《统计学》相关与回归分析

合集下载

统计学第七章 相关与回归分析

统计学第七章 相关与回归分析

(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2

y- y R= 1- 2 y y



ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5

统计学中的相关性和回归分析

统计学中的相关性和回归分析

统计学中的相关性和回归分析统计学中,相关性和回归分析是两个重要的概念和方法。

它们旨在揭示变量之间的关系,并可以用来预测和解释观察结果。

本文将介绍相关性和回归分析的基本原理、应用及其在实践中的意义。

一、相关性分析相关性是指一组变量之间的关联程度。

相关性分析可以帮助我们理解变量之间的关系,以及这种关系的强度和方向。

常用的相关性指标有皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。

皮尔逊相关系数是最常见的衡量变量之间线性关系的指标。

它的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关。

例如,在研究身高和体重之间的关系时,如果相关系数为0.8,则说明身高和体重呈现较强的正相关。

斯皮尔曼相关系数则不要求变量呈现线性关系,而是通过对变量的序列进行排序,从而找到它们之间的关联程度。

它的取值也在-1到1之间,含义与皮尔逊相关系数类似。

判定系数是用于衡量回归模型的拟合程度的指标。

它表示被解释变量的方差中可由回归模型解释的部分所占的比例。

判定系数的取值范围在0到1之间,越接近1表示模型对数据的拟合越好。

二、回归分析回归分析是一种用于建立变量之间关系的统计方法。

它通过建立一个数学模型来解释和预测依赖变量和自变量之间的关系。

回归模型可以是线性的,也可以是非线性的。

线性回归是最常见的回归分析方法之一。

它假设自变量和因变量之间存在着线性关系,并通过最小二乘法来估计模型中的参数。

线性回归模型通常表示为y = β0 + β1x1 + β2x2 + ... + βnxn,其中y为因变量,x1、x2等为自变量,β0、β1等为模型的参数。

非线性回归则适用于自变量和因变量之间存在非线性关系的情况。

非线性回归模型可以是多项式回归、指数回归、对数回归等。

回归分析在实践中有广泛的应用。

例如,在市场营销中,回归分析可以用来预测销售量与广告投入之间的关系;在医学研究中,回归分析可以用来探究疾病发展与遗传因素之间的联系。

统计学原理 相关与回归分析

统计学原理 相关与回归分析

粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2

统计学 相关与回归分析.

统计学  相关与回归分析.
格与该证券市场价格指数之间存在显著的相关关系。
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
9.2.1一元线性回归模型
1.理论模型
从回归模型的一般形式,式(9.2)出发,一元线性回归模型可以表
述为
9.2.3 一元线性回归方程的拟合优度
9.2.4 一元线性回归方程的显著性检验
9.2.5 运用一元线性回归方程进行估计
9.3 多元线性回归
9.3.1 多元线性回归模型
9.3.2 多元线性回归方程的最小二乘估计
9.3.3 多元线性回归方程的拟合优度
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
借助散点图还可以概略地区分和识别变量之间的非线性相关的具体类 型,为回归分析确定回归方程的具体形式提供依据,这也是散点图的重 要功能。例如,通过散点图展示的图形特征,初步地分辨出相关关系是 直线,还是二次曲线、三次曲线、指数曲线、对数曲线、S曲线等。所 以,散点图不仅是相关分析,也是回归分析中经常使用的最简便的基本 分析工具。
相关系数的正负取值取决于Lxy的正负。
并且,当相关系数的绝对值越是趋近于1,表明变量和变量的相关程 度越高,称之为强相关;反之,当相关系数的绝对值越是趋近于0,表 明变量和变量的相关程度越低,称之为弱相关。
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
例9.2 根据例9.1的表9.1中的数据。 表9.1某证券市场价格指数与A证券价格
1800

7统计学相关分析与回归分析

7统计学相关分析与回归分析

n n yi nb0 b1 xi i 1 i 1 n n n x y b x b x2 i i 0 i 1 i i 1 i 1 i 1
n n n n xi yi xi yi i 1 i 1 i 1 b 1 n n 2 2 n xi ( xi ) i 1 i 1 30 b0 y b1 x

回归分析:应用相关关系进行预测。
相关关系的识别

散点图 相关系数
10
相关系数

相关系数是对变量之间关系密切程度的度量。 对两个变量之间线性相关程度的度量称为简 单相关系数。 若相关系数是根据总体的全部数据计算的, 称为总体相关系数,记为ρ


若是根据样本数据计算的,则称为样本相关
系数,记为 r
8
相关分析的主要内容

确定现象之间有无相关关系,以及相关关系 的表现形态; 确定相关关系的密切程度(相关系数); 确定相关关系的数字模型,并进行参数估计 和假设检验;


回归预测,并分析估计标准误差。
9
相关与回归

相关与回归紧密联系。 相关分析:
发现变量之间是否存在相关性,
以及相关的强度和相关的方向。
1
n
1
n
10
10
ˆ b0 b1 x 117 9.74 x y
39
7 相关分析与回归分析

相关分析


回归分析
一元线性回归分析
1
相关分析的概念

社会经济现象中,一些现象与另一些现象之间往 往存在着依存关系,当我们用变量来反映这些现 象的的特征时,便表现为变量之间的依存关系。

统计学 第 七 章 相关与回归分析

统计学 第 七 章 相关与回归分析
3. 利用所求的关系式,根据一个或几个变量 的取值来预测或控制另一个特定变量的取 值,并给出这种预测或控制的精确程度
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。

《统计学》-第七章-相关与回归分析

《统计学》-第七章-相关与回归分析

第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。

2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。

3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。

4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。

5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。

6、相关关系按方向不同,可分为 和 。

7、完全线性相关的相关系数r 值等于 。

8、计算回归方程要注意资料中因变量是 的,自变量是 的。

9、回归方程只能用于由 推算 。

(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位 B. 平均变动b 个单位C.变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为()A.不能计算 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D.10、直线回归方程( )A、建立前提条件是现象之间具有较密切的直线相关关系B 、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。

统计学中的相关系数与回归分析

统计学中的相关系数与回归分析

统计学中的相关系数与回归分析统计学是一门研究数据收集、分析和解释的学科,其中包括相关系数和回归分析这两个重要的概念。

相关系数和回归分析都是用于了解变量之间的关系以及预测未来趋势的工具。

本文将介绍相关系数和回归分析的基本概念、计算方法和应用场景。

一、相关系数相关系数衡量了两个变量之间的相关程度。

它反映了两个变量的线性关系强度和方向。

常见的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼等级相关系数(Spearman's rank correlation coefficient)和切比雪夫距离(Chebyshev distance)等。

皮尔逊相关系数是最常用的相关系数之一。

它通过计算两个变量之间的协方差除以它们各自的标准差的乘积来衡量它们的线性关系。

皮尔逊相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示没有线性关系。

通过计算相关系数,我们可以判断变量之间的关系以及预测一个变量的变化情况受到其他变量的程度。

斯皮尔曼等级相关系数是一种非参数相关系数,它不要求变量服从特定的分布。

它通过将原始数据转化为等级来计算变量之间的关系。

斯皮尔曼等级相关系数的取值范围也在-1到1之间,其含义与皮尔逊相关系数类似。

切比雪夫距离是一种度量两个变量之间差异的方法,它不仅考虑了线性关系,还考虑了其他类型的关系,如非线性关系。

切比雪夫距离通常用于分类问题和模式识别领域。

二、回归分析回归分析是一种用于建立因变量和自变量之间关系的统计方法。

它通过寻找最合适的拟合曲线来描述变量之间的函数关系,并用此拟合曲线来预测未来的结果。

简单线性回归是回归分析的一种基本形式,它适用于只有一个自变量和一个因变量的情况。

简单线性回归可以用一条直线来描述变量之间的关系,其中直线的斜率表示了自变量对因变量的影响程度。

多元线性回归是回归分析的一种扩展形式。

它适用于多个自变量和一个因变量的情况。

统计学中的相关分析与回归分析

统计学中的相关分析与回归分析

统计学中的相关分析与回归分析统计学中的相关分析与回归分析是两种重要的数据分析方法。

它们帮助研究人员理解和解释变量之间的关系,并预测未来的趋势。

在本文中,我们将深入探讨相关分析和回归分析的定义、应用和原理。

第一部分:相关分析相关分析是用来衡量和评估两个或更多变量之间相互关系的统计方法。

通过相关系数来量化这种关系的强度和方向。

相关系数的取值范围在-1到+1之间,其中-1表示完全负相关,+1表示完全正相关,0表示没有相关性。

相关分析通常用于发现变量之间的线性关系。

例如,研究人员想要了解身高和体重之间的关系。

通过相关分析,他们可以确定是否存在正相关关系,即身高越高,体重越重。

相关分析还可以帮助确定不同变量对某一结果变量的影响程度。

第二部分:回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。

它可以用来预测因变量的值,并了解自变量对因变量的影响程度。

回归分析可分为简单回归和多元回归两种类型。

简单回归分析适用于只有一个自变量和一个因变量的情况。

例如,研究人员想要预测一个人的体重,他们可以使用身高作为自变量。

通过建立线性回归模型,他们可以得到身高对体重的影响,从而预测一个人的体重。

多元回归分析适用于有多个自变量和一个因变量的情况。

例如,研究人员想要了解影响一个城市房价的因素,他们可以考虑多个自变量,如房屋面积、地理位置、房龄等。

通过建立多元回归模型,他们可以确定每个因素对房价的影响程度,并进行预测。

第三部分:相关分析与回归分析的应用相关分析和回归分析在各个领域都有广泛的应用。

在医学研究中,相关分析可以帮助确定两个疾病之间的关联性,并为疾病的预防和治疗提供依据。

回归分析可以用来预测患者的生存率或疾病的发展趋势。

在经济学中,相关分析可以用来研究经济变量之间的关系,如GDP 与通货膨胀率之间的关系。

回归分析可以用来预测经济增长率,并评估政治和经济因素对经济发展的影响。

在市场营销中,相关分析可以帮助企业了解产品销售和广告投放之间的关系,并制定有效的市场推广策略。

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

《统计学原理与应用》课件第07章 相关与回归分析

《统计学原理与应用》课件第07章 相关与回归分析

74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

统计学第7章相关与回归分析PPT课件

统计学第7章相关与回归分析PPT课件
预测GDP增长
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。

统计学的相关与回归分析

统计学的相关与回归分析

统计学的相关与回归分析统计学是一门研究数据收集、分析和解释的学科。

相关与回归分析是统计学中常用的两种方法,用于探索和解释变量之间的关系。

本文将介绍相关与回归分析的基本概念、应用和意义。

一、相关分析相关分析用于确定两个或多个变量之间的关联程度。

相关系数是用来衡量变量之间线性相关关系强弱的统计指标。

相关系数的取值范围为-1到+1,其中-1表示完全负相关,+1表示完全正相关,0表示无相关关系。

相关分析的步骤如下:1. 收集数据:收集相关的数据,包括两个或多个变量的观测值。

2. 计算相关系数:使用合适的统计软件计算相关系数,如皮尔逊相关系数(Pearson)或斯皮尔曼等级相关系数(Spearman)。

3. 判断相关性:根据相关系数的取值范围,判断变量之间的关系。

相关系数接近于-1或+1时,表明变量之间线性相关性较强,接近于0时表示无相关性。

4. 解释结果:根据相关分析的结果,解释变量之间关联的程度和方向。

相关分析的应用:- 市场调研:通过相关分析可以了解产品的市场需求和用户行为之间是否存在相关关系,以指导市场决策。

- 医学研究:相关分析可以帮助医学研究人员确定疾病与危险因素之间的相关性,从而提供预防和治疗方案。

二、回归分析回归分析用于描述和预测因变量与自变量之间的关系。

通过回归分析可以建立一个数学模型,根据自变量的取值来预测因变量的值。

回归分析常用的方法包括线性回归、多项式回归和逻辑回归等。

回归分析的步骤如下:1. 收集数据:收集因变量和自变量之间的观测数据。

2. 建立模型:选择适当的回归模型,如线性回归模型、多项式回归模型或逻辑回归模型。

3. 拟合模型:使用统计软件对回归模型进行拟合,得到回归系数和拟合优度指标。

4. 检验模型:通过假设检验和拟合优度指标来评估回归模型的适应程度和预测能力。

5. 解释结果:根据回归系数和显著性水平,解释自变量对因变量的影响程度和方向。

回归分析的应用:- 经济预测:回归分析可以用于预测国民经济指标、股票价格和消费行为等。

统计学中的回归分析与相关性

统计学中的回归分析与相关性

统计学中的回归分析与相关性回归分析与相关性是统计学中重要的概念和方法,用于研究变量之间的关系和预测。

本文将介绍回归分析和相关性分析的基本原理、应用领域以及实际案例。

一、回归分析回归分析是研究两个或多个变量之间关系的一种统计方法。

它的基本思想是通过对一个或多个自变量与一个因变量之间的关系进行建模,来预测因变量的取值。

1.1 简单线性回归简单线性回归是回归分析中最基本的形式,用于研究一个自变量和一个因变量之间的关系。

其数学模型可以表示为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

1.2 多元回归多元回归是回归分析的扩展形式,用于研究多个自变量对一个因变量的影响。

其数学模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε。

1.3 回归诊断回归分析需要对建立的模型进行诊断,以确保模型的有效性和合理性。

常见的回归诊断方法包括检验残差的正态性、检验变量之间的线性关系、检验残差的独立性和方差齐性等。

二、相关性分析相关性分析是统计学中用来研究两个变量之间线性关系强弱的方法。

通过计算两个变量的相关系数,可以判断它们之间的相关性。

2.1 皮尔逊相关系数皮尔逊相关系数是最常用的衡量两个连续变量之间线性相关强度的指标,取值范围在-1到1之间。

当相关系数接近1时,表示两个变量呈正相关;当相关系数接近-1时,表示两个变量呈负相关;当相关系数接近0时,表示两个变量之间没有线性关系。

2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种非参数统计量,用于衡量两个变量之间的等级相关性。

与皮尔逊相关系数不同,斯皮尔曼相关系数不要求变量呈线性关系。

三、回归分析与相关性的应用回归分析和相关性分析在各个领域都有广泛的应用。

下面以两个实际案例来说明其应用:3.1 股票市场分析在股票市场分析中,可以使用回归分析来研究某只股票的收益率与市场整体指数之间的关系。

相关与回归分析统计学

相关与回归分析统计学
第八章 相关与回归分析 第一节 相关分析
• 一、函数关系和相关关系 • (一)函数关系和相关关系的区别与联系。 • 客观现象总是普遍联系、相互依存、相互制约
的,当我们用变量来反映这些现象的特征时, 便表现为变量之间的依存关系。变量之间就其 关系的变化来说可分为函数关系和相关关系。
整理课件
当一个或几个变量取一定的值时,另一个变量有确定值 与之相对应,我们称这种确定性的一一对应关系为函数关 系。如圆的周长与其半径之间的关系即为函数关系。
整理课件
变量之间的函数关系和相关关系,在一定条件 下是可以相互转化的。
本来具有函数关系的变量,当存在观测误差 时,其函数关系往往以相关关系的形式表现出来。 而对于具有相关关系的变量之间的联系,如果我们 对它们有了深刻的规律性认识,并且能把影响因变 量变动的因素全部纳入方程,这时的相关关系也可 能转化为函数关系。客观现象的函数关系可以用数 学分析的方法去研究,而研究客观现象的相关关系 则要借助于统计学中的相关与回归分析方法。
关和偏相关的基础。单相关有线性相关和非线性相关 两种表现形式。测定线性相关系数的方法是最基本的 相关分析,是测定其他相关系数方法的基础。 • 单相关系数或简单相关系数可简称相关系数。
• 相关系数是在直线相关条件下,对变量之间相关关系 密切程度的度量。把若干个相关系数加以比较,可以 发现现象发展中具有决定意义的因素,因而相关系数 在多个因素的作用判断中亦有重要作用。
• 判断真实相关与虚假相关,必须依靠有关的实 质性科学提供的知识做定性分析,而不能靠数 学公式或简单的数学图表来作出判断。
整理课件
二、相关关系的分析
• 相关分析就是对变量之间相关关系的描述与度量。 • 其基本内容包括: • 1、直观地判断变量之间是否存在相关关系及其相关关

统计学中的回归分析与相关系数

统计学中的回归分析与相关系数

统计学中的回归分析与相关系数统计学中,回归分析和相关系数是两个重要的概念和方法,它们可以帮助我们理解数据之间的关系、预测未来趋势以及评估变量之间的相互作用。

本文将介绍回归分析的基本原理和应用,以及相关系数的定义和计算方法。

一、回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并建立一个数学模型来描述这种关系。

在回归分析中,我们通常将一个变量称为因变量(dependent variable),将其他变量称为自变量(independent variable)。

回归分析的目标是找到一个关系模型,使得自变量能够解释因变量的变化。

在简单线性回归中,我们假设只有一个自变量和一个因变量之间存在线性关系。

回归模型可以表示为:Y = α + βX + ε其中,Y表示因变量,X表示自变量,α和β是待估计的参数,ε表示误差项。

通过最小二乘法估计参数α和β,我们可以得到最佳拟合直线,以描述自变量和因变量之间的关系。

除了简单线性回归,我们还可以进行多元线性回归,其中自变量可以是多个。

多元线性回归将回归模型拓展为:Y = α + β₁X₁ + β₂X₂ + ... + βₖXₖ + ε通过最小二乘法,我们可以估计所有的参数β₁,β₂,...,βₖ。

多元线性回归分析可以帮助我们更全面地理解多个自变量对因变量的影响。

回归分析不仅可以用于探索变量之间的关系,还可以用于预测未来的数值。

通过已知的自变量值,我们可以利用回归模型来预测因变量的值。

这使得回归分析在实际应用中非常有用,例如经济学、金融学、市场营销等领域。

二、相关系数相关系数是衡量两个变量之间线性关系强度的统计指标,常用于描述变量之间的相关程度。

最常用的相关系数是皮尔逊相关系数,表示为r。

皮尔逊相关系数的取值范围为-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示无线性关系。

皮尔逊相关系数可以通过以下公式计算:r = Σ((Xᵢ - X)(Yᵢ - Ȳ)) / √(Σ(Xᵢ - X)²Σ(Yᵢ - Ȳ)²)其中,Xᵢ和Yᵢ分别表示X和Y的观测值,X和Ȳ分别表示X和Y的平均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 相关与回归分析
1.从某一行业中随机抽取12家企业,所得产量与其单位成本数据如下:
企业编号 产量(台) 单位成本(台/元) 企业编号 产量(台) 单位成本(台/元)
1 40 185 7 84 156
2 42 175 8 100 142
3 50 172 9 116 140
4 5
5 170 10 125 135 5 65 169 11 130 130 6
78
164
12
140
124
(1)绘制产量与单位成本的散点图,判断二者之间的关系形态。

关系形态:线性负相关
(2)计算产量与单位成本之间的线性相关系数,并对相关系数的显著性进行检验(05.0=α),说明二者之间的关系强度。

设产量为x 台,单位成本y 台/元,由Excel 的回归分析工具计算得
线性相关系数R=0.987244 检验统计量t=19.608669 t α/2(n-2)= 2.228138852 t> t α/2(n-2),说明相关系数是显著的。

关系强度为高度线性相关。

(3)以产量为自变量,单位成本为因变量,拟合直线回归方程,并对方程和系数进行显著性检验。

由Excel 的回归分析工具计算得 y = -0.5524x + 202.35 R² = 0.9747 检验统计量t=19.608669 t α/2(n-2)= 2.228138852 t> t α/2(n-2),说明回归方程和相关系数是显著的。

2.下面是某年7个地区的人均GDP 和人均消费水平的统计数据:
地区 人均GDP (元)X 人均消费水平(元)
Y
1 22460 7326
2 11226 4490
3 34547 11546
4 4851 2396
5 5444 2208
6 2662 1608 7
4549
2035
(1)画出相关图,并判断人均GDP 与人均消费水平之间对相关方向;
线性正相关
(2)计算相关系数,指出人均GDP 与人均消费水平之间的相关方向和相关程度;
(3)以人均GDP 为自变量,人均消费水平作因变量,拟合直线回归方程;
(4)计算估计标准误差
yx
S ;
(5)对回归系数进行检验(显著性水平取0.05);
(6)在95%的概率保证下,求当人均GDP 为5000元时,人均消费水平的置信区间。

3.经过研究,发现家庭书刊消费水平受家庭收入及户主受教育年数的影响。

现对某地区的家庭进行抽样调查,得到样本数据如下表所示,其中y表示家庭书刊消费水平(元/年),x表示家庭收入(元/月),T表示户主受教育年数。

(1)以y为因变量,x与T为自变量建立多元线性回归方程。

(2)对回归模型显著性检验。

(3)对回归系数进行显著性检验。

4.ex9_4中存放着在20家药品生产企业年销售收入与广告费用支出的数据。

(1) 计算销售收入和广告费用间的Pearson 相关系数r 为( ) A. 0.8661 B. 0.9306 C. 0.8587 D. -0.9306
(2) 由第(1)题计算的Pearson 相关系数判断两者间的相关程度和相关方向为( ) A. 高度负相关 B. 中度负相关 C. 高度正相关 D. 中度正相关
(3) 假如要建立销售收入(因变量)对广告费用(自变量)的线性回归模型,求得其经验回归直线为( )
A. x y 13.555.274ˆ-=
B. x y 13.555.274ˆ+-=
C. x y 13.555.274ˆ--=
D. x y 13.555.274ˆ+=
(4) 检验回归系数是否为0即
:10=βH , 则( ) (显著性水平05.0=α)
A. 7887.01=t , 回归系数01=β
B. 7887.10=t , 回归系数01≠β
C. 91074.2-⨯=t , 回归系数01=β
D. 91074.2-⨯=t , 回归系数01≠β
(5)该线性回归模型的可决系数为( )
A. 0.9306
B. 0.8661
C. 0.8586
D. 0.4150
5.ex9_5保存了某地区16个林业局的年木材采伐量和相应伐木剩余物数据。

(1)假如要建立伐木剩余物(因变量)对年木材采伐量(自变量)的线性回归模型,求得其经验回归直线为( )
A. x y 4043.07629.0ˆ--=
B. x y 4043.07629.0ˆ+=
C. x y 4043.07629.0ˆ+-=
D. x y 4043.07629.0ˆ-=
(2)该线性回归方程的估计标准误差是( ) A .2.0363 B. 1.2210 C 0.0333 D.58.0523
(3)伐木剩余物变差中有( )是由于年木材采伐量变动引起的。

A. 58.0523 B. 608.3742 C. 666.4265 D.146.7166
(4)该线性回归方程的判定系数是( )
A .-0.6249 B.12.1127 C. 146.7166 D.0.9128
(5)检验回归方程的显著性。

( ) A. 1127.12=t , 回归方程显著; B. 1127.12=t , 回归方程不显著; C .7166.146=F ,回归方程显著; D. 7166.146=F ,回归方程不显著
6.ex9_6中保存了美国机动车汽油消费量(QMG )及相关指标数据:汽车保有量(MOB )、机动车汽油零售价格(PMG )、国民生产总值(GNP )。

(1)以美国机动车汽油消费量为因变量,其余变量为自变量,建立回归模型为:( ) A .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279-++= B .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279+++= C .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279--+= D .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279--+-=
(2)在评价上述模型的拟合优度时,通常采用的统计量及值为( ) A .判定系数,0.9669 B. 判定系数,0.9639
C. 修正的判定系数,0.9669
D. 修正的判定系数,0.9639
(3)该回归方程的估计标准误差是( )
A .4362677.69 B.2361434.87 C.0.19 D.9321.72
(4)对整个回归模型的显著性进行检验(显著性水平05.0=α),则( ) A. 根据F 统计量判断,结论是拒绝原假设,回归方程不显著 B. 根据F 统计量判断,结论是拒绝原假设,回归方程显著 C .根据t 统计量判断,结论是拒绝原假设,回归方程不显著 D. 根据t 统计量判断,结论是拒绝原假设,回归方程显著
(5)对自变量MOB 的回归系数进行检验(显著性水平05.0=α),则( )。

A .F=330.6453,回归系数显著 B. 9669.02
=R ,回归系数显著 C .36.1=β,回归系数显著 D. t=7.03, 回归系数显著。

相关文档
最新文档