北师大版2020年七年级数学下册第一章质量评估试卷含答案
2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉
四、运用乘法公式简便计算(每题2分,共4分)
34.(998)235.197×203
五、先化简,再求值(每题4分,共8分)
36.(x+4)(x-2)(x-4),其中x=-1.
37.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=- .
六、解答题(每题4分,共12分)
3.下列运算正确的是().
A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a4
4.下列运算中正确的是().
A. a+ a= a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0
5.下列说法中正确的是().
A.- xy2是单项式B.xy2没有系数
C.x-1是单项式D.0不是单项式
A.6对
B.5对
C.4对
D.3对
9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )
更多功能介绍/zt/
A.互余B.对顶角C.互补D.相等
10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( )
A.50°、40°
B.60°、30°
C.相等或互补
D.相等且互补
4、下列说法中,为平行线特征的是()
①两条直线平行,同旁内角互补;②同位角相等,两条直线平行;③内错角相等,两条直线平行;④垂直于同一条直线的两条直线平行.
A.①
B.②③
C.④
D.②和④
5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()
A.60°
2020年北师大版七年级数学下册单元测试题全套(含答案)
北师大版七年级数学下册单元测试题全套(含答案)第一章达标检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.计算x3·x3的结果是( )A.2x3 B.2x6C.x6 D.x92.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.00122,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.00122用科学记数法表示应为( )A.1.22×10-5 B.122×10-3C.1.22×10-3 D.1.22×10-23.下列计算中,能用平方差公式计算的是( )A.(x+3)(x-2) B.(-1-3x)(1+3x)C.(a2+b)(a2-b) D.(3x+2)(2x-3)4.下列各式计算正确的是( )A.a+2a2=3a3 B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2b D.(2ab)2÷ab=2ab(ab≠0)5.若(y+3)(y-2)=y2+my+n,则m,n的值分别为( )A.m=5,n=6 B.m=1,n=-6C.m=1,n=6 D.m=5,n=-66.计算(8a2b3-2a3b2+ab)÷ab的结果是( )A.8ab2-2a2b+1 B.8ab2-2a2bC.8a2b2-2a2b+1 D.8a2b-2a2b+17.设(a+2b)2=(a-2b)2+A,则A等于( )A.8ab B.-8abC.8b2 D.4ab8.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M、N的大小关系是( ) A.M>N B.M<NC.M=N D.无法确定9.若a =20180,b =2016×2018-20172,c =⎝ ⎛⎭⎪⎫-232016×⎝ ⎛⎭⎪⎫322017,则下列a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <b C .b <a <c D .c <b <a10.已知x 2+4y 2=13,xy =3,求x +2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成一个图形来解决,其中x >y ,能较为简单地解决这个问题的图形是( )二、填空题(每小题3分,共24分) 11.计算:a 3÷a =________.12.若长方形的面积是3a 2+2ab +3a ,长为3a ,则它的宽为__________. 13.若x n =2,y n =3,则(xy )n=________. 14.化简a 4b 3÷(ab )3的结果为________. 15.若2x +1=16,则x =________.16.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.(第16题图)17.已知(x +y )2=1,(x -y )2=49,则x 2+y 2的值为________. 18.观察下列运算并填空.1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2. 三、解答题(共66分) 19.(8分)计算:(1)23×22-⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫12-3;(2)-12+(π-3.14)0-⎝ ⎛⎭⎪⎫-13-2+(-2)3.20.(12分)化简:(1)(2x -5)(3x +2);(2)(2a +3b )(2a -3b )-(a -3b )2;(3)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(4)(a +b -c )(a +b +c ).21.(10分)先化简,再求值:(1)(1+a )(1-a )+(a -2)2,其中a =12;(2)[x 2+y 2-(x +y )2+2x (x -y )]÷4x ,其中x -2y =2.22.(8分)若m p =15,m 2q =7,m r =-75,求m 3p +4q -2r的值.23.(8分)对于任意有理数a 、b 、c 、d ,我们规定符号(a ,b )(c ,d )=ad -bc .例如:(1,3)(2,4)=1×4-2×3=-2. (1)(-2,3)(4,5)=________;(2)求(3a +1,a -2)(a +2,a -3)的值,其中a 2-4a +1=0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题图)25.(10分)阅读:已知a+b=-4,ab=3,求a2+b2的值.解:∵a+b=-4,ab=3,∴a2+b2=(a+b)2-2ab=(-4)2-2×3=10.请你根据上述解题思路解答下面问题:(1)已知a-b=-3,ab=-2,求(a+b)(a2-b2)的值;(2)已知a-c-b=-10,(a-b)c=-12,求(a-b)2+c2的值.参考答案与解析一、1.C 2.C 3.C 4.C 5.B 6.A 7.A 8.B 9.C 10.B 解析:(x +2y )2=x 2+4xy +4y 2,故符合的图形为B. 二、11.a 212.a +23b +1 13.614.a 15.3 16.(2a 2+19a -10) 17.2518.(n 2+5n +5) 解析:观察几个算式可知结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,……由此可知,最后一个式子为完全平方式,且底数为(n +1)(n +4)+1=n 2+5n +5. 19.解:(1)原式=8×4-1-8=23.(4分) (2)原式=-1+1-9-8=-17.(8分)20.解:(1)原式=6x 2+4x -15x -10=6x 2-11x -10.(3分) (2)原式=4a 2-9b 2-a 2+6ab -9b 2=3a 2+6ab -18b 2.(6分) (3)原式=-56x 2y 2-43xy +1.(9分)(4)原式=(a +b )2-c 2=a 2+b 2-c 2+2ab .(12分)21.解:(1)原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(5分)(2)原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷4x =(2x 2-4xy )÷4x =12x -y .(8分)∵x -2y =2,∴12x -y =1,∴原式=1.(10分) 22.解:m3p +4q -2r=(m p )3·(m 2q )2÷(m r )2.(4分)∵m p =15,m 2q =7,m r =-75,∴m 3p +4q -2r=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.(8分)23.解:(1)-22(2分)(2)(3a +1,a -2)(a +2,a -3)=(3a +1)(a -3)-(a -2)(a +2)=3a 2-9a +a -3-(a 2-4)=3a 2-9a +a -3-a 2+4=2a 2-8a +1.(5分)∵a 2-4a +1=0,∴2a 2-8a =-2,∴(3a +1,a -2)(a +2,a -3)=-2+1=-1.(8分)24.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分)25.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(5分)(2)∵a-c-b=-10,(a-b)c=-12,∴(a-b)2+c2=[(a-b)-c]2+2(a-b)c=(-10)2+2×(-12)=76.(10分)第二章达标检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.如图,O是直线AB上一点,若∠1=26°,则∠AOC的度数为( )A.154° B.144°C.116° D.26°或154°(第2题图)3.如图,已知直线a,b被直线c所截,那么∠1的同旁内角是( )A.∠3 B.∠4C.∠5 D.∠6(第3题图)4.下列作图能表示点A到BC的距离的是( )5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有( )A.1个 B.2个C.3个 D.4个(第5题图)6.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4的度数为( ) A.70° B.80°C.110° D.100°(第6题图)7.如图,AB∥CD,CD∥EF,则∠BCE等于( )A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠2(第7题图)8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为( )A.85° B.70°C.75° D.60°(第8题图)9.如图,E,F分别是AB,CD上的点,G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列结论不一定成立的是( )A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°(第9题图)10.一次数学活动中,检验两条完全相同的纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明把纸带①沿AB折叠,量得∠1=∠2=50°;小丽把纸带②沿GH折叠,发现GD与GC重合,HF与HE 重合.则下列判断正确的是( )A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C.纸带①、②的边线都平行D.纸带①、②的边线都不平行(第10题图)二、填空题(每小题3分,共24分)11.如图,∠1和∠2是________角,∠2和∠3是________角.(第11题图)12.如图是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得PA=5.52米,PB =5.37米,MA=5.60米,那么他的跳远成绩应该为________米.(第12题图)(第13题图)13.如图,直线AB ,CD 交于点O ,OE ⊥AB ,OD 平分∠BOE ,则∠AOC =________°.14.如图,条件:____________可使AC ∥DF ;条件:____________可使AB ∥DE (每空只填一个条件).(第14题图) (第15题图)15.如图是超市里的购物车,扶手AB 与车底CD 平行,∠2比∠3大10°,∠1是∠2的2011倍,则∠2的度数是________.16.一个安全用电标识如图①所示,此标识可以抽象为图②中的几何图形,其中AB ∥CD ,ED ∥BF ,点E 、F 在线段AC 上.若∠A =∠C =17°,∠B =∠D =50°,则∠AED 的度数为________.(第16题图) (第17题图)17.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a )°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF .其中正确的结论是________(填序号). 18.已知OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为________. 三、解答题(共66分)19.(7分)已知一个角的余角比它的补角的23还小55°,求这个角的度数.20.(7分)用直尺和圆规作图:已知∠1,∠2,求作一个角,使它等于∠1+2∠2.(第20题图)21.(8分)如图,DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2,试说明:CD⊥AB.解:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(__________________________),∴∠2=∠________(____________________).∵∠1=∠2(已知),∴∠1=∠________(等量代换),∴EF∥CD(________________________),∴∠AEF=∠________(__________________________).∵EF⊥AB(已知),∴∠AEF=90°(________________),∴∠ADC=90°(________________),∴CD⊥AB(________________).(第21题图)22.(8分)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1,求∠AOF 的度数.(第22题图)23.(10分)如图,已知直线l1∥l2,A,B分别是l1,l2上的点,l3和l1,l2分别交于点C,D,P是线段CD 上的动点(点P不与C,D重合).(1)若∠1=150°,∠2=45°,求∠3的度数;(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.(第23题图)24.(12分)如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)试说明:AB∥CD;(2)H是BE延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.(第24题图)上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.(第25题图)参考答案与解析1.C 2.A 3.B 4.B 5.C 6.A 7.C 8.C 9.C10.B 解析:如图①,∵∠1=∠2=50°,∴∠3=∠1=50°,∠4=180°-∠2=130°.由折叠可知∠4=∠2+∠5,∴∠5=∠4-∠2=80°.∵∠3≠∠5,∴纸带①的边线不平行.如图②,∵GD 与GC 重合,HF 与HE 重合,∴∠CGH =∠DGH =90°,∠EHG =∠FHG =90°,∴∠CGH +∠EHG =180°,∴纸带②的边线平行.故选B.(第10题答图)11.同位 同旁内 12.5.37 13.45 14.∠ACB =∠EFD ∠B =∠E15.55° 16.67° 17.①②③18.30°或150° 解析:∵OA ⊥OC ,∴∠AOC =90°.∵∠AOB ∶∠AOC =2∶3,∴∠AOB =60°,如答图,∠AOB 的位置有两种情况:一种是在∠AOC 内,一种是在∠AOC 外.(1)当在∠AOC 内时,∠BOC =90°-60°=30°;(2)当在∠AOC 外时,∠BOC =90°+60°=150°.综上可知,∠BOC 的度数为30°或150°.(第18题答图)19.解:设这个角的度数为x ,依题意有23(180°-x )-55°=90°-x ,(4分)解得x =75°.故这个角的度数为75°.(7分) 20.解:略.(7分)21.解:同位角相等,两直线平行 ACD 两直线平行,内错角相等 ACD 同位角相等,两直线平行(4分)ADC 两直线平行,同位角相等 垂直的定义 等量代换 垂直的定义(8分)22.解:∵OE 平分∠BOD ,∴∠DOE =∠EOB .(2分)又∵∠AOD ∶∠DOE =4∶1,∠AOD +∠DOE +∠EOB =180°,∴∠DOE =∠EOB =30°,∠AOD =120°,∴∠COB =∠AOD =120°.(5分)∵OF 平分∠COB ,∴∠BOF =12∠COB=60°,∴∠AOF =180°-∠BOF =180°-60°=120°.(8分)=150°,∠2=45°,∴∠APE =180°-∠1=180°-150°=30°,∠BPE =∠2=45°,∴∠3=∠APE +∠BPE =30°+45°=75°.(6分)(2)由(1)知∠1+∠APE =180°,∠2=∠BPE .∵∠1=α,∠2=β,∴∠APB =∠APE +∠BPE =180°-∠1+∠2=180°-α+β,(8分)∴∠APC +∠BPD =180°-∠APB =180°-(180°-α+β)=α-β.(10分)24.解:(1)∵BE 平分∠ABD ,DE 平分∠BDC ,∴∠ABD =2∠EBD ,∠BDC =2∠EDB .(3分)∵∠EBD +∠EDB =90°,∴∠ABD +∠BDC =2(∠EBD +∠EDB )=180°,∴AB ∥CD .(6分)(2)∠EBI =12∠BHD .(8分)理由如下:∵AB ∥CD ,∴∠ABH =∠EHD .(10分)∵BI 平分∠EBD ,∴∠EBI =12∠EBD=12∠ABH =12∠BHD .(12分) 25.解:(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B .(1分)理由如下:∵AD ∥BC ,∴∠D =∠DCG .∵∠FCG =90°,∠DCE =90°,∴∠ECF =∠DCG =∠D .∵AB ∥DC ,∴∠B =∠DCG =∠D ,∴与∠D 相等的角为∠DCG ,∠ECF ,∠B .(4分)(2)∵∠ECF =25°,∠DCE =90°,∴∠FCD =65°.又∵∠BCF =90°,∴∠BCD =65°+90°=155°.(7分)(3)分两种情况进行讨论:①如答图a ,当点C 在线段BH 上时,点F 在DA 的延长线上,此时∠ECF =∠DCG =∠B =25°.∵AD ∥BC ,∴∠BAF =∠B =25°;(10分)②如图b ,当点C 在BH 的延长线上时,点F 在线段AD 上.∵∠B =25°,AD ∥BC ,∴∠BAF =180°-25°=155°.综上所述,∠BAF 的度数为25°或155°.(14分)(第25题答图)第三章 单元检测卷 (满分:120分 时间:90分钟)一、选择题(每小题3分,共30分)1.在圆的面积公式S =πr 2中,常量为( )2.用总长50m 的篱笆围成长方形场地,长方形的面积S (m 2)与一边长l (m)之间的关系式为S =l (25-l ),那么下列说法正确的是( ) A .l 是常量,S 是变量B .25是常量,S 与l 是变量,l 是因变量C .25是常量,S 与l 是变量,S 是因变量D .以上说法都不对3.如果圆珠笔有12支,总售价为18元,用y (元)表示圆珠笔的总售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( )A .y =12xB .y =18xC .y =23xD .y =32x4.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( )(第4题图)A .37.8℃B .38℃C .38.7℃D .39.1℃5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( )A.b =d 2B .b =2dC .b =d2D .b =d +256.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )7.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是( ) A.y=-x+8 B.y=-x+4C.y=x-8 D.y=x-48.如图是某港口一天24小时的水深情况变化图象,其中点A处表示的是4时水深16米,点B处表示的是20时水深16米.某船在港口航行时,其水深至少要有16米,该船在港口装卸货物的时间需8小时,另外进港停靠和离港共需4小时.若此船要在进港的当天返航,则该船必须在一天中( ) A.4时至8时内进港 B.4时至12时内进港C.8时至12时内进港 D.8时至20时内进港(第8题图)(第9题图)9.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的关系图象.根据图象信息,下列说法正确的是( )A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时花的时间少于回家时所花的时间D.小王去时走下坡路,回家时走上坡路10.如图,在正方形ABCD中,AB=2,E是AB的中点,动点P从点B开始,沿着边BC,CD匀速运动到点D.设点P运动的时间为x,EP=y,那么能表示y与x关系的图象大致是( )二、填空题(每小题3分,共24分)11.大家知道,冰层越厚,所承受的压力越大,其中自变量是_____,因变量是_____.12.如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为________℃.(第12题图)13.某复印店用电脑编辑并打印一张文稿收费2元,再每复印一张收费0.3元,则总收费y(元)与同样文稿的数量x(张)之间的关系式是______________.14.1~6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如下表:则6个月大的婴儿的体重约为________.15.如图所示的图象反映的过程是:小明从家去书店看书,又去学校取封信后马上回家,其中x表示时间,y表示小明离开家的距离,则小明从学校回家的平均速度为________千米/时.(第15题图)16.某地区截止到2017年栽有果树2400棵,计划今后每年栽果树300棵,x年后,总共栽有果树y棵,则y与x之间的关系式为______________;当x=2时,y的值为________.17.某城市大剧院的一部分为扇形,观众席的座位设置如下表:则每排的座位数m与排数n的关系式为____________.18.如图是小明从学校到家里行进的路程s(米)与时间t(分钟)的关系图象.观察图象得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快.其中正确的有__________(填序号).(第18题图)三、解答题(共66分)19.(8分)下表记录的是某橘农去年橘子的销售额(元)随橘子销量(千克)变化的有关数据,请根据表中数据回答下列问题:(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当销量是5千克时,销售额是多少?(3)估计当销量是50千克时,销售额是多少?20.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间以更快的速度前进.(第20题图)(1)情境a,b所对应的图象分别是________,________(填序号);(2)请你为剩下的图象写出一个适合的情境.21.(8分)如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,自变量是________,因变量是________;(2)圆柱的体积V与底面半径r的关系式是____________;(3)当圆柱的底面半径由2变化到8时,圆柱的体积由________cm3变化到________cm3.(第21题图)22.(8分)心理学家发现学生对概念的接受能力y与提出概念所用的时间x(分)之间有如下关系:(其中0≤x≤30)(1)当提出概念所用的时间是10分钟时,学生的接受能力是多少?(2)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(3)从表中可知,时间x在什么范围内,学生的接受能力逐步增强?时间x在什么范围内,学生的接受能力逐步降低?23.(10分)温度的变化是人们在生活中经常谈论的话题,请你根据图象(如图)回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?(第23题图)24.(12分)圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?(第24题图)25.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(时)的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;②当甲、乙所生产的零件个数相等时,求t的值;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.(第25题图)参考答案与解析一、1.B 2.C 3.D 4.C 5.C 6.B 7.A 8.A 9.B 10.C 二、11.冰层的厚度 冰层所承受的压力12.12 13.y =0.3x +1.7 14.8200克 15.6 16.y =2400+300x 3000 17.m =3n +35 18.①②④三、19.解:(1)表中反映了橘子的销量与销售额之间的关系,橘子的销量是自变量,销售额是因变量.(4分)(2)当销量是5千克时,销售额是10元.(6分) (3)当销量是50千克时,销售额是100元.(8分) 20.解:(1)图③; 图①(4分)(2)答案不唯一,如小芳离开家不久,休息了一会儿,又走回了家.(8分) 21.解:(1)半径r ;体积V (2分) (2)V =4πr 2(5分) (3)16π 256π(8分)22.解:(1)当x =10时,y =59,所以时间是10分钟时,学生的接受能力是59.(2分) (2)当x =13时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4分)(3)由表中数据可知当2<x <13时,y 值逐渐增大,学生的接受能力逐步增强;当13<x <20时,y 值逐渐减小,学生的接受能力逐步降低.(8分)23.解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(3分) (2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(6分) (3)温度下降的时间范围为0时至3时及15时至24时,图中的A 点表示的是21点时的气温.(10分) 24.解:(1)由图象可知去超市用了10分钟,从超市返回用了20分钟,家到超市的距离是4千米,(2分)故圣诞老人去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分).(4分)(2)在超市逗留的时间是40-10=30(分钟).(7分)(3)去超市的过程中2÷25=5(分钟),返回的过程中2÷15=10(分钟),40+10=50(分钟).故圣诞老人在8:05和8:50时离家2千米.(12分) 25.解:(1)①甲 甲 3 (3分)②由图象可知,甲、乙所生产的零件个数相等时有两个时刻.第一个时刻为t =3时,(5分)设第二个时刻为t =x 时,则此时甲生产零件10+40-107-5(x -5)=15x -65(个),乙生产零件4+40-48-2(x -2)=6x -8(个),则15x -65=6x -8,解得x =193.综上可知,当t =3和193时,甲、乙所生产的零件个数相等.(9分)(2)甲在5~7时的生产速度最快,(10分)∵40-107-5=15(个),∴他在这段时间内每小时生产零件15个.(12分)第四章 单元检测卷 (满分:120分 时间:90分钟)一、选择题(每小题3分,共30分) 1.若三角形的两个内角的和是85°,则这个三角形是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定2.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,53.如图,BC ⊥AE 于点C ,CD ∥AB ,∠DCB =40°,则∠A 的度数是( ) A .70° B .60° C .50° D .40°(第3题图) (第4题图)4.如图,△ABC ≌△DEF ,若∠A =50°,∠C =30°,则∠E 的度数为( ) A .30° B .50° C .60° D .100°5.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是( ) A .10 B .11 C .16 D .266.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( ) A .AC =BD B .∠CAB =∠DBA C .∠C =∠D D .BC =AD(第6题图) (第7题图)7.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( ) A .45° B .60° C .90° D .100°8.如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA =ED .已知大树AB 的高为5m ,小华行走的速度为1m/s ,则小华走的时间是( )A .13sB .8sC .6sD .5s(第8题图) (第9题图)9.如图,在△ABC 和△BDE 中,点C 在BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDB B .∠BED C.12∠AFB D .2∠ABF 10.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,点F 为BC 的中点,若∠BAC =104°,∠C =40°,则有下列结论:①∠BAE =52°;②∠DAE =2°;③EF =ED ;④S △ABF =12S △ABC .其中正确的个数有( )A .1个B .2个C .3个D .4个(第10题图)二、填空题(每小题3分,共24分)11.人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的__________.12.如图,AD 是△ABC 的一条中线,若BC =10,则BD =________.(第12题图)13.若直角三角形中两个锐角的差为20°,则这两个锐角的度数分别是________. 14.如图,AB ∥CD ,AD 与BC 交于点E .若∠B =35°,∠D =45°,则∠AEC =________°.(第14题图) (第15题图)15.如图,在四边形ABCD 中,∠1=∠2,∠3=∠4.若AB =6cm ,AD =8cm ,则CD =________cm. 16.如图,在△ABC 中,∠B =30°,∠C =70°,AD 平分∠BAC ,交BC 于F ,DE ⊥BC 于E ,则∠D =________°.(第16题图) (第17题图)17.如图,△ABC 的中线BD ,CE 相交于点O ,OF ⊥BC ,且AB =6,BC =5,AC =4,OF =1.4,则四边形ADOE 的面积是________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),若∠D =115°,则∠B=________°.(第18题图)三、解答题(共66分)19.(8分)如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.(第19题图)20.(8分)如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.试说明:(1)△ABC≌△DEF;(2)AB∥DE.(第20题图)21.(8分)如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.(第21题图)22.(10分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.(第22题图)23.(10分)如图,A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘附近地形复杂不容易直接测量.(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;(2)在你设计的测量方案中,需要测量哪些数据?为什么?(第23题图)24.(10分)如图,B,C都是直线BC上的点,点A是直线BC上方的一个动点,连接AB,AC得到△ABC,D,E分别为AC,AB上的点,且AD=BD,AE=BC,DE=DC.请你探究,线段AC与BC具有怎样的位置关系时DE⊥AB?为什么?(第24题图)25.(12分)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.(第25题图)参考答案与解析一、1.A 2.A 3.C 4.D 5.C 6.A 7.C 8.B 9.C 10.C 二、11.稳定性 12.5 13.55°,35° 14.80 15.6 16.20 17.3.518.65 解析:过C 作CF ⊥AD ,交AD 的延长线于F .∵AC 平分∠BAD ,∴∠CAF =∠CAE .又∵CF ⊥AF ,CE ⊥AB ,∴∠AFC =∠AEC =90°.在△CAF 和△CAE 中,∵⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,∴△CAF ≌△CAE (AAS),∴FC =EC ,AF =AE .又∵AE =12(AB +AD ),∴AF =12(AE +EB +AD ),即AF =BE +AD ,∴DF =BE .在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,∴△FDC ≌△EBC (SAS),∴∠FDC =∠EBC .又∵∠ADC =115°,∴∠FDC =180°-115°=65°,∴∠B =65°.19.解:(1)∵∠B =54°,∠C =76°,∴∠BAC =180°-54°-76°=50°.(2分)∵AD 平分∠BAC ,∴∠BAD =∠CAD =25°,∴∠ADB =180°-∠B -∠BAD =180°-54°-25°=101°,∴∠ADC =180°-∠ADB =180°-101°=79°.(5分)(2)∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC =90°-∠C =90°-76°=14°.(8分)20.解:(1)∵AC ⊥BC ,DF ⊥EF ,∴∠ACB =∠DFE =90°.(2分)又∵BC =EF ,AC =DF ,∴△ABC ≌△DEF (SAS).(5分)(2)∵△ABC ≌△DEF ,∴∠B =∠DEF ,∴AB ∥DE .(8分) 21.解:能作出两个等腰三角形,如答图.(8分)(第21题答图)22.解:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS),∴BD =CE .(4分)(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .(6分)∵△ABD ≌△ACE ,∴∠B =∠C .(7分)在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN (ASA),∴∠M =∠N .(10分)23.解:(1)方案为:①如图,过点B 画一条射线BD ,在射线BD 上选取能直接到达的O ,D 两点,使OD =OB ;②作射线AO 并在AO 上截取OC =OA ;③连接CD ,则CD 的长即为AB 的长.(3分)理由如下:在△AOB 和△COD 中,∵⎩⎪⎨⎪⎧OA =OC (测量方法),∠AOB =∠COD (对顶角相等),OB =OD (测量方法),∴△AOB ≌△COD (SAS),∴AB =CD .(6分)(第23题答图)(2)根据这个方案,需要测量5个数据,即:线段OA ,OB ,OC ,OD ,CD 的长度,并使OC =OA ,OD =OB ,则CD =AB .(10分)24.解:当AC ⊥BC 时,DE ⊥AB .(3分)理由如下:∵AC ⊥BC ,∴∠C =90°.在△AED 和△BCD 中,∵⎩⎪⎨⎪⎧AD =BD ,AE =BC ,DE =DC ,∴△AED ≌△BCD (SSS).(7分)∴∠AED =∠C =90°,∴DE ⊥AB .(10分)25.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =90°,∠BCD +∠ACD =90°,∴∠A =∠BCD .(3分)(第25题答图)(2)如图,当点E 在射线BC 上移动5s 时,CF =AB .可知BE =2×5=10(cm),∴CE =BE -BC =10-3=7(cm),∴CE =AC .∵∠A =∠BCD ,∠ECF =∠BCD ,∴∠A =∠ECF .(5分)在△CFE 与△ABC 中⎩⎪⎨⎪⎧∠ECF =∠A ,CE =AC ,∠CEF =∠ACB ,∴△CFE ≌△ABC ,∴CF =AB .(7分)当点E 在射线CB 上移动2s 时,CF =AB .可知BE ′=2×2=4(cm),∴CE ′=BE ′+BC =4+3=7(cm),∴CE ′=AC .(9分)在△CF ′E ′与△ABC 中⎩⎪⎨⎪⎧∠E ′CF ′=∠A ,CE ′=AC ,∠CE ′F ′=∠ACB ,∴△CF′E′≌△ABC,∴CF′=AB.综上可知,当点E运动5s或2s时,CF=AB.(12分)第五章单元检测卷(时间:120分满分:90分钟)一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是( )2.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为( )A.6 B.5 C.4 D.3(第2题图)3.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法不一定正确的是( ) A.AC=A′C′ B.BO=B′OC.AA′⊥MN D.AB∥B′C′(第4题图)(第5题图)5.如图,∠C=90°,AD平分∠BAC交BC于D.若BC=32,且BD∶CD=9∶7,则点D到AB的距离为( ) A.18 B.16C.14 D.126.已知等腰三角形有一个角为70°,那么它的底角为( )A.45°或55° B.70°或55°C.55° D.70°7.如图,在△ABC中,AB=AC,DB=DC.若BC=6,AD=5,则图中阴影部分的面积为( ) A.30 B.15C.7.5 D.6(第7题图)(第8题图)8.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50° B.51°C.51.5° D.52.5°9.如图,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN 上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )A.4.5cm B.5.5cmC.6.5cm D.7cm(第9题图)10.如图是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面部分展开后的图形是( )二、填空题(每小题3分,共24分)11.剪纸艺术充分体现了我国劳动人民的智慧,下图中的剪纸图案共有________条对称轴.(第11题图)(第12题图)12.如图①是一把园林剪刀,把它抽象为图②,其中OA=OB.若剪刀张开的角为30°,则∠A=________°. 13.在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.14.如图,在△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=________°.(第14题图)(第15题图)15.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点.若△ABC与△EBC的周长分别是40cm,24cm,则AB=________cm.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=________°.(第16题图)(第17题图)17.如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OD的长度为________.18.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=________.(第18题图)三、解答题(共66分)19.(8分)如图,以虚线为对称轴,画出图形的另一半,并说明图形是什么形状.(第19题图)20.(8分)如图,两个班的学生分别在C,D两处参加植树劳动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使M到两条道路的距离相等,且MC=MD,这个茶水供应点的位置应建在何处?并在图中表示出来.(第20题图)21.(8分)如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.(第21题图)22.(10分)如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.(第22题图)23.(10分)如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,连接AD,AE,△ADE的周长为6cm.(1)求BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为16cm,求OA的长.(第23题图)24.(10分)如图,已知∠C=∠D=90°,E是CD上的一点,AE,BE分别平分∠DAB,∠ABC.(1)试说明:点E为CD的中点;(2)求∠AEB的度数.(第24题图)25.(12分)(1)如图,△ABC为等边三角形,点M是BC上任意一点,点N是CA上任意一点,且BM=CN,BN与AM交于点Q,猜测∠BQM等于多少度,并说明理由;(2)若点M是BC延长线上任意一点,点N是CA延长线上任意一点,且BM=CN,BN与AM的延长线交于点Q,(1)中结论还成立吗?画出相应图形,说明理由.(第25题图)参考答案与解析一、1.A 2.B 3.C 4.D 5.C 6.B 7.C 8.D 9.A 10.D二、11.4 12.75 13.5∶3 14.50 15.16 16.70 17.2 cm18.70°解析:∵D为AB的中点且点A和点F关于DE所在直线对称,∴AD=DF=BD,∴∠DFB=∠B=55°,∴∠BDF=70°.19.解:图略.(4分)图①为五角星,图②为一棵树.(8分)20.解:连接CD,先作CD的垂直平分线l1,(4分)再作∠AOB的平分线l2,l1与l2的交点M即为所求,如图所示.(8分)(第20题答图)21.解:设∠DAC=x,则∠DAE=2x.(2分)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB=2x.(5分)∵∠C=90°,∴2x+(2x+x)=90°,解得x=18°,∴∠B=36°.(8分)22.解:∵AP=PQ=AQ,∴△APQ是等边三角形,∴∠APQ=∠AQP=∠PAQ=60°.∵AP=BP,∴∠PBA=∠PAB.(3分)又∵∠PBA+∠PAB=180°-∠APB=∠APQ=60°,∴∠PBA=∠PAB=30°.(5分)同理∠QAC =30°,(7分)∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.(10分)23.解:(1)∵l1,l2分别是线段AB,AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE =BC.(3分)∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm.(5分)(2)∵AB边的垂直平分线l1与AC边的垂直平分线l2交于点O,∴OA=OB=OC.(7分)∵△OBC的周长为16cm,即OC+OB+BC=16cm,∴OC+OB=16-6=10(cm),∴OC=5cm,∴OA=5cm.(10分)24.解:(1)过点E作EF⊥AB于点F.∵BE平分∠ABC,EC⊥BC,EF⊥AB,∴CE=EF.(2分)同理可得EF=ED.∴CE=ED,即点E为CD的中点.(5分)(2)∵∠C=90°,∠D=90°,∴∠C+∠D=180°,∴BC∥AD,∴∠ABC+∠DAB=180°.(7分)又∵AE,BE分别平分∠DAB,∠ABC,∴∠ABE+∠BAE=90°,∴∠AEB=90°.(10分)25.解:(1)∠BQM=60°.(1分)理由如下:∵△ABC为等边三角形,∴AB=BC,∠ACB=∠ABC=60°.又∵BM=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN.(3分)∵∠CBN+∠ABN=∠ABC=60°,∴∠BAM+∠ABN =60°,∴∠AQB=120°,∴∠BQM=60°.(5分)(2)成立,所画图形如图所示.(7分)理由如下:∵△ABC为等边三角形,∴AB=BC,∠ACB=∠ABC=60°.又∵BM=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠NBC.(9分)∵∠BAC=∠ABC=60°,∴∠NBA=∠CAM.而∠CAM+∠QAB=180°-∠BAC=120°,∴∠NBA+∠QAB=120°.∴∠BQM=180°-(∠NBA+∠QAB)=60°.(12分)(第25题答图)第六章 单元检测卷 (时间:120分 满分:90分钟)一、选择题(每小题3分,共30分) 1.下列事件中是必然事件的是( ) A .内错角相等B .掷一枚质地均匀的骰子,骰子停止后朝上的点数是6C .地球总是绕着太阳转D .今年10月1日,北京一定会下雨2.某校举行“中国梦·我的梦”演讲比赛,需要在初三年级选取一名主持人,共有12名同学报名参加,其中初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,现从这12名同学中随机选取一名主持人,则选中的这名同学恰好是初三(1)班同学的概率是( )A.112 B.13 C.12 D.163.如图,一个圆形转盘被平分成了6个扇形,任意转动这个转盘一次,当转盘停止转动时,指针指向阴影区域的概率是( )A .1B .0 C.12 D.13(第3题图)4.某班有25名男生和18名女生,用抽签方式确定一名学生代表,则( ) A .女生选作代表的机会大 B .男生选作代表的机会大C .男生和女生选作代表的机会一样大D .男、女生选作代表的机会大小不确定。
北师大版七年级数学下册 第一章 名校优选检测题【含答案】
北师大版七年级数学下册 第一章 名校优选检测题(满分120分,考试用时120分钟)姓名:________ 班级:________ 分数:________一、选择题(每小题3分,共30分)1.(天水中考)下列运算正确的是 ( )A.(ab)2=a 2b 2 B .a 2+a 2=a 4 C .(a 2)3=a 5 D .a 2·a 3=a 62.(盘锦中考)某微生物的直径为0.000 005 035 m,用科学记数法表示该数正确的是 ( )A.5.035×10-6 B .50.35×10-5 C .5.035×106 D .5.035×10-53.将⎝ ⎛⎭⎪⎫13 -1 ,(-2 022)0,10-2这三个数按从小到大的顺序排列,正确的结果是( )A.⎝ ⎛⎭⎪⎫13 -1 <(-2 022)0<10-2 B .(-2 022)0<⎝ ⎛⎭⎪⎫13 -1 <10-2 C .(-2 022)0<10-2<⎝ ⎛⎭⎪⎫13 -1 D .10-2<(-2 022)0<⎝ ⎛⎭⎪⎫13 -14.在下列各式中,能用平方差公式计算的有 ( ) ①(3xy +a)(-3xy +a) ②(-4x -5y)(4x +5y) ③(a +b +3)(a -b -3)A .0个B .1个C .2个D .3个 4.若 ×3(ab)2=9a 3b 2,则 内应填的代数式是 ( ) A.ab B .3ab C .a D .3a6.已知一个长方体的长、宽、高分别为3a -4,2a,a,则它的体积等于( )A.3a3-4a2B.a2C.6a3-8a2D.6a2-8a7.若5x=125y,3y=9z,则x∶y∶z等于( )A.1∶2∶3 B.3∶2∶1 C.1∶3∶6 D.6∶2∶18.设A=(x-3)(x-7),B=(x-2)(x-8),则A,B的关系为( )A.A>B B.A<B C.A=B D.无法确定9.如图,在矩形中,横向阴影部分是矩形,另一个阴影部分是平行四边形,依据图中标注的数据,计算图中空白部分的面积是( )A.bc-ab+ac+c2B.ab-bc-ac+c2C.a2+ab+bc-ac D.b2-bc+a2-ab10.定义运算:a⊗b=a(1-b),下面给出了关于这种运算的几种结论,其中结论正确的序号是( )①2⊗(-2)=6②a⊗b=b⊗a③若a+b=0,则(a⊗a)+(b⊗b)=2ab④若a⊗b=0,则a=0或b=1A.①④B.①③C.②③④D.①②④二、填空题(每小题3分,共24分)11.如果(4a2b-3ab2)÷M=-4a+3b,则单项式M等于.12.在电子显微镜下测得一个圆球形体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是cm.13.若-12 x +x 2+p 是一个完全平方式,则p 的值是 . 14.若(x n y ·xy m )5=x 10y 15,则3m(n +1)的值为 . 15.已知m +n =mn,则(m -1)(n -1)= .16.21×(5a -b)2m ÷78 (5a -b)n =24,则m,n(m,n 为自然数)的关系是 . 17.若a 为正整数,且x 2a =6,则(2x 5a )2÷4x 6a 的值为 . 18.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 5×6×7×8+1=1 680+1=1 681=412; 6×7×8×9+1=3 024+1=3 025=552; 7×8×9×10+1=5 040+1=5 041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1= . 三、解答题(共66分) 19.(12分)计算:(1)992-69×71; (2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy);(3)(2a2)3-6a3(a3+2a2+a);(4)(a+b-c)(a-b+c).20.(10分)先化简,再求值:(1)(2a-1)2-2(a+1)(a-1)-a(a-2),其中1-a2+2a=0;(2)已知6x-5y=10,求[(-2x+y)(-2x-y)-(2x-3y)2]÷4y的值.21.(10分)已知a x·a y=a5,a x÷a y=a.(1)求x+y和x-y的值;(2)x2+y2的值.22.(10分)如图,墨墨的爸爸将一块长为⎝ ⎛⎭⎪⎫245a 3+5b 2 分米、宽为5a 5分米的长方形铁皮的四个角都剪去一个边长为12 a 4分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a,b 的整式表示盒子的外表面的面积;(2)若a =1,b =0.2,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需多少元.23.(12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 020这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k(其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?24.(12分)阅读下面材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘a·a·…·a,\s\do4(n个a))记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b =n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=;log216=;log264=.(2)通过观察(1)中的三个数4,16,64之间满足怎样的关系式?log24,log216,log264之间又满足怎样的关系式?(3)由(2)猜想,你能归纳出一个一般性的结论吗?log a M+log a N=(a>0且a≠1,M>0,N>0).(4)根据同底数幂的运算法则:a m·a n=a m+n以及对数的定义说明(3)中的结论.参考答案一、选择题(每小题3分,共30分) 1.(天水中考)下列运算正确的是 ( A )A.(ab)2=a 2b 2 B .a 2+a 2=a 4 C .(a 2)3=a 5 D .a 2·a 3=a 62.(盘锦中考)某微生物的直径为0.000 005 035 m,用科学记数法表示该数正确的是 ( A )A.5.035×10-6 B .50.35×10-5 C .5.035×106 D .5.035×10-55.将⎝ ⎛⎭⎪⎫13 -1 ,(-2 022)0,10-2这三个数按从小到大的顺序排列,正确的结果是( D )A.⎝ ⎛⎭⎪⎫13 -1 <(-2 022)0<10-2 B .(-2 022)0<⎝ ⎛⎭⎪⎫13 -1 <10-2 C .(-2 022)0<10-2<⎝ ⎛⎭⎪⎫13 -1 D .10-2<(-2 022)0<⎝ ⎛⎭⎪⎫13 -14.在下列各式中,能用平方差公式计算的有 ( C ) ①(3xy +a)(-3xy +a) ②(-4x -5y)(4x +5y) ③(a +b +3)(a -b -3)A .0个B .1个C .2个D .3个6.若 ×3(ab)2=9a 3b 2,则 内应填的代数式是 (D ) A.ab B .3ab C .a D .3a6.已知一个长方体的长、宽、高分别为3a -4,2a,a,则它的体积等于 ( C )A.3a 3-4a 2 B .a 2 C .6a 3-8a 2 D .6a 2-8a9.若5x =125y ,3y =9z ,则x ∶y ∶z 等于 ( D ) A.1∶2∶3 B .3∶2∶1 C .1∶3∶6 D .6∶2∶1 10.设A =(x -3)(x -7),B =(x -2)(x -8),则A,B 的关系为( A ) A.A>B B .A<B C .A =B D .无法确定9.如图,在矩形中,横向阴影部分是矩形,另一个阴影部分是平行四边形,依据图中标注的数据,计算图中空白部分的面积是( B )A.bc -ab +ac +c 2 B .ab -bc -ac +c 2 C .a 2+ab +bc -ac D .b 2-bc +a 2-ab10.定义运算:a ⊗b =a(1-b),下面给出了关于这种运算的几种结论,其中结论正确的序号是 ( A )①2⊗(-2)=6 ②a ⊗b =b ⊗a ③若a +b =0,则(a ⊗a)+(b ⊗b)=2ab ④若a ⊗b =0,则a =0或b =1A .①④B .①③C .②③④D .①②④ 二、填空题(每小题3分,共24分)11.如果(4a 2b -3ab 2)÷M =-4a +3b,则单项式M 等于-ab .12.在电子显微镜下测得一个圆球形体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是0.1cm.13.若-12 x +x 2+p 是一个完全平方式,则p 的值是116 . 14.若(x n y ·xy m )5=x 10y 15,则3m(n +1)的值为12.15.已知m +n =mn,则(m -1)(n -1)=1.16.21×(5a -b)2m ÷78 (5a -b)n =24,则m,n(m,n 为自然数)的关系是2m =n . 17.若a 为正整数,且x 2a =6,则(2x 5a )2÷4x 6a 的值为36 . 18.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 5×6×7×8+1=1 680+1=1 681=412; 6×7×8×9+1=3 024+1=3 025=552; 7×8×9×10+1=5 040+1=5 041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=(n 2+5n +5)2. 三、解答题(共66分) 19.(12分)计算: (1)992-69×71;解:原式=(100-1)2-(70-1)(70+1)=10 000-200+1-4 900+1 =4 902.(2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy); 解:原式=-56 x 2y 2-43 xy +1.(3)(2a 2)3-6a 3(a 3+2a 2+a); 解:原式=8a 6-6a 6-12a 5-6a 4=2a 6-12a 5-6a 4.(4)(a +b -c)(a -b +c).解:原式=[a +(b -c)][a -(b -c)]=a 2-(b -c)2 =a 2-b 2+2bc -c 2.20.(10分)先化简,再求值:(1)(2a -1)2-2(a +1)(a -1)-a(a -2),其中1-a 2+2a =0; 解:原式=4a 2-4a +1-2a 2+2-a 2+2a =a 2-2a +3.∵1-a 2+2a =0,∴a 2-2a =1, 则原式=1+3=4.(2)已知6x -5y =10,求[(-2x +y)(-2x -y)-(2x -3y)2]÷4y 的值. 解:原式=(4x 2-y 2-4x 2+12xy -9y 2)÷4y =(12xy -10y 2)÷4y =3x -52 y.当6x -5y =10时,原式=12 (6x -5y)=5. 21.(10分)已知a x ·a y =a 5,a x ÷a y =a. (1)求x +y 和x -y 的值; (2)x 2+y 2的值.解:(1)由a x ·a y =a x +y =a 5,得x +y =5;由a x ÷a y =a x -y =a,得x -y =1.即x +y 和x -y 的值分别为5和1;(2)x 2+y 2=12 [(x +y)2+(x -y)2]=12 (52+12)=13. 22.(10分)如图,墨墨的爸爸将一块长为⎝ ⎛⎭⎪⎫245a 3+5b 2 分米、宽为5a 5分米的长方形铁皮的四个角都剪去一个边长为12 a 4分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a,b 的整式表示盒子的外表面的面积;(2)若a =1,b =0.2,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需多少元.解:(1)S 外表面=S 长方形-4S 小正方形=⎝ ⎛⎭⎪⎫245a 3+5b 2 ·5a 5-4×⎝ ⎛⎭⎪⎫12a 4 2 =24a 8+25a 5b 2-a 8=(23a 8+25a 5b 2)平方分米.(2)当a =1,b =0.2时,S 外表面=23×18+25×15×0.22=24平方分米.故喷漆需15×24=360元.答:喷漆共需360元.23.(12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 020这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?解:(1)这两个数是神秘数.理由:∵28=82-62,2 020=5062-5042,∴28,2 020是神秘数;(2)是4的倍数.理由:∵(2k+2)2-(2k)2=8k+4=4(2k+1).又k为非负整数,∴4(2k+1)是4的倍数.24.(12分)阅读下面材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘a·a·…·a,\s\do4(n个a))记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b =n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=2;log216=4;log264=6.(2)通过观察(1)中的三个数4,16,64之间满足怎样的关系式?log24,log216,log264之间又满足怎样的关系式?(3)由(2)猜想,你能归纳出一个一般性的结论吗?log a M+log a N=log a MN(a>0且a≠1,M>0,N>0).(4)根据同底数幂的运算法则:a m·a n=a m+n以及对数的定义说明(3)中的结论.解:(1)log24=log222=2,log216=log224=4,log264=log226=6.(2)由题意得4×16=64,log24,log216,log264之间满足的关系式是log24+log216=log264.(4)设log a M=m,log a N=n,∴M=a m,N=a n,∴MN=a m+n,∴log a MN=log a a m+n=m+n,∴log a M+log a N=log a MN.。
2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉
21、(本题8分)若 =2005, =2006, =2007,求 的值。
22、(本题8分).说明代数式 的值,与 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
C.50°、130°
D.60°、120°
11、下列语句正确的是( )
A.一个角小于它的补角
B.相等的角是对顶角
C.同位角互补,两直线平行
D.同旁内角互补,两直线平行
12、图中与∠1是内错角的角的个数是( )
A.2个
B.3个
C.4个
D.5个
13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )
(a-b)2+______=(a+b)2
18.若x2-3x+a是完全平方式,则a=_______.
19.多项式5x2-7x-3是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3xmy5与0.4x3y2n+1是同类项,则m+n=______.
A.89°
B.101°
C.79°
D.110°
14、如图,∠1和∠2是对顶角的图形的个数有( )
A.1个
B.2个
C.3个
D.0个
15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )
33.(ab+1)2-(ab-1)2
北师版初中七年级数学下册第一次月考数学试卷含答案解析
2020-2021学年七年级(下)第一次月考数学试卷一.选择题(共12小题)1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x32.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±203.如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠34.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a >0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm26.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115° D.125°7.如图,下列条件能判断两直线AB,CD平行的是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠5 D.∠3=∠58.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C.行涨价%,再降价% D.先涨价%,再降价%9.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2 C.(4R+4)cm2D.以上都不对10.代数式+相乘,其积是一个多项式,它的次数是()A.3 B.5 C.6 D.211.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定12.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交二.填空题(共4小题)13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.15.若(x﹣1)x+1=1,则x=.16.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=三.解答题(共7小题)17.计算:(1)(2).18.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.19.已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.20.先化简,在求值:(2a﹣b)(2a+b)+b(a+b),其中a=2,b=﹣1.21.如图,DB∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C 作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案与试题解析一.选择题(共12小题)1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3【解答】解:A、x•x6=x7,原式计算错误,故本选项错误;B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选B.2.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选B.3.如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠3【解答】解:∵a∥b,∴∠1=∠3,故A正确∵∠3=∠4,∴∠1=∠4,故C正确,∵∠2+∠1=180°,∴∠2+∠4=180°,故B正确,故选D.4.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选D.5.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a >0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2【解答】解:长方形的面积为:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).答:矩形的面积是(6a+15)cm2.故选:D.6.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115° D.125°【解答】解:∵l1∥l2,∴∠1=∠3=65°,∵∠3+∠2=180°,∴∠2=180°﹣65°=115°,故选:C.7.如图,下列条件能判断两直线AB,CD平行的是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠5 D.∠3=∠5【解答】解:能判断直线AB∥CD的条件是∠3=∠4;理由如下:∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行);A、C、D不能判定AB∥CD;故选B.8.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C.行涨价%,再降价% D.先涨价%,再降价%【解答】解:经过计算可知A、100(1+m%)(1﹣n%);B、100(1+n%)(1﹣m%);C、100(1+%)(1﹣%);D、100(1+%)(1﹣%).∵0<n<m<100,∴100(1+n%)(1﹣m%)最小.故选B.9.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2 C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选D.10.代数式+相乘,其积是一个多项式,它的次数是()A.3 B.5 C.6 D.2【解答】解:∵(a2b2)(a+b)(1++)=a3b2+ab2+a3+a2b+a2b3+b3.∴根据结果可知,它的次数是5.故选B.11.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定【解答】解:a2+b2+c2﹣ab﹣ac﹣bc,=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc),= [(a2+b2﹣2ab)+(a2+c2﹣2ac)+(b2+c2﹣2bc)],= [(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a﹣b=2,a﹣c=,∴b﹣c=﹣,∴原式=(4++)=.故选A.12.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交【解答】解:A、过一点须指明过直线外一点,错误;B、在同一平面内,过一点有且只有一条直线与已知直线垂直,是垂线的性质,正确;C、只有垂直相交,交点才叫垂足,错误;D、过直线上一点与已知直线相交的直线有无数条,错误.故选B.二.填空题(共4小题)13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=45°.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=80度.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.15.若(x﹣1)x+1=1,则x=﹣1或2.【解答】解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故答案为:x=﹣1或2.16.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=2或﹣3【解答】解:∵实数a满足a3+a2﹣3a+2=﹣﹣,∴a3+a2﹣3a+2﹣++=0,∴a3++a2++2﹣3(a+)=0,(a+)(a2﹣1+)+(a+)2﹣3(a+)=0,(a+)(a2﹣1++a+﹣3)=0,∴(a+)[(a+)2+(a+)﹣6]=0,∴(a+)(a++3)(a+﹣2)=0,而a+≠0,∴a++3=0,或a+﹣2=0,∴a+=﹣3或2.故答案为:﹣3或2.三.解答题(共7小题)17.计算:(1)(2).【解答】解:(1)原式=﹣9+49﹣×16=40﹣4=36;(2)原式=1﹣1+27÷3=9.18.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.【解答】解:原式=(x3y2﹣x2y﹣x2y+x3y2)÷3x2y=.19.已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.【解答】解:当a+b=0时,原式=a2+4ab﹣a2+4b2=4ab+4b2=4b(a+b)=020.先化简,在求值:(2a﹣b)(2a+b)+b(a+b),其中a=2,b=﹣1.【解答】解:当a=2,b=﹣1时,原式=4a2﹣b2+ab+b2=4a2+ab=4×4+2×(﹣1)=1421.如图,DB∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.【解答】解:∵DB∥FG∥EC,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=96°;∵AP为∠BAC的平分线,∴∠BAP=∠CAP=48°,∴∠PAG=∠CAP﹣∠GAC=12°.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.【解答】解:(1)CD∥EF,理由:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C 作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【解答】解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;③当120<t<160时,3t﹣360=t+20,解得t=190>160,(不合题意)综上所述,当t=10秒或85秒时,两灯的光束互相平行;(3)设A灯转动时间为t秒,∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,而∠ACD=90°,∴∠BC D=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BAC:∠BCD=3:2,即2∠BAC=3∠BCD.。
(北师大版)北京市七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)
一、选择题1.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 2.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ). A .m =254,n =52 B .m =254,n =5 C .m =25,n =5 D .m =5,n =52 3.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8 B .8 C .±4 D .44.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .105.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 6.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b + 7.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 8.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+9.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 10.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 11.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.15.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.16.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 17.计算:248(21)(21)(21)(21)1+++++=___________.18.计算:()221842a b abab -÷=(-)________.19.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭22.计算:2(2)()()2(2)3x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦.23.先化简,再求值: ()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.25.(1)2020151(23)(1)2-⎛⎫--+- ⎪⎝⎭;(2)()()223234a b b c ab ⋅-÷ 26.已知a +b =7,ab =11,求代数式211()22a ab b --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决. 2.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案.【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2∴2n =5,m =n 2∴m =254,n =52故选:A .【点睛】 本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.5.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x与3y不是同类项,∴无法计算,∴选项A错误;∵()3263=,x y x y∴选项B错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 6.A解析:A【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∴3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意;C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.9.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可;【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b ,∵a b m -=,4ab =-,∴原式42428m m =-+-=-;故答案是:28m -.【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.15.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.16.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b -【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案.【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2)=8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.17.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.18.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.19.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.22.x【分析】根据完全平方公式、平方差公式、单项式乘多项式的法则计算后合并同类项,然后再利用单项式除以单项式的法则进行计算.【详解】解:原式=()2222244243x xy y x y x xy x -++--+÷=233x x ÷=x【点睛】本题考查整式的混合运算,熟练运用运算法则是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.25.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案.【详解】解:(1)2020151(1)2-⎛⎫--+- ⎪⎝⎭=141--=4-;(2)()()223234a b b c ab⋅-÷=2336(4)a b c ab -÷ =32ac -; 【点睛】 本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.26.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+ =221)1(22ab b a -+ =223(2221)ab b a ab ++-=23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
北师大版数学七年级下册第一章 整式的乘除自我评估(二)(含答案)
第一章 整式的乘除自我评估(二)(满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列计算中,结果等于a 8的是( ) A .a 2•a 4B .(a 3)5C .a 4+a 4D .(a 4)22.计算:(﹣2xy 3)2=(﹣2)2•x 2(y 3)2=4x 2y 6,其中第一步运算的依据是( ) A .幂的乘方法则 B .分配律C .积的乘方法则D .同底数幂的乘法法则3.下列不能用平方差公式运算的是( ) A .(x +1)(x ﹣1) B .(﹣x +1)(﹣x ﹣1)C .(x +1)(﹣x +1)D .(x +1)(1+x )4.随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持.目前,该芯片工艺已达22纳米(即0.000 000 022米),则数据0.000 000 022用科学记数法表示为( ) A .0.22×10﹣7B .2.2×10﹣8C .22×10﹣9D .22×10﹣105. 对于等式(a +b )2=a 2+b 2,甲、乙、丙三人有不同的看法:甲:无论a 和b 取何值,等式均不能成立.乙:只有当a =0时,等式才能成立.丙:当a =0或b =0时,等式成立.则下列说法正确是( ) A .只有甲正确 B .只有乙正确 C .只有丙正确D .三人说法均不正确 6. 如果(x +1)(3x +a )的乘积中不含x 的一次项,那么a 为( ) A .3B .﹣3C .31D .﹣31 7.如图1-①,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图1-②所示的图形,正好是边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图形能解释的等式是( ) A .(x ﹣1)2=x 2﹣2x +1 B .(x +1)(x ﹣1)=x 2﹣1C .(x +1)2=x 2+2x +1D .x (x ﹣1)=x 2﹣x图1 图28.若a (x m y 4)3÷(3x 2y n )2=2x 5y 4,则a ,m ,n 的值为( ) A .a =6,m =5,n =0 B .a =18,m =3,n =0 C .a =18,m =3,n =1D .a =18,m =3,n =49.已知a=3100,b=475,c=750,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 10.如图2,两个正方形的边长分别为a 和b ,如果a ﹣b =2,ab =26,那么阴影部分的面积是( ) A .30B .34C .40D .44二、填空题(本大题共6小题,每小题3分,共18分)11. 已知一个正方体的棱长是4×103米,则它的体积是 立方米.12. 设M =(x ﹣2)(x ﹣5),N =(x ﹣3)(x ﹣4),则M N .(填<,=或>) 13. 如果a =0.52,b =﹣5﹣2,c =(﹣5)0,那么a ,b ,c 三个数的大小为__________. 14.若单项式﹣8x a-1与41xy b的积为﹣2x 4y 6,则3(ab )9÷(ab )4÷(ab )3的值为 . 15.现定义运算“△”,对于任意有理数a ,b ,都有a △b =a 2﹣ab +b ,例如:3△5=32﹣3×5+5=﹣1,由此算出(x ﹣1)△(2+x )= .16. 若(2a+b )2=17,(a-2b )2=8,则3a 2+3b 2的值为_____________. 三、解答题(本大题共6小题,共52分) 17.(每小题3分,共9分)计算: (1)(3x 2y )3•(﹣15xy 3)÷(﹣9x 4y 2);(2)1022- 101×99(用简便方法计算);(3)(2x ﹣y ﹣3)(2x +y +3).18.(7分)先化简,再求值:[a 3+(2a ﹣b )(2a +b )﹣4(a +b )2+5b 2]÷31a ,其中a =2,b =1.19.(8分)(1)已知3×9m ×27m =311,求m 的值; (2)已知3m =6,9n =2,求32m-4n 的值.20.(8分)在计算(2x +a )(x +b )时,甲错把b 看成了6,得到的结果是2x 2+8x ﹣24;乙错把a 看成了﹣a ,得到的结果是2x 2+14x +20. (1)求出a ,b 的值;(2)在(1)的条件下,计算(2x +a )(x +b )的结果.21.(10分)图3是某单位办公用房的平面结构示意图(长度单位:米),图形中的四边形均是长方形或正方形.(1)请分别求出会客室和会议厅的占地面积是多少平方米? (2)如果x+y=5,xy=6,求会议厅比会客室大多少平方米?22.(10分)数学活动课上,老师准备了若干张如图4-①所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图4-②所示的大正方形.(1)请用两种不同的方法求图②大正方形的面积.方法1:_____________________;方法2:____________________.(2)观察图②,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系:___________________;(3)根据(2)中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x-2020)2+(x-2022)2=34,求(x-2021)2的值.图4附加题(共20分,不计入总分)1.(6分)如图1,在长方形ABCD中放入一个边长为8的大正方形ALMN和两个边长为6的小正方形(正方形DEFG和正方形HIJK).三个阴影部分的面积满足2S3+S1﹣S2=2,则长方形ABCD的面积为()A.100 B.96 C.90 D.86图12. (14分)把完全平方公式(a±b)2=a2±2ab+b2适当地变形,可解决很多数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1,所以(a+b)2=9,2ab=2.所以a2+b2+2ab=9,2ab=2,解得a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=6,x2+y2=20,求xy的值;(2)请直接写出下列问题的答案:①若2m+n=3,mn=1,则2m-n=______________;②若(4-m)(5-m)=6,则(4-m)2+(5-m)2=__________________;(3)如图2,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形,设AB=4,两正方形的面积和S 1+S 2=12,求图中阴影部分的面积.第一章 整式的乘除自我评估(二)参考答案一、1.D 2. C 3. D 4. B 5. C 6. B 7. B 8. D 9. A 10.A提示:如图,因为a-b=2,ab=26,所以a 2-2ab+b 2=4,所以a 2+b 2=4+2ab=4+52=56. S 阴影部分=S 三角形ABC +S 三角形CDM +S 三角形AEF +S 三角形G HM =2×21(a-b )·a+2×21b·b=a (a-b )+b 2=a 2+b 2-ab=56-26=30.二、11.6.4×1010 12. < 13. c >a >b 14. 1200 15.﹣2x +5 16. 15 三、17.解:(1)原式=27x 6y 3•(﹣15xy 3)÷(﹣9x 4y 2)=[27×(﹣15)÷(﹣9)]•x 6+1﹣4y 3+3﹣2=45x 3y 4.(2)原式=(100+2)2-(100+1)(100-1)=1002+2×2×100+22-(1002-1)=1002+400+4-1002+1=405.(3)原式=[2x ﹣(y +3)][2x +(y +3)]=(2x )2﹣(y +3)2=4x 2﹣(y 2+6y +9)=4x 2﹣y 2﹣6y ﹣9.18.解:原式=[a 3+4a 2﹣b 2﹣4(a 2+2ab +b 2)+5b 2]÷31a =(a 3+4a 2﹣b 2﹣4a 2﹣8ab ﹣4b 2+5b 2)÷31a=(a 3﹣8ab )÷31a =3a 2﹣24b .当a =2,b =1时,原式=3×22﹣24×1=3×4﹣24=12﹣24=﹣12. 19.解:(1)因为3×9m ×27m =3×32m ×33m =311,所以31+2m+3m =311.所以1+2m+3m=11,解得m=2.(2)因为3m =6,9n =2,所以32n =2.所以32m-4n =(3m )2÷(32n )2=62÷22=36÷4=9.20.解:(1)甲错把b 看成了6,(2x +a )(x +6)=2x 2+12x +ax +6a =2x 2+(12+a )x +6a =2x 2+8x ﹣24.所以12+a =8,解得a =﹣4.乙错把a 看成了﹣a ,(2x ﹣a )(x +b )=2x 2+2bx ﹣ax ﹣ab =2x 2+(﹣a +2b )x ﹣ab =2x 2+14x +20.所以2b ﹣a =14.把a =﹣4代入,得b =5.(2)当a =﹣4,b =5时,(2x +a )(x +b )=(2x ﹣4)(x +5)=2x 2+10x ﹣4x ﹣20=2x 2+6x ﹣20.21.解:(1)会客室:(x-y )(2x+y-x-y )=(x-y )x=x 2-xy.会议厅:(2x+y )(2x+y-x )=(2x+y )(x+y )=2x 2+2xy+xy+y 2=2x 2+3xy+y 2.答:会客室的占地面积是(x 2-xy )平方米,会议厅的占地面积是(2x 2+3xy+y 2)平方米. (2)2x 2+3xy+y 2-(x 2-xy )=2x 2+3xy+y 2-x 2+xy=x 2+4xy+y 2. 由x+y=5,得(x+y )2=25,所以x 2+2xy+y 2=25. 又因为xy=6,所以x 2+4xy+y 2=25+2×6=37(平方米). 答:会议厅比会客室大37平方米. 22.解:(1)(a+b )2 a 2+b 2+2ab (2)(a+b )2=a 2+b 2+2ab(3)①由(a+b )2=a 2+b 2+2ab ,可得ab=21[(a+b )2-(a 2+b 2)],所以当a+b=5,a 2+b 2=11时,ab=21×(52-11)=7. ②设x-2021=a ,则x-2020=a+1,x-2022=a-1.(x-2020)2+(x-2022)2=(a+1)²+(a-1)²=a²+2a+1+a²-2a+1=2a²+2=34,解得a²=16,即(x-2021)2=16.附加题1.C 提示:设长方形ABCD 的长为a ,宽为b ,则由已知及图形可得:S 1的长为8﹣6=2,宽为b ﹣8,故S 1=2(b ﹣8);S 2的长为8+6﹣a =14﹣a ,宽为6+6﹣b =12﹣b ,故S 2=(14﹣a )(12﹣b );S 3的长为a ﹣8,宽为b ﹣6,故S 3=(a ﹣8)(b ﹣6).因为2S 3+S 1﹣S 2=2,所以2(a ﹣8)(b ﹣6)+2(b ﹣8)﹣(14﹣a )(12﹣b )=2.所以2(ab ﹣6a ﹣8b+48)+2b ﹣16﹣(168﹣14b ﹣12a+ab )=2.所以ab ﹣88=2,所以ab =90. 2.解:(1)因为x+y=6,所以(x+y )2=36,即x 2+2xy+y 2=36. 又因为x 2+y 2=20,所以20+2xy=36,解得xy=8. (2)①±1提示:因为2m+n=3,mn=1,所以(2m-n )2=(2m+n )2-8mn=32-1=1,解得2m-n=±1. ②13提示:设A=4-m ,B=5-m ,则A•B=6,A-B=-1.所以A 2+B 2=(A-B )2+2AB=1+12=13,即(4-m )2+(5-m )2=13. (3)设AC=x ,BC=y ,则S 1=x 2,S 2=y 2. 因为S 1+S 2=12,所以x 2+y 2=12. 又因为AB=4=x+y ,所以S 阴影=xy=21[(x+y )2-(x 2+y 2)]=21×(42-12)=2. 答:图中阴影部分面积为2.。
北师大版七年级数学下册第一章单元测试题(含答案)
第一章整式的乘除一、选择题(本大题共7小题,每小题3分,共21分)1.计算a 3·a 2的结果是()A .a B .a 5C .a 6D .a 92.下列运算正确的是A.632a a ·a =B.523a a a =+ C.842)(a a = D.a a a =-233.下列运算:①a ²·a ³=a 6,②(a ³)²=a 6,③a 5÷a 5=a ,④(ab )³=a ³b ³,其中结果正确的个数为()A .1B .2C .3D .44下列计算结果为3x 的是()A.62x x ÷B.4x x -C.2x x + D.2x x 5下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是()A.①B.②C.③D.④6.对于任意有理数a ,b ,现用“☆”定义一种运算:a ☆b=a 2-b 2,根据这个定义,代数式(x+y )☆y 可以化简为()A .xy+y 2B .xy-y 2C .x 2+2xy D .x 27.如图2①,在边长为a 的正方形中剪去一个边长为b (b<a )的小正方形,把剩下部分沿虚线剪开,再拼成一个梯形(如图2②),利用这两个图形中阴影部分的面积,可以验证的等式是()图2A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)二、填空题(本大题共7小题,每小题4分,共28分)8.计算:(π-3.14)0-2=.9.计算:(3a-2b)(2b+3a)=.10.在电子显微镜下测得一个圆球体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是cm.11.若a为正整数,且x2a=6,则(2x5a)2÷4x6a的值为.12.计算:3x2y-xy2+12xy÷-12xy=.13.若a2+b2=5,ab=2,则(a+b)2=.14.如图3,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.图3三、解答题(本大题共6小题,共51分)15.(8分)计算:(1)x·x4+x2(x3-1)-2x3(x+1)2;(2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).16.(8分)运用乘法公式简便计算: (1)9982;(2)197×203.17.(7分)先化简,再求值:(x-y2)-(x-y)(x+y)+(x+y)2,其中x=3,y=-13.18.(8分)如图4①所示,边长为a的正方形中有一个边长为b的小正方形,图4②是由图①中阴影部分拼成的一个长方形.(1)设图①中阴影部分的面积为S1,图②中阴影部分的面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)×(22+1)×(24+1)×(28+1)+1.图419.(10分)某银行去年新增加居民存款10亿元人民币.(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度约是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?图520.(10分)某学校分为初中部和小学部,初中部的学生人数比小学部多.做广播体操时,初中部排成的是一个规范的长方形方阵,每排(3a-b)人,站有(3a+2b)排;小学部排成的方阵,排数和每排人数都是2(a+b).(1)试求该学校初中部比小学部多多少名学生;(2)当a=10,b=2时,试求该学校一共有多少名学生.参考答案BC B D C C.D8.-39.9a2-4b210.0.111.3612.-6x+2y-113.914.1315.解:(1)原式=x5+x5-x2-2x3(x2+2x+1)=x5+x5-x2-2x5-4x4-2x3=-4x4-2x3-x2.(2)原式=(x2-9y2+9y2-6xy+x2)÷(-2x)=(2x2-6xy)÷(-2x)=-x+3y.16.解:(1)9982=(1000-2)2=1000000-4000+4=996004.(2)197×203=(200-3)×(200+3)=2002-32=40000-9=39991.17.解:原式=x-y2-x2+y2+x2+2xy+y2=x+2xy+y2.当x=3,y=-13时,原式=3-2+19=109.18.解:(1)S1=a2-b2,S2=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.(3)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)+1=(22-1)×(22+1)×(24+1)×(28+1)+1=(24-1)×(24+1)×(28+1)+1=(28-1)×(28+1)+1=(216-1)+1=216.19.解:(1)10亿=1000000000=109,所以10亿元的总张数为109÷100=107(张), 107÷100×0.9=9×104(厘米)=900(米).答:大约有900米高.(2)107÷(5×8×104)=(1÷40)×(107÷104)=0.025×103=25(天).答:点钞机大约要点25天.20.解:(1)因为该学校初中部学生人数为(3a-b)(3a+2b)=9a2+6ab-3ab-2b2=9a2+3ab-2b2,小学部学生人数为2(a+b)·2(a+b)=4(a+b)2=4(a2+2ab+b2)=4a2+8ab+4b2,所以该学校初中部比小学部多的学生数为(9a2+3ab-2b2)-(4a2+8ab+4b2)=5a2-5ab-6b2.答:该学校初中部比小学部多(5a2-5ab-6b2)名学生.(2)该学校初中部和小学部一共的学生数为(9a2+3ab-2b2)+(4a2+8ab+4b2)=13a2+11ab+2b2.当a=10,b=2时,原式=13×102+11×10×2+2×22=1528.答:该学校一共有1528名学生.。
2020年北师大版七年级数学下册第1章整式的乘除单元综合评价试卷含解析
2020年北师大版七年级数学下册第1章整式的乘除单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(共10小题,每小题3分,共30分)1下列运算中正确的是().A.12m+13m=15m B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-ab+ab=0=⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-20122012532135.2()A. 1- B. 1 C. 0 D. 19973.下列说法中正确的是().A.-13x2y是单项式B.xy2没有系数C.x+2是单项式D.0不是单项式4.已知,3,5=-=+xyyx则=+22yx()A. 25. B 25- C 19 D、19-5.已知,5,3==ba xx则=-bax23()A、2527B、109C、53D、526. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:nmb a①(2a +b )(m +n ); ①2a (m +n )+b (m +n ); ①m (2a +b )+n (2a +b ); ①2am +2an +bm +bn , 你认为其中正确的有A 、①①B 、①①C 、①①①D 、①①①① ( ) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
北师大版数学七年级下册第一章到第七章单元测试题,含答案
北师大版数学七年级下册第一章到第七章单元测试题,含答案(第五章三角形全等为三套,共10套)(总57页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除- 2 -北师大版七年级下册第一章整式的运算单元测试题:一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是 ( )A. 8421262x x x =⋅B. ()()m m m y y y =÷34C. ()222y x y x +=+ D. 3422=-a a 3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是 ( ) A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=- 6. 若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 327.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
- 3 - 3.多项式5134+-ab ab 有 项,它们分别是 。
北师大版七下数学第一章各节练习题含答案
北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。
13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。
三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。
七年级数学下册-第一章综合检测试卷1-北师大版(含答案)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯第一章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分) 1.下列运算中,正确的是( C ) A .7a +a =7a 2 B .a 2·a 3=a 6 C .a 3÷a =a 2D .(ab )2=ab 22.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( D )A .2a 5-aB .2a 5-1aC .a 5D .a 63.下列运算中,利用完全平方公式计算正确的是( C ) A .(x +y )2=x 2+y 2 B .(x -y )2=x 2-y 2 C .(-x +y )2=x 2-2xy +y 2D .(-x -y )2=x 2-2xy +y 24.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为688纳米,1纳米=0.000 000 001米,则每个光量子的波长可用科学记数法表示为( B )A .6.88×10-11米 B .6.88×10-7米 C .0.688×10-3米D .0.688×10-6米5.小亮在计算(6x 3y -3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( C )A .2x 2-xyB .2x 2+xyC .4x 4-x 2y 2D .无法计算6.要使(x 2-3x +4)(x 2-ax +1)的展开式中含x 2项的系数为-1,则a 应等于( A ) A .-2 B .2 C .-1D .-47.已知a =8131,b =2741,c =961,则a 、b 、c 的大小关系是( A ) A .a >b >c B .a >c >b C .a <b <cD .b >c >a8.计算⎝⎛⎭⎫ -32 2020·⎝⎛⎭⎫ 23 2021的结果是( D ) A .-1 B .-23C .1D .239.如图所示,用边长为c 的一个小正方形和直角边长分别为a 、b 的四个直角三角形,恰好能拼成一个新的大正方形,其中a 、b 、c 满足等式c 2=a 2+b 2,由此可验证的乘法公式是( A )A .a 2+2ab +b 2=(a +b )2B .a 2-2ab +b 2=(a -b )2C .(a +b )(a -b )=a 2-b 2D .a 2+b 2=(a +b )210.已知a =120x +20,b =120x +19,c =120x +21,那么代数式a 2+b 2+c 2-ab -bc -ac的值是( B )A .4B .3C .2D .1二、填空题(每小题4分,共28分) 11.计算:(a 2b 3-a 2b 2)÷(ab )2= b -1 .12.若x 2-4x -4=0,则2(x -1)2-(x +1)(x -1)的值为 7 . 13.已知x +1x =2,则x 2+1x2= 2 .14.利用完全平方公式计算:1022+982= 20 008 . 15.已知x 满足22x +2-22x +1=32,则x = 2 . 16.四个数a 、b 、c 、d 排列成⎪⎪⎪⎪⎪⎪ab cd ,我们称之为二阶行列式,规定它的运算法则为⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x = 1 . 17.如图,两个正方形的边长分别为a 和b ,如果a -b =4,ab =32,那么阴影部分的面积是 24 .三、解答题(一)(每小题6分,共18分) 18.计算:(1)(2a 2b )3-3(a 3)2b 3; 解:原式=5a 6b 3.(2)(x +y )m +n ·(x +y )m +2n÷(x +y )m -n ;解:原式=(x +y )m+4n.(3)⎝⎛⎭⎫12-x ⎝⎛⎭⎫14+x 2⎝⎛⎭⎫x +12+x 4; 解:原式=116.(4)(π-3.14)0+2-2+(-3)2-⎝⎛⎭⎫12-2.解:原式=614.19.已知a 、b 满足(a +b )2=1,(a -b )2=25,求a 2+b 2+ab 的值.解:因为(a +b )2-(a -b )2=4ab ,(a +b )2-(a -b )2=1-25,所以4ab =1-25,所以ab =-6,所以a 2+b 2+ab =(a +b )2-ab =1-(-6)=1+6=7.20.先化简,再求值:(x 2y 3-2x 3y 2)÷⎝⎛⎭⎫-12xy 2-[2(x -y )]2,其中x =3,y =-12. 解:原式=-2xy +4x 2-4x 2+8xy -4y 2=6xy -4y 2.当x =3,y =-12时,原式=6×3×⎝⎛⎭⎫-12-4×⎝⎛⎭⎫-122=-9-1=-10. 四、解答题(二)(每小题8分,共24分)21.有一道题:“化简求值:(2a +1)(2a -1)+(a -2)2-4(a +1)(a -2),其中a =2.”小明在解题时错误地把“a =2”抄成了“a =-2”,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗?解:(2a +1)(2a -1)+(a -2)2-4(a +1)(a -2)=4a 2-1+a 2-4a +4-4a 2+4a +8=a 2+11.当a =-2时,a 2+11=15;当a =2时,a 2+11=15.所以当a =2或a =-2时,结果相等.22.已知3a =4,3b =10,3c =25. (1)求32a 的值; (2)求3c+b -a的值;(3)试说明:2b =a +c . (1)解:32a =(3a )2=42=16. (2)解:3c+b -a=3c ·3b ÷3a =25×10÷4=62.5.(3)证明:因为32b =(3b )2=102=100,3a +c =3a ×3c =4×25=100,所以32b =3a +c ,所以2b =a +c .23.观察以下等式: (x +1)(x 2-x +1)=x 3+1; (x +3)(x 2-3x +9)=x 3+27; (x +6)(x 2-6x +36)=x 3+216; ……(1)按以上等式的规律,填空:(a +b )( a 2-ab +b 2 )=a 3+b 3; (2)利用多项式的乘法法则,说明(1)中的等式成立;(3)利用(1)中的公式化简:(x +y )(x 2-xy +y 2)-(x +2y )(x 2-2xy +4y 2). 解:(2)(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3. (3)原式=(x 3+y 3)-(x 3+8y 3)=-7y 3. 五、解答题(三)(每小题10分,共20分)24.如图1,我们在2020年5月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14-6×20=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24;(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论;(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”.若某个十字星中心的数在第32行,且其相应的“十字差”为2019,求这个十字星中心的数.(直接写出结果)解:(2)“十字差”为k2-1=(k+1)(k-1).证明如下:设十字星中心的数为x,则十字星左右两数分别为x-1、x+1,上下两数分别为x-k、x+k(k≥3).故“十字差”为(x-1)(x +1)-(x-k)(x+k)=x2-1-x2+k2=k2-1.(3)设正中间的数为a,则上下两数分别为a-62、a+64,左右两数分别为a-1、a+1.根据题意,得(a-1)(a+1)-(a-62)(a+64)=2019,即2a=1948,解得a=974.即这个十字星中心的数为974.25.图1是由4个长为m、宽为n的长方形拼成的,图2是由这四个长方形拼成的正方形,中间的空隙(阴影部分)恰好是一个小正方形.(1)用m、n表示图2中小正方形的边长;(2)用两种不同的方法表示出图2中阴影部分的面积;(3)观察图2,利用(2)中的结论,写出代数式(m+n)2、(m-n)2、mn之间的等量关系;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.解:(1)图2中小正方形的边长为m-n.(2)(方法一)S阴影=(m-n)(m-n)=(m-n)2;(方法二)S阴影=(m+n)2-4mn.(3)因为图中阴影部分的面积不变,所以(m-n)2=(m+n)2-4mn.(4)由(3)知,(a-b)2=(a+b)2-4ab.因为a+b=7,ab=5,所以(a-b)2=72-4×5=49-20=29.一天,毕达哥拉斯应邀到朋友家做客。
2020年北师大版七年级数学下册第一章整式的乘除单元综合评价试卷含解析
2020年北师大版七年级数学下册第一章整式的乘除单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(每小题3分,共30分)1.下列运算结果为a6的是()A. a2+a3B. a2⋅a3C. (−a2)3D. a8÷a22.计算(−12x2)3的结果是()A. −32x5 B. −32x6 C. −18x6 D. −18x53.下列计算正确的是()A. a2·a5=a10B. a5+a2=a7C. (a5)2=a7D. a5÷a2=a34.若x n=3,x m=6,则x m+n=()A. 9B. 18C. 3D. 65.已知x+y=−5,xy=3,则x2+y2=()A. 19B. 6C. 25D. -196.用科学记数法表示0.0002085正确的是()A. 2.085×10−3B. 2.085×10−4C. 2.085×10−5D. 2.085×10−37.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的长为( )A. 2 cmB. 2a cmC. 4a cmD. (2a-2)cm8.如图(1),在边长为a的大正方形中,剪去一个边长为b(a>b)的小正方形,然后将余下的部分剪开拼成长方形,如图(2),若大正方形的周长为c1,长方形的周长为c2,则c1与c2的大小关系是A. c1>c2B. c1=c2C. c1<c2D. 不能确定9.一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102-12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是 ( )A. 15B. 16C. 17D. 1810.如图,大正方形的边长为m,小正方形的边长为n,x,y表示四个相同长方形的两边长(x>y).则① x−y=n;② xy=m2−n24;③ x2−y2=mn;④ x2+y2=m2−n22,中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题(每小题3分,共24分)11.计算:(x+2)2﹣(x﹣1)(x+1)=________.12.若x+y=3且xy=1,那么代数式x2﹣2xy+ y2=________.13.计算(−2)2020×(12)2019=________;20202−2019×2021=________.14.计算(1)(−a5)4=________;(2)(a2b)3=________.15.若3x=8,3y=4,则3x−2y的值是________.16.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为________.17.已知27b=9×3a+3,16=4×22b﹣2,则a+b的值为________.18.观察下面的解题过程,然后化简:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1化简:(3+1)(32+1)(34+1)(38+1)=________.三、计算题(共2题;共14分)19.(9分)计算① 9a5b4÷3a2b4−a(−5a2)② 3x2(2y−x)−3y(2x2−y)③ 4(a−b)2−(2a+b)(−b+2a)20.(5分)先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=12,b=﹣2.四、解答题(共5题;共32分)21.某种液体每升含有1012个细菌,某种杀菌剂1滴可以杀死109个此种有害细菌,现在将3L这种液体中的有害细菌杀死,要用这种杀菌剂多少滴?若10滴这种杀菌剂为10﹣3L,要用多少升?22.已知长方形的长是(a+3b)米,宽是(a+2b)米.求它的周长和面积.23.已知:a=−(0.3)2,b=−3−2,c=(−13)−2,d=(−13)0;比较a、b、c、d的大小,并用“>”号连接起来。
2020--2021学年北师大版七年级数学下册《第1章整式的乘除》期末复习(附答案)
2021学年北师大版七年级数学下册《第1章整式的乘除》期末复习能力达标训练(附答案)1.计算﹣6a3b2÷2a2b的结果是()A.﹣3ab2B.﹣3ab C.3ab D.3ab22.若x m y n÷x3y=4x2y,则m,n满足()A.m=6,n=1B.m=6,n=0C.m=5,n=0D.m=5,n=2 3.小亮在计算(6x3y﹣3x2y2)÷3xy时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是()A.2x2﹣xy B.2x2+xy C.4x4﹣x2y2D.无法计算4.计算:﹣3a6b2c÷9a2b的结果是()A.﹣a3b2c B.﹣3a4bc C.﹣3a3b2c D.﹣a4bc5.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y26.化简(﹣a)2a3所得的结果是()A.a5B.﹣a5C.a6D.﹣a67.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1B.x=1C.x≠0D.x≠18.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣b2C.b(a﹣b)=ab﹣b2D.ab﹣b2=b(a﹣b)9.已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣310.计算(25x2+15x3y﹣5x)÷5x()A.5x+3x2y B..5x+3x2y+1C.5x+3x2y﹣1D.5x+3x2﹣111.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1B.1C.3D.512.若5x=18,5y=3,则5x﹣2y=.13.若x2+mx+16是完全平方式,则m的值是.14.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为.15.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则a※b+(b﹣a)※b=.16.若(x﹣3)(x2+px+q)的结果不含x2和x项,则p+q=.17.我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)时,发现直接运算很麻烦,如果在算式前乘以(2﹣1),即1,原算式的值不变,而且还使整个算式是能用乘法公式计算.即:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=232﹣1.请用上述方法算出(5+1)(52+1)(54+1)(58+1)(516+1)(532+1)的值为.18.如图,两个正方形的边长分别为a,b,若a+b=10,ab=20,则四边形ABCD的面积为.19.若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b的值.20.先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.21.先化简,再求值:(a+2b)(a﹣2b)+(a+2b)2+(2ab2﹣8a2b2)÷2ab,其中a=1,b =2.22.先化简,再求值:(x﹣5)(x+1)+(x+2)2,其中x=﹣2.23.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y =324.先化简,再求值:(2x﹣y)2﹣(x﹣3y)(x+3y)+4(xy﹣y2),其中x=﹣2,y=1.25.规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.参考答案1.解:﹣6a3b2÷2a2b=﹣3ab,故选:B.2.解:∵x m y n÷x3y=4x2y,∴m﹣3=2,n﹣1=1,解得:m=5,n=2.故选:D.3.解:正确结果为:原式=6x3y÷3xy﹣3x2y2÷3xy=2x2﹣xy,错误结果为:原式=6x3y÷3xy+3x2y2÷3xy=2x2+xy,∴(2x2﹣xy)(2x2+xy)=4x4﹣x2y2,故选:C.4.解:﹣3a6b2c÷9a2b=﹣a4bc.故选:D.5.解:A、(x﹣y)2=x2﹣2xy+y2,故本选项错误;B、(a+2)(a﹣3)=a2﹣a﹣6,故本选项错误;C、(a+2b)2=a2+4ab+4b2,故本选项正确;D、(2x﹣y)(2x+y)=4x2﹣y2,故本选项错误;故选:C.6.解:(﹣a)2a3=a2•a3=a5.故选:A.7.解:由题意可知:x﹣1≠0,x≠1故选:D.8.解:(a+b)(a﹣b)=a2﹣b2,故选:A.9.解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.10.解:(25x2+15x3y﹣5x)÷5x=5x+3x2y﹣1.故选:C.11.解:(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.故选:D.12.解:原式====2.故答案是:2.13.解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.14.解:∵矩形面积为m2+8m,一边长为m,∴邻边长为:(m2+8m)÷m=m+8,故答案为m+8.15.解:a※b+(b﹣a)※b,=ab+a﹣b+b(b﹣a)+b﹣a﹣b,=b2﹣b.16.解:原式=x3﹣3x2+px2﹣3px+qx﹣3q=x3+(p﹣3)x2+(q﹣3p)x﹣3q,根据题意,令p﹣3=0,q﹣3p=0,解得:p=3,q=9,∴p+q=12,故答案为:12.17.解:(5+1)(52+1)(54+1)(58+1)(516+1)(532+1)=(5﹣1)(5+1)(52+1)(54+1)(58+1)(516+1)(532+1)=×(564﹣1)=.故答案为:.18.解:根据题意可得,四边形ABCD的面积=(a2+b2)﹣﹣b(a+b)=(a2+b2﹣ab)=(a2+b2+2ab﹣3ab)=[(a+b)2﹣3ab];代入a+b=10,ab=20,可得:四边形ABCD的面积=(10×10﹣20×3)÷2=20.故答案为:20.19.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.20.解:原式=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=时,原式=2.21.解:原式=a2﹣4b2+a2+4ab+4b2﹣4ab+b=2a2+b,∵a=1,b=2,∴原式=2a2+b=4.22.解:(x﹣5)(x+1)+(x+2)2=x2+x﹣5x﹣5+x2+4x+4=2x2﹣1,当x=﹣2时,原式=8﹣1=7.23.解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.24.解:原式=4x2+y2﹣4xy﹣(x2﹣9y2)+4xy﹣4y2=4x2+y2﹣4xy﹣x2+9y2+4xy﹣4y2=3x2+6y2,当x=﹣2,y=1时,原式=3×(﹣2)2+6×12=12+6=18.25.解:(1)①因为53=125,所以(5,125)=3;因为(﹣2)5=﹣32,所以(﹣2,﹣32)=5;②由新定义的运算可得,x﹣4=,因为(±2)﹣4==,所以x=±2,故答案为:①3,5;②±2;(2)因为(4,5)=a,(4,6)=b,(4,30)=c,所以4a=5,4b=6,4c=30,因为5×6=30,所以4a•4b=4c,所以a+b=c.。
2020年北师大版七年级数学下册 第1章 整式的乘除 单元综合评价试卷含解析
2020年北师大版七年级数学下册第1章整式的乘除单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m62.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.723.计算20﹣1的结果是()A.﹣1B.0C.1D.194.下列运算正确的是()A.2﹣3=﹣8B.2﹣3=﹣6C.2﹣3=D.2﹣3=5.化简(﹣2x﹣3)(3﹣2x)的结果是()A.4x2﹣9B.9﹣4x2C.﹣4x2﹣9D.4x2﹣6x+96.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣127.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x108.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.529.计算:(﹣6x3+9x2﹣3x)÷(﹣3x)=()A.2x2﹣3x B.2x2﹣3x+1C.﹣2x2﹣3x+1D.2x2+3x﹣110.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2二.填空题(共8小题)11.若a4•a2m﹣1=a11,则m=.12.已知a m=22,b m=4,则(a2b)m=.13.若3x=5,3y=15,则3x﹣y=.14.直接写出答案:3x m y3•(﹣2xy m+1)=(m是正整数)15.如果(x+my)(x﹣my)=x2﹣9y2,那么m=.16.若x2﹣x+m是一个完全平方式,那么m的值是.17.计算:=.18.计算(x+5)(3x﹣1)的结果中,一次项系数为.三.解答题(共8小题)19.乘法计算:(1)(﹣3x2y)2•xy(2)(x+2)(4x﹣)20.我们规定2×2=22,2×2×2=23,可得22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)53×52=(5×5×5)×(5×5)=5;(2)a3•a4═a;(3)计算:a m•a n;(4)若x m=4,x n=5,则求x m+n的值.21.已知:2x=a,2y=b,用a,b分别表示:(1)2x+y的值;(2)23x+2y的值.22.先化简,再求值:(x﹣2y)(x+2y)+(16xy3﹣8x2y2)÷4xy,其中x=﹣1,y=123.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.24.乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是(写成多项式乘法的形式).(3)比较两图的阴影部分面积,可以得到乘法公式.(4)应用所得的公式计算:.25.(1)计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算:1+5+52+53+ (52019)26.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2(1)用含a,b的代数式分别表示S1,S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=28时,求出图3中的阴影部分的面积S3参考答案与试题解析一.选择题(共10小题)1.解:﹣(﹣m2)•(﹣m)3•(﹣m)=﹣(﹣m2)•(﹣m3)•(﹣m)=m2+3+1=m6.故选:C.2.解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选:D.3.解:20﹣1=1﹣1=0.故选:B.4.解:2﹣3=,故选:C.5.解:(﹣2x﹣3)(3﹣2x)=4x2﹣9,故选:A.6.解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.7.解:A、3y3•5y4=15y7,故此选项不合题意;B、(a3)2=(a2)3,正确;C、(ab5)2=a2b10,故此选项不合题意;D、(﹣x)4•(﹣x)6=x10,故此选项不合题意;故选:B.8.解:∵a+b=6,ab=4,∴原式=(a+b)2+2ab=36+8=44,故选:B.9.解:(﹣6x3+9x2﹣3x)÷(﹣3x)=2x2﹣3x+1.故选:B.10.解:A、(x﹣y)2=x2﹣2xy+y2,故本选项错误;B、(a+2)(a﹣3)=a2﹣a﹣6,故本选项错误;C、(a+2b)2=a2+4ab+4b2,故本选项正确;D、(2x﹣y)(2x+y)=4x2﹣y2,故本选项错误;故选:C.二.填空题(共8小题)11.解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.故答案为:4.12.解:∵a m=22=4,b m=4,∴(a2b)m=a2m•b m=(a m)2•b m=42×4=16×4=64.故答案为:64.13.解:∵3x=5,3y=15,∴3x﹣y=.故答案为:.14.解:原式=﹣6x m+1y m+4.故答案为:﹣6x m+1y m+4.15.解:∵x2﹣9y2=(x+3y)(x﹣3y)=(x+my)(x﹣my),∴m=±3.故答案为:±316.解:当m=时,x2﹣x+m是完全平方式,故答案为:17.解:=1×=.18.解:(x+5)(3x﹣1)=3x2+15x﹣x﹣5=3x2+14x﹣5,故一次项系数为14.故答案为:14.三.解答题(共8小题)19.解:(1)(﹣3x2y)2•xy=9x4y2•xy=3x5y3;(2)(x+2)(4x﹣)=2x2+8x﹣x﹣1=2x2+x﹣1.20.解:(1)(1)53×52=(5×5×5)×(5×5)=55;故答案为:5;(2)a3•a4=(a•a•a)•(a•a•a•a)=a7;故答案为:7;(3)a m•a n=a m+n;(4)x m+n=x m•x n=4×5=20.21.解:(1)∵2x=a,2y=b,∴2x+y=2x×2y=ab;(2))∵2x=a,2y=b,∴23x+2y=(2x)3×(2y2=a3b2.22.解:原式=x2﹣4y2+(4y2﹣2xy)=x2﹣4y2+4y2﹣2xy=x2﹣2xy,当x=﹣1,y=1时,原式=1+2=3.23.解:(1)原式=x4﹣3x3+nx2+mx3﹣3mx2+mnx+3x2﹣9x+3n=x4﹣3x3+mx3+nx2﹣3mx2+3x2+mnx﹣9x+3n=x4+(m﹣3)x3+(n﹣3m+3)x2+mnx﹣9x+3n由于展开式中不含x2项和x3项,∴m﹣3=0且n﹣3m+3=0,∴解得:m=3,n=6,(2)由(1)可知:m+n=9,mn=18,∴(m+n)2=m2+2mn+n2,∴81=m2+n2+36,∴m2+n2=45,∴原式=9×(45﹣18)=24324.解:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)a2﹣b2=(a+b)(a﹣b);(4)原式=,=,=.25.解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;故答案为:x2﹣1;x3﹣1;x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;故答案为:(x5+x4+x3+x2+x+1);(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;故答案为:x7﹣1;(4)1+5+52+53+…+52019==.26.解:(1)由图可得,S1=a2﹣b2,S2=2b2﹣ab.(2)∵a+b=10,ab=23∴S2+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×23=31∴S1+S2的值为31.(3)由图可得:S3=a2+b2﹣b(a+b)﹣=(a2+b2﹣ab)∵S1+S2=a2+b2﹣ab=28∴S3=×28=14,∴图3中阴影部分的面积S3为14.。
北师大版七年级下册数学第一次月考试卷 第一二章试题
北师大版七年级下册数学第一次月考试卷(第一二章)一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3D.3y3•5y3=15y9 2.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8 B.8 C.4 D.8或﹣84.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4 B.4 C.D.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.8.用科学记数法表示0.000000023=.9.计算:22016×()2017所得的结果是.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=.11.若x+y=2,x2﹣y2=6,则x﹣y=.12.已知∠α=72°,则∠α的余角是,∠α的补角是.三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是,∠COD的余角是(2 )OE是∠BOC的平分线吗?请说明理由.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)()=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算1+4+42+43+…+42013=.参考答案与试题解析一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3 D.3y3•5y3=15y9【考点】单项式乘单项式.【分析】直接利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,进而求出答案.【解答】解:A、9a3•2a2=18a5,正确,符合题意;B、2x5•3x4=6x9,错误,不合题意;C、3x3•4x3=12x6,错误,不合题意;D、3y3•5y3=15y6,错误,不合题意;故选:A.2.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)【考点】平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8 B.8 C.4 D.8或﹣8【考点】完全平方式.【分析】根据两平方项确定出这两个数是x和4,再根据完全平方公式的乘积二倍项列式求解即可.【解答】解:∵x2+mx+16是完全平方式,∴mx=±2×4•x,解得m=±8.故选D.4.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz【考点】完全平方公式的几何背景.【分析】根据大长方形的面积=3个正方形的面积+6个小长方形的面积,即可解答.【解答】解:根据题意得:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz,故选:C.5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4 B.4 C.D.【考点】同底数幂的除法.【分析】根据指数相减,可得同底数幂的除法,可得答案.【解答】解:a m﹣n=a,故选:C.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④【考点】余角和补角.【分析】根据余角和补角的定义进行选择即可.【解答】解:①互为补角的两个角不可以都是锐角,故①错误;②互为补角的两个角可以都是直角,故②正确;③互为补角的两个角可以都是钝角,故③错误;④互为补角的两个角之和是180°,故④正确;故选D.二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=12.【考点】单项式乘单项式.【分析】根据单项式乘以单项式法则即可求出m、n的值.【解答】解:由题意可知:x n y4×2xy m=2x n+1y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12,故答案为:128.用科学记数法表示0.000000023= 2.3×10﹣8.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000023=2.3×10﹣8.故答案为:2.3×10﹣8.9.计算:22016×()2017所得的结果是.【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法,积的乘方,可得答案.【解答】解:原式=[22016×()2016]×()=(2×)2016×=,故答案为:.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=﹣7.【考点】多项式乘多项式.【分析】先把(x2+p)(x2+7)的展开,再让x2项的系数为0即可得出p的值.【解答】解:原式=x4+(7+p)x2+7p∵(x2+p)(x2+7)的展开式中不含有x2项,∴7+p=0,∴p=﹣7;故答案为﹣7.11.若x+y=2,x2﹣y2=6,则x﹣y=3.【考点】平方差公式.【分析】已知第二个等式左边利用平方差公式化简,把x+y=2代入即可求出x﹣y 的值.【解答】解:∵x+y=2,x2﹣y2=(x+y)(x﹣y)=6,∴x﹣y=3,故答案为:3.12.已知∠α=72°,则∠α的余角是18°,∠α的补角是108°.【考点】余角和补角.【分析】根据两个角的和为90°,则这两个角互余;两个角的和等于180°,则这两个角互补计算即可.【解答】解:根据定义∠α的余角度数是90°﹣72°=18°.∠α的补角是180°﹣72°=108°′.故答案为:18°,108°三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.【考点】平方差公式;完全平方公式.【分析】(1)根据平方差公式,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)99×101==1002﹣1=9999;(2)992=2=1002﹣2×100+1=9801.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)原式=1+4﹣1=4;(2)原式=4x6y2•(﹣2xy)+(﹣8x9y3)•=﹣8x7y3﹣4x7y3=﹣12x7y3.16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?【考点】垂线.【分析】先根据邻补角的定义计算出∠COE=30°,再利用对顶角相等得∠DOF=30°,然后根据垂直的定义得∠AOD=90°,最后利用∠AOF=∠AOD+∠DOF进行计算.【解答】解:∵∠FOC=5∠COE,而∠FOC+∠COE=180°,∴5∠COE+∠COE=180°,∴∠COE=30°,∴∠DOF=30°,∵CD⊥AB,∴∠AOD=90°,∴∠AOF=∠AOD+∠DOF=120°.17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.【考点】整式的混合运算.【分析】根据题意表示出原来正方形桌子的面积,以及改变后长方形的面积,比较即可得到结果.【解答】解:根据题意得:(x+2)(x﹣1)﹣x2=x2+x﹣2﹣x2=x﹣2,∵x<1.5,∴x﹣2<0,则改变后的桌子面积比原正方形桌子的面积是减少了.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.【考点】完全平方公式.【分析】(1)根据和的完全平方公式,可得答案;(2)根据差的完全平方公式与和的完全平方公式,可得答案.【解答】(1)a2+b2=(a+b)2﹣2ab=72﹣2×12=49﹣24=25;(2)(a﹣b)2=(a+b)2﹣4ab=72﹣4×12=49﹣48=1.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据题意,利用非负数的性质求出x与y的值,原式化简后代入计算即可求出值.【解答】解:∵|2x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,原式=(x2﹣4y2﹣x2+2xy﹣y2)÷2y=(2xy﹣5y2)÷2y=x﹣y,当x=2,y=﹣1时,原式=4.5.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.【考点】平方差公式的几何背景.【分析】(1)利用正方形的面积公式和梯形的面积公式即可求解;(2)根据(1)所得的两个式子相等即可得到.【解答】解:(1)∵大正方形的边长为a,小正方形的边长为b,∴S1=a2﹣b2.S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)根据题意得:(a+b)(a﹣b)=a2﹣b2.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是∠COE、∠BOE,∠COD的余角是∠COE、∠BOE (2 )OE是∠BOC的平分线吗?请说明理由.【考点】余角和补角.【分析】(1)直接利用角平分线的定义得出∠AOD=∠COD,进而利用已知得出∠AOD、∠COD的余角;(2)利用(1)中所求得出OE是∠BOC的平分线.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠COD,∵∠DOE=90°,∴∠DOC+∠COE=90°,∠AOD+∠BOE=90°,∴∠AOD+∠COE=90°,∴∠AOD的余角是:∠COE、∠BOE;∠COD的余角是:∠COE,∠BOE;故答案为:∠COE,∠BOE;∠COE,∠BOE;(2)OE平分∠BOC,理由:∵∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COD+∠DOE=90°,∴∠AOD+∠BOE=∠COD+∠DOE∵OD平分∠AOC,∴∠AOD=∠COD,∴∠COE=∠BOE∴OE平分∠BOC.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=﹣;(2)代数式为完全平方式,则k=±3;(3)解方程:=6x2+7.【考点】完全平方式.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)利用该规律计算1+4+42+43+…+42013=.【考点】平方差公式.【分析】(1)利用平方差公式,依此类推得到结果即可;(2)利用发现的规律填写即可;(3)利用得出的规律计算得到结果;(4)原式变形后,利用得出的规律计算即可得到结果.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)1+4+42+43+…+42013=×(4﹣1)×(1+4+42+43+…+42013)=.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;(2)x5+x4+x3+x2+x+1;(3)x7﹣1;(4).。
(常考题)北师大版初中数学七年级数学下册第一单元《整式的乘除》检测题(含答案解析)(1)
一、选择题1.下列运算正确的是( ) A .2222a a -= B .()32628b b -=-C .222()a b a b -=-D .()a b a b --=--2.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④ B .②④ C .①③ D .①④ 3.如果(x +m )与(x +1)的乘积中不含x 的一次项,则m 的值为( ) A .1B .-1C .±1D .04.下列计算中正确的是( )A .1(1)1--=B .0(1)0-=C .1122aa-=D .﹣0.0000035=﹣3.5×10﹣65.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c bd=ad-bc .上述记号就叫做2阶行列式,若11x x +-11x x -+=12,则x=( ).A .2B .3C .4D .66.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -7.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10± B .20± C .10 D .20 8.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .129.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 210.下列运算正确的是( ) A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠11.下列计算中,错误的有( )①222(2)4x y x y +=+;②222()2x y x xy y --=-+;③2211224x x x ⎛⎫-=-+ ⎪⎝⎭;④22(3)(3)9b a b a a b ---=- A .1个 B .2个C .3个D .4个12.下列计算中,正确..的是( ) A .632a a a ÷=B .32622a a a ⋅=C .222()a b a b -=-D .222()ab a b -=二、填空题13.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.14.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________.15.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).16.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个) A .2222()a ab b a b -+=- B .22()()a b a b a b -=+- C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.17.已知实数m ,n 满足3n km =+,()()22254816m m n n -+-+=,则k =_______.18.已知29x mx ++是完全平方式,则m =_________. 19.若20206m =,20204n =,则22020m n -=_____. 20.若9×32m ×33m =322,则m 的值为_____.三、解答题21.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________. 方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.22.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).23.(1)计算:1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭; (2)先化简,再求值:(3)(2)()x x y x y x y +-++,其中1x =-,2y =. 24.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方式表示阴影部分的面积,写出三个代数式()2m n +、()2m n -、mn 之间的等量关系是______________;(2)有许多等式可以用图形的面积来表示.如图③,它表示了_________;(3)请你用图③提供的若干个长方形和正方形硬纸片图形,用拼长方形的方法,把下列二次三项式进行因式分解:2243m mn n ++.要求:在图④的框中画出图形并在下方写出分解的因式. 25.计算:(1)(x 3)2•(﹣2x 2y 3)2; (2)(a ﹣3)(a +3)+(2a +1)2.26.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】A.根据合并同类项解题;B.根据积的乘方解题;C.根据完全平方公式;D.根据去括号法则,判断即可. 【详解】解:A. 2222a a a -=,原选项计算错误,不符合题意; B. ()32628b b -=-,原选项计算正确,符合题意;C. 222()2a b a ab b -=-+,原选项计算错误,不符合题意;D. ()a b a b --=-+,原选项计算错误,不符合题意; 故选:B . 【点睛】本题考查合并同类项、积的乘方、完全平方公式、去括号法则等.熟记法则能分别计算是解题关键.2.C解析:C 【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误. 【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm , ∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5), ∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确; ④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2, 当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误. 综上所述,正确的说法有①③. 故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.3.B解析:B 【分析】利用多项式乘以多项式展开,使得一次项系数为0即可; 【详解】 由题可得:()()()211x m x x m x m ++=+++,∵不含x 的一次项, ∴10m +=, ∴1m =-; 故答案选B . 【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键.4.D解析:D 【分析】根据零指数幂、负指数幂和科学记数法的表示判断即可; 【详解】1(1)1--=-,故A 错误;0(11)-=,故B 错误;122a a-=,故C 错误; ﹣0.0000035=﹣3.5×10﹣6,故D 正确;故选:D . 【点睛】本题主要考查了零指数幂、负指数幂和科学记数法,准确分析判断是解题的关键.5.B解析:B 【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值. 【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12, 解得:x=3, 故选:B . 【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.6.C解析:C 【分析】分别计算每个选项然后进行判断即可. 【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C 【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.7.B解析:B 【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值. 【详解】解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意; B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.10.D解析:D 【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可. 【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221aa-=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意; D. 0(2)1(0)a a =≠,故D 选项符合题意. 故填:D . 【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.11.C解析:C 【分析】直接利用完全平方公式和平方差公式分别计算,判断各式得出答案即可. 【详解】解:①(2x+y )2=4x 2+4xy+y 2,错误;②2222()()2x y x y x xy y --=+=++,错误;③221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ④()()()()2233339b a b a a b a b a b ---=-+--=-,正确;故选:C . 【点睛】此题主要考查了完全平方公式和平方差公式,正确掌握公式的基本形式是解题关键.12.D解析:D 【分析】分别根据幂的乘方法则、完全平方公式、同底数幂的乘法及除法法则进行逐一解答. 【详解】A 、636-33=a a a a ÷=,原选项计算错误,故不符合题意;B 、323+52=222a a a a ⋅=,原选项计算错误,故不符合题意;C 、222()2a b a ab b -=-+,原选项计算错误,故不符合题意;D 、222()ab a b -=,计算正确,符合题意. 故选:D . 【点睛】本题考查的是同底数幂的乘法与除法,合并同类项及幂的乘方法则,熟知以上知识是解答此题的关键.二、填空题13.17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n)+(n-k)=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t,n-k=t-7,∴(m+n)+(n-k)=3-t+t-7,即m+2n-k=-4,∴(m+2n-k)2=(-4)2,∴m2+4n2+k2+4mn-2mk-4nk=16,∴m2+4n2+k2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.14.【分析】由新规定的运算可得3a=53b=6m=32a-b再将32a-b转化为后再代入求值即可【详解】解:由于(35)=a(36)=b(3m)=2a-b根据新规定的运算可得3a=53b=6m=32a-解析:25 6【分析】由新规定的运算可得3a=5,3b=6,m=32a-b,再将32a-b,转化为2(3)3ab后,再代入求值即可.【详解】解:由于(3,5)=a,(3,6)=b,(3,m)=2a-b,根据新规定的运算可得,3a=5,3b=6,m=32a-b,∴222(3)5253366aa bbm-====,故答案为:256.【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.15.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD 的长为m 则S2-S1=(m-3a )×4a-(m-4a )×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD 的长为m ,分别求出S 1,S 2,再代入S 2-S 1计算即可求解.【详解】解:设长方形ABCD 的长为m ,则S 2-S 1=(m-3a )×4a-(m-4a )×4a=4ma-12a 2-4am+16a 2×=4a 2.故答案为:4a 2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.16.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.17.-1【分析】根据完全平方公式对等式进行变形结合偶数次幂的非负性求出mn 的值进而即可求解【详解】∵∴∴∵∴∴m=1n=2∵∴∴k=-1故答案是:-1【点睛】本题主要考查完全平方公式一元一次方程以及偶数解析:-1【分析】根据完全平方公式对等式进行变形,结合偶数次幂的非负性,求出m ,n 的值,进而即可求解.【详解】∵()()22254816m m n n -+-+=,∴22(21)+4(44)416m m n n ⎡⎤⎡⎤-+-++=⎣⎦⎣⎦,∴22(1)+4(2)416m n ⎡⎤⎡⎤--+=⎣⎦⎣⎦, ∵2(1)44m -+≥,2(2)44n -+≥,∴2(1)0m -=,2(2)0n -=,∴m=1,n=2,∵3n km =+,∴23k =+,∴k=-1,故答案是:-1.【点睛】本题主要考查完全平方公式,一元一次方程以及偶数次幂的非负性,掌握完全平方公式,是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可【详解】∵∴故答案为:9【点睛】本题主要考查了同底数幂的除法以及幂的乘方熟记幂的运算法则是解答本题的关键解析:9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵20206m =,20204n =,∴222(2020)20200922406m n m n -=÷=÷=.故答案为:9.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 20.4【分析】先变形9=32再利用同底数幂的乘法运算法则运算然后指数相等列等式求解即可【详解】∵9×32m×33m=32×32m×33m =32+2m+3m=322∴2+2m+3m=22即5m=20解得:解析:4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【详解】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.【点睛】本题考查了同底数幂的乘法、等式的性质,灵活运用同底数幂的乘法运算法则是解答的关键.三、解答题21.(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y += 【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)()24m n mn +-;()2m n -.(2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =,∴()2254649x y +=+⨯=, ∴7x y +=.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力.22.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.23.(1)10;(2)22x y --;-5【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号,先算小括号里面的;(2)整式的混合运算,注意先算乘法,然后再算加减进行合并同类项的化简计算,最后代入求值【详解】解:(1)1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭=63(8)1÷--⨯=2+8=10(2)(3)(2)()x x y x y x y +-++=2223(22)x xy x xy xy y +-+++=222323x xy x xy y +---=22x y --当1x =-,2y =时,原式=22(1)2145---=--=-【点睛】本题考查实数的混合运算,整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(1)()()224m n m n mn -=+-;(2)()()22223m n m n m mn n ++=++;(3)见解析;()()22433m mn n m n m n ++=++【分析】(1)在图2中,大正方形由小正方形和4个矩形组成,则()()224m n m n mn -=+-; (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,列式即可;(3)由已知的等式,画出相应的图形即可分解因式.【详解】解:(1)大正方形由小正方形和4个长方形组成,大正方形的面积为(m+n )2,小正方形的面积为(m-n )2,长方形的面积为mn∴()()224m n m n mn -=+-. (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,∴()()22223m n m n m mn n ++=++. (3)先拼接长方形,然后利用面积之间的关系得到()()22433m mn n m n m n ++=++..【点睛】本题考查了完全平方公式的实际应用,完全平方公式的几何背景,利用面积法证明完全平方公式,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.25.(1)4x 10y 6;(2)5a 2+4a ﹣8.【分析】(1)根据整式的乘法运算即可求出答案.(2)根据乘法公式即可求出答案.【详解】解:(1)(x 3)2•(﹣2x 2y 3)2=x 6•4x 4y 6=4x 10y 6.(2)(a ﹣3)(a +3)+(2a +1)2=a 2﹣9+4a 2+4a +1=5a 2+4a ﹣8.【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型. 26.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--, =64﹣12﹣644, =64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.。
北师大版2020年七年级数学下册第一章质量评估试卷附答案
北师大版2020年七年级数学下册第一章质量评估试卷含答案第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分,每小题均有四个选项,其中只有一项符合题目要求) 1.(-5x )2·25xy 的运算结果是( )A .10x 3yB .-10x 3yC .-2x 2yD .2x 2y2.下列算式的运算结果正确的是( ) A .m 3·m 2=m 6 B .m 5÷m 3=m 2(m ≠0) C .(m -2)3=m -5D .m 4-m 2=m 2 3.已知某新型感冒病毒的直径约为0.000 000 823 m ,将0.000 000 823用科学记数法表示为( ) A .8.23×10-6 B .8.23×10-7 C .8.23×106D .8.23×1074.若(x +a )(x -3)=x 2+x -n ,则( ) A .a =-4,n =12 B .a =-4,n =-12 C .a =4,n =-12D .a =4,n =12 5.-(-2x 3y 2)2·(-1)2013·⎝ ⎛⎭⎪⎫-32x 2y 32的计算结果是( ) A .3x 10y 10 B .-9x 10y 10 C .-3x 10y 10D .9x 10y 106.下列计算正确的是( ) A .(4x +5y )2=16x 2+20xy +25y 2 B .(-2x 3y 4z )3=-8x 9y 12z 3 C .(a -b )(a +b )=2a -2bD .(-a 6)÷(-a )4=a 2 7.化简(x -2)2+4(x -2)-x 2的结果为( ) A .4x -12 B .4x -4 C .-4D .48.计算⎝ ⎛⎭⎪⎫12-3+2 0180+(-3)2等于( )A .18B .7C .2D .19.如果a +1a =5,则a 2+1a 2=( )A .25B .23C .21D .27 10.若用简便方法计算1 9992,应当用下列哪个式子?( ) A .(2 000-1)2B .(2 000-1)×(2 000+1)C .(1 999+1)×(1 999-1)D .(1 999+1)211.若M 的值使得x 2+4x +M =(x +2)2-1成立,则M 的值为( ) A .5 B .4 C .3D .212.如图1,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图1A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第Ⅱ卷(非选择题,共64分)二、填空题(本大题共4个小题,每小题3分,共12分)图213.已知n是正整数,且x2n=5,则(3x2n)2的值为____________.14.计算:2a2·a3÷a4=____________.15.化简:a(a-2b)-(a-b)2=____________.16.如图2,在一块边长为a的正方形纸片的四角各剪去一个边长为b的正方形,若a=3.6,b=0.8,则剩余部分的面积为____________.三、解答题(本大题共7个小题,共52分)17.(5分)计算:(1)(-x2y5)·(xy)3; (2)4a(a-b+1);(3)(3a+2)(4a-1); (4)3x(3y-x)-(4x-3y)(x+3y).18.(6分)化简求值:5(a+1)2-8(a+1)(a-1)+3(a-1)2,其中a=-1 4.19.(7分)化简求值:[(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-1 25.20.(8分)已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.(1)mn;(2)m2+n2-mn.21.(8分)某厂生产一种边长为a厘米的正方形地砖,材料的成本价为b元/平方厘米,如果将地砖的一边扩大3厘米,另一边缩短3厘米,改成生产长方形地砖,这种长方形地砖每块的材料成本价与正方形地砖相比,是增加了还是减少了?增加或减少了多少?22.(9分)先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a +b)=2a2+3ab+b2,就可以用图3①的面积关系来说明.①②图3(1)根据图3②写出一个等式:______________________;(2)已知等式:(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图3①或图3②画出图形即可).23.(9分)仔细观察下列四个等式:32=2+22+3,42=3+32+4,52=4+42+5,62=5+52+6,….(1)请你写出第5个等式;(2)应用这5个等式的规律,归纳总结出一个表达公式;(3)将这个规律公式认真整理后你会发现什么?参考答案第一章质量评估试卷1.A 2.B 3.B 4.D 5.D 6.B7.C8.A9.B10.A11.C12.C13.22514.2a15.-b216.10.417.(1)-x5y8(2)4a2-4ab+4a(3)12a2+5a-2(4)-7x2+9y218.4a+16,当a=-14时,原式=15.19.-xy,当x=10,y=-125时,原式=2 5.20.(1)2(2)321.成本减少了9b元22.(1)(2a+b)(a+2b)=2a2+5ab+2b2(2)图略23.(1)72=6+62+7(2)(n+1)2=n+n2+(n+1)(3)认真整理后发现(n+1)2=n2+2n+1,这就是我们所熟知的两数和的完全平方公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版2020年七年级数学下册第一章质量评估试卷含答案
第Ⅰ卷(选择题,共36分)
一、选择题(本大题共12小题,每小题3分,共36分,每小题均有四个选项,其中只有一项符合题目要求) 1.(-5x )2·2
5xy 的运算结果是( )
A .10x 3y
B .-10x 3y
C .-2x 2y
D .2x 2y
2.下列算式的运算结果正确的是( ) A .m 3·m 2=m 6 B .m 5÷m 3=m 2(m ≠0) C .(m -2)3=m -5
D .m 4-m 2=m 2 3.已知某新型感冒病毒的直径约为0.000 000 823 m ,将0.000 000 823用科学记数法表示为( ) A .8.23×10-6 B .8.23×10-7 C .8.23×106
D .8.23×107
4.若(x +a )(x -3)=x 2+x -n ,则( ) A .a =-4,n =12 B .a =-4,n =-12 C .a =4,n =-12
D .a =4,n =12 5.-(-2x 3y 2)2·(-1)2013·⎝ ⎛⎭⎪⎫-32x 2y 32
的计算结果是( ) A .3x 10y 10 B .-9x 10y 10 C .-3x 10y 10
D .9x 10y 10
6.下列计算正确的是( ) A .(4x +5y )2=16x 2+20xy +25y 2 B .(-2x 3y 4z )3=-8x 9y 12z 3 C .(a -b )(a +b )=2a -2b
D .(-a 6)÷(-a )4=a 2 7.化简(x -2)2+4(x -2)-x 2的结果为( ) A .4x -12 B .4x -4 C .-4
D .4
8.计算⎝ ⎛⎭⎪⎫12-
3+2 0180+(-3)2等于( )
A .18
B .7
C .2
D .1
9.如果a +1a =5,则a 2+1
a 2=( )
A .25
B .23
C .21
D .27 10.若用简便方法计算1 9992,应当用下列哪个式子?( ) A .(2 000-1)2
B .(2 000-1)×(2 000+1)
C .(1 999+1)×(1 999-1)
D .(1 999+1)2
11.若M 的值使得x 2+4x +M =(x +2)2-1成立,则M 的值为( ) A .5 B .4 C .3
D .2
12.如图1,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )
图1
A .2 cm 2
B .2a cm 2
C .4a cm 2
D .(a 2-1)cm 2
第Ⅱ卷(非选择题,共64分)
二、填空题(本大题共4个小题,每小题3分,共12分)
图2
13.已知n 是正整数,且x 2n =5,则(3x 2n )2的值为____________. 14.计算:2a 2·a 3÷a 4=____________.
15.化简:a(a-2b)-(a-b)2=____________.
16.如图2,在一块边长为a的正方形纸片的四角各剪去一个边长为b的正方形,若a=3.6,b=0.8,则剩余部分的面积为____________.
三、解答题(本大题共7个小题,共52分)
17.(5分)计算:
(1)(-x2y5)·(xy)3; (2)4a(a-b+1);
(3)(3a+2)(4a-1); (4)3x(3y-x)-(4x-3y)(x+3y).
18.(6分)化简求值:5(a+1)2-8(a+1)(a-1)+3(a-1)2,其中a=-1 4.
19.(7分)化简求值:[(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-1 25.
20.(8分)已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.
(1)mn;
(2)m2+n2-mn.
21.(8分)某厂生产一种边长为a厘米的正方形地砖,材料的成本价为b元/平方厘米,如果将地砖的一边扩大3厘米,另一边缩短3厘米,改成生产长方形地砖,这种长方形地砖每块的材料成本价与正方形地砖相比,是增加了还是减少了?增加或减少了多少?
22.(9分)先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a +b)=2a2+3ab+b2,就可以用图3①的面积关系来说明.
①
②
图3
(1)根据图3②写出一个等式:______________________;
(2)已知等式:(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图3①或图3②画出图形即可).
23.(9分)仔细观察下列四个等式:32=2+22+3,42=3+32+4,52=4+42+5,62=5+52+6,….
(1)请你写出第5个等式;
(2)应用这5个等式的规律,归纳总结出一个表达公式;
(3)将这个规律公式认真整理后你会发现什么?
参考答案
第一章质量评估试卷
1.A 2.B 3.B 4.D 5.D 6.B7.C
8.A9.B10.A11.C12.C
13.22514.2a15.-b216.10.4
17.(1)-x5y8(2)4a2-4ab+4a
(3)12a2+5a-2(4)-7x2+9y2
18.4a+16,当a=-1
4时,原式=15.
19.-xy,当x=10,y=-1
25时,原式=2 5.
20.(1)2(2)3
21.成本减少了9b元
22.(1)(2a+b)(a+2b)=2a2+5ab+2b2
(2)图略
23.(1)72=6+62+7(2)(n+1)2=n+n2+(n+1)(3)认真整理后发现(n+1)2=n2+2n+1,这就是我们所熟知的两数和的完全平方公式.。