1.8完全平方公式(2).doc
《1.8完全平方公式(2)》教案

《1.8完全平方公式(2)》教案授课人: 授课时间 组长签字:一教学目标:掌握能熟练掌握平方差公式和完全平方公式及其相关计算。
二教学重点; 掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算。
三教学难点:加强对公式结构特征的深入理解,在反复练习中掌握公式的应用。
四教学过程:【课前准备及预习感悟】(1)预习书p26-27(2)思考:如何更简单迅捷地进行各种乘法公式的运算?(3)预习作业: 1.利用完全平方公式计算(1)298 (2)2203(3)2102 (4)2197 2.计算:(1)22(3)x x +-(2)22(1)(1)ab ab +-- 一、复习回顾:1、叙述完全平方公式的内容并用字母表示; 叙述平方差公式的内容并用字母表示;2、用简便方法计算(1)1022 (2)(3x-2y )2(3)(3x+2y )(3x-2y ) (4) (100+1)(100-1)3、 请同学们各编一个符合平方差公式、完全平方公式结构的计算题,并算出结果.(学生活动:编题、解题,然后两至三个学生说出题目和结果.)预习疑难摘要:【课堂学习研讨交流】1、小组研讨预习中碰到的疑难问题,不会的要向其他同学或老师请教哦!2、 说一说两个公式各自的特征,和你的同伴交流认识。
【知识应用与能力形成】例3:计算(x-2y)(x+2y) –(x+2y)2 + 8y 2(1)思考: 此题能使用几个公式?用同桌讲一讲,然后完成此题。
总结一下解此题的收获。
例4 计算:(a+2b+3c)(a+2b-3c )思考:用以上办法计算(a+2b+3c)2(把a+2b 看做公式中的a ,把3c 看做公式中的b )学生独立在练习本上尝试解题,然后小组讨论交流,1个学生板演.【课内训练巩固】1、 课本27页随堂练习2、运用乘法公式计算:(l )()()x y z x y z ++-- (2)(21)(21)a b a b +++-(3)(23)(23)a b c a b c -++- (4)(1)(1)x y x y ++--学生活动:1、2共六个小题,采取比赛的方式把学生分成六组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.【学习体会】总结学到的知识、方法和运用公式时应该注意的问题五、综合与提升(必做作业)(1) 与 相等吗?答:(2) 与 相等吗?答:六、拓展与探究(选做作业)1、 计算:152= 252= 352= 452=2、总结归纳有何规律3、个位数字是5的三位数的平方呢?七:板书设计八:课后反思。
1.8完全平方公式(2)doc

§1.8 完全平方公式(2)姓名___________ 学号_____学习目标:(1)(应知应会)进一步理解完全平方公式的特征,能熟练运用完全平方公式进行数、式的计算.(2)(能知能会)能准确、熟练地综合运用平方差公式、完全平方公式、整式的乘法法则进行计算.一、相关衔接:1、(1)多项式乘以多项式法则:()()a b m n +-=___________;(2)平方差公式:_________________________________;(3)完全平方公式:___________________________、_________________________.2、计算:(1)()()23x y y x +-=______________; (2)()()22x y y x ---=_____________;(3)()223x y -=_______________; (4)()()22x y x y --+=_______________.二、预习导航:(一)完全平方公式的再认识:一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖;来两个孩子,老人就给每个孩子两块糖;L L(1)第一天有a 个男孩去了老人家,老人一共给了这些孩子________块糖;(2)第二天有b 个女孩去了老人家,老人一共给了这些孩子________块糖;(3)第三天这a b +()个孩子一起去看望老人,老人一共给了这些孩子________块糖; (4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?为什么?(5) 从这道题中,你有什么收获或启发?(二)简便计算:利用完全平方公式计算:(1)2103 (2)2998(三)综合计算:计算:(1)2(3)4()2x y x y x y ---+() (2)(22)(22)x y x y +-++(四)练习: 完成课本第45页的知识技能、问题解决1.拓展:1、计算: 3()a b +. 2、已知x -y =9,x ·y =5,求x 2+y 2与2)(y x +的值.完全平方公式的常用变形:22(1)2___________;a ab b ±+= 222(2)()_____;a b a b +=±m 2222(3)()()_____;()()______;a b a b a b a b +=-+-=+- 22(4)()()_______.a b a b +--=三、小结本节课你的收获山东大学附属中学初一数学学案 北师大版七年级(下)第一章§1.8 完全平方公式(2)测试: 姓名________ 学号___(第一组)计算:(1)2203 (2) 2(2)x y --(3)22)3()3(a ab a ab ---- (4)))((5)5(2y x y x y x +---(第二组) 1、下列运算中,错误的运算有( )①(2a +b )2=4a 2+b 2;②(a -3b )2=a 2-9b 2 ;③(-a -b )2=a 2-2a b +b 2;④412)21(22+-=-x x x A 、1个 B 、2个 C 、3个 D 、4个 2计算:)9)(3)(3()9(222x x x x ++---(第三组)1、计算:(1)2)12(-+n m (22)(22)x y x y -+--2、(1)若a 2+b 2=2, a +b =1,则a b 的值为 .(2)若x -y =4,x ·y =1.则x 2+y 2= . (第四组)1、已知a (a -1)+(b -a 2)=-7,求ab b a -+222的值.2、已知:x 2-2x +y 2+6y +10=0,求x +y 的值.3、学校绿化带有一块边长为(2)a b +米的正方形草坪,经统一规划后,南北向要缩短3米,而东西 向要加长3米,问改造后的长方形草坪的面积是多少?。
1.8完全平方公式(2)

=10000+400+4 =10404
学一学
利用完全平方公式计算: 例2 利用完全平方公式计算: 2 ; 2 (1) 102 (2) 197 .
把 改写成 2 ? (a−b)
2 197
2 (a+b )
还是
a,b怎样确定? 怎样确定?
2 197
2 =(200=(200-3) 2-2×200×3+32 200× =200
2 (1)(a+b) 2+b2 (2)a
2.若条件换成a b=5,a+b=2.若条件换成a-b=5,a+b=-6, 若条件换成 2+b2的值吗? 你能求出a 的值吗? 你能求出a
标题
标题
导
1. 完全平方公式: 完全平方公式:
2 (a+b)
= + 2ab + 2 = a2 - 2ab + b2 (a(a-b)
2. 口诀: 口诀:
2 a
2 b
首平方,尾平方, 首平方,尾平方,两倍 乘积放中央, 加减看前方。 乘积放中央, 加减看前方。
学 有一位老人非常喜欢孩
子,每当有孩子到他家做客 时,老人都要拿出糖果招待 他们。来一个孩子,老人就 他们。来一个孩子, 给这个孩子一块糖,来两个 给这个孩子一块糖, 孩子,老人就给每个孩子两 孩子, 块糖,来三个,就给每人三 块糖,来三个, 块糖, 块糖,……
=40000-1200+9 =40000=38809
随堂练习
1.利用整式乘法公式计算: 利用整式乘法公式计算:
(1) (2)
2 96 2 203
; .
学一学
例3 计算:(1) 计算:
1.8完全平方公式

1.8完全平方公式⑴⒈下列各式中,计算正确的是 【 】 A .2224)2(b a b a +=+ B .222)(n m n m -=-C .22241025)25(y xy x y x +-=+-D .2222)(y xy x y x ++=--⒉计算22)2()2(b a b a -++的结果是 【 】 A .2a 2 B .4b 2 C .2a 2-8b 2 D .2a 2+8b 2 3.计算:=+2)2(n m ,=-2)332(b a4. ⑴ 2)331(b a +- ⑵ 2)12(-+y x5.(2m+3)(-2m-3)的计算结果是 【 】 A .249m - B.249m -- C.24129m m --- D.24129m m -+-6.在下列各式中,运算结果为22412xy x y -+的是 【 】 A .222(1)x y -- B .22(1)xy -+ C .222(1)x y - D .22(1)xy -- 7.已知49)(2=+b a ,9)(2=-b a ,则22ba+= ,ab =8.)132)(132(++-+y x y x 已知xx 1+=2,试求221xx +的值.1.8完全平方公式⑵⒈ )32)(32(42y x y x x +--的计算结果是 【 】 A .29y B .—29y C .23y D .2232y x +⒉ .在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b ),如图1-8-1(1),把余下的部分拼成一个矩形如图1-8-1(2),根据两个图形中阴影部分的面积相等,可以验证【 】A.222()2a b a ab b +=++ B.222()2a b a ab b-=-+C.22()()a b a b a b -=+-D.22(2)()2a b a b a ab b +-=+-3. 利用乘法公式计算:=298 = = ;4. 若2542++kx x 是一个完全平方式,则k = .5. )3)(3()3()3(22b a b a b a b a +--++-,其中1,8-=-=b a .6. ⑴ 22)2()2(b a b a +- ⑵ 22)3()3(b a b a +--7.已知1222=+b a ,3-=ab ,则2)(b a +的值是 【 】A .6B .18C .3D .128.要使等式22)()(b a M b a +=+-成立,代数式M 应是 【 】 A .ab 2 B .ab 4 C .ab 4- D .ab 2- 10.利用乘法公式计算:3120032199⨯=1.9整式的除法⑴⒈ 433287a b a b -÷等于 【 】 A .24ab B .24ab - C .44a b - D .4ab -⒉ 下列计算结果为34x y 的式子是 【 】 A.34x y xy ÷ B.23x y xy + C.322x y xy ⋅ D.33232()x y x y -÷ 3.522(610)(310)____⨯÷⨯=. 23236(12)_____x y xy ÷-=. 4. 3522312(3)a b c a b -÷- 222()()()ab bc ca ÷⋅1.9整式的除法⑵1.下列运算错误的是 【 】A.3221(63)()1262a a a a a +÷=+ B.322(642)232a a a a a a -+÷=-C.93361(93)()2793a a a a -÷-=-+ D.2111()()2422a a a a +÷-=--⒉ 2(____________)(3)23a a a ÷-=-+-. ⒊ 2222()()__________a b b a -÷-=.4. 43322(1263)3m n m n m n m n --÷ 4222111()3366a b a b ab ab --÷(1) (2)。
1.8 完全平方公式--

(3).
1
2
y
1
x
2
y
1
x2
2x2
2 2 2
练习
• (a+1)(a+2)(a+3)(a+4)
布置作业:
课本: P38 1.14 P23-24
1. 2
拓展与迁移 (1) 若不论x取何值,多项式 x3-2x2- 4x-1
与 (x+1)(x2+mx+n)都相等, 求m.n
34
43
教学目的: 理解掌握完全平方公式特点, 会运用
完全平方公式进行计算.
教学重点.难点: 重点和难点是完全平方公式的特点的
理解及其运用完全平方公式进行计算.
一块边长为a米的正 方形试验田,因需要
b
将其边长增加b米,
形成四块试验田,以
种植不同的新品种。
用不同的形式表示试
a
验田的总面积,并进
行比较。你发现了什
么?
a
b
(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗? (2)(a-b)2等于什么?小颖写出了如下的算式: (a-b)2 =[a+(-b)]2 她是怎么想的?你能继续做下去吗?
完全平方公式
(a+b)2 = a2+2ab+b2 (a-b)2 = a2-2ab+b2
理解:1) 公式特点: 左边: 两数和的平方 右边: 首平方,尾平方, 2倍乘积在中间
12 1
13 3 1
14 6 4 1
例2.计算: (1) (99)2 (2) (103)2
最新整理初一数学教案1.8完全平方公式(2).docx

最新整理初一数学教案1.8完全平方公式(2)1.8完全平方公式(2)教学目标:1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.2.会运用完全平方公式进行一些数的简便运算.3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点:1.运用完全平方公式进行一些数的简便运算;2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题:1.;2.;3.;4.;5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课:1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程2.练习:利用完全平方公式计算:(1)982;(2)2032.3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号4.练习:计算:(1);(2);(3).5.例:计算:(1);(2).练习:.6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.。
七年级下册数学资源与评价答案

练习册答案第一章整式的乘除 1.1 整式1.(1)C 、D 、F ;(2)A 、B 、G 、H ;(3)A 、B ;(4)G ;(5)E 、I ;2.125r π;3.3343R a π-;4.四,四,-13ab 2c,-13,25 ;5.1,2;6. 13a 3b 2c ;7.3x 3-2x 2-x ;8.11209,10200a a ;9.D ;10.A ;11.•B ;12.D ;13.C ;14.12222V V V V +;15.a=27;16.n=32;四.-1.1.2 整式的加减1.-xy+2x 2y 2;2.2x 2+2x 2y;3.3;4.a 2-a+6;5.99c-99a;6.6x 2y+3x 2y 2-14y 3;7.39π-+;8.3217210n n n n a a a a +++--+-;9.D; 10.D; 11.D; 12.B; 13.C; 14.C;15.B; 16.D; 17.C ;18.解:原式=126ax +,当a=-2,x=3时, 原式=1.19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)-32a b -]=13922a b -,当a=10,b=8时,上车乘客是29人.21. 解:由3xy x y =+,得xy=3(x+y),原式=87-. 22. 解:(1)1,5,9,即后一个比前一个多4正方形. (2)17,37,1+4(n-1).四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c, 所以(2)中的用绳最短,(3)中的用绳最长. 1.3 同底数幂的乘法1.10m n +,96;2.2x 5,(x+y)7 ;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.•B ;9.D ;10.D ; 11.B ;12.(1)-(x-y)10 ;(2)-(a-b-c)6;(3)2x 5 ;(4)-x m13.解:9.6×106×1.3×108≈1.2×1015(kg). 14.(1)①424103333⨯⨯=,②436135555⨯⨯=. (2)①x+3=2x+1,x=2 ②x+6=2x,x=6.15.-8x 7y 8 ;16.15x=-9,x=-35-.四.105.1.4 幂的乘方与积的乘方1.24219a b c ,23n a +;2.2923(),4p q a b + ;3.4 ;4.628a ;5.331n n x y +-; 6.1,-1;7.6,108; 8.37;9.A 、D;10.A 、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2)m n b a 4412-;(3)0.18.(1)241 (2)540019.100425753252(2),3(3)==,而4323<, 故1002523<.20.-7;21.原式=19991999499431999(3)(25)32534325⨯+-+=-+=-⨯⨯+,另知19993的末位数与33的末位数字相同都是7,而199925的末位数字为5, ∴原式的末位数字为15-7=8. 四.400.1.5 同底数幂的除法1.-x 3,x ;2.2.04×10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7.13;8.2;9.3,2,2;10.2m=n;11.B; 12.B ;13.C;14.B;15.C;16.A;17.(1)9;(2)9;(3)1;(4)61()n x y --+ ;18.x=0,y=5;19.0;20.(1)201; (2)41.21.22122()22x x x x m --+=+-=-;四.0、2、-2. 1.6 整式的乘法1.18x 4y 3z 2;2.30(a+b)10;3.-2x 3y+3x 2y 2-4xy 3;4.a 3+3a;5.-36;•6.•a 4--16;7.-3x 3-x+17 ;8.2,39.n n a b -;10.C;11.C;12.C;13.D;14.D;15.D;16.B ;17.A ; 18.(1)x=218;(2)0; 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩;20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=0, 21.由题意得35a+33b+3c-3=5, ∴35a+33b+3c=8,∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11, 22.原式=-9,原式的值与a 的取值无关.23.∵21222532332n n n n n +++⨯⨯-⋅⋅, =212125321232n n n n ++⨯⨯-⋅⋅, =211332n n +⋅⋅. ∴能被13整除.四.125121710252⨯=⨯=N ,有14位正整数. 1.7 平方差公式(1)1.36-x 2,x 2-14; 2.-2a 2+5b;3.x+1;4.b+c,b+c; 5.a-c,b+d,a-c,b+d ;6.3239981,159991;7.D;8.C;9.D;10.16a -1;11.5050 ;12.(1)52020423+--x x x ,-39 ; (2)x=4;13.原式=200101;14.原式=1615112(1)222-+=.15.这两个整数为65和63. 四.略.1.7 平方差公式(2)1.b 2-9a 2;2.-a-1;3.n-m;4.a+b ,1;5.130+2 ,130-2 ,16896;6.3x-y 2;7.-24 ;8.-15;9.B; 10.D;11.C;12.A;13.C;14.B.15.解:原式=4216194n m -.16.解:原式=16y 4-81x 4;17.解:原式=10x 2-10y 2. 当x=-2,y=3时,原式=-50. 18.解:6x=-9,∴x=23-. 19.解:这块菜地的面积为:(2a+3)(2a-3)=(2a)2-9=4a 2-9(cm 2),20.解:游泳池的容积是:(4a 2+9b 2)(2a+3b)(2a-3b), =16a 4-81b 4(米3). 21.解:原式=-6xy+18y 2 ,当x=-3,y=-2时, 原式=36. 一变:解:由题得:M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y) =(-4x)2-(3y)2-(16x 2-18xy+24xy-27y 2) =16x 2-9y 2-16x 2-6xy+27y 2=18y 2-6xy.四.2n+1.1.8 完全平方公式(1)1. 19x2+2xy+9y2,12y-1 ;2.3a-4b,24ab,25,5 ;3.a2+b2+c2+2ab-2ac-2bc;4.4ab-,-2,1x;5.±6;6.x2-y2+2yz-z2;7.2cm;8.D; 9.B ; 10.C; 11.B ; 12.B ; 13.A; 14.∵x+1x=5 ∴(x+1x)2=25,即x2+2+21x=25∴x2+21x=23 ∴(x2+21x)2=232即4x+2+41x=529,即441xx+=527.15.[(a+1) (a+4)] [(a+2) (a+3)]=(a2+5a+4) (a2+5a+6)= (a2+5a)2+10(a2+5a)+24 =43210355024a a a a++++.16.原式=32a2b3-ab4+2b. 当a=2,b=-1时,原式=-10.17.∵a2+b2+c2-ab-bc-ca=0∴2(a2+b2+c2-ab-bc-ca)=0∴(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0即(a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0∴a=b=c.18.左边=[(a+c)2-b2](a2-b2+c2)=(a2+b2+c2)(a2-b2+c2)=(a2+c2)2-b4=44a c++2a2c2-b4=444a b c++.四.ab+bc+ac=-21.1.8 完全平方公式(2)1.5y;2.500;2;250000+2000+4;252004.3.2;4.3a;6ab;b2;5.-6;6.4;7.2xy;2xy;8.2641,81xx,4;9.D ; 10.D ; 11.B ; 12.B; 13.C; 14.B;15.解:原式 =2a4-18a2.16.解:原式 =8x3-2x4+32.当x=-21时,原式=8732.17.解:设m=1234568,则1234567=m-1,1234569=m+1,则A=(m-1)(m+1)=m2-1,B=m2.显然m2-1<m2,所以A<B.18.解:-(x2-2)2>(2x)2-(x2)2+4x,-(x 4-4x 2+4)>4x 2-x 4+4x, -x 4+4x 2-4>4x 2-x 4+4x, -4>4x,∴x<-1. 19.解:由①得:x 2+6x+9+y 2-4y+4=49-14y+y 2+x 2-16-12, 6x-4y+14y=49-28-9-4, 6x+10y=8,即3x+5y=4,③ 由③-②×③得:2y=7,∴y=3.5, 把y=3.5代入②得:x=-3.5-1=-4.5,∴ 4.53.5x y =-⎧⎨=⎩20.解:由b+c=8得c=8-b,代入bc=a 2-12a+52得, b(8-b)=a 2-12a+52,8b-b2=a 2-12a+52, (a-b)2+(b-4)2=0,所以a-6=0且b-4=0,即a=6,b=4, 把b=4代入c=8-b 得c=8-4=4. ∴c=b=4,因此△ABC 是等腰三角形.四.(1)20012+(2001×2002)2+20022=(2001×2002+1)2. (2) n 2+[n(n+1)]2+(n+1)2=[n(n+1)]2. 1.9 整式的除法1.33m a b -;2.4b;3.273x -2x+1;4.3213222x y x y --; 5.-10×1010;6.-2yz,x(答案不惟一);7.3310258z y x - ; 8.3; 9.x 2+2; 10.C; 11.B; 12.D; 13.A;14.C; 15.D;16.(1)5xy 2-2x 2y-4x-4y ; (2)1 (3)2x 2y 2-4x 2-6;17.由5171m m n +-=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩;∴2139n m --==. 18.a=-1,b=5,c=-15,∴原式=25187111(15)[15()]15555⨯⨯÷-⨯⨯-=÷=.19. 13b a =⎧⎨=⎩;20.设除数为P,余数为r,则依题意有:80=Pa+r ①,94=Pb+r ②,136=Pc+r ③,171=Pd+r ④,其中P 、a 、b 、c 、•d 为正整数,r ≠0②-①得14=P(b-a),④-③得35=P(d-c)而(35,14)=7 故P=7或P=1,当P=7时,有80÷7=11…3 得r=3 而当P=1时,80÷1=80余0,与余数不为0矛盾,故P ≠1 ∴除数为7,余数为3. 四.略. 单元综合测试1.332311,0.1;(),26x y z a a a b x+--+, 2.3,2; 3.1.23×510-,-1.49×710;4.6;4;332222;0.533x y x y y x --++-; 5.-2 6.单项式或五次幂等,字母a 等; 7.25; 8.4002;9.-1;10.-1; 11.36;12.a=3,b=6,c=4 ;13.B ; 14.A ; 15.A ;16.A ; 17.C ; 18.D;19.由a+b=0,cd=1,│m │=2 得x=a+b+cd-12│m │=0 原式=27716244x x --, 当x=0时,原式=14-.20.令111111,1232002232003a b +++=++++=,∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1=12003.21.∵222222222222121211221221(5)(5)2555x x y y x y x y x y x y ++=+++ =2211221221(5)5()x y x y x y x y ++-∴22221210(5)155(5)350y y +=+⨯-= ∴22125y y +=35.22.1234567162536496481100x x x x x x x ++++++=(3)3(2)3(1)1⨯-⨯+⨯=123×3-12×3+1=334. 第二章 平行线与相交线 2.1余角与补角1.×、×、×、×、×、√;2.(1)对顶角(2)余角(3)补角;3.D;4.110°、70°、110°;5.150°;6.60°;7.∠AOE 、∠BOC ,∠AOE 、∠BOC ,1对;8.90°9.30°;10.4对、7对;11.C;12.195°;13.(1)90°;(2)∠MOD=150°,∠AOC=60°;14.(1)∠AOD=121°;(2)∠AOB=31°,∠DOC=31°;(3)∠AOB=∠DOC;(4)成立;四.405°.2.2探索直线平行的条件(1)1.D;2.D;3.A;4.A;5.D;6.64°;7.AD 、BC ,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.BE ∥DF (答案不唯一);10.AB ∥CD ∥EF;11.略;12.FB ∥AC ,证明略.四.a ∥b,m ∥n ∥l.2.2探索直线平行的条件(2)1.CE 、BD ,同位角;BC 、AC ,同旁内角;CE 、AC ,内错角;2.BC ∥DE (答案不唯一);3.平行,内错角相等,两直线平行;4.C;5.C;6.D;7.(1)∠BED ,同位角相等,两直线平行;(2)∠DFC ,内错角相等,两直线平行;(3)∠AFD ,同旁内角互补,两直线平行;(4)∠AED ,同旁内角互补,两直线平行;8.B;9.C;10.B;11.C;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长DC 到H );四.平行,提示:过E 作AB 的平行线. 2.3平行线的特征1.110°;2.60°;3.55°;4.∠CGF ,同位角相等,两直线平行,∠F ,内错角相等,两直线平行,∠F ,两直线平行,同旁内角互补;5.平行;6.①②⇒④(答案不唯一);7.3个 ;8.D;9.C;10.D;11.D;12.C;13.证明略;14.证明略;四.平行,提示:过C 作DE 的平行线,110°. 2.4用尺规作线段和角(1)1.D;2.C;3.D;4.C;5.C;6.略;7.略;8.略;9.略;四.(1)略(2)略(3)①A ②61.4.4用尺规作线段和角(2)1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略; 四.略. 单元综合测试1.143°;2.对顶角相等;3.∠ACD 、∠B ;∠BDC 、∠ACB ;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD 、∠AOC;11.C;12.A;13.C;14.D;15.A;16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;第三章 生活中的数据 3.1 认识百万分之一1,1.73×104- ;2,0.000342 ; 3,4×107-; 4,9×103- ; 5,C; 6,D;7,C ; 8,C; 9,C;10,(1)9.1×108-; (2)7×105- ;(3)1.239×103- ;11,6101=106- ;106个.3.2 近似数和有效数字1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49×104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. A;6、C;7. B ;8. D ;9. A ;10. B;11.有可能,因为近似数1.8×102cm 是从范围大于等于1.75×102而小于1.85 ×102中得来的,有可能一个是1.75cm ,而另一个是1.84cm ,所以有可能相差9cm.12. 13×3.14×0.252×6=0.3925mm 3≈4.0×10-10m 313.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了.四:1,小亮与小明的说法都不正确.3498精确到千位的近似数是3×103 3.3 世界新生儿图1,(1)24% ;(2)200m 以下 ;(3)8.2%; 2,(1)59×2.0=118(万盒);(2)因为50×1.0=50(万盒),59×2.0=118(万盒),80×1.5=120 (万盒),所以该地区盒饭销量最大的年份是2000年,这一年的年销量是120万盒;(3)50 1.059 2.080 1.53⨯+⨯+⨯=96(万盒);答案:这三年中该地区每年平均销售盒饭96万盒.3.(1)王先生 2001年一月到六月每月的收入和支出统计图(2)28:22:27:37:30:29;4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;(2)平均成绩是8(3)5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:(2)每年的总消费数是增加了(3)6.(1)大约扩大了:6000-500=5500(km)26000÷500=12.(2)1960~1980年间,上海市市区及郊县的土地面积没有大的变化,说明城市化进程很慢.(3)说明郊县的部分土地已经划为上海市区,1980年以后,上海市区及郊县的土地总面积和几乎不变,这说明1980年以后上海市区及郊县的土地总面积总和几乎不变,这说明1980年以后上海市在未扩大土地总面积的前提下,城市化进程越来越快,城市土地面各占总土地面积的比例越来越大(如浦东新区的开发等).7,(1)由统计图知道税收逐年增加,因此2000年的税收在80到130亿元之间 (2)可获得各年税收情况等 (3)只要合理即可. 单元综合测试1. 10-9;2. 106 ;3.333×103;3. 0.0000502;4. 170, 6 ;5.百 , 3.3×104;6. 1.4×108 , 1.40×108;7.0.36 0.4;8. 1.346×105;9.A,10.B,11.C,12.C,13.A,14.D,15.B,16.C,17.B,18.B19. 0.24与0.240的数值相等,在近似数问题上有区别,近似数位不同: 0.24近似到百分位(0.01);0.240近似到千分位(0.001).有效数字不同:0.24有两个有效数字2、4;0.240有三个有效数字2、4、0.20. (1)精确到0.0001,有四位有效数字3、0、1、0;(2)精确到千位,有三位有效数字4、2、3;(3)精确到个位,有三位有效数字3、1、4.21. 82kg=82000 g,∴100000082000=8.2×10-2(g).22. 1000104005 =6104=4×10-6(kg).答:1 粒芝麻约重 4×10-6kg. 23. 西部地区的面积为32×960=640万 km 2=6.40×106 km 2,精确到万位. 24. 可用条形统计图:70 奖牌数(枚)届25. 36003301038⨯⨯≈2.53×102(h).答:该飞机需用 2.53×102 h 才能飞过光 1 s 所经过的距离. 26. (1)树高表示植树亩数,从图中可看出植树面积逐年增加. (2)2000年植树约 50 万亩; 2001年植树约75 万亩; 2002年植树约110 万亩; 2003年植树约155 万亩; 2004年植树约175 万亩; 将植树约225 万亩. (3)2000年需人数约 5 万; 2001年需人数约 7.5 万; 2002年需人数约 11 万; 2003年需人数约 15.5 万; 2004年需人数约 17.5 万; 需人数约 22.5 万. 第四章 概率 4.1 游戏公平吗 1.1或100% , 0; 2.61;3.相同 ;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A;11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1; (4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D;10. C; 11.B ;12.B; 13.C; 14.C; 15.D ;16.D ;17.(1)P=13;(2)P=13;(3)P=23;(4)P=23.18.∵P(甲获胜)=310,P(乙获胜)=25.∴这项游戏对甲、乙二人不公平, 若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等. 19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个21.P 1P 2; 四.(1)321; (2) 161 ; (3)摊主至少赚187.5元;4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110;四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有:(0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), …… (5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种,其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种, 故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试 1.不确定, 0,1;2.41 , 131 , 133;3. 53;4. 红, 白;5. 2 ① ② ③1; 6.= ; 7; 32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C;17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21.两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨.明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨. 19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101×451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91.22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 .23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE,△ABE,△ADC,•△ABC;10.3 , △AEC,△AEB,△AED;11.0<BC<10 12.2 , 5cm,6cm,8cm;6cm,8cm,13cm ;13.2;14.•15cm或18cm ;15. 7cm<a<12cm;16.学校建在AB,CD的交点处.理由:任取一点H,利用三角形三边关系.四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°;9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°.16.45°,70°,115°;17.解:因为AB∥CD,AD∥BC,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC中,∠1+∠2+∠C=180°,而∠1=∠A+∠D,∠2=∠B+∠E,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM中,∠C+∠1+∠2=180°,而∠1=∠A+∠D,∠2=∠DBE+∠E,故结论成立.如图(3)所示,在△MNE中,∠1+∠2+∠E=180°,∠1=∠B+∠D,∠2=∠A+∠C,•故结论仍成立.5.1认识三角形(3)1.(1)AD;AD,BD ;(2)BF,AC,ACE,AE,ADC,AD,DEC,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略;四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE,△EOD,△AOD,△ABD,△ACD,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ; 12.略四.5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC 13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG再证△ADG ≌△ADC ,∴AG=AC ,即AC=2AE .14.已知:DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB=AC ,BD=CD 求证:BE=CF .证明:∵AB=AC ,∴∠B=∠C .∵DE ⊥AB ,DF ⊥AC ,∴∠BED=∠CFD=90º. 在△BDE 与△CDF 中,∵∠B=∠C ,∠BED=∠CFD ,BD=CD , ∴△BDE ≌△CDF (AAS ),∴BE=CF .15.此图中有三对全等三角形,分别是:△ABF ≌△DEC ,△ABC ≌△DEF ,△BCF •≌△EFC .证明:∵AB ∥DE ,∴∠A=∠D .在△ABF 和△DEC 中,,,,AB DE A D AF DC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DEC (SAS ).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°, ∴∠CAD=∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ;② ∵△ADC ≌△CEB ,∴CE=AD ,CD=BE ,∴DE=CE+CD=AD+BE , (2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE ,又∵AC=BC , ∴△ACD ≌△CBE ,∴CE=AD ,CD=BE .∴DE=CE -CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD (或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE ,又∵AC=BC ,∴△ACD ≌△CBE , ∴AD=CE ,CD=BE ,∴DE=CD -CE=BE -AD . 5.5 ~5.6 作三角形~~利用三角形全等测距离 1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求; 5.共6个,如图所示:....3.55A 2B 22C 1B 1A 136︒53.536.C ;7.略;8.在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.9.(1)由△APB≌△DPC,所以CD=AB.(2)由△ACB≌△ECD得DE=AB.目的是使DE∥AB,可行.10.因为△A′OB′≌△AOB,所以AB=A′B′.11.解:(1)AE=CF(OE=OF;DE∥BF等等)(2)因为四边形ABCD是长方形,所以AB=CD,•AB∥CD,∠DCF=∠BAF,又因为AE=CF,所以AC-AE=AC-CF,所以AF=CE,所以△DEC≌△BFA.12.提示:连接EM,FM,需说明∠EMF=∠BMC=180°即可四.(1)FE=FD;(2)(1)中的结论FE=FD仍然成立.在AC上截取AG=AE,连结FG.证△AEF≌△AGF得∠AFE=∠AFG,FE=FG.由∠B=60°,AD、CE分别是∠BAC,∠BCA的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE及FC为公共边.可证△CFG≌△CFD,所以FG=FD,所以FE=FD.5.7 探索直角三角形全等的条件(HL)1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS或ASA ; (2)AAS ; (3)SAS或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE.理由是∠ACD=∠AED=90°,∠CAD=•∠EAD,所以∠ADC=∠ADE(直角三角形两锐角互余).8.C 9.△ADE≌△CBF,△DEG≌△BFG,△ADG≌△CBG10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE≌△ACD,△ADF≌△AEF,•△BDF ≌△CEF,根据的方法分别为AAS,HL,HL或SAS或AAS或ASA或SSS.13.解:因为△ABD≌△CBD,所以∠ADB=∠CDB.又因为PM⊥AD,PN⊥CD,所以PM=•PN.14.提示:先说明△ADC≌△BDF,所以∠DBE=∠DAC,所以∠ADB=∠AEF=90°,•所以BE⊥AC.15.△ABF≌△DEA,理由略.16.先证Rt△ACE≌Rt△BDF,再证△ACF≌△BDE;17. 需证Rt△ADC≌Rt△AEC四.(1)由于△ABC与△DEF是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC≌△DEF,所以∠A=∠D,在△ANP和△DNC中,因为∠ANP=∠DNC,所以∠APN =∠DCN,又∠DCN=90°,所以∠APN=90°,故AB⊥ED.(2)答案不唯一,如△ABC≌△DBP;△PEM≌△FBM;△ANP≌△DNC等等.以△ABC ≌△DBP为例证明如下:在△ABC与△DBP中,因为∠A=∠D,∠B=∠B,PB=BC,所以△ABC≌△DBP.单元综合测试1.一定,一定不;2.50°;3.40°; 4.HL;5.略(答案不惟一);6.略(答案不惟一); 7.5;8.正确;9.8;10.D; 11.C; 12.D; 13.C; 14.D; 15.A; 16.C; 17.C;.18.略;19.略;20.合理.因为他这样做相当于是利用“SSS”证明了△BED≌△CGF,所以可得∠B=∠C.21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE,事实上,因为△ABC 与△DEF都是等边三角形,所以∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD,又因为∠CED+∠AEF=120°,∠CDE+∠CED=120°,所以∠AEF=∠CDE,同理,得∠CDE=∠BFD,所以△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD =CE ,(2)线段AE,BF,CD它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF,BD,CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD≌△EA D',其中∠EAD=∠EA D',AED A ED ADE A DE''=∠=∠∠∠;,(2)118022180-2,∠;x y∠=︒-=︒(3)规律为:∠1+∠2=2∠A.第六章变量之间的关系6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm;12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量; (2)(3)略 14.(1)……(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数. 6.2 变化中的三角形 1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C ;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36; (2)(3)当x 每增加1时,y 增加3;(4)y=36,表示三角形;13.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个;14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D;9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19; 10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5×2=7元;55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。
数学:1.8.2《完全平方公式(2)》学案(北师大七年级下)

§1.8.2完全平方公式 (2)【目标导航】1.会运用完全平方公式进行一些数的简便运算。
2.综合运用平方差和完全平方公式进行整式的简便运算。
【知识梳理】1.完全平方公式(a ±b )2=_________________.2.(a+b)2-(a-b)2=__________________.3.a 2+b 2=(a+b)2+____________=(a-b)2+____________.【学法导航】本节重点是运用完全平方公式进行一些数的简便运算。
理解(a +b )2与a 2+b 2的关系; 运用完全平方公式进行一些有关数的简便运算.本节课借助生活中的典型实例,为学生创设故事背景,进行完全平方公式的应用,从中进一步发展学生的符号感和推理能力,在平面图形与代数运算的转换中培养学生对算理的理解。
,学生感兴趣的问题已拓广到客观世界的许多方面,他们逐渐关注来源于自然、社会与其他学科中更为广泛的现象和问题,对具有一定挑战性的内容表现出更大的兴趣。
及综合运用平方差和完全平方公式进行整式的简便运算。
【预习检查】算下列各题:1.(2a +1)2;2.(23x -32y )2; 3.(-4a -3b )2.【课堂探究】一、课本探究1.课本p 43页教科书中一个有趣的分糖果场景,一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a 个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b 个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b )个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?二、典例展示知识点1:利用完全平方公式计算【例1】利用完全平方公式计算(1)1022 (2)1972【解题提示】将底数化为一整百的数与另一个数的和或差,再利用完全平方公式计算.【变式1】利用完全平方公式计算:(1)982 (2)2032(1)982 =(100-2)2=1002-2×100×2+22=10000-400+4=9604(2)2032=(200+3)2=2002+2×200×3+32=40000+1200+9=41209知识点2:完全平方公式的灵活应用【例2】计算:(1)22)3(x x -+ (2)22)(y x y +- 【解题提示】法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项。
《整式的运算》中的—1.8完全平方公式 说课稿。

教案说明一、教材分析本节内容是初中数学(北师大版)七年级下册第一章《整式的运算》中的——1.8完全平方公式。
教材的地位和前后联系:完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用.一方面完全平方公式这一教学内容是学生在已经学习单项式乘法、多项式乘法及平方差公式基础上的拓展,是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》的工具性内容。
二、教材设计的思想方法教材按照学生的认知规律,从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,使学生对公式从感性认识、直观认识到本质认识。
逐步培养学生的逻辑推理能力和建模思想。
由此,本节课不仅有着广泛的实际应用,而且起着承前启后的作用,它在本章中起着举足轻重的作用。
三、教法学法的选择1、教法:由本节课实际,我采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。
考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。
边启发,边探索,边归纳,突出以学生为主体的探索性学习活动,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。
并采用小组讨论,大组竞赛等多种形式激发学习兴趣。
2、学法:引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。
四、本节课的预期效果本堂课的重点在于如何引导学生探究出两个完全平方公式并加以运用,而不是由教师包办到底。
让学生自主探究,合作交流,学生参与课堂的积极性很高,整个课堂氛围融洽,教学效果较好。
从课后练习上来看,绝大部分学生已经掌握了完全平方公式的应用,但小部分同学对公式的理解还不够深刻,需要进行个别辅导。
《完全平方公式》教案 (公开课)2022年2

1.8 完全平方公式(二)●教学目标(一)教学知识点1.通过有趣的分糖情景,使学生进一步稳固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.2.运用完全平方公式进行一些有关数的简便运算.3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.(二)能力训练要求1.在进一步稳固完全平方公式同时,体会符号运算对解决问题的作用.2.进一步熟练乘法公式,提高最根本的运算技能,并且明白每一步的算理.(三)情感与价值观要求1.鼓励学生算法多样化,提高学生合作交流意识和创新精神.2.从有趣的分糖游戏中,提高学习数学的兴趣.●教学重点1.稳固完全平方公式,区分(a+b)2与a2+b2的关系.2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.●教学难点1.区分(a+b)2与a2+b2的关系.2.熟练乘法公式的运用,体会公式中字母a、b的广泛含义.●教学方法活动探究法.●教具准备投影片四张第一张:提出问题,记作(§1.8.2 A)第二张:分糖游戏,记作(§1.8.2 B)第三张:例2,记作(§1.8.2 C)第四张:例3,记作(§1.8.2 D)●教学过程Ⅰ.创设情景,引入新课[师]上节课我们推导出了完全平方公式,现在我们来看一个问题:出示投影片(§1.8.2 A)一个正方形的边长为a厘米,减少2厘米后,这个正方形的面积减少了多少厘米2?[生]原来正方形的面积为a2平方厘米,边长减少2厘米后的正方形的面积为(a-2)2平方厘米,所以这个正方形的面积减少了a2-(a-2)2平方厘米,因为a2-(a-2)2=a2-(a2-4a+4)=a2-a2+4a-4=4a-4,所以面积减少了(4a-4)平方厘米.[师]很好!这节课我们继续稳固完全平方公式.Ⅱ.讲授新课[师]下面我们来做一个“分糖游戏〞.出示投影片(§1.8.2 B)一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一块去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?[生]根据题意,可知第一天有a个男孩去了老人家,老人给每个孩子发a 块糖,所以一共发了a2块糖.第二天有b个女孩去了老人家,老人给每个孩子发b块糖,所以一共发了b2块糖.第三天有(a+b)个孩子去了老人家,老人给每个孩子发(a+b)块糖,所以一共发了(a+b)2块糖.[生]前两天他们得到的糖果总数是(a2+b2)块,因为(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.由于a>0,b>0,所以2ab>0.由此可知这些孩子第三天得到的糖果数比前两天他们得到的糖果总数要多,多2ab块糖果.[师]为什么会多出2ab块糖果呢?同学们可分组讨论多出2ab块糖的原因.(老师可参与到学生的讨论,撞击他们思想的火花)[生]对于a个男孩来说,每个男孩第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.[师]不错!而这个游戏又充分说明了(a+b)2与a2+b2的关系,即(a+b)2≠a2+b2.下面我们再来看一个例题,你会有更多的发现.出示投影片(§1.8.2 C)[例2]利用完全平方公式计算:(1)1022;(2)1972.如果直接计算1022,1972会很繁.根据题目的提示使我们想到1022可以写成(100+2)2,1972可以写成(200-3)2,这样计算起来会简单的多,我们不妨试一试.[生]解:(1)1022=(100+2)2=1002+2×2×100+22=10000+400+4=10404.(2)1972=(200-3)2=2002-2×3×200+32=40000-1200+9=38809[师]我们可以发现运用完全平方公式进行一些有关数的运算会很简便,也更进一步体会到符号运算对解决问题的作用.下面我们再来看一个例题(出示投影片§1.8.2 D)[例3]计算:(1)(x+3)2-x2;(2)(a+b+3)(a+b-3);(3)(x+5)2-(x-2)(x-3).分析:(1)题可用完全平方公式计算,也可以逆用平方差公式计算;(2)题虽然每个因式含有三项,但可以利用加法的结合律整理成能用平方差公式计算的多项式相乘的形式;(3)题要注意运算顺序,减号后面的积算出来一定先放在括号里,然后再去括号,就可以防止符号上面出错.注意要为学生提供充分交流的时机.解:(1)方法一:(x+3)2-x2=x2+6x+9-x2——运用完全平方公式=6x+9方法二:(x+3)2-x2=[(x+3)+x][(x+3)-x]——逆用平方差公式=(2x+3)×3=6x+9(2)(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9(3)(x+5)2-(x-2)(x-3)=x2+10x+25-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19[例4]x+y=8,xy=12,求x2+y2的值.分析:由完全平方公式(x+y)2=x2+2xy+y2,可知x2+y2=(x+y)2-2xy,故可将x+y=8,xy=12整体代入求值.解:x2+y2=(x+y)2-2xy把x+y=8,xy=12代入上式,原式=82-2×12=64-24=40Ⅲ.随堂练习1.(课本P45)利用整式乘法公式计算:(1)962(2)(a-b-3)(a-b+3)解:(1)962=(100-4)2=10000-800+16=9216(2)(a-b-3)(a-b+3)=[(a-b)-3][(a-b)+3]=(a-b)2-32=a2-2ab+b2-92.试一试,计算:(a+b)3分析:利用转化的思想和逆用同底数幂的乘法得(a+b)3=(a+b)2·(a+b),可以使运算简便.解:(a+b)3=(a+b)2·(a+b)=(a 2+2ab+b 2)(a+b)=a 3+a 2b+2ab 2+2a 2b+ab 2+b 3=a 3+3a 2b+3ab 2+b 3 3.x+x 1=2,求x 2+21x 的值.解:由x+x1=2,得(x+x 1)2=4. x 2+2+21x =4.所以x 2+21x =4-2=2.Ⅳ.课时小结[师]一节课在紧张而又活泼的气氛中度过了,你有何收获和体会,不妨和大家共享.[生]在有趣的分糖情景中,不仅稳固了完全平方公式,而且更进一步理解了(a+b)2与a 2+b 2的关系.[生]通过实例,我更进一步体会到完全平方公式中的字母a,b 的含义是很广泛的,它可以是数,也可以是整式.……Ⅴ.课后作业1.课本P 45,习题1.14.Ⅵ.活动与探究化简 个n 9999× 个n 9999+个n 9991 [过程]当n=1时,9×9+19=102当n=2时,99×99+199=104当n=3时,999×999+1999=106……于是猜想:原式=102n[结果]原式=(10n -1)(10n -1)+(2×10n -1)=(10n-1)2+2×10n-1=102n-2×10n+1+2×10n-1=102n●板书设计§1.8.2 完全平方公式(二)一、糖果游戏(1)a2(2)b2(3)(a+b)2(4)(a+b)2的总数较多,多2ab.结果:(a+b)2≠a2+b2二、例题讲解例2.利用完全平方公式计算(1)1022(2)1972例3.计算:(1)(x+3)2-x2(2)(a+b+3)(a+b-3)(3)(x+5)2-(x-2)(x-3)●备课资料参考练习1.选择题(1)以下等式成立的是( )A、(a-b)2=a2-ab+b2B、(a+3b)2=a2+9b2C、(a+b)2=a2+2ab+b2D、(x+9)(x-9)=x2-9(2)(a+3b)2-(3a+b)2计算结果是( )A.8(a-b)2B.8(a+b)2C.8b2-8a2D.8a2-8b2(3)(5x2-4y2)(-5x2+4y2)运算的结果是( )A.-25x4-16y4B.-25x4+40x2y2-16y4C.25x4-16y2D.25x4-40x2y2+16y4(4)运算结果为x4y2-2x2y+1的是( )A.(x2y2-1)2B.(x2y+1)2C.(x 2y -1)2D.(-x 2y -1)22.填空题(1)(4a -b 2)2= .(2)(-21m -1)2= . (3)(m+n+1)(1-m -n)= .(4)(7a+A)2=49a 2-14ab 2+B,那么A= ,B= .(5)(a+2b)2- =(a -2b)2.3.用乘法公式计算:(1)9992;(2)20022-4004×2003+20032.4.,a+b=8,ab=24.求21(a 2+b 2)的值. 5.x+x 1=4,求证x 2+21x .6.:x 2-2x+y 2+6y+10=0,求x+y 的值.答案:1.(1)C (2)C (3)B (4)C2.(1)16a 2-8ab 2+b 4(2)41m 2+m+1 (3)1-m 2-2mn -n 2(4)-b 2 b 4(5)8ab3.(1)998001 (2)14.85.146.-22.4有理数的加法〔1〕二、教学目标1.使学生掌握有理数加法法那么,并能运用法那么进行计算;2.在有理数加法法那么的教学过程中,注意培养学生的观察、比较、归纳及运算能力.三、教学重点和难点重点:有理数加法法那么.难点:异号两数相加的法那么.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程〔一〕、师生共同研究有理数加法法那么前面我们学习了有关有理数的一些根底知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.假设我们规定赢球为“正〞,输球为“负〞.比方,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想方法归纳出进行有理数加法的法那么?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法那么:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.〔二〕、应用举例变式练习例1 计算以下算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7);(4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2);(8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法那么.进行计算时,通常应该先确定“和〞的符号,再计算“和〞的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法那么的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算以下各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.〔三〕、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法那么.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法那么进行计算时,要同时注意确定“和〞的符号,计算“和〞的绝对值两件事.七、练习设计1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4 )(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48;(8)(-56)+37.2.计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77);(9)(-0.78)+0.4*.用“>〞或“<〞号填空:(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.5*.分别根据以下条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0; (2) a<0,b<0;(3)a>0,b<0,|a|>|b|; (4)a>0,b<0,|a|<|b|.九、教学后记“有理数加法法那么〞的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法那么,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法那么;另一类是适当加强法那么的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法那么的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法那么的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法那么的过程,主动获取知识.这样,学生在这节课上不仅学懂了法那么,而且能感知到研究数学问题的一些根本方法.这种方案减少了应用法那么进行计算的练习,所以学生掌握法那么的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法那么〞进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程〞,失去了培养学生观察、比较、归纳能力的一次时机.权衡利弊,我们主张采用第二种教学方。
整式的运算-1.8完全平方公式(1)

1.8完全平方公式(2课时)【学习目标】1、理解完全平方公式,掌握这个公式的结构特征,能利用这个公式进行计算。
2、灵活运用完全平方公式进行计算,提高运算能力。
第一课时【教学过程】一、利用多项式乘法计算下列各式:2)(y x +=2)2(b a +=2)15(-x =2)332(n m += 观察以上算式及其结果,你发现了什么规律?可以得到:完全平方公式:2222)(b ab a b a ++=+几何解释:一个边长为a 米的正方形,如果把边长增加b 米,面积是多少?请画出图形。
二、利用完全平方公式计算:1、 2)32(y x - 2)54(y x + 2)(a mn -2、完成课本41页随堂练习3、完成课本43知识技能1三.巩固练习1、快速写出结果(1)___________)1(2=-a (2)___________)2(2=+a (3)___________)2(2=-a(4)___________)3(2=+x (5)___________)3(2=-x (6)__________)4(2=+b (1)2、计算: 2)12(-x 2)32(y x + 2)2(y x -- 2)2(y x +-3、下面计算是否正确?如果不正确,请改正。
(1)222)(b a b a -=-(2)222)(b a b a +=+(3)22222)2(b ab a b a +-=-(4)2229124)32(b ab a b a +-=-4、先化简,后求值。
5)12()3()2(222+--++-x x x 1=x 其中5、一个圆的半径长是r 厘米,减少2厘米后,这个圆面积减少了多少?6、计算2)(c b a ++解法1:利用多项式乘多项式 解法2:利用完全平方公式解法3:观察前面结果总结规律7、计算:2)132(+-y x 2)32(c b a -+。
数学初一下1.8完全平方公式教案

数学初一下1.8完全平方公式教案本卷须知1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2、选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
总课时:2课时执笔人:宋冰使用人:王义福备课时间:第一周上课时间:第三周知识与技能目标:经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;了解完全平方公式的几何背景。
会运用完全平方公式进行一些数的简便运算。
过程与方法目标:会推导完全平方公式,并能运用公式进行简单的计算;综合运用平方差和完全平方公式进行整式的简便运算。
情感与态度目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力重点:弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;会用完全平方公式进行运算难点:会用完全平方公式进行运算、综合运用平方差和完全平方公式进行整式的简便运算。
教学过程复习引入:〔1〕〔MN+A〕〔MN-A〕〔2〕〔3A–2B〕〔3A+2B〕〔3〕〔3A+2B〕〔3A+2B〕〔4〕〔3A–2B〕〔3A-2B〕探索新知:一块边长为A米的正方形实验田,因需要将其边长增加B米,形成四块实验田,以种植不同的新品种。
〔如图〕B用不同的形式表示实验田的总面积,并进行比较你发现了什么?AAB观察得到的式子,想一想:〔1〕〔A+B〕2等于什么?你能不能用多项式乘法法那么说明理由呢?〔2〕〔A-B〕2等于什么?小颖写出了如下的算式:〔A—B〕2=2。
她是怎么想的?你能继续做下去吗?由此归纳出完全平方公式:〔A+B〕2=A2+2AB+B2〔A—B〕2=A2—2AB+B2教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来。
2019年1.8完全平方公式(2) 教案word版本 (2页)

2019年1.8完全平方公式(2) 教案word版本
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
1.8完全平方公式(2) 教案
以下是数学网为您推荐的 1.8完全平方公式(2)教案,希望本篇文章对您学习有所帮助。
1.8完全平方公式(2)
教学目标:
1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.
2.会运用完全平方公式进行一些数的简便运算.
3.综合运用平方差和完全平方公式进行整式的简便运算. 教学重点:
1.运用完全平方公式进行一些数的简便运算;
2.综合运用平方差和完全平方公式进行整式的简便运算. 教学难点:灵活运用平方差和完全平方公式进行整式的简便运算. 活动准备:学生熟记公式
教学过程:
(一)课前复习:
算下列各题:
1. ;
2. ;
3. ;
4. ;
5. ;
6. ;
7. .
通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系. (二)提出问题,引入新课:
若没有计算器的情况下,你能很快算出9982的结果吗? (三)新课:
1.例:利用完全平方公式计算:(1)1022;(2)197
2.
先分析,再课件演示解答过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.8完全平方公式(2)教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.教学目标: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.会运用完全平方公式进行一些数的简便运算. 3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点: 1.运用完全平方公式进行一些数的简便运算; 2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:算下列各题: 1.;2.;3.;4.; 5.;6.;7..通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课: 1.例:利用完全平方公式计算:(1)1022;(2)1972.先分析,再课件演示解答过程 2.练习:利用完全平方公式计算:(1)982;(2)2032. 3.例:计算:(1);(2).方法一:按运算顺序先用完全平方公式展开,再合并同类项;方法二:先利用平方差公式,再合并同类项.注意:(2)中按完全平方公式展开后,必须加上括号 4.练习:计算:(1);(2);(3). 5.例:计算:(1);(2).练习:. 6.补例:若,则k=_________;若是完全平方式,则k=________.(四)小结:利用完全平方公式可以进行一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3 教后记:简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.1111。