2010年山东省淄博市中考数学试卷及解析
淄博市初中数学方程与不等式之一元一次方程技巧及练习题附解析
淄博市初中数学方程与不等式之一元一次方程技巧及练习题附解析一、选择题1.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -=B .179x x += C .7x+9x=1 D .9x-7x=1【答案】B 【解析】 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式. 【详解】解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=,故选B. 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.2.如图,有一内部装有水的直圆柱形水桶,桶高20dm ;另有一直圆柱形的实心铁柱,柱高30dm ,直立放置于水桶底面上,水桶内的水面高度为12dm ,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为( )A .4.5dmB .6dmC .8dmD .9dm【答案】D 【解析】 【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm 2),水桶底面积为4a(dm 2),于是得到水桶底面扣除铁柱底面部分的环形区域面积为4a-a=3a(dm 2),,根据原有的水量为3a×12=36a (dm 3),列出方程,即可得到结论. 【详解】∵水桶底面半径:铁柱底面半径=2:1, ∴水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm 2),则水桶底面积为4a(dm 2),∴水桶底面扣除铁柱底面部分的环形区域面积为4a−a=3a(dm 2), ∴原有的水量为:3a×12=36a (dm 3), 设水桶内的水面高度变为xdm , 则4ax=36a ,解得:x=9, ∴水桶内的水面高度变为9dm . 故选D . 【点睛】本题主要考查用一元一次方程解决圆柱体的等积变形问题,掌握圆柱体的体积公式是解题的关键.3.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--=【答案】C 【解析】试题分析:方程两边同乘以6得2(2x+1)-3(5x-3)=6,故答案选C. 考点:去分母.4.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-= D .60101213x x+-= 【答案】B 【解析】 【分析】实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程 【详解】实际生产12小时的零件数量是12(x+10)件, 原计划13小时生产的零件数量是13x 件, 由此得到方程12(10)1360x x +=+, 故选:B. 【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.5.方程834x ax -=-的解是3x =,则a 的值是( ). A .1 B .1-C .3-D .3【答案】A 【解析】 【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可. 【详解】把3x =代入方程834x ax -=-得: 8-9=3a-4 解得:a=1 故选:A . 【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.6.如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有( )A .4次B .3次C .2次D .1次【答案】B 【解析】 【分析】 【详解】试题解析:∵四边形ABCD 是平行四边形, ∴BC=AD=12,AD ∥BC , ∵四边形PDQB 是平行四边形, ∴PD=BQ ,∵P 的速度是1cm/秒, ∴两点运动的时间为12÷1=12s , ∴Q 运动的路程为12×4=48cm , ∴在BC 上运动的次数为48÷12=4次,第一次PD=QB 时,12-t=12-4t ,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质7.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场【答案】C【解析】【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.8.小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )A.1300 米B.1400 米C.1600 米D.1500 米【答案】C【解析】【分析】根据图象求出小元步行的速度和出租车的速度,设家到火车站路程是x米,然后根据题意,列一元一次方程即可.【详解】解:由图象可知:小元步行6分钟走了480米 ∴小元步行的速度为480÷6=80(米/分) ∵以同样的速度回家取物品, ∴小元回家也用了6分钟∴小元乘出租车(16-6-6)分钟走了1280米 ∴出租车的速度为1280÷(16-6-6)=320(米/分) 设家到火车站路程是x 米 由题意可知:62380320x x -=⨯+ 解得:x=1600 故选C . 【点睛】此题考查的是函数的图象和一元一次方程的应用,掌握函数图象的意义和实际问题中的等量关系是解决此题的关键.9.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣2(2x ﹣4)=﹣(x ﹣7) D .以上答案均不对【答案】C 【解析】 【分析】两边同时乘以6即可得解. 【详解】解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--.故选C. 【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.10.下列等式的变形中,正确的有( ) ①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个 B .2个 C .3个 D .4个【答案】B 【解析】 【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案. 【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确 ③由a bc c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m1n=故本选项错误 故选:B 【点睛】本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.11.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b = D .如果122a b =,那么a b = 【答案】A 【解析】 【分析】根据等式的性质,可得答案. 【详解】A.两边都除以-2,故A 正确;B.左边加2,右边加-2,故B 错误;C.左边除以2,右边加2,故C 错误;D.左边除以2,右边乘以2,故D 错误; 故选A . 【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.12.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=( ) A .10° B .60°C .45°D .80°【答案】C 【解析】 【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x ,∠2=3x ,∠3=6x ,再根据∠3比∠1大60°,列出方程解出x 即可. 【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.13.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.14.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n%提高到(n+6)%,则n的值为().A.10 B.12 C.14 D.17【答案】C【解析】【分析】设原进价为x,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C.【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A .24里 B .12里C .6里D .3里【答案】C 【解析】 【分析】 【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C16.下列各式中:①由3x =﹣4系数化为1得x =﹣34; ②由5=2﹣x 移项得x =5﹣2; ③由213132x x --=+ 去分母得2(2x ﹣1)=1+3(x ﹣3); ④由2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x ﹣9=1. 其中正确的个数有( ) A .0个 B .1个C .3个D .4个【答案】A 【解析】 【分析】根据解一元一次方程的去分母、去括号、移项及系数化1的方法依次判断后即可解答. 【详解】①由3x=﹣4系数化为1得x=﹣43,可知①错误; ②由5=2﹣x 移项得x=2﹣5,可知②错误;③由213132x x --=+去分母得2(2x ﹣1)=6+3(x ﹣3),可知③错误; ④由2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x+9=1,可知④错误. 综上,正确的结论有0个,故选A. 【点睛】本题考查了解一元一次方程的去分母、去括号、移项及系数化1的方法,熟知解一元一次方程的基本步骤是解决问题的关键.17.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+ B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B 【解析】 【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可. 【详解】解:设共有x 人,可列方程为:8x-3=7x+4. 故选:B 【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.甲、乙两人都从A 出发经B 地去C 地,乙比甲晚出发1分钟,两人同时到达B 地,甲在B 地停留1分钟,乙在B 地停留2分钟,他们行走的路程y (米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有( ) ①甲到B 地前的速度为100/min m ②乙从B 地出发后的速度为600/min m ③A 、C 两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C 地300mA .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】①②③直接利用图中信息即可解决问题,求出到B 地后的函数关系式,利用方程组求交点坐标即可判定④的正确性. 【详解】解:由图象可知:甲到B 地前的速度为400÷4=100米/分钟,故①正确,乙从B 地出发后的速度为600÷2=300米/分钟,故②错误, 由图象可知,A 、C 两地间的路程为1000米,故③正确,设甲到B 地后的函数关系为y=kx+b ,则有540091000k b k b +=⎧⎨+=⎩ , 解得150350k b =⎧⎨=-⎩, ∴y=150x-350,设乙到B 地后的函数关系为y=mx+n ,则有640081000m n m n +=⎧⎨+=⎩ , 解得3001400m n =⎧⎨=-⎩, ∴y=300x-1400,由1503503001400y x y x =-⎧⎨=-⎩解得7700x y =⎧⎨=⎩ ,∴甲乙再次相遇时距离A 地700米, ∵1000-700=300,∴甲乙再次相遇时距离C 地300米,故④正确, 故选:C . 【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.19.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+= D .9232x x +-=【答案】A 【解析】 【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可. 【详解】设有x辆车,则可列方程:3(x-2)=2x+9.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.20.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300 B.260 C.240 D.220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.x+元,根据题意得:设花费较少的一家花了x元,则另一家花了40x+⨯40=605x=解得:260检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B.【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.。
淄博市2010中考模拟试题数学 4套 有答案
数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C D D C D A B A DD A13.120°;14.2)2(b a +;15.13+n ; 16.15π2cm ;17.6三、解答题 (本大题共7小题,共64分):18.(本题满分6分)101()(2008)33056π-+-=5+1- 3 ·33 =5+1-1=5. 19. (本题满分6分)解:方程两边同乘(1)(1)x x -+,得 2(1)0x x --=.解这个方程,得2x =.检验:当2x =时,(1)(1)0x x -+≠.所以2x =是原方程的解.20.(本题满分8分)(1)不合格(2)80名(3)合理,理由,利用样本的优秀人数来诂计总体的优秀人数。
21.(本题满分9分)(1)1140≤45x+75(20-x)≤1170(2)11≤x ≤12∵x 为正整数∴当x=11时,20-11=9当=12时20-12=8∴生产甲产品11件, 生产乙产品9件或 生产甲产品12件,生产乙产品8件。
22. (本题满分9分)解:(1)FEB ≅FAD.证明:BE AC ∴∠1=∠E 又AD=BE ∠AFD=∠EFB ∴AFD ≅EFB.(2)2.BF FG EF =理由:1,12,2E E ∠=∠∠=∠∴∠=∠。
又,GFB BFE BFG ∠=∠∴∆∽.BF FG EFB EF BF∆∴=,即2BF FG EF =。
2010年山东省济南市中考数学试卷整卷解读报告
2010年山东省济南市中考数学试卷整卷解读报告朱美香(山东省淄博市临淄区第二中学)试题展示:一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2+(-2)的值是( ) A .-4B .C .0D .414-2.一组数据0、1、2、2、3、1、3、3的众数是( ) A .0B .1C .2D .33.图1中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为( )A .B .C .D .图14.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车(如图2),为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为( )A .0.284×105 吨B .2.84×104吨C .28.4×103吨D .284×102吨 5.二元一次方程组的解是( )42x y x y -=⎧⎨+=⎩,A .B .CD .37x y =⎧⎨=-⎩,11x y =⎧⎨=⎩,73x y =⎧⎨=⎩,31x y =⎧⎨=-⎩,6.下列各选项的运算结果正确的是( )A .B . 236(2)8x x =22523a b a b -=C .D .623x x x ÷=222()a b a b -=-7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图3所示,则这次测试的平均分为( )图2图5A BCDPE图7ACDM N O 图4⑴1+8=?1+8+16=?⑵⑶1+8+16+24=?图6……5分数人数(人)156分020108分10分图3A .分B .分 C .分 D .8分533544038.一次函数的图象经过哪几个象限( ) 21y x =-+A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图4所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为( )A .B CD .11210.二次函数的图象如图5所示,则函数值y <0时,x 的取22y x x =--值范围是( )A .x <-1B .x >2C .-1<x <2D .x <-1或x >211.观察下列图6及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为( )A .B .C .D .2(21)n +2(21)n -2(2)n +2n 12.如图7所示,矩形ABCD 中,AB =4,BC =,点E 是折线段A-D-C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有( )AC DE图8A .2个B .3个C .4个D .5个二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中的横线上)13.分解因式:= .221x x ++14.如图8所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C=79°,则∠D 的度数是 度.15.解方程的结果是 . 23123x x =-+16.如图9所示,点A 是双曲线在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关1y x=-于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .17.如图10所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则 △ABC 外接圆半径三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤)18.(本小题满分7分) ⑴解不等式组:22 4.x x x +>-⎧⎨-⎩,≤⑵如图11所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点.①②BACDM图11图14图15CD 图12AB求证:BM =CM . 19.(本小题满分7分) +;0(3)-⑵如图12所示,△ABC 中,∠C =90°,∠B=30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长. 20.(本小题满分8分)如图13所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与b 的乘积等于2的概率. 21.(本小题满分8分)如图14,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.22.(本小题满分9分)如图15,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式;⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A→D→C→B→A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?23.(本小题满分9分) 已知:△ABC 是任意三角形.⑴如图16,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A ;⑵如图17,点M 、N 分别在边AB 、AC 上,且,,点P1、P 2是边BC 的三等分点,13AM AB =13AN AC =你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由;图13⑶如图18,点M 、N 分别在边AB 、AC 上,且,,点P 1、P 2、……、P 2009是12010AM AB =12010AN AC =边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)ABCN MA MNP 1CP 2BA CMNP 1P 2P 2009…………B图17图16图1824.(本小题满分9分)如图19,抛物线与x 轴交于A 、B 两点,直线BD 的223y x x =-++函数表达式为,抛物线的对称轴l 与直线BD 交于点C 、y =+与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连结AN 、BM 、MN .①求证:AN=BM ;②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.试题解读与点评:1.C .考点:考查有理数的加法法则,特别是互为相反数的两数之和法则的运用.2.D .考点:考查对一组数据的众数的概念的理解,对统计量众数、中位数的区别.3.C .考点:考查对几何体的三视图的理解,三视图观看的方向及画法,辨析主视图、左视图、俯视图的不同.4.B .考点:考查用科学计数法表示较大数的方法,在科学记数法中,考查对的取值范围的na 10⨯a 要求,及与所写数的整数位数的规律的运用.n 点评:本题结合世界注目的世博会创设情境,以世界热点问题“低碳、和谐、可持续发展的城市”为话题,紧扣时代脉博,激起学生的好奇,既体现了数学的应用价值,也体现了新课程的理念;同时也说明中国在节能方面走在世界的前头,展现了中国的实力,作为学生应引以为豪.5.D .考点:考查二元一次方程组的解法,对二元一次方程组的解的理解.6.A .考点:考查整式的减法、乘法、除法、积的乘方法则、完全平方公式及合并同类项的法则的运用.7.B .考点:考查学生从条形统计图中读图能力,获取信息能力,考查利用数据计算求平均数的方法. 点评:本题以学生熟悉的体育课为题材,以“立定跳远项目的测试成绩”为载体绘制条形统计图,充分考查学生利用统计知识处理信息并作出解答的能力,较好地反映学生运用统计知识解决实际问题的能力.8.B .考点:考查一次函数性质及画法的理解及运用,考查对一次函数中的符号与直b kx y +=b k ,线所经过的象限之间的关系的理解,考查学生数形结合的思想方法的运用.b kx y +=点评:数形结合思想方法在一次函数、反比例函数、二次函数得到充分体现,数形结合使数学语言与直观图形相得益彰.著名数学家华罗庚说过“数缺形时少直观,形缺数时难入微,数形结合百般好,割裂分离万事休.”9.B .考点:考查三角形的中位线的性质、正方形的性质、三角函数及特殊角的三角函数值的运用. 10.C .考点:考查利用二次函数的图象确定自变量的取值范围的方法,考查学生对二次函数图象的理解,考查学生对二次函数图象上点的横纵坐标的理解,考查学生数形结合思想方法的运用.点评:对于一个一元二次不等式,学生没有学过,解决不了,但利用二次函数的图象,确定自变量的取值范围不是一个问题,体现了利用形解决数的问题,数形结合思想方法在函数里得到淋漓尽致的体现.11.A .考点:探究规律题,利用已知图形与所对应的算式的关系,探究每一个算式与图形序列号之间的规律的问题.考查学生的观察能力,自主探究问题的能力,分析问题、归纳总结的能力.点评:此题以简单的图形为载体,探究有规律的一组数的和的结果,只要认真分析已知的每一个算式与图形中小正方形个数之间的关系,考虑每个图形中小正方形的个数与图形序列号之间的关系,不难发现规律.12.C .考点:等腰三角形的定义、折叠问题、轴对称、分类讨论思想解答:由题可“动中找静”,如图20,当E 点运动到C 点时,A 点的对称点为H ,因有AB =BP ,所以点P 在以B 为圆心,AB 长为半径的弧AH 长运动,此时分两种情况考虑,一种是以C 点为顶点的等腰三角形有两个和,第二种是以BC 为底边的等腰三角形有两个和.CFB ∆CBQ ∆MBC ∆NBC ∆点评:本题是一道动态图形中探究等腰三角形个数问题,可从等腰三角形这个条件入手“动中找静”,注意正确使用分类讨论思想,与一般等腰三角形的讨论不同,此题中的BP 为定值,故不需要考虑以B 为圆心BP =BC 的情况,本题作为选择题有很好的区分度.13.=(x +1)2.考点:运用完全平方公式法分解因式.221x x ++14.70.考点:考查图形变换中平移变换的性质以及三角形内角和定理的运用. 15..考点:分式方程的解法.9-=x 16.4.考点:考查点的轴对称、中心对称的特点,矩形的轴对称性及反比例函数图象上点的几何意义的运用.点评:利用点的对称性将双曲线与矩形和谐地结合在一起,体现在知识网络的交汇点设计试题的原则.在知识网络处设计试题,不仅能有效地考查学生的综合运用知识分析问题的能力,而且还可以充分利用有限的资源,考查较多的知识点,扩大考查知识点的覆盖率.17..考点:三角形外接圆的含义、勾股定理及有关圆的性质的运用.13点评:本题以网格为背景,以三角形的外接圆为载体,将点的坐标、垂径定理、勾股定理有机结合在一起.18.⑴解:解不等式①,得;1->x 解不等式②,得,所以不等式组的解集为. 2-≥x 1->x 考点:一元一次不等式(组)的解法. (2)证明:在梯形ABCD 中,∵BC ∥AD ,AB=DC ,∴梯形ABCD 为等腰梯形.∴∠BAM=∠CDM ,∵点M 是AD 的中点, ∴AM=DM ,∴△ABM ≌△DCM ,∴BM=CM.考点:考查学生对等腰梯形的定义与性质、三角形全等的性质与判定的运用.考查学生分析问题的能力,推理能力,书写步骤的规范性.点评:在特殊的四边形等腰梯形中,因为等腰梯形为轴对称图形,所以当一点在对称轴上时,会有全等三角形,对应线段、对应角,体现了命题者抓住事物的本质.19.(1)解:原式-1.0(3)-2+1考点:考查分式的分母有理化和零指数的有关计算,考查学生的运算能力. ⑵解:∵△ABC 中,∠C=90º,∠B=30º, ∴∠BAC=60º,∵AD 是△ABC 的角平分线, ∴∠CAD=30º, ∴在Rt △ADC 中,=2 .cos30AC AD =︒考点:考查角平分线的定义、直角三角形的性质、三角函数及特殊角的三角函数值的运用. 点评:直角三角形是沟通三角形中边、特殊角、三角函数的桥梁. 20.解:a 与b 的乘积的所有可能出现的结果如下表所示:b 1 2 -3 -4 1 1 2 -3 -4 2 2 4 -6 -8 -3 -3 -6 9 12 -4-4-81216总共有16种结果,每种结果出现的可能性相同,其中ab =2的结果有2种,∴a 与 b 的乘积等于2的概率是.18考点:考查学生用列举法计算简单事件发生的概率的方法,对概率意义的理解,对“等可能性”的理解,考查学生的应用意识和分析问题解决问题的能力.点评:此题以学生熟悉的游戏为背景,应用概率知识解决问题,体现了概率知识在社会生活的广泛应用,展现了新课程理念.21.解:设BC 边的长为x 米,根据题意得 , 解得:, 120232=-⋅xx 121220x x ==, ∵20>16,∴不合题意,舍去,220x = 答:该矩形草坪BC 边的长为12米.考点:考查学生解一元二次方程应用题的能力,建模思想,处理实际问题的结果的能力.a图21点评:本题以现实生活中实际问题为切入点,由课本中的原题演变生成,背景熟悉又贴近现实,给学生一种亲近感.22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°, ∴OD =OA ·tan60°=,∴点D 的坐标为(0,). 设直线AD 的函数表达式为,y kx b =+解得20k b b -+=⎧⎪⎨=⎪⎩,k b ⎧⎪⎨=⎪⎩∴直线AD 的函数表达式为. y =+⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°, ∴∠1=∠2=∠3=∠4=30°, AD =DC =CB =BA =4. 如图21所示:①点P 在AD 上与AC 相切时, AP 1=2r =2, ∴t 1=2.②点P 在DC 上与AC 相切时, CP 2=2r =2, ∴AD +DP 2=6, ∴t 2=6.③点P 在BC 上与AC 相切时, CP 3=2r =2, ∴AD +DC +CP 3=10,∴t 3=10.④点P 在AB 上与AC 相切时, AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切.A BCM NP 1图22P 212考点:考查直角坐标系中点的坐标的意义,三角函数、一次函数的图形与性质、菱形的性质、直线与圆相切的性质的运用;考查方程思想、数形结合思想、函数思想、分类讨论思想的运用.点评:本题以直角坐标系为背景,将特殊的平行四边形与圆有机结合起来,并且让圆运动起来,试题有一定的难度,综合性较强.第(1)问是学生熟悉的利用两点求直线的表达式的问题,学生感到轻松,入手较为容易.第(2)问利用点的运动,计算圆与直线相切的位置关系时的运动时间.需要学生考虑点在不同线段上时,直线与圆相切的多种情况,需要学生具备比较娴熟的分类讨论思想, 需要具有较强的思维能力、分析问题的能力、想象能力和合情推理能力.因此对学生来说有一定的难度,这样命题无疑能较好地区分各类学生的数学思维水平、数学素养.23.⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM ,∴四边形AMPN 是平行四边形, ∴∠MPN =∠A .⑵∠MP 1N +∠MP 2N =∠A 正确. 如图22所示,连结MN , ∵,∠A =∠A ,∴△AMN ∽△ABC , 13AM AN AB AC ==∴∠AMN =∠B ,,∴MN ∥BC ,MN =BC , 13MN BC =13∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A . ⑶∠A .考点:考查三角形中位线定理、平行线的性质、平行四边形的判定与性质、相似三角形的判定与性质;考查学生的类比思想、数形结合思想.点评:本题由点M 的不同位置,探究角的关系.试题有层次性,递进性,是一道很好的探究性试题,考查学生的探究能力,考查学生的类比思想方法的运用,体现了新课标的要求.从学生熟悉的三角形的中位线出发,将课本中的定理拓展、运用类比方法进行变式,体现中考试题源于课本又高于课本的思想,体现了命题者对教材的挖掘能力、对试题的综合能力.DC M N O A B P 图23l x yF E 24.解:⑴令,解得:,2230x x -++=121,3x x =-=∴A (-1,0),B (3,0).∵=, 223y x x =-++2(1)4x --+∴抛物线的对称轴为直线x =1,将x =1代入y,y =+∴C (1,).⑵.①在Rt 中,=, ACE ΔCAE ∠tan CE AE =∴∠CAE =60º,由抛物线的对称性可知l 是线段AB 的垂直平分线,∴AC=BC ,∴△ABC 为等边三角形, ∴AB = BC =AC = 4,∠ABC=∠ACB = 60º,又∵AM=AP ,BN=BP ,∴BN = CM , ∴△ABN ≌△BCM ,∴AN =BM .②四边形AMNB 的面积有最小值.设AP=m ,四边形AMNB的面积为S ,由①可知AB =BC= 4,BN = CM=BP ,S △ABC 2=, ∴CM=BN= BP=4-m,CN=m ,过M 作MF ⊥BC ,垂足为F ,则MF=MC•sin60º, )m-∴S △CMN ===,MF CN ⋅2112m )m -2+∴S =S △ABC-S △CMN =-()222)m -+∴m =2时,S 取得最小值考点:考查对二次函数的图象与性质,三角函数、等边三角形的判定与性质、计算多边形面积、二次函数的最值问题的运用;考查方程思想、函数思想、数形结合思想、转化思想.点评:本题为整卷的压轴题,综合性强,难度大,有一定的区分度,有信度.其编排上起点低、坡度缓、难点分散的特点.全题共两小题,各小题由易到难、有层次性.为学生顺利解题隐含地提供着导向作用,凸现了数学思维的独特品质,较好地实现了对初中数学基础知识、基本技能和数学思想为核心的能力考查.特别是第(2)题的①小题,综合程度高,难度进一步加大,需要学生从复杂图形分析出简单的图形模型,找到已知量,探究已知与未知的关系;并且是一个动态问题,需要学生从动态中探究实质,从变中找到不变的、本质的东西.这无疑对数学思维提出了更高的要求,第②小题求不规则图形的面积的最值,需要学生用运用转化的思想,运用分割法,将不规则多边形面积问题转化为规则图形的面积问题,从而解决问题.试卷综合解读与评析:1 .试题的指导思想2010年山东省济南市初中毕业生学业考试数学卷,以全日制《义务教育数学课程标准(实验稿》依据,力求符合《山东省初中毕业生学业考试标准和说明》,按照考查基础知识,基本能力和基本数学思想方法的原则,将知识、能力和素质融为一体.体现了《课程标准》的评价理念,即有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标;有利于引导教师的数学教学方式及学生的数学学习方式;有利于高中阶段学校综合、有效地评价学生的数学学习状况.在试题命制过程中遵循了以下基本原则:(1)考查内容依据《课程标准》,对数学基础知识、基本技能、基本思想的考查,体现基础性,体现了“大众数学”的思想;同时体现了重点内容重点考核的理念,突出数学的核心内容的价值.(2)试题以学生熟悉的素材、现实生活、社会热点问题为切入点,创设情境,情境新颖,背景公平,同时具有现实性,同时体现了数学在社会生活中的应用价值.(3)考查试题的通解通法,淡化技巧性,求解方式多样性,灵活性,体现了尊重学生的不同的个性、思维方式,也体现了以人为本,彰显新理念.(4)试卷以能力立意,注重考查学生的运算能力、空间想象能力、思维能力及合情推理能力;考查学生运用数学思想方法分析问题、解决问题的能力;考查学生的动手实践能力;考查学生运用基础知识探究问题的能力.(5)试题设置由易到难,有梯度,有区分度且很好地控制难度,难度控制是命制一份高质量试卷的重要技术要素.2 .试题内容与要求根据《课程标准》及《说明》的总体目标,确定考查的目标、题型、题量、分值分布、难度分布以及考查的能力分布.考试内容按数与代数、空间与图形、统计与概率、实践与综合应用四部分.题型分为选择题、填空题和解答题三部分.试题按其难度可分容易题、中档题和难题.对于考试内容所作出的考试要求分为四个层次,由低到高依次为了解、理解、掌握、和灵活运用.3. 试题特点本卷亮点纷呈,注重基础,立意能力和数学思想方法的考查,体现了新《课程标准》的理念.(1)挖掘课本,立足基础,发挥导向作用试卷中有很多题源于课本的例题和习题的改编,这样学生感到背景熟悉,有一种亲切感,降低了难度,只要运用课本的概念,理解基本定理或推论,掌握了基本的解题方法,会看简单的统计图,就能得到正确答案,如第1、2、3、4、5、6、7、8、13、14、15、18、21题,教材是教师和学生的依据,紧扣课本,立足基础,防止题海战术,避免增加学生的课业负担,这也是新课程标准的理念,试题的命制原则起到了很好的导向作用.(2)探究问题,培养能力,彰显理念《课程标准》中指出:动手实践,自主探究与合作交流是学生学习数学的重要方式.试题设置成探究性问题,考查学生的动手实践,自主探究的能力.如第12、22、23、24题,很好地引导教师的教学方式和学生的学习方式,体现了学生的学习是一个生动活泼的、主动的探究过程,彰显新理念.(3)突出主干知识,注重数学思想方法的渗透试卷体现了重点内容重点考的命题原则,对数学核心内容的考查有:函数与坐标系、方程、特殊四边形、三角形的全等与相似、等腰三角形与直角三角形、统计与概率、三角函数与解直角三角形、圆等.关注对应用数学解决问题能力的考查,突出试题的探究性,关注对数学活动过程的评价;突出了对数学思想方法的考查,涉及的数学思想与方法有:分类讨论、数形结合、化归与转化、图形的变换、方程与函数、类比、轴对称、统计与概率等思想,有效地检测了学生学习数学的综合能力.(4)难度合理、区分度好试卷的选择题、填空题、解答题分别由易到难,层层推进,逐步加大难度,有梯度,有很好的区分度,但没有“难、偏、怪”题,难度题有第12、22、23、24 题,体现了数学学习的基础性、普及性、发展性,体现了新理念——人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展. 中考数学复习中存在的问题与建议1. 主要问题(1)在教学过程中,对基本的概念、公式、定理没有真正理解,不会灵活运用;学生的动手操作能力差,自主探究问题能力差.(2)针对一道题,不知运用那个知识点去解决问题,找不到解题的突破口,解题灵活性差,不能从复杂图形中找到简单图形的原型,没有触类旁通、举一反三的能力.(3)解题后没有开展反思,题目解后的效益不高,解题不在于多,而在于精,贵在解题后进一步拓展、变形、反思、联想等,这种训练对同学们的学习能力的考查是十分有效的,复习中要引起同学们的高度重视.2 .复习建议(1)挖掘教材,夯实基础初中所有的基础知识以教材为载体,渗透到各章各单元.基础知识也是中考考查的重点内容.从试卷上,相当数量的基础题是基本概念、定理、公式、基本解法的直接运用;有一部分是课本上的例题、习题改编而成;即使综合题也是由基础知识的组合、加工和发展而成的,这充分体现出教材的基础功能.课本上的例题、习题具有典型性,代表性.对这部分知识挖掘,改编,体现了源于教材、高于教材、活于教材,教师在教学中要用教材教,而不是教教材.因此,在中考复习中,教师要以教材为本,深入钻研教材,挖掘教材,关注学生对基础知识的理解,要排除各种复习资料的干扰,充分发挥教材的引领作用.关注例题、习题的变式训练,对典型的例、习题重视挖掘其蕴含的深层潜力,认真探索分析,进行一图多用,一题多解、一题多变、一题多问、一题多思、多题归一、多题综合汇编为一题等,从而夯实基础.(2)渗透数学思想方法,培养能力在复习基础知识的同时,不要单独地为讲题而讲题,为做题而做题,而以数学题为载体渗透数学思想方法.例如方程思想、数形结合、转化思想、分类讨论思想、类比思想等,数学思想是数学的灵魂,只有抓住灵魂,学习数学会感到轻松自如.以中考试题为载体,对各类题进行建立模型,例如对方程型综合问题、函数型综合问题、几何型综合问题、分类讨论题、情境应用性问题、开放探索性问题、阅读理解性问题、几何运动与函数结合型问题、图表信息问题、操作设计性问题等进行专题复习,达到提高学生运用数学思想方法、建模思想分析问题、解决问题的能力.(3)引导学会反思总结,提高能力现在一周五天在校学习时间,学生没有足够的时间做过多地练习,而且复习资料泛滥.作为教师不但应精讲精练,而且应引导学生学会反思总结.反思总结此题运用哪些知识点,哪些数学思想方法,哪些解题方法,与哪些题可汇总为一类,找出它们共性.反思解题过程的来龙去脉;反思此题还有无其他解法,养成多角度多方位思维问题的习惯;反思做错题目的原因,是知识掌握不准确,还是解题方法上的原因,是审题的不清还是计算错误等等.(4)培养学生动手、自主探究能力《课程标准》指出:有效的数学活动不能单独地依赖模仿与记忆,动手实践、自主探究和合作交流是学生学习数学的重要方式.对例题、习题的设计应多设计成探究性的题型、开放型的题型,在课堂上应留出充足的时间让学生观察、试验、猜想、验证、推理与交流等数学活动.不要不等学生看明白题意,教师就迫不及待地把答案公布于众.作为教师在教学过程中,应有意识地注培养学生的动手实践能力,自主探究能力.。
2010年山东省淄博市中考数学试卷(解析版)
初中数学试题p71491题型:填空题难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O与x轴交于A,B两点,与y轴交于C,D两点.E为⊙O上在第一象限的某一点,直线BF交⊙O于点F,且∠ABF=∠AEC,则直线BF对应的函数表达式为.题型:填空题难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)在一块长为8、宽为的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是.题型:填空题难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为的线段条.难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2011•呼伦贝尔)分解因式:a2b-2ab2+b3= .题型:填空题难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)三个连续偶数中,n是最小的一个,这三个数的和为.题型:选择题难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)如图,D是半径为R的⊙O上一点,过点D作⊙O的切线交直径AB的延长线于点C,下列四个条件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=R.其中,使得BC=R的有()A.①②B.①③④C.②③④D.①②③④难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为()A.6B.3C.D.题型:选择题难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144°B.126°C.108°D.72°难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)有长度分别为3cm,5cm,7cm,9cm的四条线段,从中任取三条线段能够组成三角形的概率是()A.B.C.D.难度:中等来源: 2010年山东省淄博市中考数学试卷(解析版)(2010•淄博)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在()A.①B.②C.③D.④。
2010年淄博中考数学试题和答案
淄博市二○一○年中等学校招生考试数 学 试 题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1—4页)为选择题,42分;第Ⅱ卷(5—12页)为非选择题,78分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题 共42分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~6小题每题3分,第7~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1.(2010山东淄博,1,3分)下列四个数中最小的是 (A )-10 (B )-1 (C )0 (D )0.1 【答案】A2.(2010山东淄博,2,3分)计算b a ab 2253⋅的结果是 (A )228b a (B )338b a (C )3315b a (D )2215b a 【答案】C3.(2010山东淄博,3,3分)八年级一班要组织暑假旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去上海世博会参观的学生数”的扇形圆心角为60°,则下列说法正确的是(A )想去上海世博会参观的学生占全班学生的60% (B )想去上海世博会参观的学生有12人 (C )想去上海世博会参观的学生肯定最多 (D )想去上海世博会参观的学生占全班学生的61【答案】D4.(2010山东淄博,4,3分)下列结论中不能由0=+b a 得到的是 (A )ab a -=2 (B )b a = (C )0=a ,0=b (D )22b a =【答案】C 5.(2010山东淄博,5,3分)如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是 (A )平移 (B )轴对称 (C )旋转 (D )平移后再轴对称【答案】D 6.(2010山东淄博,6,3分)下列运算正确的是(A )1=---a b bb a a (B )b a n m b n a m --=-(C )a a b a b 11=+-(D )ba b a b a b a -=-+--1222 【答案】D 7.(2010山东淄博,7,4分)已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是(A )在点B 右侧 (B )与点B 重合(C )在点A 和点B 之间 (D )在点A 左侧 【答案】A 8.(2010山东淄博,8,4分)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个 正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在(A )①(B )② (C )③CBAB ′BA ′BC ′(第5题)(第7题)(D )④ 【答案】B9.(2010山东淄博,9,4分)有长度分别为3cm ,5cm ,7cm ,9cm 的四条线段,从中任取三条线段能够组成三角形的概率是 (A )43(B )32(C )21(D )41【答案】A10.(2010山东淄博,10,4分)如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠NFD ′等于(A )144°(B )126° (C )108° (D )72° 【答案】B11.(2010山东淄博,11,4分)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+【答案】B12.(2010山东淄博,12,4分)如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有(第10题)(第11题)(A )①②(B )①③④ (C )②③④ (D )①②③④【答案】D绝密★启用前 试卷类型:A淄博市二○一○年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共78分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.(2010山东淄博,13,4分)三个连续整数中,n 是最小的一个,这三个数的和为 . 【答案】33+n14.(2010山东淄博,14,4分)分解因式:3222b ab b a +-= . 【答案】2)(b a b -15.(2010山东淄博,15,4分)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个__________条.【答案】8(第15题)CA(第12题)16.(2010山东淄博,16,4分)在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是 .【答案】2 17.(2010山东淄博,17,4分)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表为 .【答案】1-=x y ,1+-=x y三、解答题:本大题共7小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤.18.(2010山东淄博,18,7分)解方程24)5(6-=-x .【答案】解:方程两边同时除以6得x -5=-4,移项得x =5-4, x =1.19.(2010山东淄博,19,7分)已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且CE =CF ,连接DE ,BF .求证:DE =BF .【答案】证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =90ºBA(第19题)∵E 为BC 延长线上的点,∴∠DCE =90º,∴∠BCD =∠DCE .∵CE =CF ,∴△BCF ≌△DCE ,∴DE =BF .20.(2010山东淄博,20,8分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.(1)分别求一班和二班选手进球数的平均数、众数、中位数;(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?【答案】解:(1)一班:7,7,7.二班:7,7,7;(2)一班的方差21S =2.6,二班的方差22S =1.4,二班选手水平发挥更稳定,应该选择二班;一班前三名选手的成绩更突出,应该选择一班.21.(2010山东淄博,21,8分)已知关于x 的方程014)3(222=--+--k k x k x . (1)若这个方程有实数根,求k 的取值范围; (2)若这个方程有一个根为1,求k 的值;(3)若以方程014)3(222=--+--k k x k x 的两个根为横坐标、纵坐标的点恰在反比例函数xmy =的图象上,求满足条件的m 的最小值.【答案】解: (1)由题意得△=()[]()1443222--⨯---k k k ≥0化简得 102+-k ≥0,解得k ≤5.(2)将1代入方程,整理得2660k k -+=,解这个方程得 13k =23k =(3)设方程014)3(222=--+--k k x k x 的两个根为1x ,2x ,根据题意得12m x x =.又由一元二次方程根与系数的关系得21241x x k k =--,那么()521422--=--=k k k m ,所以,当k =2时m 取得最小值-522.(2010山东淄博,22,8分)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.【答案】解:设小明从家走到商店的平均速度为x 米/分,则他从商店到学校的平均速度为(x +25)米/分,根据题意列方程得500303025xx x +=+ 解这个方程得x =50经检验x =50是所列方程的根. 50+25=75(米/分),所以小明从商店到学校的平均速度为75米/分.23.(2010山东淄博,23,10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点.(1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长;(2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.【答案】解:在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3. (1)如图(1),作DF ⊥AC ,∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23. ∵BP 平分∠ABC ,∴∠PBC =30°,∴CP =BC ·tan30°=1,∴PF =21,∴DP =22DF PF =210.(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45°,又PD =BC =3,∴cos∠PDF =PDDF=23,∴∠PDF =30°. ∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°.DACB(第23题)(第23题)B(2)B (1)(3)CP =23. 在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC .根据(1)中结论可知,DP =CP =23,∴S □DPBQ =CP DP ⋅=49.24.(2010山东淄博,24,10分)已知直角坐标系中有一点A (—4,3),点B 在x 轴上,△AOB 是等腰三角形. (1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.【答案】解:作AC ⊥x 轴,由已知得OC =4,AC =3,OA =22AC OC +=5. (1)当OA =OB =5时,如果点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0). 如果点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0).当OA =AB 时,点B 在x 轴的负半轴上,如图(3),BC =OC ,则OB =8,点B 的坐标为(-8,0). 当AB =OB 时,点B 在x 轴的负半轴上,如图(4),在x 轴上取点D ,使AD =OA ,可知OD =8.由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA ,则OD OA OA OB =,解得OB =825,点B 的坐标为(-825,0)题B (3)B(4)(第23题)(2)当AB =OA 时,抛物线过O (0,0),A (-4,3),B (-8,0)三点,设抛物线的函数表达式为bx ax y +=2,可得方程组⎩⎨⎧=-=-34160864b a b a ,解得a =163-,23-=b ,x x y 231632--=.(当OA =OB 时,同理得x x y 415432--=. (3)当OA =AB 时,若BP ∥OA ,如图(5),作PE ⊥x 轴,则∠AOC =∠PBE ,∠ACO =∠PEB =90°,△AOC ∽△PBE ,43==OC AC BE PE .设BE =4m ,PE =3m ,则点P 的坐标为(4m -8,-3m ),代入x x y 231632--=,解得m =3.则点P 的坐标为(4,-9),S 梯形ABPO =S △ABO +S △BPO =48. 若OP ∥AB (图略),根据抛物线的对称性可得点P 的坐标为(-12,-9), S 梯形AOPB =S △ABO +S △BPO =48.(当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴,则∠AOC =∠PBF ,∠ACO =∠PFB =90°,△AOC ∽△PBF ,43==OC AC BF PF .设BF =4m ,PF =3m ,则点P 的坐标为(4m -5,-3m ),代入x x y 415432--=,解得m =23. 则点P 的坐标为(1,-29),(第24题)S 梯形ABPO =S △ABO +S △BPO =475. 若OP ∥AB (图略),作PF ⊥x 轴,则∠ABC =∠POF ,∠ACB =∠PFO =90°,△ABC ∽△POF ,3==BCACOF PF .设点P 的坐标为(-n ,-3n ),代入x x y 415432--=,解得n =9.则点P 的坐标为(-9,-27),S 梯形AOPB=S △ABO +S △BPO=75.。
2010年山东省淄博市中等学校招生考试数学试题
2010年淄博市中等学校招生考试数 学 试 题一、选择题(本题共12小题,第1~6小题每题3分,第7~12小题每题4分)1.(2010山东淄博,1,3分)下列四个数中最小的是 (A )-10 (B )-1 (C )0 (D )0.1 【答案】A2.(2010山东淄博,2,3分)计算b a ab 2253⋅的结果是 (A )228b a (B )338b a (C )3315b a (D )2215b a 【答案】C3.(2010山东淄博,3,3分)八年级一班要组织暑假旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去上海世博会参观的学生数”的扇形圆心角为60°,则下列说法正确的是(A )想去上海世博会参观的学生占全班学生的60% (B )想去上海世博会参观的学生有12人 (C )想去上海世博会参观的学生肯定最多 (D )想去上海世博会参观的学生占全班学生的61【答案】D4.(2010山东淄博,4,3分)下列结论中不能由0=+b a 得到的是 (A )ab a -=2(B )b a = (C )0=a ,0=b (D )22b a = 【答案】C5.(2010山东淄博,5,3分)如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是 (A )平移 (B )轴对称 (C )旋转 (D )平移后再轴对称【答案】D6.(2010山东淄博,6,3分)下列运算正确的是 (A )1=---a b bb a a(B )ba n mb n a m --=-(C )aa b ab 11=+-(D )ba ba b a ba -=-+--1222【答案】D7.(2010山东淄博,7,4分)已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是(A )在点B 右侧 (B )与点B 重合 (C )在点A 和点B 之间 (D )在点A 左侧【答案】A 8.(2010山东淄博,8,4分)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个 正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在(A )①CBAB ′A ′C ′(第5题)(第7题)(B )② (C )③(D )④ 【答案】B9.(2010山东淄博,9,4分)有长度分别为3cm ,5cm ,7cm ,9cm 的四条线段,从中任取三条线段能够组成三角形的概率是 (A )43 (B )32(C )21(D )41【答案】A10.(2010山东淄博,10,4分)如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠NFD ′等于(A )144°(B )126° (C )108° (D )72° 【答案】B11.(2010山东淄博,11,4分)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3(第10题)(第11题)(C )200623 (D )10033231003⨯+【答案】B12.(2010山东淄博,12,4分)如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有(A )①②(B )①③④ (C )②③④ (D )①②③④二、填空题(本题共5小题,每小题4分,满分20分)13.(2010山东淄博,13,4分)三个连续整数中,n 是最小的一个,这三个数的和为 . 【答案】33+n14.(2010山东淄博,14,4分)分解因式:3222b ab b a +-= . 【答案】2)(b a b -15.(2010山东淄博,15,4分)如图是由4个边长为1的正方形构成的“田字格”.只的线段__________条.【答案】816.(2010山东淄博,16,4分)在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是 .(第15题)CA(第12题)【答案】217.(2010山东淄博,17,4分)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表达式为 .【答案】1-=x y ,1+-=x y 三、解答题(本大题共7小题,共58分)18.(2010山东淄博,18,7分)解方程24)5(6-=-x .【答案】解:方程两边同时除以6得x -5=-4,移项得x =5-4, x =1.19.(2010山东淄博,19,7分)已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且CE =CF ,连接DE ,BF .求证:DE =BF .【答案】证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =90ºBA(第19题)∵E 为BC 延长线上的点,∴∠DCE =90º,∴∠BCD =∠DCE .∵CE =CF ,∴△BCF ≌△DCE ,∴DE =BF .20.(2010山东淄博,20,8分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.进球数 人数 10 9 8 7 6 5 一班 1 1 1 4 0 3 二班1252(1)分别求一班和二班选手进球数的平均数、众数、中位数;(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?【答案】解:(1)一班:7,7,7.二班:7,7,7;(2)一班的方差21S =2.6,二班的方差22S =1.4,二班选手水平发挥更稳定,应该选择二班;一班前三名选手的成绩更突出,应该选择一班.21.(2010山东淄博,21,8分)已知关于x 的方程014)3(222=--+--k k x k x . (1)若这个方程有实数根,求k 的取值范围; (2)若这个方程有一个根为1,求k 的值;(3)若以方程014)3(222=--+--k k x k x 的两个根为横坐标、纵坐标的点恰在反比例函数xm y =的图象上,求满足条件的m 的最小值.【答案】解: (1)由题意得△=()[]()1443222--⨯---k k k ≥0化简得 102+-k ≥0,解得k ≤5.(2)将1代入方程,整理得2660k k -+=,解这个方程得 13k =-23k =+(3)设方程014)3(222=--+--k k x k x 的两个根为1x ,2x ,根据题意得12m x x =.又由一元二次方程根与系数的关系得21241x x k k =--,那么()521422--=--=k k k m ,所以,当k =2时m 取得最小值-522.(2010山东淄博,22,8分)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.【答案】解:设小明从家走到商店的平均速度为x 米/分,则他从商店到学校的平均速度为(x +25)米/分,根据题意列方程得500303025x xx +=+解这个方程得x =50经检验x =50是所列方程的根.50+25=75(米/分),所以小明从商店到学校的平均速度为75米/分.23.(2010山东淄博,23,10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点.(1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长;(2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.【答案】解:在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3. (1)如图(1),作DF ⊥AC ,∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23.∵BP 平分∠ABC ,∴∠PBC =30°,∴CP =BC ·tan30°=1,∴PF =21,∴DP =22DFPF+=210.DACB(第23题)(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45°,又PD=BC =3,∴cos∠PDF =PDDF =23,∴∠PDF =30°.∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°.(3)CP =23.在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC .根据(1)中结论可知,DP =CP =23,∴S □DPBQ =CP DP =49.24.(2010山东淄博,24,10分)已知直角坐标系中有一点A (—4,3),点B 在x 轴上,△AOB 是等腰三角形.(1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可); (3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.B (3)B(4)(第23题)(第23题)B(2)B (1)【答案】解:作AC ⊥x 轴,由已知得OC =4,AC =3,OA =22ACOC+=5.(1)当OA =OB =5时,如果点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0). 如果点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0).当OA =AB 时,点B 在x 轴的负半轴上,如图(3),BC =OC ,则OB =8,点B 的坐标为(-8,0).当AB =OB 时,点B 在x 轴的负半轴上,如图(4),在x 轴上取点D ,使AD =OA ,可知OD =8.由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA ,则ODOA OAOB =,解得OB =825,点B的坐标为(-825,0)(2)当AB =OA 时,抛物线过O (0,0),A (-4,3),B (-8,0)三点,设抛物线的函数表达式为bx ax y+=2,可得方程组⎩⎨⎧=-=-34160864b a b a ,解得a =163-,23-=b ,x x y 231632--=.(当OA =OB 时,同理得x x y 415432--=.(3)当OA =AB 时,若BP ∥OA ,如图(5),作PE ⊥x 轴,则∠AOC =∠PBE ,∠ACO =∠PEB =90°,△AOC ∽△PBE ,43==OCAC BEPE .设BE =4m ,PE =3m ,则点P 的坐标为(4m -8,题-3m ),代入x x y 231632--=,解得m =3.则点P 的坐标为(4,-9),S 梯形ABPO =S △ABO +S △BPO =48. 若OP ∥AB (图略),根据抛物线的对称性可得点P 的坐标为(-12,-9),S 梯形AOPB =S △ABO +S △BPO =48.(当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴,则∠AOC =∠PBF ,∠ACO =∠PFB =90°,△AOC ∽△PBF ,43==OCAC BFPF .设BF =4m ,PF =3m ,则点P 的坐标为(4m -5,-3m ),代入x x y 415432--=,解得m =23.则点P 的坐标为(1,-29),(第24题)S 梯形ABPO =S △ABO +S △BPO =475.若OP ∥AB (图略),作PF ⊥x 轴,则∠ABC =∠POF ,∠ACB =∠PFO =90°,△ABC ∽△POF ,3==BC ACOF PF.设点P 的坐标为(-n ,-3n ),代入x x y 415432--=,解得n =9.则点P 的坐标为(-9,-27),S 梯形AOPB =S △ABO +S △BPO =75.。
淄博市中考数学试卷及答案(解析)
山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。
山东省淄博市中考数学试卷
山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)﹣的相反数是()A.B.C.D.﹣2.(4分)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A.1×106B.100×104C.1×107D.0.1×1083.(4分)下列几何体中,其主视图为三角形的是()A.B.C.D.4.(4分)下列运算正确的是()A.a2•a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c25.(4分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.26.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣17.(4分)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2 8.(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=09.(4分)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π10.(4分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.11.(4分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t之间的变化情况的是()A.B.C.D.12.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)分解因式:2x3﹣8x=.14.(4分)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.15.(4分)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.(4分)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D 分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=.17.(4分)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S=.三、解答题(本大题共7小题,共52分)18.(5分)解不等式:≤.19.(5分)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.20.(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.21.(8分)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数,中位数;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.(8分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.(9分)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC 上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.24.(9分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A (,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017•淄博)﹣的相反数是()A.B.C.D.﹣【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与是只有符号不同的两个数,∴﹣的相反数是.故选C.【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.2.(4分)(2017•淄博)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A.1×106B.100×104C.1×107D.0.1×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2017•淄博)下列几何体中,其主视图为三角形的是()A.B.C.D.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.4.(4分)(2017•淄博)下列运算正确的是()A.a2•a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(4分)(2017•淄博)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.(4分)(2017•淄博)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(4分)(2017•淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.8.(4分)(2017•淄博)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(4分)(2017•淄博)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S △BOD +S 扇形COD =2×2+=2+π,故选A .【点评】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.(4分)(2017•淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .B .C .D .【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m ﹣n |≤1的有10种结果, ∴两人“心领神会”的概率是=,故选:B .【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.(4分)(2017•淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D.【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.(4分)(2017•淄博)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.【分析】延长FE交AB于点D,作EG⊥BC、作EH⊥AC,由EF∥BC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠DAE=∠HAE,从而知四边形BDEG 是正方形,再证△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF∽△ABC可得DF=,据此得出EF=DF﹣DE=.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.【点评】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)(2017•淄博)分解因式:2x3﹣8x=2x(x﹣2)(x+2).【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.14.(4分)(2017•淄博)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为 0 .【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a (α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a (α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c=0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.15.(4分)(2017•淄博)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 ﹣7 .【分析】根据计算器的按键顺序,写出计算的式子.然后求值.【解答】解:根据题意得:(3.5﹣4.5)×32+=﹣7,故答案为:﹣7.【点评】本题目考查了计算器的应用,根据按键顺序正确写出计算式子是关键.16.(4分)(2017•淄博)在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2 . 【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2.【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD ,则S △ABD +S △ACD =S △ABC , ∴AB•DE +AC•DF=BC•AG ,∵AB=AC=BC=4,∴DE +DF=AG=2, 故答案为:2.【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG 是解题的关键.17.(4分)(2017•淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=;…按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S= .【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=AB ,可得△CD 1E 1∽△CBA ,且==,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD1E1=S △ABC =,依据E 1是BC 的中点,即可得出S △D1E1F1=S △BD1E1=×=,据此可得S 1=;运用相同的方法,依次可得S 2=,S 2=;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =+×n ×,最后化简即可.【解答】解:如图所示,连接D 1E 1,D 2E 2,D 3E 3,∵图1中,D 1,E 1是△ABC 两边的中点,∴D 1E 1∥AB ,D 1E 1=AB ,∴△CD 1E 1∽△CBA ,且==, ∴S △CD1E1=S △ABC =,∵E 1是BC 的中点,∴S △BD1E1=S △CD1E1=,∴S △D1E1F1=S △BD1E1=×=, ∴S 1=S △CD1E1+S △D1E1F1=+=,同理可得:图2中,S 2=S △CD2E2+S △D2E2F2=+=, 图3中,S 3=S △CD3E3+S △D3E3F3=+=, 以此类推,将AC ,BC 边(n +1)等分,得到四边形CD n E n F n ,其面积S n=+×n×=,故答案为:.【点评】本题主要考查了图形的变化类问题以及三角形面积的计算,解决问题的关键作辅助线构造相似三角形,依据相似三角形的性质进行计算求解.解题时注意:相似三角形的面积之比等于相似比的平方.三、解答题(本大题共7小题,共52分)18.(5分)(2017•淄博)解不等式:≤.【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(5分)(2017•淄博)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.【点评】本题考查平行四边形的性质和全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2017•淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.【分析】求的汽车原来的平均速度,路程为420km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h.等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017•淄博)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.【点评】本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.22.(8分)(2017•淄博)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点评】本题为反比例函数的综合应用,涉及待定系数法、中心对称的性质、全等三角形的判定和性质、正方形的判定等知识.在(1)中注意待定系数法的应用,在(2)①中求得E点坐标是解题的关键,在(2)②中证得△AOF≌△FGE 是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(9分)(2017•淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP 为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM==2.∵BM=MP=2OE,∴2=2×(4﹣a),解得:a=,∴DP=2a=3.【点评】本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.24.(9分)(2017•淄博)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x 轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG ⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由==的值,可求得PH和OH,可求得P点坐标;当P 点在第三象限时,同理可求得P点坐标.【解答】解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD 于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC =S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(﹣,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,﹣);综上可知存在满足条件的点P,其坐标为(,)或(﹣,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。
山东省淄博市中考数学试卷(word版 解析版)
山东省淄博市中考数学试卷一.选择题:本大题共12个小题,每小题4分,共48分.在每小题给出四个选项中,只有一项是符合题目要求.1.(4分)计算结果是()A.0B.1C.﹣1D.2.(4分)下列语句描述事件中,是随机事件为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形是()A. B. C. D.4.(4分)若单项式a m﹣1b2与和仍是单项式,则n m值是()A.3B.6C.8D.95.(4分)与最接近整数是()A.5B.6C.7D.86.(4分)一辆小车沿着如图所示斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α度数时,具体按键顺序是()A.B.C.D.7.(4分)化简结果为()A. B.a﹣1 C.a D.18.(4分)甲.乙.丙.丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲.乙.丙胜场数相同,则丁胜场数是()A.3B.2C.1D.09.(4分)如图,⊙O直径AB=6,若∠BAC=50°,则劣弧AC长为()A.2πB.C.D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米荒山绿化任务,为了迎接雨季到来,实际工作时每天工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化面积为x万平方米,则下面所列方程中正确是()A. B.C. D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC长为()A.4B.6C.D.812.(4分)如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C距离分别为3,4,5,则△ABC面积为()A. B. C. D.二.填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=度.14.(4分)分解因式:2x3﹣6x2+4x=.15.(4分)在如图所示平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内点E处,且AE过BC中点O,则△ADE周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B左侧),将这条抛物线向右平移m(m>0)个单位,平移后抛物线于x轴交于C,D两点(点C在点D左侧),若B,C是线段AD三等分点,则m值为.17.(4分)将从1开始自然数按以下规律排列,例如位于第3行.第4列数是12,则位于第45行.第8列数是.三.解答题(本大题共7小题,共52分.解答应写出文字说明.证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间众数.中位数.平均数;(2)根据上述表格补全下面条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织读书活动,其中被抽到学生读书时间不少于9小时概率是多少?21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间函数关系式;(2)直接写出当x>0时,不等式x+b>解集;(3)若点P在x轴上,连接AP把△ABC面积分成1:3两部分,求此时点P坐标.22.(8分)如图,以AB为直径⊙O外接于△ABC,过A点切线AP与BC延长线交于点P,∠APB平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)长是一元二次方程x2﹣5x+6=0两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC中点M,N,G,连接GM,GN.小明发现了:线段GM与GN数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般锐角三角形,其中AB>AC,其它条件不变,小明发现上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)基础上,又作了进一步探究.向△ABC内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN形状,并给与证明.24.(9分)如图,抛物线y=ax2+bx经过△OAB三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上两点,且n<m,求t取值范围;(3)若C为线段AB上一个动点,当点A,点B到直线OC距离之和最大时,求∠BOC大小及点C坐标.参考答案与试题解析一.选择题:本大题共12个小题,每小题4分,共48分.在每小题给出四个选项中,只有一项是符合题目要求.1.(4分)计算结果是()A.0B.1C.﹣1D.【考点】1A:有理数减法;15:绝对值.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数减法,解题关键是掌握绝对值性质和有理数减法法则.2.(4分)下列语句描述事件中,是随机事件为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意【考点】X1:随机事件.【分析】直接利用随机事件以及必然事件.不可能事件定义分别分析得出答案.【解答】解:A.水能载舟,亦能覆舟,是必然事件,故此选项错误;B.只手遮天,偷天换日,是不可能事件,故此选项错误;C.瓜熟蒂落,水到渠成,是必然事件,故此选项错误;D.心想事成,万事如意,是随机事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.3.(4分)下列图形中,不是轴对称图形是()A. B. C. D.【考点】P3:轴对称图形.【分析】观察四个选项图形,根据轴对称图形概念即可得出结论.【解答】解:根据轴对称图形概念,可知:选项C中图形不是轴对称图形.故选:C.【点评】本题考查了轴对称图形,牢记轴对称图形概念是解题关键.4.(4分)若单项式a m﹣1b2与和仍是单项式,则n m值是()A.3B.6C.8D.9【考点】35:合并同类项;42:单项式.【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项定义可得m.n 值,代入求解即可.【解答】解:∵单项式a m﹣1b2与和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.【点评】本题考查了合并同类项知识,解答本题关键是掌握同类项中两个相同.5.(4分)与最接近整数是()A.5B.6C.7D.8【考点】2B:估算无理数大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近是6.故选:B.【点评】此题主要考查了无理数估算能力,关键是整数与最接近,所以=6最接近.6.(4分)一辆小车沿着如图所示斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α度数时,具体按键顺序是()A.B.C.D.【考点】T9:解直角三角形应用﹣坡度坡角问题;T6:计算器—三角函数.【分析】先利用正弦定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:sinA===0.15,所以用科学计算器求这条斜道倾斜角度数时,按键顺序为故选:A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.(4分)化简结果为()A. B.a﹣1 C.a D.1【考点】6B:分式加减法.【分析】根据分式运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.【点评】本题考查分式运算法则,解题关键是熟练运用分式运算法则,本题属于基础题型.8.(4分)甲.乙.丙.丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲.乙.丙胜场数相同,则丁胜场数是()A.3B.2C.1D.0【考点】O2:推理与论证.【分析】四个人共有6场比赛,由于甲.乙.丙三人胜场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲.乙.丙三人胜场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙.丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲.乙.丙各胜2场,此时丁三场全败,也就是胜0场.答:甲.乙.丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.9.(4分)如图,⊙O直径AB=6,若∠BAC=50°,则劣弧AC长为()A.2πB.C.D.【考点】MN:弧长计算;M5:圆周角定理.【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC长为=.【解答】解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC长为=,故选:D.【点评】本题考查了圆周角定理,弧长计算,熟记弧长公式是解题关键.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米荒山绿化任务,为了迎接雨季到来,实际工作时每天工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化面积为x万平方米,则下面所列方程中正确是()A.B.C. D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x分式方程.【解答】解:设实际工作时每天绿化面积为x万平方米,则原来每天绿化面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适等量关系是解决问题关键.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC长为()A.4B.6C.D.8【考点】KO:含30度角直角三角形;JA:平行线性质;KJ:等腰三角形判定与性质.【分析】根据题意,可以求得∠B度数,然后根据解直角三角形知识可以求得NC长,从而可以求得BC长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.【点评】本题考查30°角直角三角形.平行线性质.等腰三角形判定与性质,解答本题关键是明确题意,找出所求问题需要条件,利用数形结合思想解答.12.(4分)如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C距离分别为3,4,5,则△ABC面积为()A. B. C. D.【考点】R2:旋转性质;KK:等边三角形性质;KS:勾股定理逆定理.【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB度数,在直角△APF中利用三角函数求得AF和PF长,则在直角△ABF中利用勾股定理求得AB长,进而求得三角形ABC面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC面积是•AB2=•(25+12)=.故选:A.【点评】本题考查了等边三角形判定与性质.勾股定理逆定理以及旋转性质:旋转前后两个图形全等,对应点与旋转中心连线段夹角等于旋转角,对应点到旋转中心距离相等.二.填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=40度.【考点】JA:平行线性质.【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1度数可得答案.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.【点评】本题主要考查平行线性质,解题关键是掌握两直线平行同旁内角互补.14.(4分)分解因式:2x3﹣6x2+4x=2x(x﹣1)(x﹣2).【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.【解答】解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为:2x(x﹣1)(x﹣2).【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.(4分)在如图所示平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内点E处,且AE过BC中点O,则△ADE周长等于10.【考点】PB:翻折变换(折叠问题);L5:平行四边形性质.【分析】要计算周长首先需要证明E.C.D共线,DE可求,问题得解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,CD=AB=2由折叠,∠DAC=∠EAC∵∠DAC=∠ACB∴∠ACB=∠EAC∴OA=OC∵AE过BC中点O∴AO=BC∴∠BAC=90°∴∠ACE=90°由折叠,∠ACD=90°∴E.C.D共线,则DE=4∴△ADE周长为:3+3+2+2=10故答案为:10【点评】本题考查了平行四边形性质.轴对称图形性质和三点共线证明.解题时注意不能忽略E.C.D三点共线.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B左侧),将这条抛物线向右平移m(m>0)个单位,平移后抛物线于x轴交于C,D两点(点C在点D左侧),若B,C是线段AD三等分点,则m值为2.【考点】HA:抛物线与x轴交点;H6:二次函数图象与几何变换.【分析】先根据三等分点定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B坐标可得AB长,从而得结论.【解答】解:如图,∵B,C是线段AD三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.【点评】本题考查了抛物线与x轴交点问题.抛物线平移及解一元二次方程问题,利用数形结合思想和三等分点定义解决问题是关键.17.(4分)将从1开始自然数按以下规律排列,例如位于第3行.第4列数是12,则位于第45行.第8列数是2018.【考点】37:规律型:数字变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行.第8列数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行.第8列数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题关键是学会观察,探究规律,利用规律解决问题.三.解答题(本大题共7小题,共52分.解答应写出文字说明.证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【考点】4J:整式混合运算—化简求值;76:分母有理化.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当时,原式=2(+1)()﹣1=2﹣1=1.【点评】本题考查了整式混合运算﹣化简求值,能正确根据整式运算法则进行化简是解此题关键.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【考点】K7:三角形内角和定理.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形内角和定理证明,作辅助线把三角形三个内角转化到一个平角上是解题关键.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间众数.中位数.平均数;(2)根据上述表格补全下面条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织读书活动,其中被抽到学生读书时间不少于9小时概率是多少?【考点】X4:概率公式;VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)先根据表格提示数据得出50名学生读书时间,然后除以50即可求出平均数;在这组样本数据中,9出现次数最多,所以求出了众数;将这组样本数据按从小到大顺序排列,其中处于中间两个数是8和9,从而求出中位数是8.5;(2)根据题意直接补全图形即可.(3)从表格中得知在50名学生中,读书时间不少于9小时有25人再除以50即可得出结论.【解答】解:(1)观察表格,可知这组样本数据平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据平均数为2;∵这组样本数据中,9出现了15次,出现次数最多,∴这组数据众数是9;∵将这组样本数据按从小到大顺序排列,其中处于中间两个数是8和9,∴这组数据中位数为(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时有15人,读书时间是10小时有10,∴读书时间不少于9小时有15+10=25人,∴被抽到学生读书时间不少于9小时概率是=【点评】本题考查了加权平均数.众数以及中位数,用样本估计总体知识,解题关键是牢记概念及公式.21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间函数关系式;(2)直接写出当x>0时,不等式x+b>解集;(3)若点P在x轴上,连接AP把△ABC面积分成1:3两部分,求此时点P坐标.【考点】G8:反比例函数与一次函数交点问题.【分析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>解集为x>1;(3)分两种情况进行讨论,AP把△ABC面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P坐标.【解答】解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).【点评】本题考查了反比例函数与一次函数交点问题:求反比例函数与一次函数交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)如图,以AB为直径⊙O外接于△ABC,过A点切线AP与BC延长线交于点P,∠APB平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)长是一元二次方程x2﹣5x+6=0两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.【考点】MR:圆综合题.【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形面积即可求出菱形ADFE面积.【解答】解:(1)∵DP平分∠APB,∴∠APE=∠BPD,∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB是⊙O直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴,∴PA•BD=PB•AE;(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,∵DP平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF,∵∠EAP=∠B,∴∠APC=∠BAC,易证:DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)长是x2﹣5x+6=0,解得:AE=2,BD=3,∴由(1)可知:,∴cos∠APC==,∴cos∠BDF=cos∠APC=,∴,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形,∵AD=AE,∴四边形ADFE是菱形,此时点F即为M点,∵cos∠BAC=cos∠APC=,∴sin∠BAC=,∴,∴DG=,∴在线段BC上是否存在一点M,使得四边形ADME是菱形其面积为:DG•AE=2×=【点评】本题考查圆综合问题,涉及圆周角定理,锐角三角函数定义,平行四边形判定及其面积公式,相似三角形判定与性质,综合程度较高,考查学生灵活运用知识能力.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC中点M,N,G,连接GM,GN.小明发现了:线段GM与GN数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般锐角三角形,其中AB>AC,其它条件不变,小明发现上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)基础上,又作了进一步探究.向△ABC内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN形状,并给与证明.【考点】KY:三角形综合题.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)方法即可得出结论;(3)同(1)方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相较于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE,相较于H,同(1)方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)方法得,MG=NG,同(1)方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)方法得,MG⊥NG.【点评】此题是三角形综合题,主要考查等腰直角三角形性质,全等三角形判定和性质,平行线判定和性质,三角形中位线定理,正确作出辅助线用类比思想解决问题是解本题关键.24.(9分)如图,抛物线y=ax2+bx经过△OAB三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上两点,且n<m,求t取值范围;(3)若C为线段AB上一个动点,当点A,点B到直线OC距离之和最大时,求∠BOC大小及点C坐标.【考点】HF:二次函数综合题.【分析】(1)将已知点坐标代入即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A,点B到直线OC距离之和小于等于AB;同时用点A(1,),点B(3,﹣)求出相关角度.【解答】解:(1)把点A(1,),点B(3,﹣)分别代入y=ax2+bx得解得∴y=﹣(2)由(1)抛物线开口向下,对称轴为直线x=当x>时,y随x增大而减小∴当t>4时,n<m.(3)如图,设抛物线交x轴于点F分别过点A.B作AD⊥OC于点D,BE⊥OC于点E∵AC≥AD,BC≥BE∴AD+BE≥AC+BE=AB∴当OC⊥AB时,点A,点B到直线OC距离之和最大.∵A(1,),点B(3,﹣)∴∠AOF=60°,∠BOF=30°∴∠AOB=90°∴∠ABO=30°当OC⊥AB时,∠BOC=60°点C坐标为(,).【点评】本题考查综合考查用待定系数法求二次函数解析式,抛物线增减性.解答问题时注意线段最值问题转化方法.。
山东淄博中考数学试题及答案.doc
2014年山东淄博中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
山东省淄博市中考数学试题(含答案)
2022年中考往年真题练习: 中考数学试题(山东淄博)(本试卷满分120分, 考试时间120分钟)第Ⅰ卷(挑选题 共45分)一、 挑选题: 本题共12小题, 在每小题所给出的 四个选项中, 只有一个是 正确的 , 请把正确的 选项涂在答题卡的 相应位置上.第1~3小题每题3分, 第4~12小题每题4分, 错选、 不选或选出的 答案超过一个, 均记零分.1.和数轴上的 点一一对应的 是 【 】(A) 整数(B) 有理数 (C) 无理数(D) 实数【答案解析】D 。
2.要调查下面的 问题, 适合做全面调查的 是 【 】 (A) 某班同学“立定跳远”的 成绩 (B) 某水库中鱼的 种类(C) 某鞋厂制作的 鞋底承受的 弯折次数 (D) 某型号节能灯的 使用寿命【答案解析】A 。
3.下列命题为假命题的 是 【 】(A) 三角形三个内角的 和等于180° (B) 三角形两边之和大于第三边(C) 三角形两边的 平方和等于第三边的 平方(D) 三角形的 面积等于一条边的 长与该边上的 高的 乘积的 一半【答案解析】C 。
4.若a b >, 则下列不等式不一定成立的 是 【 】(A) a m b m +>+ (B) 22a(m 1)b(m 1)+>+ (C) a b22-<-(D) 22a b >【答案解析】D 。
5.已知一等腰三角形的 腰长为5, 底边长为4, 底角为β.满足下列条件的 三角形不一定与已知三角形全等的 是 【 】(A) 两条边长分别为4, 5, 它们的 夹角为β (B) 两个角是 β, 它们的 夹边为4(C) 三条边长分别为4, 5, 5(D) 两条边长是 5, 一个角是 β【答案解析】D 。
6.九张同样的 卡片分别写有数字-4, -3, -2, -1, 0, 1, 2, 3, 4, 任意抽取一张, 所抽卡片上数字的 绝对值小于2的 概率是 【 】(A)19(B)13(C)59(D)23【答案解析】B 。
最新2010年九年级数学中考一轮复习精品教案(第一讲:实数)
第一讲:实数本期分四个专题复习:有理数及其运算、实数及其运算、二次根式及科学计数法与有效数字中考对这部分内容的考查一般以选择题、填空题及简单的解答题出现,大多都比较简单,但近几年出现了一些设计新颖的创新试题.由于这部分试题的概念较多,且逻辑性较强,命题者又对这部分内容常常设置一些易混、易错的题目,因此同学们在复习这部分知识时,一定要理解有关概念、运算法则及运算律等,着重训练基本运算方法与技能.例3 : 计算:22-5×51+2 . 思路点拨 :本题是有理数的混合运算,除了要熟练掌握有关运算法则,还要注意运算顺序.解:原式=4-1+2 =3+2 =5. 练习:1. 如果向东走80 m 记为80 m ,那么向西走60 m 记为( ) A.-60 m B.︱-60︱m C.60 m D.601m 2. )下面的几个有理数中,最大的数是( )A .2B .13C .-3D .15- 3. 如果2()13⨯-=,则“”内应填的 数是( ) A .32B .23C .23-D .32-4. A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3-B .3C .1D .1或3-5. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 _______元.6. 计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.答案: 1.A 2.A 3.D 提示:1÷(32-)=-234.A 提示:-1-2=-35.96 提示:120×80%=966.解:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭463=-+1=.最新考题1.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 2.(2009年黄石市)实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a -<<-B .a a a -<-<C .1a a <-<-D .1a a <-<-3.(2009营口)计算:12345314,3110,3128,3182,31244,+=+=+=+=+=,归纳各计算结果中的个位数字的规律,猜测200931+的个位数字是()A. 0B. 2C. 4D. 84.(2009年浙江省绍兴市)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 答案:1. A 2. C 3. C 4.C 知识点2:实数及其运算例1: |-9|的平方根是( ) A.81 B.±3 C.3 D.-3思路点拨 :因为|-9|=9,而9的平方根为±3,所以|-9|的平方根是±3,故选B.例31的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间思路点拨:解答有关无理数的估算问题一般有两种途径:直接估算或利用计算器求解.这里用的是直接估算的方法——平方法,只要首先将原数平方,看其在哪两个平方数之间,运用这种方法可以估计一个带根号的数的整数部分,估计其大致范围.解:因为16<17<25,所以4<17<5,所以1<6.故选D.例4_________.思路点拨:实数的运算与有理数的运算一样,要注意运算顺序:先乘方、开方,再乘除,后加减,如果有括号先算括号里面的,能运用运算律的就运用,简化运算,解答实数运算题时,一定要注意把结果化为最简形式.-4×2222+=3.练习1. 4的算术平方根是()A.2±B.2 C.D2. 在实数0,10.1235中,无理数的个数为()A.0个B.1个C.2个D.3个3. 实数a、b在数轴上的位置如图1所示,则a与b的大小关系是()A.ba< B.ba= C.ba> D.无法确定4.2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.= .6.计算:⎛÷⎝图1答案: 1.B2.B3.C 提示:观察实数a 、b 在数轴上所对应的位置可知b<a.4.C 提示:因为25<27<36,所以5<27<6,所以2<4. 5.3 提示:原式=23-3=36.解:原式⎛=÷ ⎝143==. 最新考题1.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-2.(2009年黄冈市)1.8的立方根为()A .2B .±2C .4D .±43.(2009年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -为( )A .1B .1-C .12a -D .21a -4. (2009年义乌)平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外)._______年_______月_______日.答案:1. D 2. A 3. A 4.答案不唯一,如2025年5月5日.知识点3: 二次根式例1有意义,则实数x 的取值范围是 .思路点拨 :在何种形式中出现二次根式,都要注意被开方数为非负数这一条件,有时它还可能成为隐含的解题的关键条件.解:被开方数x -3≥0,得x≥3. 例2: 若333.3.33.332.3132,022222或的值等于())(则D C B A x x x x x x +--+-=--思路点拨 :认真观察所给条件和所求的代数式的特点才可发现思路,找准解题 的“出发点”。
淄博市2010年中考理科综合试题(A卷)答案
说明: 1.化学方程式中化学式不正确、没有配平、缺少反应条件和气体、沉 淀符号的均不得分。 2.化学用语和化学专用名词有错别字的均不得分。 3.考生给出的答案,只要合理可参照评分标准酌情给分。 一、理解与应用(本题包括3个小题,共12分)
1.(5分)
Ca(OH)2 + Na2CO3= 2NaOH + CaCO3↓
得1分。若O点确定不正确,本题不得分;未标垂直符号、未标箭头、虚 线部分画为实线者,一处扣1分,扣完为止。
6. (2分)每个1分,见右图。
二、实验与探究,共16分。
7. 本题7分。 (1)(2分)皮尺(米尺、刻度尺、卷尺、直尺)、钟表(手表、秒
表、停表) (2)(2分)②用皮尺测出一层楼的高度h;③记下开始爬楼梯的时
H2SO4 + Na2CO3= Na2SO4+H2O+CO2↑ H2SO4 + Ca(OH)2= 2H2O + CaSO4
(写化学方程式出
其中一个即可)
+2―2 CO
2.(3分)氧(O)
3∶4
3.(4分)
质量守恒 化学反应前后元素的种类与质量不变
原子守恒 参加反应的各物质的质量总和等于生成的质量总和
………一、理解与应用,共16分。
1. (4分)60N 120N 65N 120N 2. (3分)变大(增大、逐渐增大) 机械能(动能) 1 3. (2分)金属外壳 大地 4. (3分)= L2 右
评分标准:每空1分。
5. (2分)见右图。 评分说明:B′点与O点确定正确得1分,标出入射光线、反射光线
…………………………………………………………(2分)
W=Q吸=P
2010-2023历年高级中等学校招生全国统一考试数学卷(山东淄博)
2010-2023历年高级中等学校招生全国统一考试数学卷(山东淄博)第1卷一.参考题库(共20题)1.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数2.如图,点A,B,C的坐标分别为.从下面四个点,,,中选择一个点,以A,B,C与该点为顶点的四边形不是中心对称图形,则该点是A.MB.NC.PD.Q3.在等腰直角三角形ABC中,∠C=90º,则sinA等于A.B.C.D.14.已知是方程的两个实数根,且.(1)求及a的值;(2)求的值.5.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为6.时代中学举行了一次科普知识竞赛.满分100分,学生得分的最低分31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为7.计算的结果是A.B.C.D.8.矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为A.8B.C.4D.9.如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.(1)求抛物线的表达式;(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.10.如图,一艘旅游船从A点驶向C点.旅游船先从A点沿以D为圆心的弧AB行驶到B点,然后从B点沿直径行驶到圆D上的C点.假如旅游船在整个行驶过程中保持匀速,则下面各图中,能反映旅游船与D点的距离随时间变化的图象大致是11.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则A P=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.12.某中学共有学生2000名,各年级男女生人数如下表:六年级七年级八年级九年级男生250z254258女生x244y252若从全校学生中任意抽一名,抽到六年级女生的概率是0.12;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应扇形的圆心角为44.28°.(1)求x,y,z的值;(2)求各年级男生的中位数;(3)求各年级女生的平均数;(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.13.如图,直线经过和两点,利用函数图象判断不等式的解集为A.B.C.D.14.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是A.B.C.D.15.如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD 的长;(2)求∠ABE+2∠D的度数;(3)求的值.16.解不等式:5x–12≤2(4x-3)17.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图18.如果,则“”内应填的实数是A.B.C.D.19.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是A.B.C.D.20.如图,四边形EFGH是由四边形经过旋转得到的.如果用有序数对(2,1)表示方格纸上A点的位置,用(1,2)表示B 点的位置,那么四边形旋转得到四边形EFGH时的旋转中心用有序数对表示是.第1卷参考答案一.参考题库1.参考答案:53°2.参考答案:C3.参考答案:B4.参考答案:(1)(2)15.参考答案:37S6.参考答案:0 17.参考答案:D8.参考答案:B9.参考答案:(1)(2)OE=EG(3)证明略10.参考答案:B11.参考答案:(1)(2)当时,以P,Q,M,N为顶点的四边形是平行四边形(3)以P,Q,M,N为顶点的四边形不能为等腰梯形12.参考答案:(1)240(2)256(3)245.5(4)13.参考答案:D14.参考答案:A15.参考答案:(1)10(2)180°(3)16.参考答案:x≥-217.参考答案:(1)(2)略18.参考答案:D19.参考答案:A20.参考答案:(5,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:A淄博市二○一○年中等学校招生考试数 学 试 题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1—4页)为选择题,42分;第Ⅱ卷(5—12页)为非选择题,78分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题 共42分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~6小题每题3分,第7~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1.(2010山东淄博,1,3分)下列四个数中最小的是 (A)-10 (B)-1 (C)0 (D)0.1 【答案】A2.(2010山东淄博,2,3分)计算b a ab 2253 的结果是 (A)228b a (B)338b a (C)3315b a (D)2215b a 【答案】C3.(2010山东淄博,3,3分)八年级一班要组织暑假旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去上海世博会参观的学生数”的扇形圆心角为60°,则下列说法正确的是(A)想去上海世博会参观的学生占全班学生的60% (B)想去上海世博会参观的学生有12人(C)想去上海世博会参观的学生肯定最多 (D)想去上海世博会参观的学生占全班学生的61 【答案】D4.(2010山东淄博,4,3分)下列结论中不能由0=+b a 得到的是 (A)ab a -=2(B)b a = (C)0=a ,0=b (D)22b a =【答案】C5.(2010山东淄博,5,3分)如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是 (A)平移 (B)轴对称 (C)旋转 (D)平移后再轴对称【答案】D6.(2010山东淄博,6,3分)下列运算正确的是(A)1=---a b bb a a (B)b a n m b n a m --=-(C)a a b a b 11=+-(D)ba b a b a b a -=-+--1222 【答案】D7.(2010山东淄博,7,4分)已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是(A)在点B 右侧CBAB ′A ′C ′(第5题)B(第7题)(B)与点B 重合(C)在点A 和点B 之间 (D)在点A 左侧 【答案】A8.(2010山东淄博,8,4分)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个 正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在(A)①(B)② (C)③(D)④ 【答案】B9.(2010山东淄博,9,4分)有长度分别为3cm,5cm,7cm,9cm 的四条线段,从中任取三条线段能够组成三角形的概率是 (A)43 (B)32(C)21(D)41【答案】A10.(2010山东淄博,10,4分)如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠NFD ′等于(A)144°(B)126° (C)108°(第10题)(D)72° 【答案】B11.(2010山东淄博,11,4分)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A)6 (B)3 (C)200623 (D)10033231003⨯+【答案】B12.(2010山东淄博,12,4分)如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有(A)①②(B)①③④ (C)②③④ (D)①②③④【答案】DA(第12题)(第11题)绝密★启用前试卷类型:A淄博市二○一○年中等学校招生考试数学试题第Ⅱ卷(非选择题共78分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.(2010山东淄博,13,4分)三个连续整数中,n是最小的一个,这三个数的和为.【答案】33+n14.(2010山东淄博,14,4分)分解因式:3222babba+-=.【答案】2)(bab-15.(2010山东淄博,15,4分)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出长度为5的线段__________条.【答案】816.(2010山东淄博,16,4分)在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是.【答案】217.(2010山东淄博,17,4分)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O与x轴交于A,B 两点,与y轴交于C,D两点.E为⊙O上在第一象限的某一点,直线BF交⊙O于点F,且∠ABF=∠AEC,则直(第15题)线BF 对应的函数表达式为 .【答案】1-=x y ,1+-=x y三、解答题:本大题共7小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤.18.(2010山东淄博,18,7分)解方程24)5(6-=-x .【答案】解:方程两边同时除以6得x -5=-4,移项得x =5-4, x =1.19.(2010山东淄博,19,7分)已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且CE =CF ,连接DE ,BF .求证:DE =BF .【答案】证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =90º ∵E 为BC 延长线上的点,∴∠DCE =90º,∴∠BCD =∠DCE .∵CE =CF ,∴△BCF ≌△DCE ,∴DE =BF .20.(2010山东淄博,20,8分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.BA(第19题)(1)分别求一班和二班选手进球数的平均数、众数、中位数;(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?【答案】解:(1)一班:7,7,7.二班:7,7,7;(2)一班的方差21S =2.6,二班的方差22S =1.4,二班选手水平发挥更稳定,应该选择二班;一班前三名选手的成绩更突出,应该选择一班.21.(2010山东淄博,21,8分)已知关于x 的方程014)3(222=--+--k k x k x . (1)若这个方程有实数根,求k 的取值范围; (2)若这个方程有一个根为1,求k 的值;(3)若以方程014)3(222=--+--k k x k x 的两个根为横坐标、纵坐标的点恰在反比例函数xmy =的图象上,求满足条件的m 的最小值. 【答案】解: (1)由题意得△=()[]()1443222--⨯---k k k ≥0化简得 102+-k ≥0,解得k ≤5.(2)将1代入方程,整理得2660k k -+=,解这个方程得 13k =23k =(3)设方程014)3(222=--+--k k x k x 的两个根为1x ,2x ,根据题意得12m x x =.又由一元二次方程根与系数的关系得21241x x k k =--,那么()521422--=--=k k k m ,所以,当k =2时m 取得最小值-522.(2010山东淄博,22,8分)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.【答案】解:设小明从家走到商店的平均速度为x 米/分,则他从商店到学校的平均速度为(x +25)米/分,根据题意列方程得500303025xx x +=+ 解这个方程得x =50经检验x =50是所列方程的根.50+25=75(米/分),所以小明从商店到学校的平均速度为75米/分.23.(2010山东淄博,23,10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点. (1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长;(2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.【答案】解:在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3. (1)如图(1),作DF ⊥AC ,∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23. ∵BP 平分∠ABC ,∴∠PBC =30°,∴CP =BC ·tan 30°=1,∴PF =21,∴DP =22DF PF =210.(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45°,又PD =BC =3,∴cos∠PDF =PDDF =23,∴∠PDF =30°.∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°.DACB(第23题)(第23题)B(2)B (1)∴∠PDA =∠ADF +∠PDF =75°.(3)CP =23. 在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC .根据(1)中结论可知,DP =CP =23,∴S □DPBQ=CP DP ⋅=49.24.(2010山东淄博,24,10分)已知直角坐标系中有一点A (—4,3),点B 在x 轴上,△AOB 是等腰三角形.(1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.【答案】解:作AC ⊥x 轴,由已知得OC =4,AC =3,OA =22AC OC +=5. (1)当OA =OB =5时,如果点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0). 如果点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0).当OA =AB 时,点B 在x 轴的负半轴上,如图(3),BC =OC ,则OB =8,点B 的坐标为(-8,0).B (3)B(4)(第23题)当AB =OB 时,点B 在x 轴的负半轴上,如图(4),在x 轴上取点D ,使AD =OA ,可知OD =8.由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA ,则OD OA OA OB =,解得OB =825,点B 的坐标为(-825,0).(2)当AB =OA 时,抛物线过O (0,0),A (-4,3),B (-8,0)三点,设抛物线的函数表达式为bx ax y += 2,可得方程组⎩⎨⎧=-=-34160864b a b a ,解得a =163-,23-=b ,x x y 231632--=.(当OA =OB 时,同理得x x y 415432--=. (3)当OA =AB 时,若BP ∥OA ,如图(5),作PE ⊥x 轴,则∠AOC =∠PBE ,∠ACO =∠PEB =90°,△AOC ∽△PBE ,43==OC AC BE PE .设BE =4m ,PE =3m ,则点P 的坐标为(4m -8,-3m ),代入x x y 231632--=,解得m =3. 则点P 的坐标为(4,-9), S 梯形ABPO =S △ABO +S △BPO =48.若OP ∥AB (图略),根据抛物线的对称性可得点P 的坐标为(-12,-9), S 梯形AOPB =S △ABO +S △BPO =48.题(当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴,则∠AOC =∠PBF ,∠ACO =∠PFB =90°,△AOC ∽△PBF ,43==OC AC BF PF .设BF =4m ,PF =3m ,则点P 的坐标为(4m -5,-3m ),代入x x y 415432--=,解得m =23. 则点P 的坐标为(1,-29), S 梯形ABPO =S △ABO +S △BPO =475. 若OP ∥AB (图略),作PF ⊥x 轴,则∠ABC =∠POF ,∠ACB =∠PFO =90°,△ABC ∽△POF ,3==BC AC OF PF .设点P 的坐标为(-n ,-3n ),代入x x y 415432--=,解得n =9.则点P 的坐标为(-9,-27),S 梯形AOPB =S △ABO +S △BPO =75.(第24题)。