最新版广西河池市中考数学试卷

合集下载

(精品中考卷)广西河池市中考数学真题(解析版)

(精品中考卷)广西河池市中考数学真题(解析版)

2022年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

每小题给出的四个选项中,只有一项符合题目要求。

请用2B铅笔将答题卡上对应题目的答案标号涂黑。

)1. 如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A. +20元B. ﹣20元C. +30元D. ﹣30元【答案】B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以如果+50元表示收入50元,那么支出20元表示为﹣20元.故选:B.【点睛】此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2. 下列几何体中,三视图的三个视图完全相同的几何体是( )A. B.C. D.【答案】D【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A.三棱柱的俯视图与主视图和左视图都不同,故此选项错误;B.圆柱的俯视图与主视图和左视图不同,故此选项错误;C.圆锥的俯视图与主视图和左视图不同,故此选项错误;D.球的三视图完全相同,都是圆,故此选项正确.故选:D.【点睛】本题主要考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3. 如图,平行线a ,b 被直线c 所截,若∠1=142°,则∠2的度数是( )A. 142°B. 132°C. 58°D. 38°【答案】A【解析】 【分析】根据两直线平行,同位角相等即可求解.【详解】解:∵a b ∥,∴21142∠=∠=︒,故选A .【点睛】本题考查了平行线的性质,掌握两直线平行同位角相等是解题的关键. 4. 下列运算中,正确的是( )A. x 2+x 2=x 4B. 3a 3•2a 2=6a 6C. 6y 6÷2y 2=3y 3D. (﹣b 2)3=﹣b 6 【答案】D【解析】【分析】根据合并同类项,单项式乘以单项式,单项式除以单项式,积的乘方运算法则逐项分析判断即可求解.【详解】解:A. x 2+x 2=2x 2,故该选项不正确,不符合题意;B. 3a 3•2a 2=6a 5,故该选项不正确,不符合题意;C. 6y 6÷2y 2=3y 4,故该选项不正确,不符合题意;D (﹣b 2)3=﹣b 6,故该选项正确,符合题意. 故选D .【点睛】本题考查了整式的混合运算,掌握相关运算法则是解题的关键.5. 希望中学规定学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若小强的三项成绩(百分制)依次是95,90,91.则小强这学期的体育成绩是().A. 92B. 91.5C. 91D. 90【答案】B【解析】 【分析】根据加权平均数的计算公式,用95分,90分,91分别乘以它们的百分比,再求和即可.【详解】解:根据题意得95209030+=⨯%+⨯%91⨯50%91.5.即小强这学期的体育成绩是91.5.故选:B .【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.6. 多项式244x x +﹣因式分解的结果是( )A. x (x ﹣4)+4B. (x +2)(x ﹣2)C. (x +2)2D.(x ﹣2)2【答案】D【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x +=-﹣.故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.7. 东东用仪器匀速向如图容器中注水,直到注满为止.用t 表示注水时间,y 表示水面的高度,下列图象适合表示y 与t 的对应关系的是( )A. B.C.D.【答案】C【解析】【分析】根据题目中图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8. 如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A. AB=ADB. AC⊥BDC. AC=BDD. ∠DAC =∠BAC【答案】C【解析】【分析】根据菱形的性质逐项分析判断即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∠DAC=∠BAC,故A、B、D选项正确,不能得出AC BD=,故C选项不正确,故选:C.【点睛】本题考查了菱形的性质,掌握菱形的性质是解题的关键.9. 如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A.12m-<< B.12m>- C. 0m< D.的12m <- 【答案】D【解析】【分析】根据第三象限点的特征,横纵坐标都为负,列出一元一次不等式组,进而即可求解.【详解】解:∵点P (m ,1+2m )在第三象限内,∴0120m m <⎧⎨+<⎩①②, 解不等式①得:0m <, 解不等式②得:12m <-, ∴不等式组的解集为:12m <-, 故选D .【点睛】本题考查了第三象限的点的坐标特征,一元一次不等式组的应用,掌握各象限点的坐标特征是解题的关键.10. 如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∠ABC =25°,OC 的延长线交PA 于点P ,则∠P 的度数是( )A. 25°B. 35°C. 40°D. 50°【答案】C【解析】 【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】 AC AC = ,∠ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.11. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A. 30(1+x )2=50B. 30(1﹣x )2=50C. 30(1+x 2)=50D. 30(1﹣x 2)=50【答案】A【解析】【分析】根据题意和题目中的数据,可以得到()230150x +=,从而可以判断哪个选项是符合题意的.【详解】解:由题意可得,230(1)50x +=, 故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.12. 如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C ''' .在此旋转过程中Rt ABC 所扫过的面积为( )A. 25π+24B. 5π+24C. 25πD. 5π【答案】A【解析】 【分析】根据勾股定理定理求出AB ,然后根据扇形的面积和三角形的面积公式求解.【详解】解:∵90ACB ∠︒=,6AC =,8BC =,∴10AB ===,∴Rt ABC 所扫过的面积为2901016825243602ππ⋅⋅+⨯⨯=+. 故选:A .【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.二、填空题(本大题共4小题,每小题3分,共12分。

2020年广西河池市中考数学试卷(附答案解析)[完美版]

2020年广西河池市中考数学试卷(附答案解析)[完美版]

2 0 2 0中数学真卷2020年广西河池市中考数学试卷(含答案解析)注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 清将答案正确填写在答题卡上一、单选题I.在-2, 0, I, 2这四个数中,为负数的是()A. -2B. 0D. 22.如图,a〃b, Nl=80。

,则匕2的大小是(A. 80。

B. 90°3. 卜,列单项式中,与3『b 为同类项的是(A. -orbB. ab 24. 如图,该凡何体的主视图是()C. 100°)C. 3abD. 110Q D. 3A ▽ B.口5.下列运算正确的是()A. &+功= 5ab B. a 1 ^a 2 =a yC・ a 3 - a 2 = a 56.下列调查中,最适合采用全面调查的是()D. (a-b)? =a 2"D 口A.端午节期间市场上粽子质量C.央视春节联欢晚会的收视率 B.某校九年级三班学生的视力D.某品牌手机的防水性能7.如图,要判定ABCD 是菱形,需要添加的条件是()BDA.AB = ACB. BC=CDC. AC=BDD. AB=BC 8.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是)A. X>-1B. x<3C. -I<x<3D.-1 <x<31 29.分式方程一 =1——的解为( x-2 x-2)A. x = —3 B. X = 1C・ x = 5 D.无解10.如图,在。

O 中,OA_LBC, ZAOB = 50°,则ZADC 的大小为()B. 25° C. 50° D.l(X)cIh 关于反比例函数y =二的图象,下列说法正确的是< )A.经过点(2,3)B.分布在第二、第四象限关于直线了=工对称 D. x 越大.越接近x 轴12.如图,等边A48C 的边长为2, 0A 的半径为I, D 是BC 上的动点,DE 与。

广西2023年中考数学真题及参考答案解析

广西2023年中考数学真题及参考答案解析

广西2023年中考数学真题一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.若零下2摄氏度记为-2°C,则零上2摄氏度记为()A.-2°CB.0°CC.+2°CD.+4°C2.下列数学经典图形中,是中心对称图形的是()A. B.C. D.3.若分式1x+1有意义,则x的取值范围是()A.x≠-1B.x≠0C.x≠1D.x≠24.如图,点A、B、C在⊙O上,∠C=40°,则∠AOB的度数是()A.50°B.60°C.70°D.80°5.x≤2在数轴上表示正确的是()A. B.C. D.6.甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:S2甲=2.1,S2乙=3.5,S2丙=9,S2丁=0.7,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,一条公路两次转弯后又回到与原来相同的方向,如果∠A=130°,那么∠B的度数是()A.160°B.150°C.140°D.130°8.下列计算正确的是()A.a3+a4=a7B.a3⋅a4=a7C.a4÷a3=a7D.a3 4=a79.将抛物线y=x2向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.y=(x-3)2+4B.y=(x+3)2+4C.y=(x+3)2-4D.y=(x-3)2-410.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为()A.20mB.28mC.35mD.40m11.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元。

2024年广西中考真题数学试卷含答案解析

2024年广西中考真题数学试卷含答案解析

2024年广西中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是()A.B.C.D.2.端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.不是轴对称图形,故不符合题意;B.是轴对称图形,故符合题意;C.不是轴对称图形,故不符合题意;D.不是轴对称图形,故不符合题意;故你:B.3.广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为()A.90.84910⨯B.88.4910⨯C.784.910⨯D.684910⨯4.榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A.B.C.D.【答案】A【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5.不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.13C.12D.236.如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7.如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A .()3,0B .()0,2C .()3,2D .()1,2【答案】C 【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 的坐标为()3,2,故选:C .8.激光测距仪L 发出的激光束以5310km ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A .53102d t ⨯=B .5310d t =⨯C .52310d t =⨯⨯D .6310d t=⨯【答案】A9.已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<10.如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11.《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A .1345x x x ++=B .100345x x x ++=C .3451x x x ++=D .345100x x x ++=12.如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .10理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题13.已知1∠与2∠为对顶角,135∠=︒,则2∠= °.【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14大的整数是 .15.八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有 种.【答案】80【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16.不等式7551x x +<+的解集为 .【答案】<2x -【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17.如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .18.如图,壮壮同学投掷实心球,出手(点P处)的高度OP是7m4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m,高度是4m.若实心球落地点为M,则OM=m.【答案】35 3三、解答题19.计算:()()2342-⨯+-【答案】8-【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20.解方程组:2321x y x y +=⎧⎨-=⎩21.某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22.如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.(2)连接BE 如下图:∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,2BE 23.综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24.如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.18OD r =-,再利用勾股定理求解即可.【详解】(1)证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;(2)证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;(3)解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQ AQ =,设BQ 3x =,则4AQ x =,∴225AC AB AQ BQ x ==+=,∴CQ AC AQ x =-=,25.课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26.如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M '①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.由旋转的性质知AOC A OC '' ≌∴OM A C '''⊥,43A C AC ''==,OM 根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点此时180α=︒,∴A MC ''△面积的最大值为142⨯②∵246MC MO OC ''≤+=+=,4∵AOC A OA'≌ ∴30A CAO '∠=∠=︒,OAA OCA '∠=∠∴120A OA '∠=︒,试题21∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。

广西河池市中考数学真题试题(含解析)

广西河池市中考数学真题试题(含解析)

广西河池市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.计算3-4,结果是()A. B. C. 1 D. 72.如图,∠ = 20°,要使a∥b,则∠2的大小是()A. 0B. 0C. 00D. 203.下列式子中,为最简二次根式的是()A.2B. 2C.D. 24.某几何体的三视图如图所示,该几何体是()A. 圆锥B. 圆柱C. 三棱锥D. 球5.不等式组22的解集是()A. 2B.C. 2D. 26.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A. 53,53B. 53,56C. 56,53D. 56,567.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A. ∠ ∠B. ∠ ∠C.D.8.函数y=x-2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A. 1B. 2C. 3D. 410.如图,在正六边形ABCDEF中,AC=2,则它的边长是()A. 1B. 2C.D. 211.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A. 0B. 20C. 2 0D. 012.如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)的解为______.13.分式方程214.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则=______.15.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是______.16.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB= °,则∠P=______°.17.如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是______.18.a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是______.三、计算题(本大题共1小题,共6.0分)19.计算:30+-()-2+|-3|.2四、解答题(本大题共7小题,共60.0分)20.分解因式:(x-1)2+2(x-5).21.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.22.如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东 0°方向上,向东前进120m到达C点,测得A在北偏东 0°方向上,求河的宽度(精确到0.1m).参考数据:2≈ . ,≈ . 2.23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?24.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?25.如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F= 5°,求CF的长.26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=2与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.答案和解析1.【答案】A【解析】解:3-4=-1.故选:A.有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.【答案】D【解析】解:如果∠2=∠ = 20°,那么a∥b.所以要使a∥b,则∠2的大小是 20°.故选:D.根据同位角相等,两直线平行即可求解.本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.【答案】B【解析】解:A、原式=,不符合题意;B、是最简二次根式,符合题意;C、原式=2,不符合题意;D、原式=2,不符合题意;故选:B.利用最简二次根式定义判断即可.此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4.【答案】A【解析】解:由已知三视图得到几何体是以圆锥;故选:A.由已知三视图得到几何体是圆锥.本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.【答案】D【解析】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】D【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.根据众数和中位数的定义求解可得.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】B【解析】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE AC.A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.【答案】B【解析】解:一次函数y=x-2,∵k=1>0,∴函数图象经过第一三象限,∵b=-2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.本题考查了一次函数的性质,对于一次函数y=kx+b,k>0,函数经过第一、三象限,k <0,函数经过第二、四象限.9.【答案】B【解析】证明:∵四边形ABCD是正方形,∴AB∥BC,AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BFC=∠AEB,∴∠BFC=∠ABF,故图中与∠AEB相等的角的个数是2.故选:B.根据正方形的性质,利用SAS即可证明△ABE≌△BCF,再根据全等三角形的性质可得∠BFC=∠AEB,进一步得到∠BFC=∠ABF,从而求解.本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,∴∠ABC= 20°,∠BAC=∠BCA= 0°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,即∠ABC= 20°,∠BAC=∠BCA= 0°,于是AG=AC=,AB=2,本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.11.【答案】C【解析】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2-4ac>0,故本选项正确,不符合题意;C、由对称轴为x=-=1,得2a=-b,即2a+b=0,故本选项错误,符合题意;D、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(-1,0),所以a-b+c=0,故本选项正确,不符合题意.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.【答案】B【解析】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B 符合题意,选项A不合题意.本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.13.【答案】x=3【解析】解:去分母得:x-2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】25【解析】解:∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴===.故答案为:.直接利用位似图形的性质进而分析得出答案.此题主要考查了位似变换,正确得出对应边的比值是解题关键.15.【答案】2【解析】解:掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是=,故答案为:.利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.此题主要考查了概率公式,关键是掌握概率的计算方法.16.【答案】76【解析】解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°-∠OAB=90°- °=52°,∴∠P= 0°-52°-52°= °;故答案为:76.由切线的性质得出PA=PB,PA⊥OA,得出∠PAB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠PAB=90°-∠OAB=52°,再由三角形内角和定理即可得出结果.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.17.【答案】y=2x-4【解析】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x-4.故答案为:y=2x-4.过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.18.【答案】6【解析】解:由任意三个相邻数之和都是15可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵20 9÷ = ,因此a2017=a3=6.故答案为:6.由任意三个相邻数之和都是15,可知a1、a4、a7、…a3n+1相等,a2、a5、a8、…a3n+2相等,a3、a6、a9、…a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15得4+5+a3=15,求得a3,进而按循环规律求得结果.此题主要考查了规律型:数字的变化类,关键是找出第1、4、 …个数之间的关系,第2、5、 …个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.19.【答案】解:原式=1+22-4+3=22【解析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).【解析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.此题主要考查了公式法分解因式,正确运用公式是解题关键.21.【答案】解:(1)如图所示;AC.(2)OE∥AC,OE=2理由如下:∵AD平分∠BAC,∠BAC,∴∠BAD=2∠BOD,∵∠BAD=2∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,AC.∴OE∥AC,OE=2【解析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.22.【答案】解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan 0°=AD;在Rt△ACD中,tan∠CAD=,∴CD=AD•tan 0°=AD.∴BC =BD -CD =2AD =120, ∴AD =103.9.∴河的宽度为103.9米.【解析】过点A 作AD ⊥直线BC ,垂足为点D ,在Rt △ABD 和Rt △ACD 中,通过解直角三角形可求出BD ,CD 的长,结合BC=BD-CD=120,即可求出AD 的长.本题考查了解直角三角形的应用-方向角问题,利用解直角三角形结合BC=BD-CD=120,找出关于AD 的长的一元一次方程是解题的关键.23.【答案】解:(1)本次调查的样本容量 0÷ 0%= 00(人),b =100-10-30-20=40(人),a = 0÷ 00= 0%,c =20÷ 00=20%;(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人)答:估计该校参加音乐兴趣班的学生400人.【解析】(1)本次调查的样本容量 0÷ 0%= 00(人),b=100-10-30-20=40(人),a= 0÷ 00= 0%,c=20÷ 00=20%;(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人).本题考查统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.【答案】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:0 0 20 0 50 0, 解得:, 答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:( 00× + 00× )× 0=1800, 解得:x =9,答:该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.25.【答案】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,∠ ∠∠ ∠ ,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F= 5°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=2OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD= 0°,∴∠OBH= 0°,∴OH=2OB=1,∴OG=2,∴CF=CG=OC+OG=2+2.【解析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等边三角形的性质得出∠OBH= 0°,由直角三角形的性质得出OH=OB=1,OG=,即可得出答案.本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.26.【答案】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y= 2.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=-x+8,∵C,C′关于BD对称,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,2).∴C′(0,2(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.综上所述,满足条件的m的值为3或12.【解析】(1)利用中点坐标公式求出点E坐标即可.(2)由点M,N在反比例函数的图象上,推出DN•AD=BM•AB,因为BC=AD,AB=CD,推出DN•BC=BM•CD,推出=,可得MN∥BD,由此即可解决问题.(3)分两种情形:①当AP=AE时.②当EP=AE时,分别构建方程求解即可.本题属于反比例函数综合题,考查了中点坐标公式,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

广西河池市中考数学试卷

广西河池市中考数学试卷

广西河池市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列实数中,为无理数的是()A.﹣2 B.C.2 D.42.(3分)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°3.(3分)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠14.(3分)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.5.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a26.(3分)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.7.(3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,968.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°9.(3分)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线10.(3分)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.411.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.1212.(3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)分解因式:x2﹣25=.14.(3分)点A(2,1)与点B关于原点对称,则点B的坐标是.15.(3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.16.(3分)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是.17.(3分)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是.18.(3分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|﹣1|﹣2sin45°+﹣20.20.(6分)解不等式组:.21.(8分)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.22.(8分)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF 于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.(8分)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表请解答下列问题:(1)完成频数分布表,a=,b=.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.24.(8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?25.(10分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA 的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•河池)下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.【点评】本题主要考查了角的概念以及平角的定义的运用,解题时注意:平角等于180°.3.(3分)(2017•河池)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(3分)(2017•河池)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.【点评】本题考查了三视图,主视图是从正面看得到的视图,要注意分清所看到的正方形的排列的列数与每一列的正方形的排列情况.5.(3分)(2017•河池)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.【点评】本题主要考查的是幂的运算性质,熟练掌握合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则是解题的关键.6.(3分)(2017•河池)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k 可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数y=图象上的点,横纵坐标的积是定值k.7.(3分)(2017•河池)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.8.(3分)(2017•河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD 即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.【点评】本题考查垂径定理、圆周角定理等知识,解题的关键是熟练掌握垂径定理、圆周角定理,属于中考常考题型.9.(3分)(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点评】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.10.(3分)(2017•河池)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.【点评】本题考查了根的判别式以及解一元一次方程,根据根的判别式找出关于a的一元一次方程是解题的关键.11.(3分)(2017•河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.12.(3分)(2017•河池)已知等边△ABC的边长为12,D是AB上的动点,过D 作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到结论.【解答】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴AD=2AE=8x﹣24,∵AD+BD=AB,∴8x﹣24+x=12,∴x=4,∴AD=8x﹣24=32﹣24=8.故选C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)(2017•河池)分解因式:x2﹣25=(x+5)(x﹣5).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).【点评】本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.14.(3分)(2017•河池)点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.(3分)(2017•河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.16.(3分)(2017•河池)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.【点评】本题考查了一次函数与反比例函数的交点问题,正确的识别图象是解题的关键.17.(3分)(2017•河池)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.【点评】本题考查了圆锥的计算,关键是明白侧面展开后得到一个半圆就是底面圆的周长.18.(3分)(2017•河池)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2017•河池)计算:|﹣1|﹣2sin45°+﹣20.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)(2017•河池)解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.(8分)(2017•河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,方法一、∵直线l绕点A顺时针旋转90°得到l2,∴∠BAD=90°,∴∠CAD+∠OAB=90°,又∵∠OAB+∠ABO=90°,∴∠CAD=∠ABO,∴tan∠CAD=tan∠ABO==;方法二:∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【点评】本题主要考查一次函数图象与几何变换及一次函数图象,熟练掌握平移变换和旋转变换的性质及待定系数法求函数解析式是解题的关键.22.(8分)(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM 与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(8分)(2017•河池)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x <100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力及.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.24.(8分)(2017•河池)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.(10分)(2017•河池)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了勾股定理和相似三角形的判定与性质.26.(12分)(2017•河池)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质、方程思想和分类讨论思想等知识.在(1)中求得B、C坐标是解题的关键,在(2)中构造等腰三角形求得P到x轴的距离是解题的关键,在(3)中确定出两角相等时Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB 于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c 交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.。

广西河池市中考数学试题含答案

广西河池市中考数学试题含答案

广西河池市中考数学试题一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷将选定的答案代号涂黑.1.(3分)﹣3的绝对值是( )A .﹣3B .13-C .13D .3 2.(3分)如图,AB ∥CD ,CB ⊥DB ,∠D =65°,则∠ABC 的大小是( )A .25°B .35°C .50°D .65°3.(3分)下列计算,正确的是( )A .3412x x x ⋅=B .336()x x =C .22(3)9x x = D .22x x x ÷=4.(3分)一个几何体的三视图如图所示,这个几何体是( )A .棱柱B .圆柱C .圆锥D .球5.(3分)下列事件是必然事件的为( ) A .明天太阳从西方升起B .掷一枚硬币,正面朝上C .打开电视机,正在播放 “河池新闻”D .任意一个三角形,它的内角和等于180°6.(3分)不等式组21521x x +≤⎧⎨+>⎩的解集是( ) A .﹣1<x <2 B .1<x ≤2 C .﹣1<x ≤2 D .﹣1<x ≤37.(3分)下列方程有两个相等的实数根的是( )A .2+10x x +=B .24210x x ++=C .212360x x ++=D .220x x +-=8.(3分)将抛物线2y x =向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( )A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--9.(3分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,∠BOD =48°,则∠BAC 的大小是( )A .60°B .48°C .30°D .24°10.(3分)如图,用一张半径为24cm 的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm ,那么这张扇形纸板的面积是( )A .240πcm 2B .480πcm 2C .1200πcm 2D .2400πcm 211.(3分)反比例函数1m y x=(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >212.(3分)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A.6 B.8 C.10 D.12二、填空题(本大题共6小题,每小题3分,满分18分)请把答案填在答题卷指定的位置上.13.(3分)计算:1273⨯= .14.(3分)如图,在△ABC中,D.E分别是AB、AC的中点,若BC=10,则DE= .15.(3分)方程233x x=-的解是.16.(3分)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有人.17.(3分)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A ′的坐标是.18.(3分)如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则11AM AN+= .三、解答题(本大题共8小题,满分66分)请在答题卷指定的位置上写出解答过程.19.(6分)计算:1292cos60--++-.20.(6分)先化简,再求值:2(3)(3)(1)x x x -+++,其中2x =.21.(8分)如图,在△ABC 中,∠ACB =90°,AC =BC =AD .(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.22.(8分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?23.(8分)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a = ,b = ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.24.(8分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y (元)关于购买量x (盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?25.(10分)如图,AB 为⊙O 的直径,CO ⊥AB 于O ,D 在⊙O 上,连接BD ,CD ,延长CD 与AB 的延长线交于E ,F 在BE 上,且FD =FE .(1)求证:FD 是⊙O 的切线;(2)若AF =8,tan ∠BDF =14,求EF 的长.26.(12分)如图1,抛物线223y x x =-++与x 轴交于A ,B ,与y 轴交于C ,抛物线的顶点为D ,直线l 过C 交x 轴于E (4,0).(1)写出D 的坐标和直线l 的解析式;(2)P (x ,y )是线段BD 上的动点(不与B ,D 重合),PF ⊥x 轴于F ,设四边形OFPC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点Q 在x 轴的正半轴上运动,过Q 作y 轴的平行线,交直线l 于M ,交抛物线于N ,连接CN ,将△CMN 沿CN 翻转,M 的对应点为M ′.在图2中探究:是否存在点Q ,使得M ′恰好落在y 轴上?若存在,请求出Q 的坐标;若不存在,请说明理由.河池数学中考试题答案第Ⅰ卷(选择题,共36分)一、选择题(本题共12小题,每小题3分,共36分)1. D2. A3. C4. B5. D6. C7. C8. B 9. D 10. A 11. B 12. A二.填空题(本大题共6小题,每小题3分,共18分) 13. 3 . 14. 5 .15. 9 .16. 800 .17. (5,2) .18. 1 .三.解答题(本大题共8小题,满分66分)19. 解:原式=2+3+12-12=5 20.解:原式=9-x 2+1+2x+x 2=2x+10当x=2时,原式=2×2+10=1421.解:(1)(2)作图如下(3)△ACE ≌△ADE,△ACE ≌△CFB证明:△ACE ≌△ADE∵AE 是∠A 的平分线,∴∠CAE=∠DAE,又AC=AD,AE 为公共边,∴△ACE≌△ADE(SAS).22·解:(1)设第一次购进电风扇x台,则第二次购进x-10台,由题意可得:150x=180(x-10),解得x=60,所以第一次购进电风扇60台,则第二次购进50台.(2)商场获利为:(250-150)·60+(250-180)·50=9500(元)所以当商场以250元/台的售价卖完这两批电风扇,商场获利9500元.23.解:(1)众数是一组数据中出现最多的数,所以a=8;b=10+6+6+9+10+4+5+7+10+810=7.5.(2)①一班的平均分比二班高,所以一班成绩比二班号;②一班学生得分的方差比二班小,说明一班成绩比二班好.(3)1男1女两位同学的概率P=36=12.24.解:(1)太阳花:y=6x;10x(0≤x≤20)绣球花:y= ;200+8(x-20)(20<x)(2)设购买绣球花x盆,则购买太阳花90-x盆.根据题意可得:90-x≤x2,解得60≤x≤90,结合(1)中的结果,y总=6·(90-x)+200+8(x-20),得y总=2x+580,当x=60时,即购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.答: 购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.25. (1)证明:连接OD,∵CO⊥AB,∴∠E+∠C=90°,∵∠DFO为△EFD的外角,且FD=FE,∠ODC为△EOD的外角,且OD=OC,∴∠DFO=∠E+∠EDF=2∠E,∠DOF+∠E=∠ODC=∠C,得∠DOF+∠E+∠DFO=∠C+2∠E,即∠DOF+∠DFO=∠C+∠E=90°,∴FD是⊙O的切线.(2)解:连接AD,如图,∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD ∽△FDA, ∴DF AF =BD AD , 在Rt △ABD 中,tan ∠A=tan ∠BDF=BD AD =14,∴DF 8=14,∴DF=2,∴EF=2.26、【答案】(1)D (1,4),334y x =-+;(2)S =292x x -+(13x ≤≤),S 最大值为8116;(3)Q 的坐标为(32,0)或(4,0).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.分类讨论;5.存在型;6.压轴题.。

2023年广西壮族自治区中考数学真题(解析版)

2023年广西壮族自治区中考数学真题(解析版)

2023年广西初中学业水平考试数 学(全卷满分120分,考试时间120分钟)注意事项:1. 答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2. 考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3. 不能使用计算器.4. 考试结束后,将本试卷和答题卡.......一并交回. 一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 若零下2摄氏度记为2C −°,则零上2摄氏度记为( )A. 2C −°B. 0C °C. 2C +°D. 4C +°【答案】C【解析】【分析】根据正负数的实际意义可进行求解.【详解】解:由题意可知零上2摄氏度记为2C +°;故选C .【点睛】本题主要考查正负数的意义,熟练掌握正负数的意义是解题的关键.2. 下列数学经典图形中,是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念:一个图形如果绕某个点旋转180度后能与原图形完全重合的图形;由此问题可求解.【详解】解:选项中符合中心对称图形的只有A 选项;故选A .【点睛】本题主要考查中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.3. 若分式11x +有意义,则x 的取值范围是( ) A. 1x ≠−B. 0x ≠C. 1x ≠D. 2x ≠ 【答案】A【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由题意得:10x +≠,∴1x ≠−;故选A .【点睛】本题主要考查分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.4. 如图,点A 、B 、C 在O 上,40C ∠=°,则AOB ∠的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】D【解析】【分析】根据圆周角定理的含义可得答案.【详解】解:∵40C ∠=°,∴280AOB C ∠=∠=°,故选:D .【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理是解题的关键.5. 2x ≤在数轴上表示正确的是( )A.B. C.D.【答案】C【解析】【分析】在数轴上表示不等式的解集,需要确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;确定“方向”:对边界点a 而言,x a >或x a ≥向右画,x a <或x a ≤向左画.【详解】解:2x ≤在数轴上表示为:故选:C .【点睛】本题考查了在数轴上表示不等式的解集,熟知表示的方法是解题的关键.6. 甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:22.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】根据方差可进行求解.【详解】解:由题意得:2222S S S S <<<丁乙丙甲;∴成绩最稳定的是丁;故选D .【点睛】本题主要考查方差,熟练掌握方差是解题的关键.7. 如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=°,那么B ∠的度数是()A. 160°B. 150°C. 140°D. 130°【答案】D【解析】【分析】根据题意得到AC BD ∥,即可得到130B A ∠=∠=°.【详解】解:∵公路两次转弯后又回到与原来相同的方向,∴AC BD ∥,∴130B A ∠=∠=°.故选:D【点睛】本题考查了平行线的性质“两直线平行,内错角相等”,熟知平行线的性质定理,根据题意得到AC BD ∥是解题关键.8. 下列计算正确的是( )A. 347a a a +=B. 347a a a ⋅=C. 437a a a ÷=D. ()437a a = 【答案】B【解析】【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意;B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.9. 将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是( )A. 2(3)4y x =−+B. 2(3)4y x =++C. 2(3)4y x =+−D. 2(3)4y x =−− 【答案】A【解析】【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线的函数表达式为:2(3)4y x =−+.故选:A .【点睛】本题考查了二次函数图象的平移,熟知二次函数图象平移的法则是解答此题的关键.10. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R , ()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.11. 据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为( )A. 23.2(1) 3.7x −=B. 23.2(1) 3.7x +=C. 23.7(1) 3.2x −=D. 23.7(1) 3.2x +=【答案】B【解析】 【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意得,23.2(1) 3.7x +=.故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.12. 如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=−的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为( )A. 4B. 3C. 2D. 1【答案】C【解析】 【分析】设(),A a b ,则1,B b b− ,1,D a a − ,11,C b a −−,根据坐标求得1S ab k ==,241S S ==,推得31211S b a =−×− = ,即可求得. 详解】设(),A a b ,则1,B b b− ,1,D a a −,11,C b a −− 【∵点A 在(0)k y x x=>的图象上 则1S ab k ==, 同理�B ,D 两点在1y x=−的图象上, 则241S S == 故3511122S −−==, 又�31211S b a =−×−= , 即112ab =, 故2ab =,∴2k =,故选:C .【点睛】本题考查了反比例函数的性质,矩形的面积公式等,熟练掌握反比例函数的性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.【答案】3【解析】【分析】根据算术平方根的概念求解即可.【详解】解:因32=9,.故答案为:3.【点睛】此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14. 分解因式:a 2 + 5a =________________.【答案】a (a+5)【解析】【分析】提取公因式a 进行分解即可.【详解】a 2+5a=a �a+5��故答案是:a �a+5��【点睛】考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而为将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.15. 函数3y kx =+的图象经过点()2,5,则k =______. 【答案】1【解析】【分析】把点()2,5代入函数解析式进行求解即可.【详解】解:由题意可把点()2,5代入函数解析式得:235k +=,解得:1k =;故答案为1.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键. 16. 某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______. 【答案】25##0.4 【解析】【分析】根据概率公式,即可解答.【详解】解:抽到的同学总共有5种等可能情况,抽到男同学总共有2种可能情况, 故抽到男同学的概率是25, 故答案为:25. 【点睛】本题考查了根据概率公式求概率,熟知概率公式是解题的关键.17. 如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m 高的支柱,则共需钢材约______m (结果取整数).(参考数据:sin 370.60°≈,cos370.80°≈,tan 370.75°≈)【答案】21【解析】【分析】根据解直角三角形及等腰三角形的性质可进行求解.【详解】解:∵ABC 是等腰三角形,且CD AB ⊥,∴AD BD =,∵3m CD =, ∴5m,4m sin 37tan 37CD CD AC BC AD BD ======°°, ∴共需钢材约为2221m AC AD CD ++=;故答案为21.【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.18. 如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.【解析】【分析】首先证明出MN 是AEF △的中位线,得到12MN AE =,然后由正方形的性质和勾股定理得到AE BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,�M ,N 分别是EF AF ,的中点,�MN 是AEF △的中位线, �12MN AE =, ∵四边形ABCD 是正方形,�90B ?,�AE�当BE 最大时,AE 最大,此时MN 最大,�点E 是BC 上的动点,�当点E 和点C 重合时,BE 最大,即BC 长度,�此时AE ==�12MN AE ==,�MN.故答案.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 19. 计算:2(1)(4)2(75)−×−+÷−.【答案】6【解析】【分析】根据有理数的混合运算法则求解即可.【详解】2(1)(4)2(75)−×−+÷−442=+÷42=+6=.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.20. 解分式方程:211x x =−. 【答案】=1x −【解析】【分析】去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:211x x=− 去分母得,21x x =−移项,合并得,=1x −检验:当=1x −时,()120x x −=≠,的为所以原分式方程的解为=1x −.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21. 如图,在ABC 中,30A ∠=°,90B ??.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.【答案】(1)图见详解(2)AB =【解析】【分析】(1)以A 为圆心,BC 长为半径画弧,交AC 于点O ,则问题可求解;(2)根据含30度直角三角形的性质可得2AC BC =,则有OC AO =,进而问题可求解.【小问1详解】解:所作线段AO 如图所示:【小问2详解】解:∵30A ∠=°,90ABC ∠=°,∴2AC BC =,∵AO BC =,∴2AC AO =,∴OC AO =,即点O 为AC 的中点,∵2OB =,∴24AC OB ==,∴2BC =,∴AB =.【点睛】本题主要考查含30度直角三角形的性质、直角三角形斜边中线定理及勾股定理,熟练掌握含30度直角三角形的性质、直角三角形斜边中线定理及勾股定理是解题的关键.22. 4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级 八年级 平均数7.55 7.55 中位数8 c 众数a 7 合格率b 85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.【答案】(1)8a =,80%b =,7.5c =(2)510人 (3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【解析】【分析】(1)根据中位数,众数的定义求解即可,根据合格率=合格人数÷总人数即可求得;(2)根据八年级抽取人数的合格率进行求解即可;(3)根据中位数和众数的特征进行说明即可.【小问1详解】根据八年级的成绩分布可得:5分的有3人,6分的有2人,7分的有5人,8分的有4人,9分的有3人,10分的有3人, 故中位数是787.52+=, 根据扇形统计图可得:5分的有2020%4×=人,6分的有2010%2×=人,7分的有2010%2×=人,8分的有2030%6×=人,9分的有2015%3×=人,10分的有2015%3×=人, 故众数是8,合格人数为:2263316++++=人, 故合格率为:1680%20=, 故8a =,80%b =,7.5c =.【小问2详解】八年级学生成绩合格的人数为:60085%510×=人,即若该校八年级有600名学生,该校八年级学生成绩合格的人数有510人.【小问3详解】根据中位数的特征可知七,八年级学生成绩的集中趋势和七,八年级学生成绩数据的中等水平.【点睛】本题考查了中位数,众数,合格率,用样本估计总体等,熟练掌握中位数和众数的定义是解题关键.23. 如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.【答案】(1)见解析 (2)12AP =【解析】【分析】(1)首先根据切线的性质得到OA PA ⊥,然后根据角平分线的性质定理得到OA OB =即可证明;(2)首先根据勾股定理得到3BC =,然后求得459AC OA OC =+=+=,最后利用tan tan BCO ACP ∠=∠,代入求解即可.【小问1详解】�PA 与O 相切于点A ,�OA PA ⊥,�PO 平分APD ∠,OB PD ⊥,�OA OB =,�PB 是O 的切线;【小问2详解】�O 的半径为4,�4OA OB ==,�OB PD ⊥,5OC =,�3BC =,459AC OA OC =+=+=,�BCO ACP ∠=∠,�tan tan BCO ACP ∠=∠, �BO AP BC AC =,即439AP =, �12AP =.【点睛】此题考查了圆切线的性质和判定,勾股定理,三角函数等知识,解题的关键是熟练掌握以上知识点.24. 如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.【答案】(1)见详解 (2)2y x =−+ (3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【解析】【分析】(1)由题意易得AF BD =,60A B ∠=∠=°,然后根据“SAS ”可进行求证;(2)分别过点C 、F 作CH AB ⊥,FG AB ⊥,垂足分别为点H 、G ,根据题意可得ABC S = 4AF x =−,然后可得)4FG x =−,由(1)易得ADF BED CFE≌≌,则有()4ADF BED CFE S S S x x ===− ,进而问题可求解;(3)由(2)和二次函数的性质可进行求解.【小问1详解】证明:∵ABC 是边长为4的等边三角形,∴60∠=∠=∠=°A B C ,4AB BC AC ===,∵AD BE CF ==,∴AF BD CE ==,在ADF △和BED 中,AF BDA B AD BE= ∠=∠= ,∴()SAS ADF BED ≌;【小问2详解】解:分别过点C 、F 作CH AB ⊥,FG AB ⊥,垂足分别为点H 、G ,如图所示:在等边ABC 中,60A B ACB ∠=∠=∠=°,4AB BC AC ===,∴sin 60CH AC =⋅°=∴12ABC S AB CH =⋅= 设AD 的长为x ,则AD BE CF x ===,4AF x =−,∴)sin 604FG AF x =⋅°=−,∴()142ADF S AD FG x x =⋅=− , 同理(1)可知ADF BED CFE ≌≌,∴()4ADF BED CFES S S x x ===− , ∵DEF 的面积为y ,∴()234ABC ADF y S S x x x =−=−=−+ 【小问3详解】解:由(2)可知:2y x =−+,∴0a =>,对称轴为直线2x =, ∴当2x >时,y 随x 的增大而增大,当2x <时,y 随x 的增大而减小;即当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小.【点睛】本题主要考查锐角三角函数、二次函数的综合及等边三角形的性质,熟练掌握锐角三角函数、二次函数的综合及等边三角形的性质是解题的关键.25. 【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.【答案】(1)5l a =(2)1015250l a −=(3) 2.5,0.5l a =(4)120y m =(5)相邻刻线间的距离为5厘米【解析】【分析】(1)根据题意可直接进行求解;(2)根据题意可直接代值求解;(3)由(1)(2)可建立二元一次方程组进行求解;(4)根据(3)可进行求解;(5)分别把0m =,100m =,200m =,300m =,400m =,500m =,600m =,700m =,800m =,900m =,1000m =代入求解,然后问题可求解.【小问1详解】解:由题意得:0,0m y ==, ∴1050l a =,∴5l a =;【小问2详解】解:由题意得:1000,50m y ==, ∴()()1010005050l a +=+, ∴1015250l a −=;【小问3详解】解:由(1)(2)可得:51015250l a l a = −=, 解得: 2.50.5l a = = ; 【小问4详解】解:由任务一可知: 2.5,0.5l a =,∴()()2.510500.5my +=+, ∴120y m =; 【小问5详解】解:由(4)可知120y m =, ∴当0m =时,则有0y =;当100m =时,则有5y =;当200m =时,则有10y =;当300m =时,则有15y =;当400m =时,则有20y =;当500m =时,则有25y =;当600m =时,则有30y =;当700m =时,则有35y =;当800m =时,则有40y =;当900m =时,则有45y =;当1000m =时,则有50y =;∴相邻刻线间的距离为5厘米.【点睛】本题主要考查一次函数的应用,解题的关键是理解题意.26. 【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 对应点分别为B ′,E ′,展平纸片,连接AB ′,BB ′,BE ′.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....; (2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ′,P ′,展平纸片,连接,P B ′′.请完成:(3)证明BB ′是NBC ∠的一条三等分线.【答案】(1)123∠=∠=∠(2)见详解 (3)见详解【解析】【分析】(1)根据题意可进行求解;(2)由折叠的性质可知AB BB ′′=,AB AB ′=,然后可得AB BB AB ′′==,则有ABB ′ 是等边三角形,的进而问题可求证;(3)连接PB ′,根据等腰三角形性质证明12PB E BB E BB P ′′′==∠∠∠,根据平行线的性质证明12BB E CBB BB P ′′′==∠∠∠,证明()SAS PBB P B B ′′′ ≌,得出P BB PB B ′′′=∠∠,即可证明13CBB CBN ′=∠∠.【小问1详解】解:由题意可知123∠=∠=∠;【小问2详解】证明:由折叠的性质可得:AB BB ′′=,AB AB ′=,AE AE ′=,AE BE =, ∴AB BB AB ′′==,AE B E ′′′=,∴ABB ′ 是等边三角形,∵AE B E ′′′=,60ABB ′∠=°, ∴1302ABE B BE ABB ′′′′∠=∠=∠=°,∵四边形ABCD 是矩形,∴90ABC ∠=°,∴330∠°,∴123∠=∠=∠;【小问3详解】证明:连接PB ′,如图所示:由折叠的性质可知:BB PB ′′=,PB P B ′′=,PBB P B B ′′′=∠∠, ∵折痕B E AB ′⊥,BB PB ′′=,∴12PB E BB E BB P ′′′==∠∠∠, ∵四边形ABCD 为矩形,∴90EBC ∠=°,∴CB AB ⊥,∵B E AB ′⊥,∴B E BC ′∥, ∴12BB E CBB BB P ′′′==∠∠∠, ∵在PBB ′△和P B B ′′ 中,PB P B PBB P B B BB B B ′′′′′′′= ∠=∠ =, ∴()SAS PBB P B B ′′′ ≌,∴P BB PB B ′′′=∠∠, ∴12CBB NBB ′′=∠∠, ∴13CBB CBN ′=∠∠, ∴BB ′是NBC ∠的一条三等分线.【点睛】本题主要考查折叠的性质、线段垂直平分线的性质、等腰三角形的性质与判定及矩形的性质,三角形全等的判定和性质,作出辅助线,熟练掌握折叠的性质,证明,PBB P B B ′′′ ≌是解题的关键.。

初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【答案】A.【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.【题文】如图,AB∥CD,∠1=50°,则∠2的大小是()A.50° B.120° C.130° D.150°【答案】C.【解析】试题分析:如图,∵AB∥CD,∴∠A+∠3=180°,∴∠3=130°,∴∠1=∠3=130°.故选C.考点:平行线的性质.【题文】下列四个几何体中,主视图为圆的是()评卷人得分A. B. C. D.【答案】C.【解析】试题分析:A.主视图是正方形,B.主视图是三角形,C.主视图为圆,D.主视图是矩形,故选C.考点:简单几何体的三视图.【题文】下列长度的三条线段不能组成三角形的是()A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,5【答案】A.【解析】试题分析:A.5+5=10,不能组成三角形,故此选项正确;B.4+5=9>6,能组成三角形,故此选项错误;C.4+4=8>4,能组成三角形,故此选项错误;D.4+3=7>5,能组成三角形,故此选项错误.故选A.考点:三角形三边关系.【题文】下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣2bC. D.【答案】B.【解析】试题分析:A.2a和3b不是同类项不能合并,故A错误;B.2(2a﹣b)=4a﹣2b,故B正确;C.,故C错误;D.,故D错误.故选B.考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【题文】如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B.【解析】试题分析:由①得,x>﹣2,由②得,x≤2,故此不等式组的解集为:﹣2<x≤2.故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.【题文】要调查河池市中学生了解禁毒知识的情况,下列调查方式最适合的是()A.在某中学抽取200名女生B.在某中学抽取200名男生C.在某中学抽取200名学生D.在河池市中学生中随机抽取200名学生【答案】D.【解析】试题分析:要调查河池市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在河池市中学生中随机抽取200名学生.故选D.考点:全面调查与抽样调查.【题文】如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150° B.130° C.120° D.100°【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.考点:平行四边形的性质.【题文】二次函数的图象如图所示,则下列结论不正确的是()A.a<0 B.c>0 C.a+b+c>0 D.>0【答案】C.【解析】试题分析:A.抛物线开口方向向下,则a<0,故本选项错误;B.抛物线与y轴交于正半轴,则c>0,故本选项错误;C.当x=1时,y<0,∴a+b+c<0,故本选项正确;D.抛物线与x轴有2个交点,则>0,故本选项错误;故选C.考点:二次函数图象与系数的关系.【题文】如图,在平面直角坐标系中,D为坐标原点,点A的坐标为(1,).将线段OA绕原点0逆时针旋转30°,得到线段OB,则点B的坐标是( )A. (0,2)B. (2,0)C. (1,-)D. (-1,)【答案】A【解析】试题分析:作AC⊥x轴于点C,∵点A的坐标为(1,),∴OC=1,AC=,则OA==2,tan∠AOC==,∴∠AOC=60°,∴将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是(0,2),故选A.考点:坐标与图形变化-旋转.【题文】如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.【题文】如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P 的坐标是()A.(5,3) B.(5,4) C.(3,5) D.(4,5)【答案】D.【解析】试题分析:如图,过P作PC⊥AB于点C,过P作PD⊥x轴于点D,连接PB,∵P为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8﹣2=6,∴AC=BC=3,∴OC=8﹣3=5,∵⊙P与x轴相切,∴PD=PB=OC=5,在Rt△PBC中,由勾股定理可得PC===4,∴P点坐标为(4,5),故选D.考点:切线的性质;坐标与图形性质.【题文】在函数中,自变量x的取值范围是.【答案】x≥1.【解析】试题分析:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.考点:函数自变量的取值范围.【题文】已知关于x的方程的一个根是1,则m=.【答案】2.【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=2,故答案为:2.考点:一元二次方程的解.【题文】同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.【答案】.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为:.考点:列表法与树状图法.【题文】如图,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是.【答案】40°.【解析】试题分析:∵∠ABC=50°,∴的度数为100°,∵AB为直径,∴的度数为80°,∴∠BDC=×80°=40°,故答案为:40°.考点:圆周角定理.【题文】对于实数a,b,定义运算“*”:a*b=.例如:因为4>2,所以4*2==8,则(-3)*(-2)=.【答案】-1.【解析】试题分析:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为:-1.考点:实数的运算;新定义.【题文】如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为 cm.【答案】.【解析】试题分析:过D作DH⊥BC,过点A作AN⊥BC于点N,∵AB=AC,∴∠B=∠C=30°,根据折叠可得:DF=BF,∠EDF=∠B=30°,∵AB=AC,BC=12cm,∴BN=NC=6cm,∵点B落在AC的中点D处,AN∥DH,∴NH=HC=3cm,∴DH=3tan30°=(cm),设BF=DF=xcm,则FH=12﹣x﹣3=9﹣x(cm),故在Rt△DFC中,,故,解得:x=,即BF的长为:cm.故答案为:.考点:翻折变换(折叠问题).【题文】计算:.【答案】.【解析】试题分析:根据绝对值,特殊角的三角函数值,二次根式的性质,零指数幂的意义化简即可.试题解析:原式==.考点:实数的运算;零指数幂;特殊角的三角函数值.【题文】先化简,再求值:,其中x=2.【答案】,4.【解析】试题分析:先算乘法,再算减法,最后把x的值代入进行计算即可.试题解析:原式====当x=2时,原式=4.考点:分式的化简求值.【题文】如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB=AD=BC.【解析】试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC ,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO 平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.【题文】如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于A(﹣3,2),B (2,n).(1)求反比例函数的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.【答案】(1);(2)y=﹣x+1;(3)﹣3<x<0或x>2.【解析】试题分析:(1)把A坐标代入反比例解析式求出k的值,确定出反比例解析式;(2)把B坐标代入反比例解析式求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(3)根据A与B横坐标,结合图象确定出所求不等式的解集即可.试题解析:(1)把A(﹣3,2)代入反比例解析式得:k=﹣6,则反比例解析式为;(2)把B(2,n)代入反比例解析式得:n=﹣3,即B(2,﹣3),把A(﹣3,2)与B(2,﹣3)代入y=ax+b 中得:,解得:a=﹣1,b=﹣1,则一次函数解析式为y=﹣x+1;(3)∵A(﹣3,2),B(2,﹣3),∴结合图象得:不等式ax+b<的解集为﹣3<x<0或x>2.考点:反比例函数与一次函数的交点问题.【题文】某校八年级学胜在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【答案】(1)作图见解析;(2)中位数为90分,众数为90分;(3)138;(4)他的成绩中游偏下,因为全班的中位数为90分.【解析】试题分析:(1)由统计表得96分的人数为6人,然后补全条形统计图;(2)根据中位数和众数的定义求解;(3)用500乘以样本中96分以上(含96分)的人数所占的百分比即可;(4)把它的成绩与中位数比较可判断他的成绩如何.试题解析:(1)如图:(2)共有40个数据,第20个数和第21个数都为90,所以该班学生成绩的中位数为90分,90出现的次数最多,所以众数为90分;(3)500×≈138,所以估计有138名学生的成绩在96分以上(含96分);(4)小明的成绩为88分,他的成绩中游偏下,因为全班的中位数为90分.考点:条形统计图;用样本估计总体;加权平均数;中位数;众数;数形结合.【题文】某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?【答案】(1)购买A型桌椅100套,B型桌椅150套;(2)66.【解析】试题分析:(1)设购买A型桌椅x套,B型桌椅y套,根据“A,B型课桌椅共250套”、“A型课桌椅230元/套,B型课桌椅200元/套,付款53000元,”列出方程组并解答(2)设能购买A型课桌椅a套,则根据“最多能购买A型课桌椅多少套”列出不等式并解答即可.试题解析:(1)设购买A型桌椅x套,B型桌椅y套,依题意得:,解得:.答:购买A型桌椅100套,B型桌椅150套;(2)设能购买A型课桌椅a套,依题意得:230a+200(100﹣a)≤22000,解得a≤.∵a是正整数,∴a最大=66.答:最多能购买A型课桌椅66套.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.【题文】如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D.E为的中点,连接CE,BE,BE交AC于F.(1)求证:AB=AF;(2)若AB=3,BC=4,求CE的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)先证明∠EBC=∠ECF,再证明∠ABF=∠AFB,即可得AB=AF;(2)先应用勾股定理求出AC的长,用AC-AF求出CF的长,再应用△EFC∽△ECB可求出CE的长.试题解析:解:(1)证明:∵BC直径为⊙O的直径,∴∠BEC=90°,∴∠ECF+∠EFC=90°.∵∠ABC=90°,∴∠ABF+∠EBC=90°.又∵E为的中点,∴∠EBC=∠ECF,∴∠EFC=∠ABF.又∵∠AFB=∠EFC,∴∠AFB=∠ABF,∴AB=AF;(2)∵∠ABC=90°,∴AC===5.又∵AB=AF=3,∴CF=AC-AF=5-3=2.∵∠EBC=∠ECF,∠E=∠E,∴△EFC∽△ECB.∴.∴BE=2CE.∵∠BEC=90°,∴,∴,∴CE=.考点:圆周角定理;等腰三角形的判定;相似三角形的判定与性质.【题文】在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)A(﹣3,0),C(0,3),D(﹣1,4);(2)E(,0);(3)P(2,﹣5)或(1,0).【解析】试题分析:(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.试题解析:(1)当中y=0时,有,解得:=﹣3,=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当中x=0时,则y=3,∴C(0,3).∵=,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有:,解得:,∴直线C′D的解析式为y=﹣7x ﹣3,当y=﹣7x﹣3中y=0时,x=,∴当△CDE的周长最小,点E的坐标为(,0).(3)设直线AC的解析式为y=ax+c,则有:,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线上,∴,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线上,∴,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线上,∴,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.。

广西河池市中考数学真题(解析版)

广西河池市中考数学真题(解析版)
【答案】
【解析】
【分析】如图,连接 ,设圆与x轴相切于点 ,连接 交 与点 ,结合已知条件,则可得 ,勾股定理求解 ,进而即可求得 的坐标.
【详解】如图,连接 ,设圆与x轴相切于点 ,连接 交 与点 ,
则 轴,
为直径,则 ,

轴,

, ,
, ,

轴,

故答案为: .
【点睛】本题考查了圆的性质,直径所对的圆周角是直角,垂径定理,切线的性质,勾股定理,坐标与图形,掌握以上知识是解题的关键.
三、解答题(本大题共8小题,共66分.)
19.计算: .
【答案】
【解析】
【分析】根据二次根式的性质化简,负整数指数幂,绝对值和有理数的乘方计算法则求解即可得到答案.
【详解】解:
【点睛】本题主要考查了二次根式的性质化简,负整数指数幂,绝对值和有理数的乘方计算法则,解题的关键在于能够熟练掌握相关知识进行求解.
B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,
∴当-1<x<2时,y<0,故选项B正确,不符合题意;
C、由图可知:当x=-1时,y=a-b+c=0,
∴a+c=b,故选项C正确,不符合题意;
D、由图可知:当x=1时,y=a+b+c<0
∴a+b<-c,故选项D错误,不符合题意;
故选:D.
【点睛】本题主要考查了二次函数对称性、二次函数图象与系数之间的关系和二次函数图象上点的坐标特征,解题的关键理解函数图象与不等式之间以及方程的关系.
故选:C.
【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.

2022年广西河池市中考数学试卷真题附解析

2022年广西河池市中考数学试卷真题附解析

2022年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

每小题给出的四个选项中,只有一项符合题目要求。

请用2B铅笔将答题卡上对应题目的答案标号涂黑。

)1.(3分)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元2.(3分)下列几何体中,三视图的三个视图完全相同的几何体是( )A.B.C.D.3.(3分)如图,平行线a,b被直线c所截,若∠1=142°,则∠2的度数是( )A.142°B.132°C.58°D.38°4.(3分)下列运算中,正确的是( )A.x2+x2=x4B.3a3•2a2=6a6C.6y6÷2y2=3y3D.(﹣b2)3=﹣b65.(3分)希望中学规定学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若小强的三项成绩(百分制)依次是95,90,91.则小强这学期的体育成绩是( )A.92B.91.5C.91D.906.(3分)多项式x2﹣4x+4因式分解的结果是( )A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)27.(3分)东东用仪器匀速向如图容器中注水,直到注满为止.用t 表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是( )A.B.C.D.8.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC 9.(3分)如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A.﹣<m<0B.m>﹣C.m<0D.m<﹣10.(3分)如图,AB是⊙O的直径,PA与⊙O相切于点A,∠ABC =25°,OC的延长线交PA于点P,则∠P的度数是( )A.25°B.35°C.40°D.50°11.(3分)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )A.30(1+x)2=50B.30(1﹣x)2=50C.30(1+x2)=50D.30(1﹣x2)=5012.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )A.25π+24B.5π+24C.25πD.5π二、填空题(本大题共4小题,每小题3分,共12分。

2022年广西河池市中考数学试题及答案解析

2022年广西河池市中考数学试题及答案解析

2022年广西河池市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A. +20元B. −20元C. +30元D. −30元2.下列几何体中,三视图的三个视图完全相同的几何体是( )A. B. C. D.3.如图,平行线a,b被直线c所截,若∠1=142°,则∠2的度数是( )A. 142°B. 132°C. 58°D. 38°4.下列运算中,正确的是( )A. x2+x2=x4B. 3a3⋅2a2=6a6C. 6y6÷2y2=3y3D. (−b2)3=−b65.希望中学规定学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若小强的三项成绩(百分制)依次是95,90,91.则小强这学期的体育成绩是( )A. 92B. 91.5C. 91D. 906.多项式x2−4x+4因式分解的结果是( )A. x(x−4)+4B. (x+2)(x−2)C. (x+2)2D. (x−2)27.东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是( )A.B.C.D.8.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A. AB=ADB. AC⊥BDC. AC=BDD. ∠DAC=∠BAC9.如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A. −12<m<0 B. m>−12C. m<0D. m<−1210.如图,AB是⊙O的直径,PA与⊙O相切于点A,∠ABC=25°,OC的延长线交PA于点P,则∠P的度数是( )A. 25°B. 35°C. 40°D. 50°11.某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )A. 30(1+x)2=50B. 30(1−x)2=50C. 30(1+x2)=50D. 30(1−x2)=5012.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A′B′C′.在此旋转过程中Rt△ABC所扫过的面积为( )A. 25π+24B. 5π+24C. 25πD. 5π二、填空题(本大题共4小题,共12.0分)13.−2022的相反数是______.14.若二次根式√a−1有意义,则a的取值范围是______.15.如图,点P(x,y)在双曲线y=k的图象上,PA⊥x轴,x垂足为A,若S△AOP=2,则该反比例函数的解析式为______.16.如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,BE=2,AG与BH交于点O,N为AF的点G,H分别在BE,EF上,且BG=EH=25中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN=______.三、解答题(本大题共9小题,共72.0分)17.计算:|−2√2|−3−1−√4×√2+(π−5)0.18.先化简,再求值:aa−1÷a+1a2−1−(2a−1),其中a=3.19.如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.20.如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.21.如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).22.为喜迎中国共产党第二十次全国代表大公的召开,红星中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是______,圆心角β=______度;(2)补全条形统计图;(3)已知红星中学共有1200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A,B,C,D四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A,C两人同时参赛的概率.23.为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?24.如图,AB是⊙O的直径,E为⊙O上的一点,∠ABE的平分线交⊙O于点C,过点C的直线交BA的延长线于点P,交BE的延长线于点D.且∠PCA=∠CBD.(1)求证:PC为⊙O的切线;(2)若PC=2√2BO,PB=12,求⊙O的半径及BE的长.25.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“−20元”.故选:B.根据正数与负数时表示具有相反意义的量直接得出答案.本题考查了正数和负数的实际意义,掌握正数和负数表示相反意义的量是解题的关键.2.【答案】D【解析】解:A,三棱柱的三视图既有三角形又有长方形,故不符合题意;B,圆柱的三视图既有圆又有长方形,故不符合题意;C,圆锥的三视图既有三角形又有圆,故不符合题意;D,球的三视图都是圆,故符合题意;故选:D.根据三视图的概念做出判断即可.本题主要考查三视图的知识,熟练掌握基本集合体的三视图是解题的关键.3.【答案】A【解析】解:∵a//b,∴∠2=∠1=142°.故选:A.因为a,b平行,所以∠2=∠1=142°.本题考查平行线的性质,解题关键是熟知平行线的性质.4.【答案】D【解析】解:A、原式=2x2,不符合题意;B、原式=6a5,不符合题意;C、原式=3y4,不符合题意;D、原式=−b6,符合题意.故选:D.各式计算得到结果,即可作出判断.此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:根据题意得:95×20%+90×30%+91×50%=91.5(分).答:小强这学期的体育成绩是91.5分.故选:B.根据加权平均数的计算公式列出算式,再进行计算即可.此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.6.【答案】D【解析】解:原式=(x−2)2.故选:D.原式利用完全平方公式分解即可.此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.7.【答案】C【解析】解:因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:∵四边形ABCD是菱形,∴∠BAC=∠DAC,AB=AD,AC⊥BD,故A、B、D正确,无法得出AC=BD,故选:C.根据菱形的性质即可一一判断.本题考查菱形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.9.【答案】D【解析】解:根据题意得{m <0①1+2m <0,解①得m <0, 解②得m <−12.则不等式组的解集是m <−12. 故选:D .根据点P 在第三象限,即横纵坐标都是负数,据此即可列不等式组求得m 的范围. 本题考查了一元一次不等式组的解法,点的坐标特征.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解题规律是:同大取大;同小取小;大小小大中间找;大大小小找不到.10.【答案】C【解析】解:∵∠ABC =25°, ∴∠AOP =2∠ABC =50°, ∵PA 是⊙O 的切线, ∴PA ⊥AB , ∴∠PAO =90°,∴∠P =90°−∠AOP =90°−50°=40°, 故选:C .由圆周角定理可求得∠AOP 的度数,由切线的性质可知∠PAO =90°,则可中求得∠P . 本题主要考查切线的性质及圆周角定理,根据圆周角定理可切线的性质分别求得∠AOP 和∠PAO 的度数是解题的关键.11.【答案】A【解析】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x , 由题意得,30(1+x)2=50. 故选:A .若设该厂家一月份到三月份的口罩产量的月平均增长率为x ,某厂家今年一月份的口罩产量是30万个,则二月份的口罩产量是30(1+x)万个,三月份的口罩产量是30(1+x)2万个,根据三月份的口罩产量是50万个,列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,正确表示出各月的产值是解题关键.12.【答案】A【解析】解:∵∠ACB=90°,AC=6,BC=8,∴AB=10,∴Rt△ABC所扫过的面积=90⋅π×102360+12×6×8=25π+24,故选:A.根据勾股定理得到AB,然后根据扇形的面积和三角形的公式即可得到结论.本题考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.13.【答案】2022【解析】解:−2022的相反数是:2022.故答案为:2022.直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数,正确掌握相反数的定义是解题关键.14.【答案】a≥1【解析】解:∵二次根式√a−1有意义,∴a−1≥0,解得:a≥1.故答案为:a≥1.根据负数没有平方根确定出a的范围即可.此题考查了二次根式有意义的条件,熟练掌握二次根式性质是解本题的关键.15.【答案】y=−4x【解析】解:∵点P(x,y)在双曲线y=kx的图象上,PA⊥x轴,∴xy=k,OA=−x,PA=y.∵S△AOP=2,∴12×AO⋅PA=2.∴−x⋅y=4.∴xy=−4,∴k=xy=−4.∴该反比例函数的解析式为y=−4x.故答案为:y=−4x.利用待定系数法解答即可.本题主要考查了反比例函数的几何意义,反比例函数图象上点的坐标的特征,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.16.【答案】58【解析】解:∵点E,F分别是BC,AD的中点,∴AF=12AD,BE=12BC,∵四边形ABCD是矩形,∴∠A=90°,AD//BC,AD=BC,∴AF=BE=12AD,∴四边形ABEF是矩形,由题意知,AD=2AB,∴AF=AB,∴矩形ABEF是正方形,∴AB=BE,∠ABE=∠BEF=90°,∵BG=EH,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,在Rt△ABG中,根据勾股定理得,AG=√AB2+BG2=√29,∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OAAB =OBBG=ABAG,∴OA5=OB2=√29,∴OA=√29,OB=√29,∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM∽△OAN,∴OBOA =BMAN,∵点N是AF的中点,∴AN=12AF=52,∴√2925√29=BM52,∴BM=1,∴AM=AB−BM=4,在Rt△MAN中,tan∠AMN=ANAM =524=58,故答案为:58.先判断出四边形ABEF是正方形,进而判断出△ABG≌△BEH(SAS),得出∠BAG=∠EBH,进而求出∠AOB=90°,再判断出△AOB∽△ABG,求出OA=√29,OB=√29,再判断出△OBM∽△OAN,求出BM=1,即可求出答案.此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM是解本题的关键.17.【答案】解:原式=2√2−13−2√2+1=23.【解析】先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.18.【答案】解:原式=aa−1×(a+1)(a−1)a+1−(2a−1)=a−2a+1=−a+1,当a=3时,原式=−3+1=−2.【解析】把除化为乘,分解因式约分,化简后将a=3代入即可.本题考查分式化简求值,解题的关键是掌握分式的基本性质,将分式化简.19.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(−4,−6);【解析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以−2得到A2、B2、C2的坐标,然后描点即可.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.也考查了轴对称变换.20.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,{AB=DE BC=EF AC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC//EF,又∵BC=EF,∴四边形BFEC是平行四边形.【解析】(1)证△ABC≌△DEF(SSS),再由全等三角形的性质即可得出结论;(2)由(1)可知,∠ACB=∠DFE,则BC//EF,再由平行四边形的判定即可得出结论.本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定等知识,熟练掌握平行四边形的判定方法,证明三角形全等是解题的关键.21.【答案】解:如图,过点C作CE⊥AB,垂足为E,由题意得,CD=36m,∠BCE=45°,∠ACE=33°,在Rt△BCE中,∠BCE=45°,∴BE=CE=CD=36m,在Rt△ACE中,∠ACE=33°,CE=36m,∴AE=CE⋅tan33°≈23.4(m),∴AB=AE+BE=36+23.4=59.4≈59(m),答:居民楼AB的高度约为59m.【解析】通过作高,构造直角三角形,在两个直角三角形中用直角三角形的边角关系可求出AE、BE即可.本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.22.【答案】50144【解析】解:(1)本次调查的样本容量是:10÷20%=50,则圆心角β=360°×2050=144°,故答案为:50,144;(2)成绩优秀的人数为:50−2−10−20=18(人),补全条形统计图如下:(3)1200×2050=480(人),答:估计此次竞赛该校获优异等级的学生人数为480人;(4)画树状图如下:共有12种等可能的结果,其中恰好抽到A,C两人同时参赛的结果有2种,∴恰好抽到A,C两人同时参赛的概率为212=16.(1)由成绩良好的学生人数除以所占百分比得出本次调查的样本容量,即可解决问题;(2)求出成绩优秀的人数,即可解决问题;(3)由红星中学共有学生人数乘以此次竞赛该校获优异等级的学生人数所占的比例即可;(4)画树状图,共有12种等可能的结果,其中恰好抽到A,C两人同时参赛的结果有2种,再由概率公式求解即可.此题考查了树状图法、条形统计图和扇形统计图等知识.正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:(1)设桂花树的单价是x元,则芒果树的单价是(x−40)元,根据题意得:3x+2(x−40)=370,解得x=90,∴x−40=90−40=50,答:桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得:w=90n+50(60−n)=40n+3000,∴w关于n的函数关系式为w=40n+3000,∵40>0,∴w随n的增大而增大,∵桂花树不少于35棵,∴n≥35,∴n=35时,w取最小值,最小值为40×35+3000=4400(元),此时60−n=60−35=25(棵),答:w关于n的函数关系式为w=40n+3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.【解析】(1)设桂花树的单价是x元,可得:3x+2(x−40)=370,解得桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得w=40n+3000,由一次函数性质得购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.本题考查一元一次方程及一次函数的应用,解题的关键是读懂题意,列出方程和函数关系式.24.【答案】(1)证明:连接OC,∵BC平分∠ABE,∴∠ABC=∠CBD,∵OC=OB,∴∠ABC=∠OCB,∵∠PCA=∠CBD,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠PCA+∠ACO=90°,∴∠PCO=90°,∴OC⊥PC,∵OC是半径,∴PC是⊙O的切线;(2)解:连接AE,设OB=OC=r,∵PC=2√2OB,∴PC=2√2r,∴OP=√OC2+PC2=√r2+(2√2r)2=3r,∵PB=12,∴4r=12,∴r=3,由(1)可知,∠OCB=∠CBD,∴OC//BD,∴OCBD =OPPB,∠D=∠PCO=90°,∴3BD =912,∴BD=4,∵AB是直径,∴∠AEB=90°,∴∠AEB=∠D=90°,∴AE//PD,∴BEBD =BABP,∴BE4=912,∴BE=3.【解析】(1)欲证明PC是⊙O的切线,只要证明PC⊥OC即可;(2)设OB=OC=r,证明OP=3r,可得4r=12,推出r=3,利用平行线分线段成比例定理求出BD,BE即可.本题属于圆综合题,考查了切线的判定,解直角三角形,平行线的判定和性质等知识,解题的关键是学会有添加常用辅助线,构造平行线解决问题,属于中考压轴题.25.【答案】解:(1)∵y=ax2+2x+b经过B(3,0),C(0,3),∴{b=39a+6+b=0,∴{a=−1b=3,∴抛物线的解析式为y=−x2+2x+3,∵y=−(x−1)2+4,∴抛物线的顶点D(1,4);(2)如图1中,连接BC ,过点C 作CH ⊥BD 于点H.设抛物线的对称轴交x 轴于点T .∵C(0,3),B(3,0),D(1,4),∴BC =3√2,CD =√2,BD =√22+42=2√5,∴BC 2+CD 2=BD 2,∴∠BCD =90°,∵12⋅CD ⋅CB =12⋅BD ⋅CH ,∴CH =√2×3√22√5=3√55, ∵EF ⊥x 轴,DT ⊥x 轴,∴EF//DT ,∴EF DT =BE BD =BF BT , ∴m4=2√5=BF 2,∴BE =√52m ,BF =12m , ∴△BFE 与△DEC 的面积之和S =12×(2√5−√52m)×3√55+12×m ×12m =14(m −32)2+3916,∵14>0,∴S 有最小值,最小值为3916,此时m =32,∴m =32时,△BFE 与△DEC 的面积之和有最小值.(3)存在.理由:如图2中,由题意抛物线L2的对称轴x=5,M(6,−3).设P(5,m),当BP=BM=3√2时,22+m2=(3√2)2,∴m=±√14,∴P1(5,√14),P2(5,−√14),当PB=PM时,22+m2=12+(m+3)2,解得,m=−1,∴P3(5,−1),当BM=PM时,(3√2)2=12+(m+3)2,解得,m=−3±√17,∴P4(5,−3+√17),P5(5,−3−√17),综上所述,满足条件的点P的坐标为P1(5,√14),P2(5,−√14),P3(5,−1),P4(5,−3+√17),P5(5,−3−√17).【解析】(1)利用待定系数法求出a,b的值即可;(2)如图1中,连接BC,过点C作CH⊥BD于点H.设抛物线的对称轴交x轴于点T.首先证明∠DCB=90°,利用面积法求出CH,构建二次函数,利用二次函数的性质即可解决问题;(3)如图2中,由题意抛物线L2的对称轴x=5,M(6,−3).设P(5,m),分三种情形:当BP= BM=3√2时,当PB=PM时,当BM=PM时,分别构建方程求解即可.本题属于二次函数综合题,考查了二次函数的性质,等腰三角形的判定和性质,中心对称变换等知识,解题的关键是学会根据二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页(共8页) 数学试卷 第2页(共8页)
绝密★启用前
广西河池市2019年初中毕业生学业考试
数 学
一、选择题(本大题共12小题,共36.0分) 1.计算34-,结果是
( ) A .1-
B .7-
C .1
D .7
2.如图,1120=︒∠,要使a b ∥,则2∠的大小是
( )
A .60︒
B .80︒
C .100︒
D .120︒ 3.下列式子中,为最简二次根式的是
( )
A
. B
C
D
4.某几何体的三视图如图所示,该几何体是
( )
A .圆锥
B .圆柱
C .三棱锥
D .球 5.不等式组231
21x x x -⎧⎨+⎩≤>的解集是
( )
A .2x ≥
B .1x <
C .15x ≤<
D .12x <≤
6.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是
( )
A .53,53
B .53,56
C .56,53
D .56,56
7.如图,在ABC △中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是
( )
A .
B F =∠∠
B .B BCF =∠∠
C . AC CF =
D .AD CF = 8.函数2y x =-的图象不经过
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,则图中与AEB ∠相等的角的个数是
( )
A .1
B .2
C .3
D .4 10.如图,在正六边形ABCDEF
中,AC =
( )
A .1
B
.
C
D .2
11.如图,抛物线2y ax bx c =++的对称轴为直线1x =,则下列结论中,错误的是( )
A .0ac <
B .240b ac ->
C .20a b -=
D .0a b c -+=
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
-------------在
--------------------此--------------------
卷--------------------
上--------------------答--------------------
题--------------------
无--------------------
效---
-------------
数学试卷 第3页(共8页) 数学试卷 第4页(共8页)
12.如图,ABC △为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是
( )
A .
B .
C .
D .
二、填空题(本大题共6小题,共18.0分)
13.分式方程1
12
x =-的解为 .
14.如图,以点O 为位似中心,将OAB △放大后得到OCD △,2OA =,3AC =,则
=AB
CD
.
15.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是 .
16.如图,PA ,PB 是O e 的切线,A ,B 为切点,38OAB =︒∠,则P =∠ °.
17.如图,在平面直角坐标系中,()2,0A ,()0,1B ,AC 由AB 绕点A 顺时针旋转90︒而得,则AC 所在直线的解析式是 .
18.1a ,2a ,3a ,4a ,5a ,6a ,…,是一列数,已知第1个数14a =,第5个数55a =,且任意三个相邻的数之和为15,则第2019个数2019a 的值是 三、计算题(本大题共1小题,共6.0分)
19.
计算:2
13|3|2-⎛⎫
+- ⎪⎝⎭

四、解答题(本大题共7小题,共60.0分)
20.分解因式:()()2
125x x -+-.
21.如图AB 为O e 的直径,点C 在O e 上.
(1)尺规作图:作BAC ∠的平分线,与O e 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.
数学试卷 第5页(共8页) 数学试卷 第6页(共8页)
22.如图,在河对岸有一棵大树A ,在河岸B 点测得A 在北偏东60︒方向上,向东前进
120 m 到达C 点,测得A 在北偏东30︒方向上,求河的宽度(精确到0.1 m ).参考
1.414
1.732≈.
23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:
(1)直接写出本次调查的样本容量和表中a ,b ,c 的值; (2)将折线图补充完整;
(3)该校现有2 000名学生,估计该校参加音乐兴趣班的学生有多少人?
24.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.
(1)跳绳、毽子的单价各是多少元?
(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销售? 25.如图,五边形ABCDE 内接于O e ,CF 与O e 相切于点C ,交AB 延长线于点F . (1)若AE DC =,E BCD =∠∠,求证:DE BC =; (2)若2OB =,AB BD DA ==,45F =︒∠,求CF 的长.
26.在平面直角坐标系中,矩形ABCD 的顶点坐标为()0,0A ,
()6,0B ,()6,8C ,()0,8D ,AC ,
BD 交于点E .
(1)如图(1),双曲线1
k y x =
过点E ,直接写出点E 的坐标和双曲线的解析式; (2)如图(2),双曲线2k
y x
=与BC ,CD 分别交于点M ,N ,点C 关于MN 的对
称点C '在y 轴上.求证CMN CBD △~△,并求点C '的坐标;
(3)如图(3),将矩形ABCD 向右平移m (0m >)个单位长度,使过点E 的双曲线3
k y x
=
与AD 交于点P .当AEP △为等腰三角形时,求m 的值.
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------题--------------------无--------------------
效---
-------------
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
谢谢观赏
谢谢观赏
数学试卷第7页(共8页)数学试卷第8页(共8页)。

相关文档
最新文档