§2.2.1 对数与对数运算(2)精品教案导学案

合集下载

人教版高中数学必修一《对数与对数运算》教案设计

人教版高中数学必修一《对数与对数运算》教案设计

2.2.1 对数与对数运算一、教材分析本节是高中数学新人教版必修1的第二章2.2对数函数的内容二、三维目标1.知识与技能(1).理解对数的概念,了解对数与指数的关系;(2).理解和掌握对数的性质;(3).掌握对数式与指数式的关系。

2.过程与方法(1)通过实例认识对数模型,体会引入对数的必要性;(2)通过观察分析得出对数的概念及对数式与指数式的互化;(3)通过分组探究进行活动,掌握对数的重要性质。

3.情感、态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.三、教学重点教学重点:(1)对数的定义;(2)指数式与对数式的互化四、教学难点教学难点:推导对数性质五、教学策略讲练结合掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握六、教学准备(对数教学目标)—对数的文化意义、对数概念(讲一讲)—对数式与指数式转化(做一做)—例题(讲一讲)、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)—评价、小结—作业。

八、板书设计第二章基本初等函数(I)2.2 对数函数2.2.1 对数与对数运算九、教学反思对数的教学采用讲练结合的教学模式。

教学中,以双基为教学主题,采用讲讲练练的教学程序,运用指数式与对数式的转化策略,通过教师的讲,数学家对对数的痴迷激发学生好奇,从实际问题导入对数概念、对数符号,理解对数的意义,通过典型例题的讲授,充分揭示对数式与指数式间的关系,掌握求对数值的方法,通过学生典型习题的练,使学生进一步理解对数式与指数式间的关系,掌握求对数的一些方法,在讲练结合中实现教学目标。

人教A版数学必修一《2.2.1对数与对数运算(二)》教案

人教A版数学必修一《2.2.1对数与对数运算(二)》教案

辽宁省沈阳市第十五中学高中数学《2.2.1对数与对数运算(二)》教案 新人教A 版必修1教学目标(一) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程;3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值;5.明确对数运算性质与幂的运算性质的区别.一、复习引入:1.对数的定义 b N a =log 其中 ),1()1,0(+∞∈Y a 与 ),0(+∞∈N2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且)()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3.重要公式:⑴负数与零没有对数; ⑵01log =a ,1log =a a ⑶对数恒等式N a N a =log二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a 1,M > 0, N > 0 有:)()(2N log M log NM log 1N log M log (MN)log a a a a a a -=+= b n m b a m a n log log =(3) 2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zy x zxy a a . 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+ (3) .18lg 7lg 37lg214lg -+-例4.已知3010.02lg =,4771.03lg =, 求45lg例5.已知a =9log 18,518=b ,求45log 36 (备用题)。

高必修1第二章《对数与对数运算》第2课时平行班教案

高必修1第二章《对数与对数运算》第2课时平行班教案

2.2.1 对数与对数运算(2)(平行班)
【课题】:对数运算性质
【设计与执教者】:广州市第十七中学,肖洁
【学情分析】:
本节课从指数与对数的关系以及指数的运算法则入手,让学生从联系的观点探究对数的运算性质。

在尝试、思考、讨论、中巩固对数运算法则。

有利于培养学生的创造思维,渗透了类比思想以及归纳思想。

【教学目标】:
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能;
3.运用对数运算性质解决有关问题;
4.培养学生分析、综合解决问题的能力.
5. 培养学生数学应用的意识和科学分析问题的精神和态度.
【教学重点】:对数运算的性质与应用
【教学难点】:对数的运算性质的推导
【课前准备】:课件。

《对数与对数运算(2)》的教学设计

《对数与对数运算(2)》的教学设计

《对数与对数运算2》导学案一、温故而知新:1、指数与对数间的关系 __________,底数范围是 ___, 真数范围是 ____ 。

2、常用的对数等式: ㏒a a=___ , ㏒a 1= ___ .3、指数的运算性质:(1)__________ , (2) __________ , (3) __________ 。

二、探究对数的运算性质:1.自主完成表格,并从对数值间关系的角度,分析表中各列数据,你有哪些发现?如果0>a ,且1≠a ,0>M ,0>N ,那么:M a (log =)N __________ ,=NMa log __________ ,n a M log =__________ 。

学生任选一组验证:log a M + log a N = __ ,M a (log =)N __ ,log a M - log a N = __ , =NMalog ___ , n ·log a M = __ , n a M log =____ 。

(充分验证后填好前面的结论)2.运算性质的证明:① M a (log =)N M a log +N a log ;证明如下:NM MN n m MN a MN N n M m N a M a a a a a a a a n m a a n m n m n m log log )(log )(log log ,log ,,,+=+=======++,即,于是则令② =NMa log M a log -N a log ;证明一下?③ n a M log n =M a log )(R n ∈.证明一下?三、变式训练1.求值: (1)㏒(2)㏒31272.化简:㏒1014—2㏒1073+㏒107—㏒1018四、本节我学到了什么?(有总结才有提高噢!)__________________________ 。

2.2.1 对数与对数运算导学案

2.2.1 对数与对数运算导学案
推论2:logab·logbc=__________(a>0,a≠1,b>0,b≠1,c>0);
推论3: =__________(a>0,a≠1,b>0).
【对应练习】(4)已知log189=a,18b=5,则log3645=__________.
(5) log23·log35·log58=_________.
【对应练习】(2)已知对数式log(4-a)(2a-1),求a的取值范围_____________.
3.把指数式a0=1,a1=a,ar=ar(其中a>0,且a≠1)写成对数式的结果是什么?可以得出什么结论?
【知识归纳】1的对数为0;底数的对数为1,底数的r次幂的对数为r,进一步说明了求对数就是求指数的运算.
5.对数式log10b,logeb(e≈2.71828)可以写成什么形式?
【知识归纳】通常以10为底的对数叫做____________,记作lgb;将以e为底的对数称为___________,记作lnN,其中e为无理数,且e=2.718 28….
【拓展知识】e是一个极限, .
【对应练习】(6)已知-lne2=x,则x=______;lg100=______,100lge=_______.
2.对数运算性质1:loga(M·N)=logaM+logaN,你能证明这个式子成立吗?式子成立的前提又是什么?
【知识归纳】积的对数等于对数的和:loga(M·N)=logaM+logaN(________________).
【对应练习】(1)log36+log3=________;lg2+lg5=_______.
二、例题精讲
1.计算下列各式:
(1) log210-log25=________;(2) log73+log7=________;

2.2.1对数与对数运算(二) 教案新部编本

2.2.1对数与对数运算(二)  教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校2.2.1对数与对数运算(二) 教案学习目标:对数的运算性质.熟练运用对数的运算性质进行化简求值;学习重点:证明对数的运算性质.学习难点:对数运算性质的证明方法与对数定义的联系.学习过程一、 复习1.对数的定义 b N a =log 其中 ),1()1,0(+∞∈Y a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a ⑶对数恒等式N a N a =log4.指数运算法则 )()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+二、新授内容1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 证明⑴:设a log M =p , a log N =q . 由对数的定义可以得:M =p a ,N =q a .∴MN = p a q a =q p a + ∴a log MN =a log q p a + ∴a log MN =p +q , 即证得a log MN =a log M + a log N .证明⑵:设a log M =p ,a log N =q . 由对数的定义可以得M =p a ,N =qa . ∴q p q p a a a N M -== ∴q p N M a -=log ∴q p N M a -=log 即证得N M NM a a a log log log -=.证明⑶:设a log M =P 由对数定义可以得M =p a ,∴n M =npa ∴a log n M =np , 即证得a log n M =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+.③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是否成立? 不成立)10(log 2)10(log 10210-=-是否成立? 不成立 ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:(1)()z x y log a ===332log )3((2)log z y x zy x a a(4)z y x a3log =例2. 计算(1)25log 5(1)解:5log 25= 5log 25=2 (按照范例,求解(2)、(3)(4)题)(2)1log 5.0=(3))24(log 572⨯=(4)5100lg =例3.计算:(1);50lg 2lg )5(lg 2⋅+(1)解: 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+ =2lg )2lg 5(lg 5lg ++=2lg 5lg +=1; (按照范例,求解(2)、(3)题)(2);25log 20lg 100+ (3) .18lg 7lg 37lg 214lg -+-评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质.例4.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1). 解:(1)M =lg20-lg0.001= lg 001.020=lg20000= lg2+ lg104≈4.3 因此,这是一次约为里氏4.3级的地震.(2)由M =lg A -lg A 0可得M =lg 0A A <=> 0A A =10M <=> A= A 0 · 10M 当M=7.6时,地震的最大振幅为A 1= A 0·107.6 ;当M=5时,地震的最大振幅为A 2= A 0 · 105,所以,两次地震的最大振幅之比是 21A A = 507.6010A 10••A =5-7.610= 2.610≈ 398 答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍。

高中数学 2.2.1 对数与对数运算(2)导学案 新人教版必修1

高中数学 2.2.1 对数与对数运算(2)导学案 新人教版必修1

广东省广州市南武中学高中数学 2.2.1 对数与对数运算(2)导学案新人教版必修1一、三维目标:知识与技能: 1.理解和掌握对数运算的性质;2.掌握对数式与指数式的关系。

过程与方法: 通过对具体实例的学习,使学生了解知识源于生活,服务于生活。

情感态度与价值观: 1.通过对数的运算法则的学习,培养学生的严谨的思维品质;2.在学习过程中培养学生探究的意识,体会数学的应用价值。

二、学习重、难点:重点:对数运算的性质与对数知识的应用。

难点:正确使用对数的运算性质。

三、学法指导:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标。

四、知识链接:B ㈠ ⑴、x 1.0822=, x 的值可以表示为___________。

⑵、3464=,对数形式记作_______________。

⑶、2384=,对数形式记作____________________。

⑷、2100.01-=,对数形式记作__________________。

A ㈡对数的定义及对数恒等式:log a N b =⇔ (a >0,且a ≠1,N >0).A ㈢指数的运算性质:_______;_______m n m n a a a a ⋅=÷=;()________;__________m n a ==。

五、学习过程:A 问题1:我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?例如:,,+⋅===m n m n m n a a a M a N a 设,于是,m n MN a += 由对数的定义得到log ,log m n a a M a m M N a n N =⇔==⇔=log m n a MN a m n MN +=⇔+=log log log a a a M N MN ∴+=即:同底对数相加,底数不变,真数相乘。

B 问题2:请根据指数的性质按照以上的方法推出对数的其它性质。

2.2.1对数与对数运算导学案

2.2.1对数与对数运算导学案

2.2.1 对数与对数运算导学案【学习目标】理解对数的含义及对数的运算.【教学重点】:(1)对数的定义;(2)指数式与对数式的互化【教学难点】:推导对数性质一、问题引入:(1)32= (2) 83=a ,则a = (3)2002年我国GDP 为a 亿元,如果每年平均增长8%,那么经过多少年GDP 是2002年的2倍?二、辅导自学阅读课本62页内容,完成下列内容:1、对数的概念:一般地,如果那么数x 叫做以 的对数,记作 ,其中a 叫做对数的 ,N 叫做 。

注意:底数的限制: ;真数的限制:2、两个重要对数(1)常用对数:以 为底的对数,简记为 ;(2)自然对数:以 为底的对数,简记为 ;3、对数与指数的互化:三、例题分析例1:将下列对数式写成指数式。

(1)532log 2= (2)4811log 3-= (3)31000lg = (4)381log 2-=()10≠>=a a N a x 且N 10log N e log例2:将下列指数式写成对数数式。

(1)62554= (2)64126-= (3)73.531=m )(例3:求下列各式x 的值:(1)32log 64-=x (2)68log =x (3)x =100lg四、探究活动(对数的性质))探究1:求下列各式的值:(1) (2) (3)探究2:求下列各式的值:(1) (2) (3)探究3:1、求下列各式的值:(1) (2)1log 33log 36.0log 772、求下列各式的值:(1); (2); (3)思考:你发现了什么?归纳:1、“1”的对数等于 ,即=1log a,类比 2、底数的对数等于“1”,即=a a log 3、对数恒等式:4、对数恒等式:5、 和 没有对数。

【巩固训练】1.把下列各题的指数式写成对数式:(1)42=16; (2)30=1; (3)4x =2 (4)2x =0.5;(5)54=625 (6)3-2= (7)()-2=16. 2.把下列各题的对数式写成指数式:(1)x =log 527 (2)x =log 87 (3)x =log 43(4)x =log 7; (5)log 216=4; (6)log27=-3;433log 410lg 10=a 9141313.求下列各式中x的值:(1)log8x=(2)logx27=3(3)log2(log5x)=1 (4)log3(lgx)=0 32。

高中数学《对数与对数运算》导学案

高中数学《对数与对数运算》导学案

第二章 基本初等函数§2.2.1对数与对数运算一、【学习目标】1. 理解对数的概念,掌握指数式与对数式的互化;2. 熟练运用对数的运算性质,掌握化简,求值的技巧。

【重点、难点】对数的概念和指数式与对数式的互化,对数运算性质的应用;对数概念的理解,对数运算化简、求值技巧。

二、学习过程【情景创设】1. 通过与指数式的比较,引出对数定义与性质;2. 结合幂的运算性质,推导出对数的运算性质。

【导入新课】1. 对数的概念一般地,若 ,那么数x 叫做以a 为底N 的对数,记作log a x N =,a 叫做对数的底数,N 叫做真数。

2. 指数式与对数式的互化 log x a a N N x =⇔=3. 两种特殊的对数(1) 对数10log lg N N 记为(2) 对数e log ln N N 记为(e=2.71828…)4. 结论(1) 没有对数(2)1的对数为 ,同底的对数为 ,即log 10,log 1.a a a ==5. 对数的运算性质(1)log log log a a a M N MN += (0M > , 0N > , 0a >且1a ≠)(2)log log log a a a M M N N-= (0M > , 0N > , 0a >且1a ≠) (3)log log n a a n M M = (0M >, 0N > , 0a >且1a ≠ , n N +∈)三、典例分析例1 将下列指数式化为对数式,对数式化为指数式:(1)54=625 (2)61264-= (3)1() 5.733m =(4) 3log 92= (5)5log 1253= (6) 12log 164=-例2 用log a x ,log a y ,log a z 表示下列各式。

(1)log a xy z (2)log a例3 求下列各式的值。

(1)752log (42)⨯ (2)【变式拓展】1.将下列指数式化为对数式,对数式化为指数式:2(1)416= 21(2)39-= 1(3)()53m =255(4)log 2= 412(5)log 2=- 11000(6)log 3=-2.计算下列各式的值(1)23log (279)⨯ (2)7log (3)7lg142lg lg 7lg183---(4)lg 243lg9 (5四、总结反思1. 理解对数的概念,掌握指数式与对数式的互。

高中数学 2.2.1 对数与对数运算第二课时教案 新人教版必修1-新人教版高一必修1数学教案

高中数学 2.2.1 对数与对数运算第二课时教案 新人教版必修1-新人教版高一必修1数学教案

对数与对数运算(二)
(一)教学目标
1.知识与技能:理解对数的运算性质.
2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.
3.情感、态态与价值观
通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.
(二)教学重点、难点
1.教学重点:对数运算性质及其推导过程.
2.教学难点:对数的运算性质发现过程及其证明.
(三)教学方法
针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程。

优秀教案20-对数与对数运算(2)

优秀教案20-对数与对数运算(2)

2.2.1对数与对数运算(2)教材分析本节内容是数学1第二章 基本初等函数 2.2.1对数与对数运算 的第二课时.对数与对数运算是学生学习了指数运算后学习的又一重要运算,要求理解对数的运算性质,能灵活运用对数运算性质进行对数运算.本节课是在学习了“对数的概念”后进行的,是上节内容的延续与深入,也是为研究学习后续知识对数函数与性质的作必备的知识和思想上的准备,起到了承上启下的重要作用.课时分配本节内容用1课时的时间完成,主要讲解对数运算性质的推导、证明及应用运算性质进行简单的对数运算、解决简单的数学问题.教学目标重 点: 探究、发现对数的运算性质及运算性质的简单应用. 难 点:对数运算性质的发现与证明以及正确使用对数的运算性质. 知识点:对数的运算性质.能力点:能利用对数运算性质解决简单的数学问题,通过自主探究发现对数的运算性质及证明,提高学生合情推理、等价转化和类比归纳等数学思维能力.教育点:经历由特殊到一般、由已知到未知、由具体到抽象的研究数学问题的过程,培养学生的观察力与团队合作精神,体会探究的乐趣,激发学生的学习热情.自主探究点:探究发现对数的运算性;并利用类比的方法证明对数的运算性质(2)和(3). 考试点:利用对数的运算性质进行对数运算.易错易混点:运用对数运算性质时,学生容易忽略对数式中的底数、真数的取值范围;容易自创公式、误用公式,如:log ()log log a a a M N M N ±=±,log ()log log a a a M N M N ⋅=⋅等.拓展点:课外探究怎样进行不同底数的对数间的运算?为换底公式的讲解做铺垫.教具准备 多媒体课件、投影仪 课堂模式 学案导学 一、引入新课(一)知识回顾:(教师出示多媒体课件并提出问题) 1.对数是怎样定义的?2.对数与指数有怎样的相互转化关系?3.指数有哪些运算性质?【师生活动】教师提出问题,学生思考并回答问题,教师根据学生回答进行板书.【设计意图】“温故知新”学习新知识前的简单知识回顾,能唤起学生的记忆,引发学生的学习兴趣.通过知识回顾为学习新内容作好知识上的准备,更为学生自主探究铺平道路.二、探究新知 (一)归纳运算性质1.猜想问题:类比指数的运算性质,你能猜想对数的一些运算性质吗?[设计意图]培养学生自主发现问题、提出问题的能力,并为下一步探究发现对数运算性质指明方向. 2.探究、发现计算下列各式的值:(出示多媒体课件) (1)2log 64,2log 4,2log 16; (2)3243log 27,3log 9,3log 27; (3)23log 9,32log 9⋅. 师:请计算上述各组的对数值. 生:学生解答,得出答案:(1)2log (416)6⨯=,2log 42=,2log 164=; (2)3243log 227=,3log 2435=,3log 273=; (3)23log 94=,32log 94⋅=.师:引导学生分组讨论,你能发现各组对数值之间有哪些等价关系吗? 生:分组讨论,同学间交流各自的意见,得出各组对数值之间的等价关系.222log (416)log 4log 16⨯=+; 333243log log 243log 2727=-;23log 932log 9=⋅. 师:将上述等式关系进行板书,并继续提问:你能发现一般形式的结论吗?例如:2log ()=?M N ⋅,3log =?MN,3log =?n M . 生:学生经过思考给出答案.222log ()=log +log M N M N ⋅,333log =log log MM N N-,33log log n M n M =.师:要注意M 和N 的取值范围(0)M N >,.对任意的底数a (01a a >≠,且)有没有更一般的结论呢? 生:思考得出各自的成果,然后进行分组讨论,并最终分析得出小组成果. 师:将小组得出的成果进行投影展示.经过师生对话将小组成果进行完善,分析得出对数可能的运算性质:如果01a a >≠,且,00M N >>,,那么 (1)log ()log log a a a M N M N ⋅=+; (2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈【设计意图】通过具体对数计算进行引入,为学生的自主探究创设情景,引发学生探究知识的兴趣,培养学生归纳、概括、提出数学问题的能力和由特殊到一般的科学思维方法.避免直接将公式抛给学生. 【设计说明】通过问题探究发现公式,培养学生分析、归纳、猜想的数学思维能力;通过生生、师生间的探讨、合作,培养学生的观察力与团队合作精神.(二)公式证明在上节课中,我们知道,指数式与对数式可以互化,即对数式可看作指数运算的逆运算,那么我们能不能把未知的对数问题转化为已知的指数问题呢?【设计意图】沟通本节内容与前面章节内容的联系,启发引导学生利用指数幂的运算性质及指数与对数的关系进行证明.分析:运用转化思想,通过假设,将对数式化成指数式,并利用指数幂的运算性质进行等价变形,进而证明对数运算性质.证明:设log log a a M m N n ==, ,由对数定义得:m na M a N ==,.+m n m n M N a a a ∴⋅=⋅=,log ()log log a a a M N m n M N ∴⋅=+=+.【设计意图】让学生明确由“归纳一猜想”是发现数学结论的有效方法;回归对数定义,让学生体会对数定义在证明过程所发挥的关键作用,回到最原始(定义)的地方是解决数学问题的有效策略. 师:你能按照以上的方法证明对数运算的其它性质吗? 生:学生板演展示自己的证明过程.请同学们观察证明过程,若有问题引导学生一起指正、完善. 通过师生对话,最终给出完整的证明过程.【设计意图】通过自己推导证明另两条运算性质,使学生进一步理解对数与指数间的关系;培养学生的逻辑推理能力和自主发现问题、解决问题的能力,进而激发学生自主学习的热情.三、理解新知1.师:对数的运算性质中,各字母的取值范围有何限制条件? 生:01a a >≠,且,00M N >>,. 师:判断下列两式的正误:(1)222log (10)2log (10)-=-; (2)lg[(2)(5)]lg(2)lg(5)-⋅-=-⋅-. 生:(1),(2)都不对,因为负数没有对数.师:很好,只有所给对数和所得结果中的对数都存在时,等式才能成立. 【设计意图】通过即行练习,进行辩错巩固,深化对运算性质适用范围的理解. 2.师:分析对数运算性质的结构特点,能用语言叙述运算性质吗? 生:通过合作交流,分组讨论,得出结论. 师生共同总结运算口诀:(1)两个正数乘积的对数等于这两个正数对数的和; (2)两个正数商的对数等于这两个正数对数的差; (3)一个正数的n 次方的对数等于这个正数的对数的n 倍.即:积的对数=对数的和;商的对数=对数的差;n 次方的对数=对数的n 倍.【设计意图】通过师生共同总结加强对公式正确形式的理解,正确认识公式、记忆公式,学会学习. 3.性质(1)可以推广到n 个正数的情形:111230,,,,01n a a M M M M >≠> ,且,123123log ()log log log log +++a n a a a a n M M M M M M M M ⋅⋅=+ .4.对数运算性质既可正用,也要注意逆用.【设计意图】为准确地运用新知——利用对数运算性质进行化简、求值、证明作必要的铺垫.四、运用新知例1(见教材例3) 用log a x , log a y ,log a z 表示下列各式:(1)log a xy z ; (2)log a分析:正向利用对数运算性质直接化简.学生自主完成例1,并请学生到前面板演解题过程.教师引导学生共同批改学生答案,探讨解题中出现的问题和解题的关键点,并校对自己的答案.解:(1)log axyzlog ()log log log log a a a a a x y zx y z =⋅-=+-;(2)log a22log (log log log log 112log log log .23a a a aa a a a x x x y z =-=+=+-[设计意图]培养学生反思、总结的习惯. 例2(见教材例4) 求下列各式的值:(1)752log (42)⨯; (2) (3)2(2)log (8)--. 解:(1)752log (42)⨯7522=log 4log 2+227log 45log 2=+72519=⨯+=;(2)15lg100=21lg105= 25=. (3)2(2)log (8)-- 2221log log 224-===- 点评:本题运算的实质是把积、商、幂的对数运算分别转化为对数的加、减运算.第(1)小题是性质(1)和性质(3)的综合运用,注意先做积的对数,后做幂的对数;第(3)小题若拆成22log (2)log (8)---就要犯错了,要当心真数大于零(回扣理解新知部分).[设计意图]巩固所学的运算性质,提高计算能力;通过简单的对数计算,使学生进一步熟悉对数运算性质的结构特点,学会正确选择公式,而不是死记公式.练习:教材68P :1、2[设计意图] 通过练习规范学生的解题步骤,加强熟练应用公式的能力. 例3计算1324lg 2493- 分析:解本题的关键是充分运用对数的运算性质,把式子中的项拆开,在重新组合;运算时,一般先化简合并同类项. 解:(1)1324lg 2493-1411(lg32lg 49)lg8lg 2452322=--⨯+ 52321411(lg 2lg 7)lg 2lg(57)2322=--⨯+⨯ 51lg 2lg 72lg 2lg5lg 722=--++ 11lg 2lg522=+1lg(25)12=⨯= 思考:本题还有其它解法吗?学生:有!给出解法.(如有困难,提示学生逆向运用对数运算性质,引导学生将原式变形)方法二:1324lg 2493-213232lg()lg8lg(749=-+23lg lg8lg(77=-+17lg 42===.[方法总结]这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.[设计意图]“通过一题多解”发散思维,掌握对数运算的变形技巧,体会运算性质的正用和逆用.(回扣理解新知部分)五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.知识:对数运算性质:如果01a a >≠,且,00M N >>,,那么(1)log ()log log a a a M N M N ⋅=+; (2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈2.思想:合情推理、等价转化、类比归纳和由特殊到一般的思想. 教师总结: 1.对数的运算性质2.对数运算的易错点(请同学们一定不要自创公式,要灵活运用公式)在发现对数运算性质的过程中运用了观察,归纳,猜想,类比等数学方法,体现了由特殊到一般的数学思想。

§2.2.1对数与对数运算

§2.2.1对数与对数运算

第二章基本初等函数(I)2.2.1 对数与对数运算本节教学分析 (1)三维目标知识与技能 理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.过程与方法 通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.通过学生分组探究进行活动,掌握对数的重要性质.通过做练习,使学生感受到理论与实践的统一.情感态度与价值观 培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识. (2)教学重点 1.对数的概念;2.对数式与指数式的相互转化. (3)教学难点对数性质的推导 (4)教学建议大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感,通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索、发现、研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可利用多媒体辅助教学,引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动、学生讨论的方式来加深理解,很好地突破难点和提高教学效率,让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

新课导入设计导入一 思考:(P 62思考题)13 1.01xy =⨯中,哪一年的人口数要达到18亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少? 象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).导入二 1.问题1:庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺? (得到:41()2=?,1()2x =0.125⇒x =?)2.问题2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? ( 得到:(18%)x +=2⇒x =? )问题共性:已知底数和幂的值,求指数 怎样求呢?例如:课本实例由1.01x m =求x 。

人教A版数学必修一2.2.1《对数与对数运算》导学案1.doc

人教A版数学必修一2.2.1《对数与对数运算》导学案1.doc

人教A版数学必修一2.2.1《对数与对数运算》导学案1高中数学人教版必修1:2.2.1对数与对数运算导学案姓名: 班级: 组别: 组名:【学习目标】1.知道对数的定义及其表示,知道常用对数.自然对数及其表示.2.会运用对数式与指数式的相互关系及其转化求值.3.知道对数的运算性质及其推导过程,能运用对数运算法则解决问题.4.会应用换底公式解决问题.【重点难点】重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数.难点:对数的运算性质和换底公式的熟练运用.【知识链接】上一节我们学习了指数函数,知道在指数式N a b =中,a 为底数,b 为指数,N 为幂值.在2.1.2的例8中,我们能从关系式x y 01.113⨯=中算出任意一个年头x 的人口总数,反之,如果问“哪一年的人口数可达到18亿,20亿,30亿……”,该如何解决?【学习过程】阅读课本62页到63页例1前的内容,尝试回答以下问题:知识点一:对数的概念问题1.一般地,如果,那么数x 叫做以a 为底N 的对数,记作,其中a 叫做对数的,N 叫做.问题2.根据对数的定义,可以得到指数与对数间的关系:当10≠>a a 且时,⇔=N a x .问题 3.由对数的定义可知,对数的底数的范围是真数.知识点二:对数的两种特殊类型及性质问题1.什么是常用对数?怎样表示?问题2.什么是自然对数?怎样表示?问题 3.5log 10简记为; 5.3log 10简记为.10log e 简记为; 3log e 简记为.问题4.对数的基本性质①零和负数是否有对数?阅读课本64页到65页的内容,尝试回答以下问题:知识点三:对数的运算性质问题1.将指数式p a M =化为对数式为,将q a N =化为对数式为,结合指数的运算性质,=MN ,把该式化为对数式为.问题2.观察问题1中三个对数式,他们之间有何关系?问题3.结合问题1,=NM ,把该式化为对数式为.问题 4.结合问题1,n M = ,把该式化为对数式为.阅读课本64页到65页的内容,尝试回答以下问题:知识点四:对数运算性质的运用例1.用x a log ,y a log ,z a log ,表示下列各式.(1)z xy a 2log (2)zxy a 3log (3)23log zy x a例2.化简求值.(1))327(log 63⨯(2)64log 325log 225-(3)41log 94log 9log 555++问题1.你能根据对数的定义推导换底公式吗?证明:设N b a =log ,则它化为指数式为∴所以ab bc c a log log log =成立问题2.利用换底公式化简下列式子.(1)m a b n log (2)a b b a log log问题3.利用换底公式计算下列式子.(1)(3log 3log 84+)(2log 2log 93+) (2)2log 5log 4log 3log 5432【小结】1.利用指数式与对数式的互化求值.2.对数的运算性质和换底公式.【基础达标】A1.设㏒m a =3,㏒n a =2,求n m a+2.B2.求下列各式的值:(1)00001.0lg )927(log )2(23⨯(3)2log 18log 33- (4)25.0log 10log 255+B 3.已知a =2lg ,b =3lg ,求12log 2的值.C 4.已知⎪⎩⎪⎨⎧≥-C 5.已知b a log ·4log 3=a ,求b 的值.【当堂检测】A1.解下列方程.(1)2log 8=x (2)24log -=xB2.计算40lg 50lg 8lg 5lg 2lg --+【课后反思】本节课我最大的收获是我还存在的疑惑是我对导学案的建议是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)你认为学习对数有什么意义?大家议论.
4、作业
(1)书面作业:P74 习题2.2 第 3、4 题 P75 第 11、12 题 2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?
(2) log2 (3)(5)等于吗log?2 (3) log2 (5)
loga
N
当 n =0 时,显然成立.
loga M n n loga M
提问:1. 在上面的式子中,为什么要规定 a >0,且 a ≠1,M>0,N>0?
1. 你能用自己的语言分别表述出以上三个等式吗?
例题:1. 判断下列式子是否正确, a >0 且 a ≠1, x >0 且 a ≠1, x >0, x > y ,
如: am an amn , 设。M am , N an 于是 MN amn , 由对数的定义得到
M am m loga M , N an n loga N MN amn m n loga MN
loga M loga N loga MN (放出投影)
即:同底对数相加,底数不变,真数相乘 提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?
第二课时
一.教学目标: 1.知识与技能 ①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,
并掌握化简求值的技能. ②运用对数运算性质解决有关问题. ③培养学生分析、综合解决问题的能力. 培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法 ①让学生经历并推理出对数的运算性质. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观 让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.
(让学生探究,讨论)
如果 a >0 且 a ≠1,M>0,N>0,那么:
(1) loga MN loga M loga N
(2) loga
M N
loga M
loga
N
(3) loga M n n loga M (n R)
证明:
(1)令 M am , N an
M
则:
am an
amn
二.教学重点、难点 重点:对数运算的性质与对数知识的应用 难点:正确使用对数的运算性质
三.学法和教学用具 学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标. 教学用具:投影仪
四.教学过程 1.设置情境 复习:对数的定义及对数恒等式
loga N b ab N ( a >0,且 a ≠1,N>0),
x
log1.01
18 13
所以
x
log1.01
18 13
lg 18 13
lg1.01
lg18 lg13 lg1.01
1.2553 1.139 0.043
= 32.8837 33(年)
练习:P68
练习 4
让学生自己阅读思考 P66~P67 的例 5,例 6 的题目,教师点拨. 3、归纳小结
(1)学习归纳本节
提问:你能用自己的话概括出换底公式吗?
说明:我们使用的计算器中,“ log ”通常是常用对数. 因此,要使用计算器对数,一
定要先用换底公式转化为常用对数. 如:
log2
3
lg lg
3 2
即计算
log
3 2
的值的按键顺序为:“
log
”→“3”→“÷”→“
log
”→“2”
→“=”
再如:在前面要求我国人口达到 18 亿的年份,就是要计算
loga
1 x
(7)
n
loga
x
1 n
loga
x
例 2:用 loga x , loga y , loga z 表示出(1)(2)小题,并求出(3)、(4)小题的值.
xy (1) loga z
x2 y (2) loga 3 8
(3) logz (47 25 ) (4) lg 5 100
分析:利用对数运算性质直接计算:
指数的运算性质.
am an amn;
am an amn
(am )n amn ;
n
m an am
2.讲授新课 探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的
关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道 am an amn ,那
m n 如何表示,能用对数式运算吗?
(4) lg
5
100
2
lg105
2
5
点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式. 让学生完成 P68 练习的第 1,2,3 题 提出问题: 你能根据对数的定义推导出下面的换底公式吗?
a >0,且 a ≠1, c >0,且 e ≠1, b >0
loga
b
logc logc
b a
先让学生自己探究讨论,教师巡视,最后投影出证明过程.
设 M logc a, N logc b, 则a cM , b cN
1
1
N
且 a M c, 所以cN (a M )N a M b
N
即:
M
log
a
b,
又因为
N M
logc b logc a
所以:
logc logc
b a
loga
b
小结:以上这个式子换底公式,换的底 C 只要满足 C>0 且 C≠1 就行了,除此之外, 对ห้องสมุดไป่ตู้C 再也没有什么特定的要求.
N
m
n
loga
M N
又由 M am , N an
m loga M , n loga N
即: loga
M
loga
N
m
n
loga
M N
N
(3) n 0时,令则N loga M n , M a n
b
b n loga M , 则M a n
N
b
a n an
N b
即 loga
M N
loga M
则有
(1) loga x loga y loga (x y) (2) loga x loga y loga (x y)
x (3) loga y
loga x loga y
(5) (loga x)n n loga x
(4) loga xy loga x loga y
(6)
loga
x
(1) loga
xy z
loga
xy
loga
z
loga
x loga
y
loga
z
(2) loga
x2
3
y z
loga
x2
y loga 3 z loga x2 loga
y loga 3 z
=
2 loga
x
1 2
loga
y
1 3 loga
z
(3) log2 (47 25 ) log2 47 log2 25 14 5 19
相关文档
最新文档