《腔体滤波器设计具体步骤》
腔体滤波器设计
![腔体滤波器设计](https://img.taocdn.com/s3/m/f62e764cb307e87101f6961c.png)
V Transmitted
V Transmitted V Incident
=
Transmission Coefficient =
T
V
=
=
t t
Insertion Loss (dB) = - 20 Log
Trans Inc
V V
Gain (dB) = 20 Log
Trans Inc
- 20 log
2005-3-27
Allrizon Communication Corp
Measuring S-Parameters
a1
Incident
S
21
Transmitted
DUT
b2 Z0
Load
Forward
S S = =
S 11 b1
Reflected
a2 = 0
11
b1 Reflected = a Incident 1
2005-3-27
Allrizon Communication Corp
耦合谐振滤波器最基本的耦合结构
馈源只与一个谐振器耦合,负载 端仅与一个谐振器耦合,且中间只 有一条耦合路径即主路径,各级谐 振器之间逐级耦合。
2005-3-27
Allrizon Communication Corp
梳状线滤波器结构示意图
For reflection, a transmission line terminated in a short or open reflects all power back to source
2005-3-27 Allrizon Communication Corp
Reflection Coefficient
腔体滤波器的精确设计
![腔体滤波器的精确设计](https://img.taocdn.com/s3/m/294b1bd2240c844769eaee35.png)
利用HFSS 对腔体滤波器的精确设计黎涛 赵霞上海航天测控通信研究所 200086摘要 本文用一个实例介绍了一种设计思路,借助计算机利用Ansoft 公司的HFSS 软件对腔体交指型滤波器进行精确设计,实验表明用这种方法设计的滤波器有通带平坦、插损小、精确度高等特点。
一. 引言在微波带通滤波器的设计中,我们经常采用腔体交指型结构。
它具有插损小、带外抑制度高、结构紧凑、体积小等优点。
对于腔体交指型带通滤波器的设计,现在比较广泛的的思路是:只考虑相邻两耦合杆之间的耦合关系,忽略相邻杆以外的边缘电容的影响,因而采用两个沿结构传输的TEM 正交模来描述,即奇模和偶模。
而实际在这种滤波器结构中所有的谐振杆之间都存在耦合,因此这种方法只是一种简化的近似设计。
采用这种方法设计的产品性能差,表现在带内插损和波纹大,矩形系数不好等,一般无法满足现在通讯的要求,我们还要花大量的精力对滤波器进行调整,以提高其性能。
甚至需要重新加工再生产,这大大增加了产品的研制成本和周期。
因此我们必须对滤波器进行精确的设计,即在工程设计中将所有谐振杆的耦合都考虑进去,而这不是传统的手工计算可以完成的,必须借助计算机软件进行辅助设计。
自上世纪70年代以来,CAD 工具在微波工程领域得到越来越广泛的应用。
经过多年的发展,目前国内外已有多种微波CAD 软件,而以Ansoft 公司的HFSS 效果最佳。
通过该软件我们可以方便的得到各种物理模型,进而对该模型进行电磁场的仿真。
计算结束后我们就可以得到所需的场结构和相关的S 参数,也就知道了该滤波器的电性能情况。
二. 设计下面通过一个S 波段的五级滤波器的设计实例加以说明。
首先我们通过简化的近似计算得到该滤波器的几何数据的初值,由于这类滤波器的粗略设计的方法已经很成熟,因此这里不进行详细介绍,直接给出(详细情况可参看《现代微波滤波器的结构与设计》)。
但这一步也是非常重要的,初值的好坏直接关系到我们利用软件计算优化的快慢。
ads波导腔体滤波器设计
![ads波导腔体滤波器设计](https://img.taocdn.com/s3/m/23ee0f2115791711cc7931b765ce050877327562.png)
ads波导腔体滤波器设计
ADS软件可以用于波导腔体滤波器的设计。
下面简单介绍一下设计过程:
1. 确定滤波器的参数,包括中心频率、通带带宽、阻带带宽和衰减。
2. 在ADS软件中新建一个“layout”工程,在其中选择一个合适的波导宽度。
3. 将波导布满整个布局区域,并在中央添加两个矩形缺口,调整宽度和长度以达到带宽要求。
4. 运用仿真和优化工具进行电磁仿真和优化。
如果需要更精细的仿真结果,可以引入三维电磁仿真软件。
5. 通过布局编辑器进行布局优化和参数调整,如增加爬行线和扇形盖板、调整缺口形状等。
6. 通过ADS软件的“加工输出”功能将布局数据输出到CNC机器进行加工。
7. 完成加工后,进行测试和调试。
如果滤波器不满足要求,可以返回到步骤3到步骤6进行优化。
以上是波导腔体滤波器设计的基本流程,当然具体细节还需要根据具体情况进行调整。
在设计过程中,需要注意滤波器的可制造性和可靠性。
同时,在设计过程中要注意避免过度优化导致生产成本过高。
腔体滤波器工艺流程
![腔体滤波器工艺流程](https://img.taocdn.com/s3/m/85e54b46854769eae009581b6bd97f192279bfd0.png)
腔体滤波器工艺流程
腔体滤波器是一种用于滤除特定频率信号的设备,广泛应用于通信系统、雷达系统和无线网络等领域。
腔体滤波器的制造工艺流程是非常关键的,下面我们来介绍一下腔体滤波器的工艺流程。
1. 设计阶段,腔体滤波器的工艺流程首先从设计阶段开始。
工程师根据滤波器的需求和规格,设计出滤波器的结构、尺寸和材料等参数。
2. 材料准备,根据设计要求,准备好所需的材料,通常包括金属材料、陶瓷材料等。
这些材料需要经过严格的质量检验和筛选,确保滤波器的性能和稳定性。
3. 加工制造,在材料准备好之后,进行加工制造。
这个过程包括切割、焊接、打磨、精密加工等步骤,需要使用各种加工设备和工具,确保滤波器的结构和尺寸符合设计要求。
4. 装配调试,在加工制造完成后,进行装配和调试。
将各个部件组装在一起,进行电路连接和调试,确保滤波器的正常运行和性能稳定。
5. 测试验证,最后,对制造好的腔体滤波器进行严格的测试和验证。
包括频率响应测试、功率损耗测试、温度稳定性测试等,确保滤波器满足设计要求并具有良好的性能指标。
通过以上工艺流程,腔体滤波器可以被制造出来,从而满足各种通信系统和雷达系统对于信号滤波的需求。
这些工艺流程的严谨性和精密度对于腔体滤波器的性能和稳定性至关重要。
微波腔体滤波器设计PPT课件
![微波腔体滤波器设计PPT课件](https://img.taocdn.com/s3/m/1908418c10661ed9ad51f3e5.png)
Fn Un
En2
Pn2
2Fn2 2
Pn
N
1
n 1
1
n
取左半平面的根
-3
-2
-1
-20
-40
-60
1
2
3
注意到,General Chebyshev函数的特性: 带内为等波纹,带外特性和有限传输零点的个数和位置密切相关。
怎样由带外指标确定滤波器的阶数和有限传输零点的位置? 什么样的General Chebyshev函数是最优的?
microwavecoupledcavityfiltersdesignmicrowavecoupledcavityfiltersdesign苏涛西安电子科技大学20070914电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义1微波滤波器简介2耦合谐振腔滤波器和耦合矩阵3generalchebyshev函数滤波器设计4交叉耦合滤波器实现电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义介质滤波器双工器电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义电感耦合谐振腔滤波器等效电路和其等效滤波网络电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义根据电压环路定理得到其中lij表示i
腔体滤波器的设计
![腔体滤波器的设计](https://img.taocdn.com/s3/m/0be831c28bd63186bcebbc31.png)
腔体滤波器的设计中耦合窗口的计算马军昌魏文珍(西安富士达科技股份有限公司,西安710077)Designing Of Cavum Filter(二)Ma junchang Wei wenzhen(XI,AN FORSTAR S&T CO.,LTD,XI,AN710077)摘要:根据螺旋滤波器耦合窗口,通过螺旋线与谐振杆转换,得出腔体耦合窗口的计算,与实例有很好的吻合。
关键词:同轴腔体滤波器耦合窗口,面积等效Abstract: according to the spiral bandpass coupling window, through spirals and resonant stem conversion, draw recessed coupled with examples of calculation, window has very good agreement. Keywords: coaxial recessed filter coupling window, an area of equivalent 1 引言腔体滤波器谐振腔之间的耦合窗口问题比较复杂,用数学分析的方法来解决比较困难,尤其耦合窗口的高度与耦合系数之间的关系,目前还没有准确的数学分析和计算。
现在可以借鉴的技术只有螺旋谐振器的耦合系数与窗口高度之间一个关系曲线。
如果将其通过等效转换,将螺旋线等效为腔体滤波器的谐振杆,那么问题将会得到解决。
为了更好的说明这个问题,在推导完成之后,再通过一个例题去验证它。
2 同轴腔体之间的耦合2.1 耦合窗口高度和耦合系数之间的关系螺旋滤波器的窗口h的定义图(右)通过实验的方法得到如下的关系曲线:上图中:K—耦合系数;h—窗口高度;d—螺旋线直径上图曲线可以简化为下列公式:(1)上式中的K—耦合系数、是按预畸设计法得到的。
所谓预畸设计法:为了在元件有耗的情况下准确地实现各类响应,须把元件的损耗预先考虑进去,然后进行综合得出有耗时的设计参数来。
hfss腔体滤波器设计实例
![hfss腔体滤波器设计实例](https://img.taocdn.com/s3/m/e3a9e3eb29ea81c758f5f61fb7360b4c2e3f2a3a.png)
hfss腔体滤波器设计实例HFSS(High Frequency Structure Simulator)是一种用于电磁场仿真和分析的软件工具。
它广泛应用于高频电磁场的建模和分析,可用于设计各种射频(RF)和微波器件,如天线、滤波器、耦合器等。
本文将以HFSS腔体滤波器设计实例为题,介绍如何利用HFSS软件进行腔体滤波器的设计。
我们需要明确腔体滤波器的基本原理。
腔体滤波器利用腔体的谐振模式和谐振频率来实现信号的滤波。
通过调整腔体的几何参数和材料特性,可以实现对特定频率范围内的信号进行滤波。
因此,腔体滤波器的设计关键在于确定合适的腔体结构和参数。
接下来,我们将以一个实际的设计例子来具体介绍HFSS腔体滤波器的设计流程。
假设我们要设计一个工作在2.4GHz频段的微波腔体滤波器。
首先,我们需要选择合适的腔体结构。
常见的腔体结构有矩形腔体、圆柱腔体等,根据设计要求选择合适的结构。
在HFSS中,我们可以通过绘制几何模型来定义腔体结构。
绘制完成后,我们需要定义腔体的材料属性,包括介电常数、磁导率等。
这些参数将直接影响腔体的谐振频率和模式。
接下来,我们可以利用HFSS的求解器进行电磁场仿真。
在仿真前,我们需要设置仿真的频率范围和精度。
根据设计要求,选择合适的频率范围,并设置适当的网格精度。
仿真完成后,我们可以通过HFSS的结果分析工具来分析仿真结果。
主要包括频率响应、S参数、电场分布等。
根据设计要求,对仿真结果进行评估和调整。
如果需要改善滤波器性能,可以通过调整腔体的几何参数和材料特性来实现。
在设计过程中,需要注意以下几点。
首先,腔体的尺寸和几何参数应该合理选择,以满足设计要求。
其次,材料的选择和特性对滤波器性能影响很大,需要选择合适的材料并设置正确的特性。
最后,仿真结果的准确性和稳定性也需要重视,可以通过调整网格精度和求解器参数来提高仿真结果的准确性。
HFSS是一种强大的工具,可以用于腔体滤波器的设计和分析。
交指型腔体滤波器设计
![交指型腔体滤波器设计](https://img.taocdn.com/s3/m/053edd2aaaea998fcc220eef.png)
第31卷 第1期 核 聚 变 与 等 离 子 体 物 理 V ol.31, No.12 0 1 1年 3月Nuclear Fusion and Plasma PhysicsMarch 2011文章编号:0254−6086(2011)01−0081−04收稿日期:2010−06−08;修订日期:2010−09−27作者简介:陈丽艳(1984−),女,河南省邓州市人,研究生,主要从事微波器件的设计与研究。
交指型腔体滤波器设计陈丽艳,刘甫坤,单家方,贾 华,李 军(中国科学院等离子体物理研究所,合肥 230031)摘 要:为抑制EAST 装置现场的电磁信号对低杂波系统运行的干扰,设计了一个交指型腔体滤波器,其中心频率为2.45GHz ,带宽为0.245GHz 。
介绍了交指型腔体滤波器的设计思路和方法,利用高频电磁仿真软件HFSS 仿真提高了设计效率和精度。
关键词:低杂波电流驱动;干扰信号;交指滤波器;HFSS 仿真 中图分类号:TL62+4 文献标识码:A1 引言低杂波(LHW)是等离子体中以低混杂模式传播的准静电波,可用于托卡马克等离子体电流驱动、加热和预电离。
在托卡马克低杂波系统周围存在干扰信号,按干扰的来源主要分为两类:空间电磁干扰和地线干扰。
EAST 装置周围分布的各种电子仪器和大功率电器设备,其工作时均向周围辐射电磁能量,形成空间电磁干扰,同时当系统的地电流出现突变时,也会产生地线干扰[1],因此需要在低杂波前级系统和测量系统中加入一个带通滤波器,用以滤除干扰信号。
交指型腔体滤波器有结构紧凑和可靠性高等特点。
每个谐振器的间隔较大,公差要求低,易于加工制造和调谐,每个谐振器长度约为四分之一0λ,第二通带远在30ω处,其间不会有第二通带,且损耗要比梳状滤波器小,阻带抑制性高;谐振器连接在相对的两个接地板上,因而有更好的相位和延迟特性。
因此,在EAST 装置低杂波系统中选用交指型腔体滤波器的设计方案。
腔体滤波器设计
![腔体滤波器设计](https://img.taocdn.com/s3/m/489b91ba0912a21615792981.png)
基本概念
1. 窄带滤波器的相对带宽:BW=(f2-f1)/f0 f1,f2分别是通带的起止频率 f0是通带中心频率 窄带滤波器的相对带宽一般在20%以下
2. 几个概念的辨析:dB,dBm,dBc
2005-3-27
Allrizon Communication Corp
概念辨析
dB是一个表征相对值的值,当考虑甲的 功率相比于乙功率大或小多少个dB时, 按下面计算公式:10lg(甲功率/乙=
2
a1
a2 = 0 a2 = 0
S 22 = Reflected
Incident
S 12 = Transmitted
Incident
=
b2 a2
b
=
1
a2
a1 = 0 a1 = 0
Z0
Load
a1 = 0
b 1 Transmitted
DUT
S 12
b2
S 22
Reflected
Reverse
a2
Incident
2005-3-27
Allrizon Communication Corp
S-Parameters with Common Measurement Terms
S11 = forward reflection coefficient (input match) S22 = reverse reflection coefficient (output match) S21 = forward transmission coefficient (gain or loss) S12 = reverse transmission coefficient (isolation)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Advanced Coupling Matrix Synthesis Techniquesfor Microwave FiltersRichard J.Cameron ,Fellow,IEEEAbstract—A general method is presented for the synthesis of the folded-configuration coupling matrix for Chebyshev or other filtering functions of the most general kind,including the fully canonical case,i.e.,+2”transversal network coupling matrix,which is able to accommodate multiple input/output couplings,as well as the direct source–load coupling needed for the fully canonical cases.Firstly,the direct method for building up the coupling matrix for the transversal network is described.A simple nonoptimization process is then outlined for the conversion of the transversal matrix to the equivalent“”coupling matrix,ready for the realization of a microwave filter with resonators arranged asa folded cross-coupled array.It was mentioned in [1]that,although the polynomial synthesis procedure was capableofgeneratingfinite-positionzeros could be realized bythecoupling matrix.This excluded some useful filtering characteristics,including those that require multiple input/output couplings,which have been finding applications recently [3].In this paper,a method is presented for the synthesis of the fully-canonical or“coupling matrix.The.(b)Equivalent circuit of the k th“low-pass resonator”in the transversal array.Thematrix has the following advantages,as compared with the conventional coupling matrix.•Multiple input/output couplings may be accommodated,i.e.,couplings may be made directly from the source and/or to the load to internal resonators,in addition to the main input/output couplings to the first and last resonator in the filter circuit.•Fully canonical filtering functions(i.e.,coupling matrix,not requiring the Gram–Schmidt orthonormalization stage.The0018-9480/03$17.00©2003IEEEFig.2.N +2fully canonical coupling matrix [M ]for the transversal array.The “core”N 2N matrix is indicated within the double lines.The matrix is symmetric about the principal diagonal,i.e.,M =MCAMERON:ADV ANCED COUPLING MATRIX SYNTHESIS TECHNIQUES FOR MICROWA VE FILTERS3The numerator and denominator polynomials fortheandforforand,may be found with partial fraction ex-pansions,and the purely realeigenvaluescommontoboth(6)where the realconstant.In this case,the degreeof the numeratoroffirst to reduce the degree of its numeratorpolynomialby one before itsresidues may be found.Note that,in the fully canonical case,where the integerquantityis even,it is necessary tomultiply to ensure that theunitary conditions for the scattering matrix are satisfied.Being independentof,and theresiduesofindividual first-degree low-pass sections,connected in parallelbetween the source and load terminations,but not to each other.The direct source–load couplinginverterthlow-passsectionisshowninFig.1(b).Fully Canonical Filtering FunctionsThe direct source–loadinverter,the driving pointadmittance4IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.51,NO.1,JANUARY2003Fig.3.Equivalent circuit of transversal array at s=6j1. SolvingforAt infinitefrequencyandis slightly greater than unity for a fully canonical net-work,choosing the negative sign will give a relatively smallvaluefor(11)and correctlygives.It can be shown that the positive sign will give a secondsolutiontransfermatrix forthefor the par-allel-connected transverse array is the sum oftheindividual sections,plusthefor the direct source–load couplinginverterTransversal MatrixNow the two expressionsforand theeigenvaluesandinput couplings and occupy the first row and column ofthe matrix from positions1to(output couplings and they occupy the lastrow and column of.All other entriesarezero.are equivalent to the terminatingimpedances,respectively,in[1].CAMERON:ADV ANCED COUPLING MATRIX SYNTHESIS TECHNIQUES FOR MICROWA VE FILTERS5(a)(b)Fig. 4.Folded canonical network coupling matrix form—fifth-degree example.(a)Folded coupling matrix form.“s ”and “xa ”couplings are zero for symmetric characteristics.(b)Coupling and routing schematic.Reduction oftheinput and output couplings,the transversal topologyis clearly impractical to realize for most cases and must be trans-formed to a more suitable topology if it is to be of practical use.A more convenient form is the folded or “reflex”configuration [9],which may be realized directly or used as the starting point for further transformations to other topologies more suitable for the technology it is intended to use for the construction of the filter.To reduce the transversal matrix to the folded form,the formal procedure,as described in [1],may be applied,working onthecoupling matrix.This proce-dure involves applying a series of similarity transforms (“rota-tions”),which eliminate unwanted coupling matrix entries alter-nately right to left along rows and top to bottom down columns,starting with the outermost rows and columns and working in-wards toward the center of the matrix,until the only remaining couplings are those that can be realized by filter resonators in a folded structure (Fig.4)As withthe”couplings in the cross-di-agonals—they will automatically become zero if they are not required to realize the particular filter characteristic under con-sideration.Illustrative Example To illustratetheandand these are shown in Table I.Being fullycanonical,havebeen multipliedbyand,normalized to the highest degree coefficientof,finding the associatedresiduesis straightforward.How-ever,the degree of the numeratorof,and thefactor hasto be extracted first toreducein degree by one.This is easily accomplished by firstfindingwhich may be seen is the highest degree coefficientof in Table II.Alternatively,At thisstage,will be one degree lessthan],and the associatedeigenvectorswill be positive real for arealizable network,and6IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.51,NO.1,JANUARY2003TABLE I4–4F ILTERING F UNCTION—C OEFFICIENTS OF E(s),F(s)AND P(s)P OLYNOMIALSTABLE II4–4F ILTERING F UNCTION—C OEFFICIENTS OF N UMERATOR AND D ENOMINATOR P OLYNOMIALS OF yCAMERON:ADV ANCED COUPLING MATRIX SYNTHESIS TECHNIQUES FOR MICROWA VE FILTERS7Fig.7.4–4fully canonical synthesis example:analysis of folded coupling matrix.Rejection as s !6j 1=20log (")=30:407dB.A.Parallel-Connected Two-Port NetworksBeing closely related to short-circuit admittance parameters,the eigenvalues and corresponding residues of the filtering func-tion may be separated into groups and subnetworks constructed from them using the same procedures as described above.The subnetworks may then be connected in parallel between the source and load terminations to recover the original filtering characteristics.The transverse array itself may be regarded as a parallel connectionofand,and,)constitute a group or are part of a group,thenyields the folded matrix forthe second-degree subnetwork shown in Fig.8.Now groupingresiduesyields the folded coupling matrix for the fourth-degree subnetwork shown in Fig.9.Superimposing the two matrices yields the overall matrix shown in Fig.10.The results of analyzing the overall coupling matrix are shown in Fig.11(a)(rejection/return loss)and Fig.11(b)(group delay),which show that the 25-dB lobe level and equalized in-band group delay have been preserved.Other solutions for this topology are available depending on the combinations of residues that are chosen for the subnet-works.However,whatever combination is chosen,at least one of the input/output couplings will be negative.Of course,the number of topology options increases as the degree of the fil-tering function increases,for example,a tenth-degree filter may be realized as two parallel-connected two-port networks,one fourth degree and one sixth degree,or as three networks,one second degree and two fourth degree,all connected in parallel between the source and load terminations.Also,each subnet-work itself may reconfigured to other two-port topologies with further transformations,if feasible.If the network is to be synthesizedasinthe last column will be annihilated simultaneously.The pivots of the rotations to annihilate these couplings startat position[]and progress toward the center of the matrix until position[rotations according to Table VIand applied to the transversal matrix:After the series of rotations,the matrix,as shown in Fig.12(a),is obtained,which corresponds to the coupling and routing diagram in Fig.12(b).In every case,at least one of the input/output couplings will be negative.An interesting example of a fourth-degree implementation of this topology realized in dielectric resonator technology is given in [13].B.“Cul-de-Sac”ConfigurationsThe "cul-de-sac"configuration [14]is restricted to double-terminated networks and will realize a maximumof8IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.51,NO.1,JANUARY 2003TABLE V6-2-2S YMMETRIC F ILTERING F UNCTION —R ESIDUES ,E IGENV ALUES ,AND EIGENVECTORS(a)(b)Fig.8.Coupling sub-matrix and coupling/routing diagram for residues k =1and 6.(a)Coupling matrix.(b)Coupling and routingdiagram.(a)(b)Fig.9.Coupling sub-matrix and coupling/routing diagram for residue group k =2;3;4;and 5.(a)Coupling matrix.(b)Coupling and routingdiagram.(a)(b)Fig.10.Superimposed second-and fourth-degree sub-matrices.(a)Coupling matrix.(b)Coupling and routing diagram.formation [1,2,9,and 10in Fig.13(a)],straight-coupled to each other (i.e.,no diagonal cross-couplings).One of thesecouplings(a)(b)Fig.11.Analysis of parallel-connected two-portcouplingmatrix.(a)Rejection and return loss.(b)Groupdelay.(a)(b)Fig.12.Symmetric 6-4filter example—realized as parallel-coupled pairs.(a)Coupling matrix.(b)Coupling and routing diagram.CAMERON:ADV ANCED COUPLING MATRIX SYNTHESIS TECHNIQUES FOR MICROWA VE FILTERS 9TABLE VIS IXTH -D EGREE E XAMPLE —S IMILARITY T RANSFORM S EQUENCE FOR THE R EDUCTION OF THE T RANSVERSAL M ATRIX TO THE P ARALLEL -C OUPLEDP AIRS FORMAT(a)(b)(c)Fig.13.“Cul-de-sac”network configurations.(a)10-3-4network.(b)8-3network.(c)7-1-2network.is always negative;the choice of which one is arbitrary.The entry to and exit from the core quartet are from opposite corners of the square [1and 10,respectively,in Fig.13(a)].Some or all of the rest of the resonators are strung out in cas-cade from the other two corners of the core quartet in equal num-bers (even-degree prototypes)or one more than the other (odd-degree prototypes).The last resonator in each of the two chains has no output coupling,hence,the nomenclature “cul-de-sac”for this configuration.Other possible configurations are shown in Fig.13(b)(eighth degree)and Fig.13(c)(seventh degree).C.Synthesis of the “Cul-de-Sac”NetworkFortunately,the synthesis of the "cul-de-sac"network is very simple and is entirely automatic.Starting with the folded cou-pling matrix,elements are annihilated using a series of regular similarity transforms (for odd-degree filters),and “cross-pivot”transforms (for even-degree filters),beginning with a main line coupling near the center of the matrix,and working outwards along or parallel to the antidiagonal.This gives a maximum oftransforms for even-degree prototypes andfor odd-degree prototypes.The “cross-pivot”similarity transform for even-degree filters is one where the coordinates of the element to be eliminated are the same as the pivot of the transform,i.e.,the element to be annihilated lies on the cross-points of the pivot.The angle for the annihilation of an element at the cross-point is different to that of a regular annihilation and is givenby(17)TABLE VIIP IVOT C OORDINATES FOR THE R EDUCTION OF THE N +2F OLDED M ATRIXTO THE “C UL -DE -S AC ”CONFIGURATION(a)(b)Fig.14.“Cul-de-sac”configuration—seventh-degree example.(a)Original folded coupling matrix.(b)After transformation to “cul-de-sac”configuration.where are the coordinates of the pivot and also of the ele-ment to beannihilated,is an arbitrary integer.Note that,for cross-pivot an-nihilationsof.It is also allowable tohave forwhen10IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.51,NO.1,JANUARY2003(a)(b)Fig.15.Seventh-degree"cul-de-sac"synthesis example—analysis of foldedcoupling matrix.(a)Rejection and return loss.(b)Group delay.The results of analyzing this coupling matrix are presented inFig.15,confirming that the rejection lobe level and group-delayequalization performances have been preserved intact.As was noted above,all the couplings are positive,except forone in the core quartet.This may be moved to any one of thefour couplings for the greatest convenience and implemented asa probe,for example,if the filter is to be realized in coaxial-res-onator technology where the other couplings are inductive irisesor inductive loops.Also,there are no diagonal couplings eventhough the original prototype was asymmetric.If it is feasibleto implement a diagonal coupling between the input and outputof the core quartet,then an extra TZ may be realized,bringingthe maximum number realizable by this topology to。