4升5-8第八讲:容斥原理之重叠问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲:容斥原理之重叠问题
一、导入
文氏图
文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的.
维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员.
维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前,
莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作——《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉.
除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次.
什么是容斥原理?
这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,
比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠.
比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行.
比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 − 3 = 14 人.
这就是我们今天要来研究的问题——有重叠的计数问题,即包含与排除问题.研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图,下面我们就用文氏图推导两个对象的容斥原理公式.
两个量之间的重叠
例1、某班有34名同学参加了学校的运动会,其中有17名参加了跳绳,有20 名参加了拔河,问:及参加了跳绳又参加了拔河的又多少人?
如右图所示,如果要计算三个部分的总数,直接计算 A+B
就会算多了,而多算的正好是共同部分,只要把多算的减掉就可以
了.上述分析总结成公式就是:
这个公式就是两个对象的容斥原理.
17+20-34
=37-34
=3(人)
答:即参加跳绳又参加拔河的同学有3人。
练一练
1、五年级有 122 名学生参加语文、数学考试,每人至少有一门功课的成绩是优秀,其中语文成绩优秀的有 65 人,数学优秀的有 87 人.语文、数学都优秀的有多少人?
2、在一次数学测试中有两道题全班同学都至少答对一题,答对第一题的有33人,答对第二题的又38 人,两题都答对的又15 人,问全班又多少人?
3、学校文艺组每人至少会演奏一种乐器。已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会的有8人,这个文艺组一共有多少人?
挑战思维
1、为了参加一次竞赛,某班46人中,每人至少参加一项。其中有20人参加语文兴趣小组,,参加语文同时又参加数学兴趣小组的有2人,两项都没有报的有10 人,那么参加数学兴趣小组的有多少人?
三个量之间的重叠
1、某单位元旦期间组织旅游,每人至少说出一个想去的地方。其中想去海南的有42人,想去桂林的有44人,想去港澳的有36人,既想去海南又想去桂林的有12人,既想去桂林又想去港澳的有8人,既想去海南又想去港澳的有10人,三个地方都想去的有4人。问这个单位一共有多少人?
(42=44+36)-12-8-10+4
=122-(12+8+10)+4
=122-30+4
=96(人)
答:这个单位一共有96 人。
方法总结:
练一练
1、学校对150名大学生做关于《业余生活》的调查,统计到喜欢看电影的有63人,喜欢玩球的有66人,喜欢读书的有54人,既喜欢看电影又喜欢玩球的有18人,既喜欢玩球又喜欢读书的有12人,既喜欢看电影又喜欢读书的有15人.问:三种都喜欢的有多少人?
2、在校园艺术活动中,五(2)班的同学参加了美术和声乐比赛。参加美术比赛的有25人,参加声乐比赛的有20人,两项都参加的有12人,两项都没有参加的有10人。五(2)班一共有多少人?
挑战竞赛
3、学校举行运动会。四年级共有60名同学,其中参加百米赛跑的有21人,参加投掷的有26人,即参加百米有参加跳远的有12人,即参加跳远有参加投掷的有9人,即参加百米有参加投掷的有14人,三项都参加的有5人,三项都没有参加的有12人,问参加跳远的有多少人?
重叠问题中的极值问题
1、40人参加某次晚会,其中28 人在晚会上唱了歌,25人在晚会上跳舞,那么即唱歌有跳舞的人最多有多少人,最少有多少人?
最少:(28+25)-40=13人
答:最多25 人最少13 人。
方法总结:
练一练
1、某校100名学生中,爱好音乐的有56人,爱好美术的有75人,那么即爱好音乐有爱好美术的最多有多少人?最少有多少人?
2、某班30 名同学。在一项测试中,答对一题的有19 人,答对2题的14 人,那么两题都答对的最多有多少人?最少有多少人?
挑战思维
3、希望小学音乐兴趣小组有37 人,其中20人会手风琴,16人会钢琴,24人会电子琴,即会手风琴又会钢琴的8人,即会电子琴又会钢琴的10人,即会手风琴又会电子琴的8人,
那么三种都不会的至少多少人?