工程热力学与传热学(英文) 绪论
(完整版)《工程热力学》、《传热学》课程专业词汇中英文对照表

《工程热力学》课程专业词汇中英文对照表thermodynamics热力学heat热work功irreversible process不可逆过程energylaw of energy conservation能量守恒定律temperature 温度thermal equilibrium热平衡Zeroth law of thermodynamics热力学第零定律temperature scale温标thermometer温度计thermodynamics scale of temperature 热力学温标density密度mass质量pressure压力gauge pressure表压absolute pressure绝对压力system系统boundary边界surrounding外界closed system闭口系统open system开口系统quantity of state状态参数process过程reversible process可逆过程irreversible process不可逆过程quasistatic process准静态过程isovolumetric process定容过程adiabatic process绝热过程isothermal process定温过程polytrophic process多变过程P-V diagram P-V 图absolute work 绝对功technical work技术功kinetic energy动能potential energy势能internal energy内能specific internal energy比内能specific heat capacity比热容constant volume specific heat capacity定容比热容constant pressure specific heat capacity定压比热容flow energy流动能enthalpy焓specific enthalpy比焓latent heat潜热sensible heat显热law of conservation of energy能量守恒定律first law of thermodynamics热力学第一定律nozzle喷管heat engine热机perpetual-motion machine of first kind第一类永动机ideal gas理想气体imperfect gas非理想气体equation of state状态方程式universal gas constant通用气体常数ratio of specific heat capacity比热容比Joule-Thomson effect焦耳-汤姆逊效应partial pressure分压力Dalton”s law道尔顿定律humidity湿度dry air干空气absolute humidity 绝对湿度saturated steam pressure饱和蒸汽压relative humidity相对湿度dew point露点cycle循环reciprocating engine往复式发动机bottom dead center下止点top dead center 上止点thermal efficiency热效率refrigerator制冷机heat pump热泵72 irreversibility不可逆性second law of thermodynamic热力学第二定律Clausius statement克劳修斯表述Kelven-Plank statement 开尔文-普朗克表述perpetual-motion machine of second kind第二类永动机isenthalpic process定焓过程Carnot cycle卡诺循环Clausius integral克劳修斯积分Clausius inequality克劳修斯不等式entropy熵absolute entropy绝对熵principle of the increase of entropy熵增原理T-S diagram T-S图real gas实际气体steam蒸汽boiling 沸腾evaporation汽化saturation pressure饱和压力wet saturated steam 湿蒸汽convergent nozzle渐缩喷管critical pressure临界压力Mach number马赫数compression ignition engine压缩点火发动机Diesel cycle狄赛尔循环combined cycle混合加热循环gas turbine燃气轮机steam prime mover蒸汽原动机boiler锅炉《传热学》课程专业词汇中英文对照表heat transfer热传递heat conduction导热convection对流natural convection自然对流free convection 自由对流forced convection 强制对流heat transfer by convection对流换热phase change 相变evaporation蒸发boiling沸腾condensation凝结melting融化solidification凝固thermal radiation热辐射temperature field温度场steady-state conduction稳态温度场transient conduction非稳态温度场temperature gradient 温度梯度isotherms 等温线cartesian coordinates直角坐标系heat flux热流密度矢量Fourier’s law导热基本定律heat Diffusion Equation导热微分方程式initial conditions初始条件boundary conditions边界条件thermal contact resistance接触热阻isothermal place等温面heat transfer rate热流量heat flux lines热流线heat flux热流密度thermal conductivity 导热系数thermal diffusivity热扩散率heat transfer coefficient换热系数thermal resistance热阻thermal resistance of fouling污垢热阻overall thermal resistance总热阻overall coefficient of heat transfer传热系数convection heat transfer对流换热dimensional analysis量纲分析boundary layer边界层analysis of the order of magnitude in boundary layer边界层的数量级分析boundary layer integral equation 边界层积分方程boundary layer differential equation边界层微分方程boundary grid point边界节点boundary layer condition边界条件turbulent flow湍流Nusselt number努谢尔特数Reynolds number 雷诺数Prandtl number普朗特数Grashof number 格拉晓夫数external flow外部流动flow along a flat plate外掠平板reference temperature定性温度equivalent diameter当量直径boiling heat transfer沸腾换热flow across single tube横掠单管flow across tube bundles横掠管束pool boiling大容器沸腾flow boiling流动沸腾forced convection boiling强制对流沸腾subcooled boiling过冷沸腾surface boiling 表面沸腾subcool temperature过冷温度saturated boiling饱和沸腾bulx boiling容积沸腾superheat过热度maximum heat flux point最大热流密度点nucleation center核化中心nucleate boiling核态沸腾burn out烧毁minimum heat flux point最小热流密度点film boiling膜态沸腾transition boiling过渡沸腾spheroidal state 球形状态boiling curve沸腾曲线condensation凝结condenser冷凝器film condensation膜状凝结drop-wise condensation珠状凝结mixed condensation 混合凝结radiation heat transfer辐射换热absolute black body 绝对黑体gray body灰体view factor 角系数spectrum 光谱Planck radiation law 普朗克辐射定律Rayleigh formula雷莱公式emissivity辐射率reflectivity 反射比emissive power辐射力degree of blackness黑度irradiation投入辐射radiosity有效辐射diffuse reflection漫反射diffuse surface漫射表面thermal shield 遮热板heat exchanger换热器parallel-flow 顺流counter-flow逆流effectiveness of heat exchanger 换热器的效能log-mean temperature difference对数平均温差。
工程热力学和传热学

热力学(经典热力学):研究能量 (特别是热能)性质及其转换规律的科学。
工程热力学:热力学的一个分支, 着重研究热能与机械能相互转换(热功转 换)的规律。
19
具体的工程应用
节能潜力的评估 露点及控制 油船中剩余舱容的确定
20
第二章 基本概念
Chapter 2 Basic Concepts
工程热力学和传热学
第一篇 工程热力学
Engineering Thermodynamics
1
工程热力学是研究什么的? What the Engineering
Thermodynamics study for?
我们为什么要学习工程热力学? Why we study Engineering
Thermodynamics?
二、系统的类型
1.按系统与外界交换的形式分类
系统与外界有三种相互作用形式:质、功、热 (1)开口系统:open system 系统与外界有 物质交换
工质流入
系统边界
W
Q 工质流出
稳定流动开口系统 不稳定流动开口系统
(2)闭口系统: closed system 系统与外界无 物质交换
闭口系统具有恒定质量,但具有恒定质量 的系统不一定都是闭口系统 。
制冷循环:
目的是把热量Q2 从低温物体中取出排 向高温,为此要消耗 外功W。在状态参数
坐标图P-V图上为
逆时针方向。为逆循 环。
热泵循环:
为另一种逆循环,目的是向高 温热源供热(空调取暖)。其工作原 理和P-V图与制冷循环相同。
a.压力:系统表面单位面积的垂直作用力。
(1)压力的单位:1N/m2 = 1Pa(帕) 1MPa = 106Pa ; 1bar = 105Pa
工程热力学英文版1

CHAPTER1INTRODUCTION1.1What is thermodynamics?Thermodynamics is the science which has evolved from the original investiga-tions in the19th century into the nature of“heat.”At the time,the leading theory of heat was that it was a type offluid,which couldflow from a hot body to a colder one when they were brought into contact.We now know that what was then called“heat”is not afluid,but is actually a form of energy–it is the energy associated with the continual,random motion of the atoms which compose macroscopic matter,which we can’t see directly.This type of energy,which we will call thermal energy,can be converted (at least in part)to other forms which we can perceive directly(for example, kinetic,gravitational,or electrical energy),and which can be used to do useful things such as propel an automobile or a747.The principles of thermodynamics govern the conversion of thermal energy to other,more useful forms.For example,an automobile engine can be though of as a device whichfirst converts chemical energy stored in fuel and oxygen molecules into thermal en-ergy by combustion,and then extracts part of that thermal energy to perform the work necessary to propel the car forward,overcoming friction.Thermody-namics is critical to all steps in this process(including determining the level of pollutants emitted),and a careful thermodynamic analysis is required for the design of fuel-efficient,low-polluting automobile engines.In general,thermody-namics plays a vital role in the design of any engine or power-generating plant, and therefore a good grounding in thermodynamics is required for much work in engineering.If thermodynamics only governed the behavior of engines,it would probably be the most economically important of all sciences,but it is much more than that.Since the chemical and physical state of matter depends strongly on how much thermal energy it contains,thermodynamic principles play a central role in any description of the properties of matter.For example,thermodynamics allows us to understand why matter appears in different phases(solid,liquid, or gaseous),and under what conditions one phase will transform to another.1CHAPTER1.INTRODUCTION2The composition of a chemically-reacting mixture which is given enough time to come to“equilibrium”is also fully determined by thermodynamic principles (even though thermodynamics alone can’t tell us how fast it will get there).For these reasons,thermodynamics lies at the heart of materials science,chemistry, and biology.Thermodynamics in its original form(now known as classical thermodynam-ics)is a theory which is based on a set of postulates about how macroscopic matter behaves.This theory was developed in the19th century,before the atomic nature of matter was accepted,and it makes no reference to atoms.The postulates(the most important of which are energy conservation and the impos-sibility of complete conversion of heat to useful work)can’t be derived within the context of classical,macroscopic physics,but if one accepts them,a very powerful theory results,with predictions fully in agreement with experiment.When at the end of the19th century itfinally became clear that matter was composed of atoms,the physicist Ludwig Boltzmann showed that the postu-lates of classical thermodynamics emerged naturally from consideration of the microscopic atomic motion.The key was to give up trying to track the atoms in-dividually and instead take a statistical,probabilistic approach,averaging over the behavior of a large number of atoms.Thus,the very successful postulates of classical thermodynamics were given afirm physical foundation.The science of statistical mechanics begun by Boltzmann encompasses everything in classical thermodynamics,but can do more also.When combined with quantum me-chanics in the20th century,it became possible to explain essentially all observed properties of macroscopic matter in terms of atomic-level physics,including es-oteric states of matter found in neutron stars,superfluids,superconductors,etc. Statistical physics is also currently making important contributions in biology, for example helping to unravel some of the complexities of how proteins fold.Even though statistical mechanics(or statistical thermodynamics)is in a sense“more fundamental”than classical thermodynamics,to analyze practical problems we usually take the macroscopic approach.For example,to carry out a thermodynamic analysis of an aircraft engine,its more convenient to think of the gas passing through the engine as a continuumfluid with some specified properties rather than to consider it to be a collection of molecules.But we do use statistical thermodynamics even here to calculate what the appropriate property values(such as the heat capacity)of the gas should be.CHAPTER1.INTRODUCTION3 1.2Energy and EntropyThe two central concepts of thermodynamics are energy and entropy.Most other concepts we use in thermodynamics,for example temperature and pres-sure,may actually be defined in terms of energy and entropy.Both energy and entropy are properties of physical systems,but they have very different characteristics.Energy is conserved:it can neither be produced nor destroyed, although it is possible to change its form or move it around.Entropy has a different character:it can’t be destroyed,but it’s easy to produce more entropy (and almost everything that happens actually does).Like energy,entropy too can appear in different forms and be moved around.A clear understanding of these two properties and the transformations they undergo in physical processes is the key to mastering thermodynamics and learn-ing to use it confidently to solve practical problems.Much of this book is focused on developing a clear picture of energy and entropy,explaining their origins in the microscopic behavior of matter,and developing effective methods to analyze complicated practical processes1by carefully tracking what happens to energy and entropy.1.3Some TerminologyMostfields have their own specialized terminology,and thermodynamics is cer-tainly no exception.A few important terms are introduced here,so we can begin using them in the next chapter.1.3.1System and EnvironmentIn thermodynamics,like in most other areas of physics,we focus attention on only a small part of the world at a time.We call whatever object(s)or region(s) of space we are studying the system.Everything else surrounding the system (in principle including the entire universe)is the environment.The boundary between the system and the environment is,logically,the system boundary. The starting point of any thermodynamic analysis is a careful definition of the system.EnvironmentSystemBoundarySystemCHAPTER 1.INTRODUCTION4Figure 1.1:Control masses and control volumes.1.3.2Open,closed,and isolated systemsAny system can be classified as one of three types:open,closed,or isolated.They are defined as follows:open system:Both energy and matter can be exchanged with the environ-ment.Example:an open cup of coffee.closed system:energy,but not matter,can be exchanged with the environ-ment.Examples:a tightly capped cup of coffee.isolated system:Neither energy nor matter can be exchanged with the envi-ronment –in fact,no interactions with the environment are possible at all.Example (approximate):coffee in a closed,well-insulated thermos bottle.Note that no system can truly be isolated from the environment,since no thermal insulation is perfect and there are always physical phenomena which can’t be perfectly excluded (gravitational fields,cosmic rays,neutrinos,etc.).But good approximations of isolated systems can be constructed.In any case,isolated systems are a useful conceptual device,since the energy and mass con-tained inside them stay constant.1.3.3Control masses and control volumesAnother way to classify systems is as either a control mass or a control volume .This terminology is particularly common in engineering thermodynamics.A control mass is a system which is defined to consist of a specified piece or pieces of matter.By definition,no matter can enter or leave a control mass.If the matter of the control mass is moving,then the system boundary moves with it to keep it inside (and matter in the environment outside).A control volume is a system which is defined to be a particular region of space.Matter and energy may freely enter or leave a control volume,and thus it is an open system.CHAPTER1.INTRODUCTION5 1.4A Note on UnitsIn this book,the SI system of units will be used exclusively.If you grew up anywhere but the United States,you are undoubtedly very familiar with this system.Even if you grew up in the US,you have undoubtedly used the SI system in your courses in physics and chemistry,and probably in many of your courses in engineering.One reason the SI system is convenient is its simplicity.Energy,no matter what its form,is measured in Joules(1J=1kg-m2/s2).In some other systems, different units are used for thermal and mechanical energy:in the English sys-tem a BTU(“British Thermal Unit”)is the unit of thermal energy and a ft-lbf is the unit of mechanical energy.In the cgs system,thermal energy is measured in calories,all other energy in ergs.The reason for this is that these units were chosen before it was understood that thermal energy was like mechanical energy, only on a much smaller scale.2Another advantage of SI is that the unit of force is indentical to the unit of(mass x acceleration).This is only an obvious choice if one knows about Newton’s second law,and allows it to be written asF=m a.(1.1)In the SI system,force is measured in kg-m/s2,a unit derived from the3primary SI quantities for mass,length,and time(kg,m,s),but given the shorthand name of a“Newton.”The name itself reveals the basis for this choice of force units.The units of the English system werefixed long before Newton appeared on the scene(and indeed were the units Newton himself would have used).The unit of force is the“pound force”(lbf),the unit of mass is the“pound mass”(lbm)and of course acceleration is measured in ft/s2.So Newton’s second law must include a dimensional constant which converts from Ma units(lbm ft/s2) to force units(lbf).It is usually written1F=2Mixed unit systems are sometimes used too.American power plant engineers speak of the “heat rate”of a power plant,which is defined as the thermal energy which must be absorbed from the furnace to produce a unit of electrical energy.The heat rate is usually expressed in BTU/kw-hr.CHAPTER1.INTRODUCTION6In practice,the units in the English system are now defined in terms of their SI equivalents(e.g.one foot is defined as a certain fraction of a meter,and one lbf is defined in terms of a Newton.)If given data in Engineering units,it is often easiest to simply convert to SI,solve the problem,and then if necessary convert the answer back at the end.For this reason,we will implicitly assume SI units in this book,and will not include the g c factor in Newton’s2nd law.。
工程热力学与传热学(英文) 第9章 热传导

自由电子等微观粒子的热运动而进行的热量传递过程。
2. Temperature field (温度场) Temperature distribution of material at the
moment of τ (在某一时刻τ,物体内所有各点的温度分布)
氢,氦的导热系数高。
Solid:
Good electrical conductors are almost always good heat conductors
3. Thermal conductivities of gases, liquids, and solids (不同物体的导热系数)
gases~ insulation materials < liquids << metals
Gas ✓ The values is small:0.006—0.6 W/(m.K) ✓ Mechanism:heat transfer result from the random
motion of molecules and collisions each other. (气体分子不规则的热运动和相互碰撞而产生的热量传递)
✓ Influence factor: • increases with temp & • decreasing MW (molecular weight)
t
t-∆t
x
∆x dA
q
9-1-2 Conduction law(导热基本定律)等温线,温度梯度,热流
1. Fourier’s law of heat conduction(导热基本定律)
工程热力学与传热学chapter5The Principle of Gas Compressor

压气机所需的机械总功 为压缩功、进气流动功、 排气流动功的代数和。 定温压缩过程: 绝热压缩过程: 多变压缩过程:
w T p 1 v 1 p 1 v 1 ln v 2T v1 p 2 v 2 T p 1 v 1 ln v 2T v1
P1
1
v
k k 1
n n 1
w s p 1 v1
锅炉鼓风出口引风炼钢燃气轮机制冷空调等工作原理结构活塞式往复式叶轮式离心式轴流式引射式压缩器通风机鼓风机压缩机00100103mpafancompressorfanner矿井中
Chapter 5
The Principle of Gas Compressor
工程热力学的研究内容
1、能量转换的基本定律
w T p 1 v 1 ln v 2T v1 p 1 v 1 ln p1 p2
Polytropic compressor
n n wn ( p 1 v1 p 2 v 2 n ) p 1 v 1 1 n 1 n 1
n 1
p2 p 1
1.System
Cooling water
3’
2’
Intercooler
2
1
High pressure gas
Low pressure gas
2nd-stage compression
1st-stage compression
5-3 Multilevel compress with intercooler
Notice that there will be a difference between the work necessary to compress the gas from states 1 to state 2 and the total work of process: Ws>Wn>WT
工程热力学与传热学(英文) 第1章 基本概念

Thermodynamic temperature scale in SI(热力学温标)
Thermodynamic temperature: symbol: T,unit: K. Datum point: the triple point of water.
The value on triple point is 273.16 K.
Q=0
adiabatic lysis
any non- isolated system
+
relative surrounding
=
Isolated system
环境
孤立系统
Most systems we discuss are:
The Universe
Simple compressible systems (简单可压缩系统).
(1)Definition: The force exerted by a fluid per unit area,p (2)Units(单位)
SI: Pa (pascal ), kPa Times of the atmospheric pressure: atm, at Height of liquid column: mH2O, mmHg bar, 1kgf/cm2 (in Europe): psi(lbf/in2) ( in English)
• •
Single-valued function of the system state. Related with States but have nothing to do with the path from one state to another.
1-2-2 Equilibrium State
工程热力学工程热力学绪论

节 能 Energy Saving
节能是近年来的基本国策 “开发和节约并重” 节能任重道远 是我们的责任
热力学的分类
工程热力学:热能与机械能 热 物理热力学 力 化学热力学 学
生物热力学 溶液热力学
热机种类
heat engin
能量利用率
Energy efficiency
? 发电(火力、核能)
40%
? 水能: 3 亿 7 千 6 百 kW ? 核能: 2 亿 kW ? 风能、太阳能: 1 亿 kW ? 煤: 9 亿 kW
Energy and Environment
燃煤:SO2、 (酸雨) acid rain
粉尘、 CO 2 (温室效应)
Greenhouse effect
车辆:NOx、 HC 、 CO
Johannes van der Waals
(1837-1923) 荷兰 气体和液体状态方程 1910年诺贝尔物理学奖
热力学方面获诺贝尔奖的科学家 (2)
M.普朗克
Max Planck
(1858-1947) 德国 发现能量子(量子理论) 热二律 1918年诺贝尔物理学奖
热力学方面获诺贝尔奖的科学家 (3)
工程热力学
是一门研究 热能有效利用及 热能和其它形式 能量转换规律 的科学
建立节能的理论基础
能源energy sources 的资源
2000.12.30《世界能源报道》
? 石油 Petroleum
世界40-50年 我国探明可开采储量 32.74亿吨
可开采15~20年
能源的资源
2000.12.30《世界能源报道》
我国规划:2030 ~2050 年 ? 2.5 ~3吨标煤/ 人?年
工程热力学与传热学(英文) 第10章 对流换热

Forced flow: gravity is negligible Natural flow: buoyancy forces is important
3. Energy differential equation(能量微分方程)
From the conservation of energy of volume element
d 管内流动
热面朝上
Characteristic length 特征长度
外部绕流
热面朝下
From above
Influence factors of convection heat transfer
h f (u, t w , t f , , , c p , , , l , )
qx hx (t w t f ) x
For the whole heat transfer surface
Q qx dA hx (t w t f ) x dA
A A
tw-tf = Const
Average heat-transfer coefficient
Q 1 h hx dA (t w t f ) A A A
u u u p 2u 2u ( u v ) Fx ( 2 2 ) x y x x y
v v v p 2v 2v ( u v ) Fy ( 2 2 ) x y y x y
Note
Consider gravity field only
Analysis method(分析法) 求解对流换热的微分方程,积分方程及单值性条件, 得出精确解或近似解。适用简单问题。 Numerical method(数值法) 对对流换热过程的特征和主要参数变化趋势作出预测。 复杂问题。 Experimental method(实验法) 相似原理和量纲分析理论。
工程热力学与传热学chapter4The Second Law of Thermodynamics

The use of the second law of thermodynamics is not limited to identifying the direction of processes, however. The second law also asserts that energy has quality as well as quantity. The first law is concerned with the quantity of energy and the transformations of energy from one form to another with no regard to its quality. Preserving the quality of energy is a major concern to engineers, and the second law provides the necessary means to determine the quality as well as the degree of degradation of energy during a process. As discussed later in this chapter, more of high-temperature energy can be converted to work, and thus it has a higher quality than the same amount of energy at a lower temperature.
4-1 Irreversible process
热功转换模 拟图
1)热—功转换的方向性
4-1 Irreversible process
工程热力学与传热学chapter7Moist air Atmospheric air

mw pw w V RwT
绝对湿度只能说明湿空气中实际所含水 蒸汽的多少,不能说明湿空气所具有的 吸收水蒸汽的能力大小。
7-1 State property of moist air
3.specific and relative humidity
(1)specific/Absolute humidity
湿润的夏天水管上常出现水珠?
T
pw=0.04bar 大气温度t=30oC td=28.98oC 冷水管t=20oC
d
s
雾、云及霜怎么形成的?
T
在水气充足、微风及大气层稳 定的情况下,如果接近地面的 空气冷却至某程度时,空气中 的水气便会凝结成细微的水滴 悬浮于空中,使地面水平的能 见度下降,这种天气现象称为 雾。
water vapor is called dry air. It is often convenient to treat air as a mixture of water vapor and dry air since the composition of dry air remains relatively
unsaturated air
100%
Dew-point
s
d
7-3 Dew-point and Wet-bulb temperature
2.Wet-bulb temperature (湿球温度)
T T 1 2
1
T1,d1
2
Tw
T2,d2
s
如上图:使未饱和的湿空气1与水有足够的接触表面和时间. 则出来2点的将是饱和的湿空气,2点的温度称为湿球温度. 它比湿空气本身的温度(干球温度)要低. 湿球温度无法直接测量,只能采用间接方法测量.
工程热力学与传热学(英文) 第8章 热量传递的基本方式

Basic Modes of Heat Transfer(热量传递的基本方式) Conduction(热传导) Convection(热对流) Radiation(热辐射)
Condensation of water vapor on the outer surface of a cold water pipe
8-3 Radiation(热辐射)
8-3-1 Some definitions(热辐射的有关概念)
1. 辐射:是指物体受某种因素的激发而向外发射
辐射能的现象。
(水桶内灼热钢棒的冷却过程)
Thermodynamics
• To predict the final equilibrium temperature of the steel bar-
water combination.(钢棒和水这一体系最终的平衡温度)
• To predict the energy transferred during the process.
8-2 Convection Heat Transfer(热对流)
8-2-1 热对流和对流换热
1. Convection(对流) 是指流体各部分之间发生相对位移时,冷热流体相互
掺混所引起的热量传递现象。
2. Convection heat transfer(对流换热)
流体流过另一个物体表面时, 流动方向 u∞
t
A
d
t
t A
w1
t
w2
工程热力学与传热学教学大纲英文名称Engineering

《工程热力学与传热学》教学大纲英文名称:Engineering Thermodynamics &Heat Transfer课程编号:040403学分:3.5 参考学时:56实验学时:4上机学时:0 适用专业:安全工程大纲执笔人:宋文霞、林日亿系(教研室)主任:徐明海一、课程目标工程热力学是热力学的工程分支,是在阐述热力学普遍原理的基础上,研究这些原理的技术应用的学科,着重研究热能与其他形式的能量(主要是机械能)之间的转换规律及其工程应用。
传热学则是研究热量传递规律的工程技术学科,在阐述能量守恒原理的基础上,研究热量传递的学科,着重研究热量传递的基本规律及其在工程上的应用。
工程热力学与传热学是安全工程专业的一门必修的技术基础课。
通过本课程的学习,学生应了解热力学的宏观研究方法,掌握热能与机械能之间的转换规律和能量有效利用的理论,能够正确运用热力学基本原理和定律分析计算各种热力过程和热力循环,使学生具备分析解决实际工程热问题的基本能力,并为学生学习有关的专业课程提供必要的理论基础。
同时,通过本课程的学习,使学生获得比较宽广和巩固的热量传递规律的基础知识,具备分析工程传热问题的基本能力,掌握工程传热问题计算的基本方法并具备相应的计算能力,学会传热学实验中有关温度与热量的测量方法并具备初步的实验技能。
二、基本要求本课程的预修课程为《高等数学》、《普通物理》、《普通化学》、《流体力学》等。
首先学习工程热力学部分,然后学习传热学部分。
通过工程热力学部分的学习,学生应达到如下基本要求:1.了解热力学的宏观研究方法,正确理解基本概念。
2.掌握热力学第一定律、热力学第二定律、卡诺循环和卡诺定理。
3.能够正确运用热力学第一定律的能量方程式分析计算各种能量转换过程。
4.掌握常用工质如理想气体、水蒸汽等的基本热力性质,会查阅有关图表进行计算。
5.注意联系工程实际,培养分析解决问题的能力。
6.掌握傅立叶定律、导热微分方程式及简单问题的定解条件;能分析计算一维稳态平壁、圆筒壁导热问题以及伸展体的稳态导热计算;了解非稳态导热过程的特点,能用非稳态导热微分方程和定解条件求解半无限大物体内的温度分布,能用集总参数法分析非稳态导热问题。
(完整版)《工程热力学》、《传热学》课程专业词汇中英文对照表

(完整版)《⼯程热⼒学》、《传热学》课程专业词汇中英⽂对照表《⼯程热⼒学》课程专业词汇中英⽂对照表thermodynamics热⼒学heat热work功irreversible process不可逆过程energylaw of energy conservation能量守恒定律temperature 温度thermal equilibrium热平衡Zeroth law of thermodynamics热⼒学第零定律temperature scale温标thermometer温度计thermodynamics scale of temperature 热⼒学温标density密度mass质量pressure压⼒gauge pressure表压absolute pressure绝对压⼒system系统boundary边界surrounding外界closed system闭⼝系统open system开⼝系统quantity of state状态参数process过程reversible process可逆过程irreversible process不可逆过程quasistatic process准静态过程isovolumetric process定容过程adiabatic process绝热过程isothermal process定温过程polytrophic process多变过程P-V diagram P-V 图absolute work 绝对功technical work技术功kinetic energy动能potential energy势能internal energy内能specific internal energy⽐内能specific heat capacity⽐热容constant volume specific heat capacity定容⽐热容constant pressure specific heat capacity定压⽐热容flow energy流动能enthalpy焓specific enthalpy⽐焓latent heat潜热sensible heat显热law of conservation of energy能量守恒定律first law of thermodynamics热⼒学第⼀定律nozzle喷管heat engine热机perpetual-motion machine of first kind第⼀类永动机ideal gas理想⽓体imperfect gas⾮理想⽓体equation of state状态⽅程式universal gas constant通⽤⽓体常数ratio of specific heat capacity⽐热容⽐Joule-Thomson effect焦⽿-汤姆逊效应partial pressure分压⼒Dalton”s law道尔顿定律humidity湿度dry air⼲空⽓absolute humidity 绝对湿度saturated steam pressure饱和蒸汽压relative humidity相对湿度dew point露点cycle循环reciprocating engine往复式发动机bottom dead center下⽌点top dead center 上⽌点thermal efficiency热效率refrigerator制冷机heat pump热泵72 irreversibility不可逆性second law of thermodynamic热⼒学第⼆定律Clausius statement克劳修斯表述Kelven-Plank statement 开尔⽂-普朗克表述perpetual-motion machine of second kind第⼆类永动机isenthalpic process定焓过程Carnot cycle卡诺循环Clausius integral克劳修斯积分Clausius inequality克劳修斯不等式entropy熵absolute entropy绝对熵principle of the increase of entropy熵增原理T-S diagram T-S图real gas实际⽓体steam蒸汽boiling 沸腾evaporation汽化saturation pressure饱和压⼒wet saturated steam 湿蒸汽convergent nozzle渐缩喷管critical pressure临界压⼒Mach number马赫数compression ignition engine压缩点⽕发动机Diesel cycle狄赛尔循环combined cycle混合加热循环gas turbine燃⽓轮机steam prime mover蒸汽原动机boiler锅炉《传热学》课程专业词汇中英⽂对照表heat transfer热传递heat conduction导热convection对流natural convection⾃然对流free convection ⾃由对流forced convection 强制对流heat transfer by convection对流换热phase change 相变evaporation蒸发boiling沸腾condensation凝结melting融化solidification凝固thermal radiation热辐射temperature field温度场steady-state conduction稳态温度场transient conduction⾮稳态温度场temperature gradient 温度梯度isotherms 等温线cartesian coordinates直⾓坐标系heat flux热流密度⽮量Fourier’s law导热基本定律heat Diffusion Equation导热微分⽅程式initial conditions初始条件boundary conditions边界条件thermal contact resistance接触热阻isothermal place等温⾯heat transfer rate热流量heat flux lines热流线heat flux热流密度thermal conductivity 导热系数thermal diffusivity热扩散率heat transfer coefficient换热系数thermal resistance热阻thermal resistance of fouling污垢热阻overall thermal resistance总热阻overall coefficient of heat transfer传热系数convection heat transfer对流换热dimensional analysis量纲分析boundary layer边界层analysis of the order of magnitude in boundary layer边界层的数量级分析boundary layer integral equation 边界层积分⽅程boundary layer differential equation边界层微分⽅程boundary grid point边界节点boundary layer condition边界条件turbulent flow湍流Nusselt number努谢尔特数Reynolds number 雷诺数Prandtl number普朗特数Grashof number 格拉晓夫数external flow外部流动flow along a flat plate外掠平板reference temperature定性温度equivalent diameter当量直径boiling heat transfer沸腾换热flow across single tube横掠单管flow across tube bundles横掠管束pool boiling⼤容器沸腾flow boiling流动沸腾forced convection boiling强制对流沸腾subcooled boiling过冷沸腾surface boiling 表⾯沸腾subcool temperature过冷温度saturated boiling饱和沸腾bulx boiling容积沸腾superheat过热度maximum heat flux point最⼤热流密度点nucleation center核化中⼼nucleate boiling核态沸腾burn out烧毁minimum heat flux point最⼩热流密度点film boiling膜态沸腾transition boiling过渡沸腾spheroidal state 球形状态boiling curve沸腾曲线condensation凝结condenser冷凝器film condensation膜状凝结drop-wise condensation珠状凝结mixed condensation 混合凝结radiation heat transfer辐射换热absolute black body 绝对⿊体gray body灰体view factor ⾓系数spectrum 光谱Planck radiation law 普朗克辐射定律Rayleigh formula雷莱公式emissivity辐射率reflectivity 反射⽐emissive power辐射⼒degree of blackness⿊度irradiation投⼊辐射radiosity有效辐射diffuse reflection漫反射diffuse surface漫射表⾯thermal shield 遮热板heat exchanger换热器parallel-flow 顺流counter-flow逆流effectiveness of heat exchanger 换热器的效能log-mean temperature difference对数平均温差。
工程热力学与传热学(英文) 绪论

deals with the principles of energy conversion among thermal energy and mechanical energy, as well as other form energies.
Thermodynamics and Heat Transfer
Thermodynamics and Heat Transfer
--- Introduction ---
Introduction
❖ Energy and Energy Resources ❖ The Contents of Thermodynamics
Mechanical energy Thermal energy
Electrical energy Chemical energy
Nuclear energy
Radiation energy
0-1-2 Thermal Energy and Its utilization
1. Energy Resources(能源):
such as: cooking, warming, drying, smelting. etc
厨房用热
太阳能热水器
熔炼炉
➢ The powered utilization:
Converting heat into other form energy.
• Steam power equipment • Gas power equipment • Thermoelectricity power generation • Nuclear electric power generation • Solar power
工程热力学及传热学英文简介

《工程热力学与传热学》课程简介
课程简介(中文):
《工程热力学与传热学》是安全工程专业的学科基础平台课(选修课)。
通过学习和研究热能与其它形式能量间的转换规律以及影响因素,探讨能量有效利用的基本途径和方法,掌握热力学第一定律和热力学第二定律;了解常用工质的热力性质,了解制冷原理和化学热力学的基本常识。
课程简介(中文):
Course Description:
Engineering Thermodynamics and Heat Transfer is the basis of safety engineering discipline platform class (optional).
Through the study and research between heat and other forms of energy conversion rules and influence factors, discussed the basic way and method of effective utilization of energy, grasp the thermodynamics first law and second law of thermodynamics; Understand the commonly used thermal properties of working medium, understand the refrigeration principle and the basic knowledge of chemical thermodynamics.。
工程热力学与传热学热力学第二章The First Law of Thermodynamics

2-1 The expression of the first law
Example 4:
(adiabatic) Qout=3kJ
△E=(15-3)+8=20kJ
Qin=15kJ
W=8kJ
(4)△E=(Qin-Qout)+W
2-2 Total energy and internal energy
2-1 The expression of the first law
First, we consider some processes that involve heat transfer but no work interactions.
Example 1:
Oven
Q=5kJ
Potato
△E=5kJ
1.Total energy of system (E)
In thermodynamic analysis, it is often helpful to consider the various forms of energy that make up the total energy of a system in two groups: macroscopic and microscopic. The macroscopic forms of energy are those a system possesses as a whole with respect to some outside reference frame, such as kinetic and potential energies (Fig. 2–3). The microscopic forms of energy are those related to the molecular structure of a system and the degree of the molecular activity, and they are independent of outside reference frames. The sum of all the microscopic forms of energy is called the internal energy of a system and is denoted by U.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0-1 Energy
0-1-1 Energy
1. Energy(能量):
The measurement of the substance movement.
2. Various forms of energy
(1)Mechanical energy (2)Thermal energy
(3)Electrical energy
(1)The direct utilization: Heating substance directly. such as: cooking, warming, drying, smelting. etc
厨房用热
太阳能热水器
熔炼炉
(2)The powered utilization: Converting heat into other form energy.
瓦特发明的蒸汽机
蒸汽火车
电厂蒸汽动力装置系统
Gas power equipment
汽油发动机结构
柴油发动机结构
V形六缸发动机
燃气轮机装置
航空发动机
山东众泰电厂(4×150MW)燃煤发电工程
德国科特布斯-叶许瓦尔德火力发电站
Nuclear electric power generation
核电装置
Thermodynamics and Heat Transfer
China University of Petroleum - Beijing
Thermodynamics and Heat Transfer
--- Introduction ---
Introduction
Energy and Energy Resources The Contents of Thermodynamics and Heat Transfer
核电与火力发电的比较
我国第一座自主设计建造的 30万千瓦压水堆核电站—— 浙江秦山核电站(秦山一期)
广东大亚湾核电站俯瞰图
Solar power 美国亚利桑那州-索拉纳(Solana)发电站
Thermal energy and its utilization
Natural gas Petroleum Coal
(4)Chemical energy
(5)Nuclear energy
(6)Radiation energy
Mechanical energy Thermal energy Electrical energy Chemical energy
Nuclear energy
Radiation energy
• Steam power equipment • Gas power equipment • Thermoelectricity power generation • Nuclear electric power generation • Solar power
Steam power equipment
2. Main Contents:
(1)Three basic forms of heat transfer, principles and calculate methods • Conduction(热传导) • Convection(热对流) • Radiation(热辐射) (2)How to control and optimize heat processes
Solar
Nuclear energy
Wind energy
Natural gas
0
tidal energy ocean energy Petroleum
Earth heat
Coal
2. Thermal Energy and Its utilization(热能及其利用) Two basic ways of thermal energy utilization:
5. Research Approaches
Engineering thermodynamics
Two approaches:
• Classical Thermodynamics -- macroscopic approach • Statistical Thermodynamics -- microscopic approach
(1)Basic principles of thermal energy utilization (2)Methods to enhance thermal energy utilization efficiency (3)Forms and principles of heat transfer
6. Learning Methods
In order to complete this unit successfully, students should be able to Master subject main clue---• Principles and methods of energy conversion • How to enhance the energy utilization efficiency Learn to solve actual problems in the ways of “abstract” and “simple” engineering problems Pay attention to the usage of concepts, formulas and laws Cultivate the feeling of engineering
0-2-1 Contents of Thermodynamic
1. Thermodynamics(热力学)
Thermodynamics is defined as the science of energy. It deals with the energy, energy conversion and the thermal properties of substances as well.
3. Research Approaches
Three basic approaches and their combination • Theory analysis • Numerical simulation • Experiment research
思考题
什么是能量?目前被人们认识和利用的能量形式有哪些? 什么是能源?能源是如何分类的? 热能利用的两种形式是什么? 热工基础的研究是什么? “热工基础”课与节能有怎样的关系? 以任意一种热能动力装置为例,分析其在热功转换过程 中所经历的过程。 7. 你能够从各种热能动力装置的工作过程中,初步概括出 它们在实现热功转换时的某些共同特性吗? 1. 2. 3. 4. 5. 6.
0-2-2 Contents of Heat Transfer
1. Heat Transfer(传热学)
Heat transfer is the science that seeks to predict the energy transfer that may take place between material bodies as a result of a temperature difference.
3. Basic Principles
(1)The first law of thermodynamics (2)The second law of thermodynamics
4. Main Contents
(1)The thermal properties of substances (2)Processes and cycles (3)Ways and technical measures to enhance the energy conversion efficiency
0-1-2 Thermal Energy and Its utilization
1. Energy Resources(能源):
Substance resources that can offer energy directly or indirectly.
Hydrodynamical energy
Thermal energy
Electric heating device
Electrical energy
Solar Earth heat User
User
User
0-2 Contents of Thermodynamics theory of thermal engineering: • Thermodynamics • Heat transfer Main contents:
2. Engineering Thermodynamics(工程热力学)
deals with the principles of energy conversion among thermal energy and mechanical energy, as well as other form energies.
Nuclear energy Combustion furnace Industrial heat equipment Nuclear reactor Heat engine MechaniGeneracal tor energy
Thermal electric direct energy conversion equipment