的平分线相交于O 点.作MN ∥BC ,EF ∥AB ,GH ∥AC ,BC =a ,AC=b ,AB =c ,则△GMO 周长+△ENO 的周长-△FHO 的周长.8.如图,△ABC 中,AD 平分∠BAC ,AB+BD=AC ,则∠B :∠C 的值=. (“五羊杯”竞赛题)9.如图,四边形ABCD 中,对角线AC 与BD 相交于E 点,若AC 平分∠DAB ,且AB=AE ,AC=AD ,有如下四个结论: ①AC ⊥BD ;②BC=DE ;③∠DBC=21∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号.(把你认为正确结论的序号都填上) (天津市中考题)10.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )A .30°B .30°或150°C . 120°或150°D .30°或120°或150° (“希望杯”邀请赛)11.在锐角△ABC 中,三个内角的度数都是质数,则这样的三角形( )A .只有一个且为等腰三角形B .至少有两个且都为等腰三角形C .只有一个但不是等腰三角形D .至少有两个,其中有非等腰三角形12.如图,AA ′、BB ′分别是∠EAD 、∠DBC 的平分线,若AA ′=BB ′=AB ,则∠BAC 的度数为. (全国初中数学联赛题)13.如图,在△ABC 中,AB=AC ,P 底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,CF ⊥AB 于F .(1)求证:PD+PE=CF ;(2)若P 点在BC 的延长线上,那么PD 、PE 、CF 存在什么关系?写出你的猜想并证明.14.如图,等边△ABC 中,AB=2,点P 是AB 边上的任意一点(点P 可以与点A 重合,但不与点B 重合),过点P 作PE ⊥BC 于E ,过点E 作EF ⊥AC 于F ,过点F 作FQ ⊥AB 于Q ,设BP= x ,AQ =y .(1)用x 的代数式表示y ;(2)当PB 的长等于多少时,点P 与点Q 重合? (福州市中考题)15.如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF =EF .16.如图,已知等边三角形ABC ,在AB 上取点D ,在AC 上取点E ,使得AD=AE ,作等边三角形PCD ,QAE 和RAB ,求证:P 、Q 、R 是等边三角形的三个顶点.17.如图,△ABC 中,AB=AC ,BC=BD=ED=EA ,则∠A=.18.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为度. (江苏省竞赛题)7题 6题 8题B A /C BA ED19.在等边△ABC 所在的平面内求一点P ,使△PAB 、△PBC 、△PAC 都是等腰三角形,具有这样性质的点P 有( )A .1个B .4个C .7个D .10个20.如图,在五边形ABCDE 中,∠A=∠B=120°,EA=AB=BC=21DC=21DE , 则∠D =( )A .30°B .450°C . 60°D .67.5°21.如图,在△ABC 中,∠BAC=120°,P 是△ABC 内一点,则( )A .PA+PB+PC<AB+ACB . PA+PB+PC>AB+ACC .PA+PB+PC=AB+ACD .PA+PB+PC 与AB+AC 的大小关系不确定,与P 点位置有关22.如图,在△ABC 内,∠BAC=60°,∠ACB=40°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线.求证:BQ+AQ=AB+BP .(2002年全国初中数学竞赛)23.如图,在△ABC 中,∠BAC=90°,AB =AC ,D 是△ABC 内一点,且∠DAC=∠DCA=15°, 求证:BD =BA .24.如图,等边三角形ABD 和等边三角形CBD 的长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE+CF =a .(1)E 、F 移动时,△BEF 的形状如何? (2)E 点在何处时,△BEF 面积的最小值.。

实验班八年级(上)《等腰三角形》提高训练及答案解析

实验班八年级(上)《等腰三角形》提高训练及答案解析

八年级(上)《等腰三角形》提高训练班级:________________姓名:_______________________一、选择题(共10小题)1.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°第1题第2题2.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°3.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是()A.60°B.80°C.100°D.120°第3题第4题4.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°5.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n 的度数为()﹣1A.B.C.D.第5题第6题6.如图所示,在等边三角形ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是()A.7 B.6 C.5 D.47.如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°第7题第8题第9题8.如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.59.如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB;③S△ADE=S△ABC.正确的有()A.0个B.1个C.2个D.3个10.如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,则△ABC的面积为()A.10cm2B.12cm2C.16cm2D.20cm2第10题第12题二、填空题(共10小题)11.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.12.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC=.13.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.第13题第14题14.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是.第15题第16题16.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.17.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是.第17题第18题18.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B 点时,M、N同时停止运动.(1)当点M、N运动秒时,M、N两点重合;(2)当点M、N运动秒后,M、N与△ABC中的某个顶点可得到等腰三角形.19.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC 的任意两个顶点构成的△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P有个.(请在图形中表示点P的位置)第19题第20题20.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC 重合在一起,△ABC不动,点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.若△AEM构成等腰三角形,则BE的长为.三、解答题(共10小题)21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.第21题22.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.第22题23.如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.第23题24.如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.第24题25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.第25题26.如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.(1)求证:∠BDC=∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;(3)在(2)的条件下,若AF=BF,求∠EBA的大小.第26题27.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.第27题28.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=度.(直接填写度数)第28题29.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?第29题30.如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC 和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.第30题八年级(上)《等腰三角形》提高训练参考答案与试题解析一.选择题(共10小题)1.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.2.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.3.(2016•聊城模拟)如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是()A.60°B.80°C.100°D.120°【解答】解:∵QR∥OB,∠AOB=40°,∴∠AQR=∠AOB=40°,∵OP=QP,∴∠PQO=∠AOB=40°,∵∠AQR+∠PQO+∠PQR=180°,∴∠PQR=180°﹣2∠AQR=100°.故选C4.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.5.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1的度数为()A.B.C.D.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.6.(2016春•蓝田县期末)如图所示,在等边三角形ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是()A.7 B.6 C.5 D.4【解答】解:①∵△ABC为等边三角形,∴AB=AC,∴△ABC为等腰三角形;②∵BO,CO,AO分别是三个角的角平分线,∴∠ABO=∠CBO=∠BAO=∠CAO=∠ACO=∠BCO,∴AO=BO,AO=CO,BO=CO,∴△AOB为等腰三角形;③△AOC为等腰三角形;④△BOC为等腰三角形;⑤∵OD∥AB,OE∥AC,∴∠B=∠ODE,∠C=∠OED,∵∠B=∠C,∴∠ODE=∠OED,∴△DOE为等腰三角形;⑥∵OD∥AB,OE∥AC,∴∠BOD=∠ABO,∠COE=∠ACO,∵∠DBO=∠ABO,∠ECO=∠ACO,∴∠BOD=∠DBO,∠COE=∠ECO,∴△BOD为等腰三角形;⑦△COE为等腰三角形.故答案是:7个.7.(2016•慈溪市一模)如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.8.(2016•阿坝州)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.5【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵ED∥BC,∴∠CBD=∠BDE,∴∠ABD=∠BDE,∴BE=DE,△AED的周长=AE+DE+AD=AE+BE+AD=AB+AD,∵AB=3,AD=1,∴△AED的周长=3+1=4.故选C.9.(2016•海曙区一模)如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB;③S△ADE=S△ABC.正确的有()A.0个B.1个C.2个D.3个【解答】解:∵BA=BC,BD平分∠ABC,∴∠1=∠2,BD⊥AC,且AD=CD,∵DE∥BC,∴∠2=∠3,△ADE∽△ACB,∴∠1=∠3,故①正确;===,即DE=BC,故②正确;由△ADE∽△ACB,且=可得=()2=,即S△ADE=S△ABC,故③正确;故选:D.10.(2016秋•江阴市期中)如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,则△ABC的面积为()A.10cm2B.12cm2C.16cm2D.20cm2【解答】解:如图,延长AP交BC于点Q,∵AP垂直∠ABC的平分线BP于P,∴AP=QP,∴S△ABP=S△BQP,S△APC=S△PQC,∴S△ABC=2S阴影=20cm2,故选D.二.填空题(共10小题)11.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.12.(2016秋•玉环县期中)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC=8.【解答】解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故答案为8.13.(2016秋•雁塔区校级月考)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE 过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于3cm.【解答】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=8cm,EI=CE=5cm,∴DE=DI﹣EI=3(cm).故答案为:3cm.14.(2016秋•东湖区月考)如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC 交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.15.(2016•江西模拟)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是25°或40°或10°.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°﹣∠ADB=180°﹣80°=100°,∠C=(180°﹣100°)=40°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣80°)=50°,∴∠BDC=180°﹣∠ADB=180°﹣50°=130°,∠C=(180°﹣130°)=25°,③AD=BD,此时,∠ADB=180°﹣2×80°=20°,∴∠BDC=180°﹣∠ADB=180°﹣20°=160°,∠C=(180°﹣160°)=10°,综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.16.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为3,6或6.5或5.4时,△ACP是等腰三角形.【解答】解:由题意可得,第一种情况:当AC=CP时,△ACP是等腰三角形,如右图1所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴CP=6cm,∴t=6÷2=3秒;第二种情况:当CP=PA时,△ACP是等腰三角形,如右图2所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AB=10cm,∠PAC=∠PCA,∴∠PCB=∠PBC,∴PA=PC=PB=5cm,∴t=(CB+BP)÷2=(8+5)÷2=6.5秒;第三种情况:当AC=AP时,△ACP是等腰三角形,如右图3所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AP=6cm,AB=10cm,∴t=(CB+BA﹣AP)÷2=(8+10﹣6)÷2=6秒;第四种情况:当AC=CP时,△ACP是等腰三角形,如右图4所示,作CD⊥AB于点D,∵∠ACB=90°,AC=6cm,BC=8cm,tan∠A==,∴,AB=10cm,设CD=4a,则AD=3a,∴(4a)2+(3a)2=62,解得,a=,∴AD=3a=,∴AP=2AD=7.2cm,∴t==5.4s,故答案为:3,6或6.5或5.4.17.(2015春•重庆校级期中)如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是①②④.【解答】解:①连接EG.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C,故①正确;②∵BE、AG分别是∠ABC、∠DAC的平分线.∴∠ABF=∠EBD.∵∠AFE=∠FAB+∠FBA,∠AEB=∠C+∠EBD,∴∠AFE=∠AEF,∴AF=AE,故②正确;③如果∠EBC=∠C,则∠C=∠ABC,∵∠BAC=90°那么∠C=30°,但∠C≠30°,故③错误;④∵AG是∠DAC的平分线,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵∴△ABN≌△GBN,∴AN=GN,∴四边形AFGE是平行四边形,∴GF∥AE,即GF∥AC.故④正确;⑤∵AE=AF,AE=FG,而△AEF不是等边三角形,∴EF≠AE,∴EF≠FG,故⑤错误.故答案为:①②④.18.(2015秋•江阴市校级期中)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动12秒时,M、N两点重合;(2)当点M、N运动4,8,16秒后,M、N与△ABC中的某个顶点可得到等腰三角形.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12,故当点M、N运动12秒时,M、N两点重合;故答案为:12;(2)①当M在AC上,N在AB上时,有AM=AN,△AMN为等边三角形,符合题意,即t=12﹣2t,解得t=4;②当M、N均在AC上时,有BM=BN,△BMN为等腰三角形,符合题意,则CM=AN,即12﹣t=2t﹣12,解得t=8;③当M、N均在BC上时,N点已经追过M点,有AM=AN,△AMN为等腰三角形,符合题意,则CM=BN,即t﹣12=36﹣2t,解得t=16.故答案为4,8,16.19.(2014春•海盐县校级期末)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成的△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P有6个.(请在图形中表示点P的位置)【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.20.(2014•河南模拟)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.若△AEM构成等腰三角形,则BE的长为1或.【解答】解:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,∴∠AEF=∠B=∠C,∵∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE==,∴BE=6﹣=;∴BE=1或.三.解答题(共10小题)21.(2016秋•淮安期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC 边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°22.(2016秋•宁城县期末)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.23.(2016秋•义乌市期末)如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.【解答】解:(1)∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠EDC=∠CED+∠EDC=130°,∴∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合),∴AD≠AE,ⅰ)如图所示,当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°;ⅱ)如图所示,当DA=DE时,∠EAD=∠AED=65°,∴∠BDA=∠CED=65°+50°=115°;(2)由(1)可得∠BDA=∠CED,又∵∠B=∠C=50°,AB=DC=2,∴在△ABD和△DCE中,,∴△ABD≌△DCE(AAS).24.(2016秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∵AE=ED,EF⊥AD,AD平分∠BAC,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CA.25.(2015春•威海期末)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.26.(2015秋•宜城市期末)如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.(1)求证:∠BDC=∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;(3)在(2)的条件下,若AF=BF,求∠EBA的大小.【解答】解:(1)∵BD、CD分别平分∠EBA、∠ECA,BD交AC于F,∴∠BDC+∠ABC=∠ACE,∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠BAC+∠ABC,∴∠BDC=∠BAC.(2)△ABD为等腰三角形,证明如下:作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H∵BD、CD分别平分∠EBA、∠ECA,∴DM=DH,DN=DH,∴DM=DN,∴AD平分∠CAG,即∠GAD=∠CAD,∵∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,∴∠GAD+∠CAD=∠ABC+∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BC,∴∠ADB=∠DBC,又∵∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD,∴△ABD为等腰三角形;(3)∵AF=BF,∴∠BAF=∠ABF=∠ABC,∵∠BAF+∠ABC+∠ACB=180°,∠ABC=∠ACB,∴∠ABC=180°,∴∠ABC=72°.27.(2015秋•台州期中)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.【解答】解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.所以∠C的度数是20°或40°.28.(2016秋•盂县期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=120度.(直接填写度数)【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;(3)解:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.故答案为:120°.29.(2016秋•天津期末)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?【解答】解:(1),△BPD与△CQP是全等.理由如下:当P,Q两点分别从B,A两点同时出发运动2秒时有BP=2×2=4cm,AQ=4×2=8cm则CP=BC﹣BP=10﹣4=6cmCQ=AC﹣AQ=12﹣8=4cm∵D是AB的中点∴BD=AB=×12=6cm∴BP=CQ,BD=CP又∵△ABC中,AB=AC∴∠B=∠C在△BPD和△CQP中BP=CQ∠B=∠CBD=CP∴△BPD≌△CQP(SAS)(2)设当P,Q两点同时出发运动t秒时,有BP=2t,AQ=4t∴t的取值范围为0<t≤3则CP=10﹣2t,CQ=12﹣4t∵△CPQ的周长为18cm,∴PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4要使△CPQ是等腰三角形,则可分为三种情况讨论:①当CP=CQ时,则有10﹣2t=12﹣4t解得:t=1 …(9分)②当PQ=PC时,则有6t﹣4=10﹣2t解得:t=…(10分)③当QP=QC时,则有6t﹣4=12﹣4t解得:t=…(11分)三种情况均符合t的取值范围.综上所述,经过1秒或秒或秒时,△CPQ是等腰三角形30.(2016秋•顺庆区期末)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.第31页(共8页)。

八年级上册数学思维训练培训(培优)试题:等腰三角形

八年级上册数学思维训练培训(培优)试题:等腰三角形

八年级上册数学思维训练培训(培优)试题:等腰三角形【思维入门】例1:如图,BD是等腰△ABC底边AC上的高线,DE∥BC角AB于点E,求证:△BED是等腰三角形。

例1—1:如图,∠ABC的平分线BF与△ABC中∠ACB相邻的外角的平分线CF相交于点F,过点F作DF∥BC,交AB于点D,交AC于点E,(1)图中有哪几个等腰三角形?请说明理由。

(2)BD,CE,DE之间存在着什么关系?请证明。

【思维拓展】例2:等腰三角形一腰上的高线与另一腰的夹角为30°,则等腰三角形的顶角为。

例3:如图,在△ABC中,AB=AC,∠BAD=20°,且AD=AE,则∠CDE=。

例4:如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为。

【思维升华】例5:老师布置了一道思考题:如图1,点M,N分别在正三角形ABC的BC,AC边上,且BM=CN,AM,BN交于点Q,求证:∠BQM=60°。

(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别分别移动到BC,AC的延长线,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,AC边上”改为“点M,N分别在正方形ABCD的BC,CD边上” ,是否仍能得到∠BQM =60°?……请你作出判断,在下列横线上填写“是”或“否”:①;②;③。

对②,③的判断,选择一个给出证明。

【思维探究活动】例:小区内有一个三角形小花坛,现在小明想把它分割成两个等腰三角形,使之可以种上不同的花,但是一定可以分成两个等腰三角形吗?于是小明开始探索三角形可以被分割成两个等腰三角形的条件,小明把三角形花坛抽象成几何图形,如图1,△ABC中,设∠A=α,∠B=β,∠C=γ。

等腰三角形提高(含答案)

等腰三角形提高(含答案)

等腰三角形提高等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.2.等边三角形的定义:有三条边相等的三角形叫做等边三角形.3.等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90,底角等于45,两直角边相等.等腰直角三角形的判定:(1)顶角为90︒的等腰三角形.(2)底角为45︒的等腰三角形.【例题讲解】板块一、等腰三角形的认识【例 1】下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60,那么这个等腰三角形一定是等边三角形.则以下结论正确的是( )A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确【解析】C.【例 2】如图,在ABC∆中,AD BC⊥于D.请你再添加一个条件,就可以确定ABC∆是等腰三角形.你添加的条件是.D CBA【解析】BD DC=或AD平分BAC∠或B C∠=∠.【例 3】如图,在ABC△中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列四个条件:①EBO DOC∠=∠;②BEO CDO∠=∠;③BE CD=;④OB OC=.(1)上述四个条件中,哪两个条件可判定ABC△是等腰三角形(用序号写出所有情况);(2)选择第⑴小题中的一种情形,证明ABC△是等腰三角形.O ED C B A【解析】 (1)①③,①④,②③,②④四种情况可判定ABC △是等腰三角形.(2)下面以①③两个条件证明ABC △是等腰三角形.∵EBO DOC ∠=∠,BE CD =,BEO CDO ∠=∠,∴EOB DOC ∠=∠,∴OB OC =,∴OBC OCB ∠=∠.∴EBC DCB ∠=∠,∴ABC △是等腰三角形.【例 4】 如图,点O 是等边ABC ∆内一点,110AOB ∠=,BOC α∠=.将BOC △绕 点C 按顺时针方向旋转19060αα-=-∴°°得ADC △,连接OD ,则COD △是等边三角形;当α为多少度时,AOD △是等腰三角形?ODCB A【解析】 分三种情况讨论:①要使AO AD =,需AOD ADO ∠=∠.∵190AOD α∠=-°,60ADO α∠=-°,19060αα-=-∴°°.125α=∴°.②要使OA OD =,需OAD ADO ∠=∠.∵180()50OAD AOD ADO ∠=-∠+∠=°°,6050α-=∴°°.110α=∴°.③要使OD AD =,需OAD AOD ∠=∠.19050α-=∴°°.140α=∴°.综上所述:当α的度数为125°或110°或140°时,ABC △是等腰三角形.【例 5】 如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列 说法正确的个数有( )①DC '平分BDE ∠; ②BC长为2)a ;③△BC D '是等腰三角形; ④△CED 的周长等于BC 的长.A . 1个;B .2个;C .3个;D .4个C B AD C B AE C'DC B A【解析】 由图可知△ABD ≌△EBD ,∴AD =DE =a ,DBE ∠=45.又∵C ∠=ABC ∠=45,∴DC,∴BC()a=2)a =△CED 的周长.又∵△CDE ≌△C DE ',∴45DC E '∠=,∴22.5DBE BDC '∠=∠=.∴BC C D ''=,△BC D '是等腰三角形.故②③④正确.【例 6】 如图⑴,AB AC =,BD ,CD 分别平分ABC ∠,ACB ∠.问:⑴图中有几个等腰三角形?⑵过D 点作EF ∥BC ,如图⑵,交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形? ⑶如图⑶,若将题中的ABC ∆改为不等边三角形,其他条件不变,图中有几个等腰三角形?线段EF 与BE 、CF 有什么关系?⑷如图⑷,BD 平分ABC ∠,CD 平分外角ACG ∠.DE ∥BC 交AB 于E ,交AC 于F .线段EF 与BE 、CF 有什么关系?⑸如图⑸,BD 、CD 为外角CBM ∠、BCN ∠的平分线,DE ∥BC 交AB 延长线于E ,交AC 延长线于F ,线段EF 与BE 、CF 有什么关系?(1)C D B A (5)(4)(3)(2)M D D DC C C B B BAA AAB C DEE E EF F F FG N【解析】 ⑴图⑴中有两个等腰三角形:ABC ∆、BCD ∆⑵图⑵中又增加了三个等腰三角形:AEF ∆、BED ∆、CFD ∆⑶图⑶中有两个等腰三角形:BED ∆、CFD ∆,由于ED BE =,DF CF =,EF ED FD BE CF =+=+,故EF BE CF =+⑷图⑷所示中仍有两个等腰三角形BED ∆、CDF ∆从而DE BE =,CF DF =,又EF ED DF BE CF =-=-,故EF BE CF =-⑸如图⑸所示与⑶类似,EF BE CF =+板块二、等腰三角形的性质【例 7】 某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cm B.12cm C.15cm D.12cm 或15cm【解析】 C【例 8】 已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( ) A .4.8cm B .9.6cm C .2.4cm D .1.2cm【解析】 B【例 9】 若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒ B.80︒ C.65︒或50︒ D.50︒或80︒【解析】 D【巩固】已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角 的度数为( )A .20B .120 C .20或120 D .36【解析】 当等腰三角形的顶角为钝角时,内角的度数之比为1:4:4 ,此时顶角为20;当顶角为钝角时,内角的度数之比为1:1:4 ,此时顶角为120.故选C .【例10】 若等腰三角形一腰上的高和另一腰的夹角为25,则该三角形的一个底角为( )A .32.5B .57.5C .65或57.5D .32.5或57.5【解析】 C【例11】 从等腰三角形底边上任意一点分别作两腰的平行线,与两腰所围成的平行四边形的周长等于三角形的( )A .两腰长的和 B.周长一半C.周长 D.一腰长与底边长的和【解析】 A【例12】 已知等腰三角形一腰上的中线将它们的周长分为9和12两部分,求腰长和底长.【解析】 设这个三角形的腰长为x ,底长为y ,则12292x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得85x y =⎧⎨=⎩,或92122x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得69x y =⎧⎨=⎩, 而8,8,5和6,6,9均能组成等腰三角形.注意等腰三角形中的分类讨论.【巩固】等腰三角形的周长是50,一腰上的中线分得两个三角形的周长是32和22,求腰长.【解析】 设这个三角形的腰长为x ,底长为y ,一腰上的中线为[](3222)5022+÷=-, 根据题意可得:2502222x y x y +=⎧⎪⎨+=-⎪⎩或2503222x y x y +=⎧⎪⎨+=-⎪⎩,解得20x =或1133 【例13】 已知等腰三角形的周长为12,腰长为x ,求x 的取值范围.【解析】 122x x x +>-,且1220x ->,解得36x <<【例14】 已知等腰三角形的周长为16,三边长为整数,求底边长.【解析】 设腰长为x ,则48x <<,则5x =,6,7,底边分别为6,4,2【巩固】已知等腰三角形的周长为20,三边长为整数,求底边长.【解析】 设腰长为x ,202x x x +>-,且2020x ->,解得510x <<,则腰长为6、7、8、9,对应的底边长为8、6、4、2【例15】 等腰三角形中一角是另一角的2倍,求各内角的度数.【解析】 (1)若底角是顶角的2倍,设顶角为α,则22180ααα++=︒,36α=︒,272α=︒三角形三内角依次是72︒,72︒,36︒.(2)若顶角是一底角的2倍,设底角为α,则2180ααα++=︒,45α=︒,290α=︒,三角形三内角依次是45︒,45︒,90︒.【例16】 已知BD 是等腰ABC ∆一腰上的高,且50ABD ∠=︒,求ABC ∆三个内角 的度数.【解析】 若ABC ∆为钝角三角形时,A ∠为顶角时,三内角大小为140,20,20;若ABC ∆为钝角三角形时,A ∠为底角时,三内角大小为100,40,40;若ABC ∆为锐角三角形时,A ∠为顶角,三内角大小为40,70,70.【例17】 在ABC ∆中,AB AC =,BC BD ED EA ===.求A ∠.2x =,3BDC x ∠=,32DBC x x x ∠=-=,在BDC ∆中,可得33180x x x ++=︒,∴180()7x =︒【巩固】在ABC ∆中,AB AC =,BC BD =,AD ED EB ==.求A ∠.EDC B A【解析】 设A x ∠=,则1802ADE x ∠=︒-,12EDB x ∠=,13180(1802)22BDC x x x ∠=︒-︒--=,18019022x ACB x ︒-∠==︒-,在DBC ∆中,319022x x =︒-,解得45x =︒【例18】 等腰三角形的顶角90α>︒,如果过它的顶角顶点作一直线能够将它 分成两个等腰三角形,求α.AB C D【解析】 由题意,画出图形如图所示,这里90BAC ∠>︒,ABD ∆和ADC ∆都是等腰三角形AB AC =,AD CD =,AB BD =,∴B C DAC ∠=∠=∠,2BDA BAD C ∠=∠=∠设C x ∠=︒,则DAC B x ∠=∠=︒,2BAD x ∠=︒ABC ∆中,180BAC B C ∠+∠+∠=︒∴3180x x x ++=,36x =,∴3108x α=︒=︒【例19】 ABC ∆的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,若150BAC DAE ∠+∠=︒,求BAC ∠.E D C B A【解析】 根据题意可得:B BAD ∠=∠,C CAE ∠=∠则BAC BAD CAE DAE B C DAE ∠=∠+∠+∠=∠+∠+∠即180150BAC BAC BAC ∠=-∠+-∠,解得110BAC ∠=【例20】 如图,在ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=,在AC 上取 一点E ,使得ADE AED ∠=∠,求EDC ∠的度数.AB C D E【解析】 由题设B C ∠=∠,ADE AED ∠=∠,及三角形外角定理,即EDC C AED ∠+∠=∠,有1802DAE AED ∠=︒-∠18022EDC C =-∠-∠而180250C DAE ︒=∠+︒+∠250(18022)C EDC C =∠+︒+︒-∠-∠180502EDC =+-∠故250EDC ∠=︒,即25EDC ∠=︒【例21】 如图所示,已知ABC ∆中,D 、E 为BC 边上的点,且AD AE =,BD EC =, 求证:AB AC =.【解析】 作AF DE ⊥于F ,∵AD AE =,∴DF EF =又BD EC =,∴BF FC =,∴AB AC =A B C D E AB CD E F考察垂直平分线的性质.【例22】 如图,ABC ∆为等边三角形,延长BC 到D ,又延长BA 到E ,使AE BD =, 连接,CE DE ,求证:CDE ∆为等腰三角形. E D C B AFEDC B A 【解析】 延长BD 到F ,使得DF BC =,连接EF .∵ABC ∆为等边三角形,∴60,B AB BC ∠==.又∵,AE BD =∴BE AB AE =+=BC BD FD BD FB +=+=.∴BEF ∆为等边三角形.∴60,B F BE FE ∠=∠==.∴BEC ∆≌FED ∆,∴CE DE =.练习:1、等腰三角形的两边长分别为4和9,则第三边长为 .【解析】 当腰长为9时,三边长为4、9、9;当腰长为4时,三边长为4、4、9 ,不符合三角形的三边关系,故腰长为9.2、等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这 个等腰三角形的底边的长为( )A .17cmB .5cmC .17cm 或5cmD .无法确定【解析】 设腰长为a ,底边长为b ,此题可分为两类,112212122a a b a a b ⎧+=⎪⎪⎪+=⎨⎪>⎪⎪⎩或121211222a a b a a b ⎧+=⎪⎪⎪+=⎨⎪>⎪⎪⎩,第一类无解;第二类解为145a b =⎧⎨=⎩,故选B .3、已知等腰三角形的周长为20,腰长为x ,求x 的取值范围.【解析】 202x x x +>-,且2020x ->,解得510x <<4、如下图所示,ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=︒,AE AD =,求EDC ∠ 的度数.50︒ECB A【解析】 设B α∠=,ADE β∠=.则C α∠=,AED β∠=,由外角定理得,50ADC α∠=+︒,即50EDC βα∠+=+︒,则50EDC βα=+︒-∠.又EDC βα=∠+, ∴50EDC EDC αα∠+=+︒-∠,∴250EDC ∠=︒,∴25EDC ∠=︒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形培优提高试题
————————————————————————————————作者:————————————————————————————————日期:
一.选择题(共6小题)
1.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或15
2.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()
A.6个B.7个C.8个D.9个
(第2题)(第3题)(第4题)
3.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、
A、B为顶点的三角形是等腰三角形,这样的B点有()
A.1个B.2个C.3个D.4个
4.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.3cm2B.4cm2C.5cm2D.6cm2
5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()
A.7 B.11 C.7或11 D.7或10
6.如图:D,E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则()
A.当∠B为定值时,∠CDE为定值B.当∠α为定值时,∠CDE为定值
C.当∠β为定值时,∠CDE为定值D.当∠γ为定值时,∠CDE为定值
二.填空题(共8小题)
7.已知等腰三角形一腰上的中线将三角形周长分成2:1两部分,已知三角形底边长为5cm,
则腰长为cm.
8.如图,在△ABC中,EG∥BC,BF平分∠ABC,CF平分∠ACB,AB=10,AC=12,△AEG的周长为.
(第8题)(第9题)(第10题)
9.如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC=°.10.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=cm.
11.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.12.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是.
(第12题)(第14题)(第14题)
13.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB以2cm/s 的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t (s)表示移动的时间,当t=时,△POQ是等腰三角形.
14.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.
三.解答题(共15小题)
15.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.
16.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC交AD于点F,交AC 于点E.求证:△AEF为等腰三角形.
17.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
(1)求证:①AB=AD;②CD平分∠ACE.
(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.
18.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.
(1)△DBC和△EAC会全等吗?请说说你的理由;
(2)试说明AE∥BC的理由;
(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.
19.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.
求证:△BDE是等腰三角形.
20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.
21.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O
(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.
22.如图,已知在△ABC中,∠ACB=90°,在AB上截取AE=AC,BD=BC.求证:∠DCE=45°.
23.如图,在△ABC中,AB=AC,∠BAC=80°,O为△ABC内一点,且∠OBC=10°,∠OCA=20°,求∠BAO的度数.
24.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.
25.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数.
26.如图:
(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R.请观察AR与AQ,它们有何关系?并证明你的猜想.
(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.
27.(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE 的度数;
(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE=;
(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).
28.如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠FAC的角平分线交BC边于点G,连接FG.
(1)求∠DFG的度数.
(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?。

相关文档
最新文档