函数对称性的几个常用结论
抽象函数的对称性常用结论
抽象函数的对称性常用结论知识与方法1.轴对称:如果函数()y f x =满足122x x a +=,就有()()12f x f x =,则()f x 的图象关于直线x a =对称.记法:自变量关于a 对称,函数值相等.例如,()()2f x f x +=-表示()f x 关于1x =对称,()()f m x f n x +=-表示()f x 关于2m n x +=对称.2.中心对称:若函数()y f x =满足122x x a +=,就有()()122f x f x b +=,则()f x 关于点(),a b 对称.记法:自变量关于a 对称,函数值关于b 对称.例如,()()112f x f x ++-=表示()f x 关于()1,1对称,()()f m x f n x a ++-=表示()f x 关于,22m n a +⎛⎫ ⎪⎝⎭对称.3.常用结论(视频中有推导这些结论):(1)如果函数()f x 有两条对称轴,则()f x 一定是周期函数,周期为对称轴距离的2倍.(2)如果函数()f x 有一条对称轴,一个对称中心,则()f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)如果函数()f x 有在同一水平线上的两个对称中心,则()f x 一定是周期函数,周期为对称中心之间距离的2倍.典型例题【例1】已知函数()y f x =满足()()20f x f x --=()x ∈R ,且在[)1,+∞上为增函数,则()A.()()()112f f f ->> B.()()()121f f f >>-C.()()()121f f f ->> D.()()()211f f f >->【解析】()()()()()202f x f x f x f x f x --=⇒=-⇒的图象关于直线1x =对称,所以()()13f f -=,因为123<<,且()f x 在[)1,+∞上为增函数,所以()()()123f f f <<,从而()()()121f f f ->>【答案】C【例2】己知函数()f x 满足()()2f x f x =-()x ∈R ,若函数()1y x f x =--共有3个不同的零点1x 、2x 、3x ,则123x x x ++=_________.【解析】()()()2f x f x f x =-⇒的图象关于1x =对称,()()101x f x x f x --=⇒-=,由于1y x =-的图象也关于1x =对称,故它们的交点关于1x =对称,设123x x x <<,则必有1312x x +=且21x =,故1233x x x ++=.【答案】3【例3】已知函数()f x 满足()()22f x f x -=-()x ∈R ,若()()104f f -+=,则()()23f f +=_______.【解析】()()()()2222f x f x f x f x -=-⇒-+=,分别取3x =和2x =得:()()()()132022f f f f ⎧-+=⎪⎨+=⎪⎩,两式相加得:()()()()13024f f f f -+++=,又()()104f f -+=,所以()()230f f +=.【答案】0【例4】偶函数()y f x =的图象关于直线2x =对称,若()33f =,则()1f -=_______.【解析】由题意,()f x 周期为4,故()()133f f -==.【答案】3【反思】对称轴+对称轴=周期,周期为对称轴之间距离的2倍.【例5】(2018·新课标Ⅱ卷)若()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()1250f f f +++ =()A.50- B.0 C.2 D.50【解析】因为()f x 是奇函数,且()()11f x f x -=+,所以()()11f x f x +=--,故()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即()f x 是以4为周期的周期函数,故()()()3112f f f =-=-=-,在()()11f x f x -=+中取1x =-知()()200f f ==,又()()400f f ==,所以()()()()()123420200f f f f +++=++-+=,故()()()1250f f f +++ ()()()()()()()()145845484950f f f f f f f f =+++++++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()()()()4950122f f f f =+=+=.【答案】C【反思】对称轴+对称中心=周期,周期为二者之间距离的4倍,熟悉这一结论,可直接得出本题()f x 的周期为4.【例6】定义在R 上的奇函数()f x 满足()()20f x f x ++-=,当[]1,0x ∈-时,()f x x =,则92f ⎛⎫ ⎪⎝⎭=_______.【解析】由题意,()f x 有对称中心()0,0和()1,0,故其周期为2,所以91112222f f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】12【反思】若()f x 有位于同一水平线上的两个对称中心,则()f x 为周期函数,周期为二者之间距离的2倍.强化训练1.已知函数()y f x =满足()()40f x f x +--=()x ∈R ,且()f x 在[)2,+∞上为减函数,则()A.()()()22log 3log 5.13f f f >> B.()()()22log 5.1log 33f f f >>C.()()()22log 5.13log 3f f f >> D.()()()22log 33log 5.1f f f >>【解析】()()()40f x f x f x +--=⇒的图象关于2x =对称,结合()f x 在[)2,+∞上为减函数知当自变量与2的距离越大时,函数值越小,如图,而22234log 32log log 43-==,225.1log 5.12log 4-=,321-=,所以225.14log log 143<<,故()()()223log 3log 5.1f f f <<.【答案】B2.函数()y f x =满足()()2f x f x =-,且当[)1,x ∈+∞时,()1122x x f x e e x --=--+,则()A.()()()121f f f <<- B.()()()211f f f <-<C.()()()121f f f -<< D.()()()112f f f -<<【解析】()()()()213f x f x f f =-⇒-=,当1x ≥时,()11220x x f x e e --'=+-≥-=,所以()f x 在[)1,+∞上单调递增,故()()()()1231f f f f <<=-.【答案】A3.已知函数()f x 满足()()20f x f x ---+=()x ∈R ,若函数()22y x x f x =+-共有3个零点1x ,2x ,3x ,则123x x x ++=________.【解析】()()()()()202f x f x f x f x f x ---+=⇒-=-+⇒的图象关于1x =-对称,()()22202x x f x x x f x +-=⇔+=,而22y x x =+的图象也关于1x =-对称,故它们的交点也关于1x =-对称,所以1233x x x ++=-.。
高中数学《函数对称性》重要结论—优享文档
高中数学《函数对称性》重要结论二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y =f(x)关于直线x =a 轴对称,则以下三个式子成立且等价:(1)f(a +x)=f(a -x) (2)f(2a -x)=f(x) (3)f(2a +x)=f(-x)性质2 若函数y =f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价:(1)f(a +x)=-f(a -x)(2)f(2a -x)=-f(x)(3)f(2a +x)=-f(-x)易知,y =f(x)为偶(或奇)函数分别为性质1(或2)当a =0时的特例。
有关函数对称性的几个重要结论
有关函数对称性的几个重要结论函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一函数自身的对称性[重要结论1]函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b。
证明:(必要性)设点 P(x,y)是 y=f(x)图像上任一点,∵点 P(x,y)关于点 A(a,b)的对称点P’(2a-x,2b-y)也在 y=f(x)图像上,∴ 2b-y=f(2a-x)。
即 y+f(2a-x)=2b,故 f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点 P(x0,y0)是 y=f(x)图像上任一点,则 y0=f(x0)。
∵f(x)+f(2a-x)=2b,∴f(x0)+f(2a-x0)=2b,即 2b-y0=f(2a-x0)。
故点P’(2a-x0,2b-y0)也在 y=f(x)图像上,而点 P与点P’关于点 A(a,b)对称,充分性得征。
推论 1:函数 y=f(x)的图像关于原点 O对称的充要条件是 f(x)+f(-x)=0。
[重要结论 2]函数 y=f(x)的图像关于直线 x=a对称的充要条件是:f(a+x)=f(a-x),即 f(x)=f(2a-x)(证明同上)推论 2:函数 y=f(x)的图像关于 y轴对称的充要条件是 f(x)=f(-x)[重要结论 3](1)若函数 y=f(x)图像同时关于点 A(a, c)和点 B(b,c)成中心对称(a≠b),则 y=f(x)是周期函数,且 2|a-b|是其一个周期。
(2)若函数 y=f(x)图像同时关于直线 x=a和直线 x=b成轴对称(a≠b),则 y=f(x)是周期函数,且 2|a-b|是其一个周期。
有关函数对称性的几个重要结论
有关函数对称性的几个重要结论发表时间:2010-10-15T11:36:34.293Z 来源:《学园》2010年第5期供稿作者:赵建刚[导读] 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
赵建刚河北省石家庄二中函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一函数自身的对称性[重要结论 1]函数 y=f(x)的图像关于点 A(a,b)对称的充要条件是 f(x)+f(2a-x)=2b。
证明:(必要性)设点 P(x,y)是 y=f(x)图像上任一点,∵点 P(x,y)关于点 A(a,b)的对称点 P’(2a-x,2b-y)也在 y =f(x)图像上,∴ 2b-y=f(2a-x)。
即 y+f(2a-x)=2b,故 f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点 P(x0,y0)是 y=f(x)图像上任一点,则 y0=f(x0)。
∵f(x)+f(2a-x)=2b,∴f(x0)+f(2a-x0)=2b,即 2b-y0=f(2a-x0)。
故点 P’(2a-x0,2b-y0)也在 y=f(x)图像上,而点 P与点 P’关于点 A(a,b)对称,充分性得征。
推论 1:函数 y=f(x)的图像关于原点 O对称的充要条件是 f(x)+f(-x)=0。
[重要结论 2]函数 y=f(x)的图像关于直线 x=a对称的充要条件是: f(a+x)=f(a-x),即 f(x)=f(2a-x)(证明同上)推论 2:函数 y=f(x)的图像关于 y轴对称的充要条件是 f(x)=f(-x)[重要结论 3](1)若函数 y=f(x)图像同时关于点 A (a, c)和点 B(b,c)成中心对称( a≠b),则 y=f(x)是周期函数,且 2|a-b|是其一个周期。
有关函数对称性的几个重要结论
有关函数对称性的几个重要结论作者:赵建刚来源:《学园》2010年第05期函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一函数自身的对称性[重要结论1]函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b。
证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P’(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)。
即y+f(2a-x)=2b,故f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。
∵f(x)+f(2a-x)=2b,∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。
故点P’(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P’关于点A(a,b)对称,充分性得征。
推论1:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0。
[重要结论2]函数y=f(x)的图像关于直线x=a对称的充要条件是:f(a+x)=f(a-x),即f(x)=f(2a-x)(证明同上)推论2:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)[重要结论3](1)若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
(2)若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
函数对称性5个结论的推导
函数对称性5个结论的推导1.奇函数的推导:奇函数是指函数关于原点对称。
设函数f(x)是奇函数,那么有f(x)=-f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=-f(x)。
这表明,当自变量的符号发生变化时,函数值也会发生变化,并保持相反的正负号。
例如,f(2)=-f(-2),f(3)=-f(-3)等等。
因此,奇函数关于原点对称。
2.偶函数的推导:偶函数是指函数关于y轴对称。
设函数f(x)是偶函数,那么有f(x)=f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=f(x)。
这表明,当自变量的符号发生变化时,函数值保持不变。
例如,f(2)=f(-2),f(3)=f(-3)等等。
因此,偶函数关于y轴对称。
3.半个周期对称的推导:半个周期对称是指函数的两个相邻的波峰或波谷关于y轴对称。
设函数f(x)是半个周期对称,那么有f(x)=f(x+T/2),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/2得到f(x+T/2)=f(x+T/2+T)=f(x+T)=f(x),即f(x)=f(x+T/2)。
这表明,函数在每个周期的半个周期上关于y轴对称。
4.四分之一周期对称的推导:四分之一周期对称是指函数的四个相邻的波峰或波谷关于y轴对称。
设函数f(x)是四分之一周期对称,那么有f(x)=f(x+T/4),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/4得到f(x+T/4)=f(x+T/4+T)=f(x+T)=f(x),即f(x)=f(x+T/4)。
这表明,函数在每个周期的四分之一周期上关于y轴对称。
5.中心对称的推导:中心对称是指函数关于一些点对称,该点称为中心。
设函数f(x)是中心对称,那么有f(x)=f(2a-x),其中a表示中心点的横坐标。
为了推导这个结论,我们考虑将自变量x替换成2a-x,得到f(2a-x)=f(x)。
(完整版)函数周期性与对称性常见结论
(完整版)函数周期性与对称性常见结论
函数周期性与对称性是数学中一种基本的类型,可以用来描述函数的特征。
这种性质
极大地影响着函数的曲线形状,对于函数研究也是非常重要的。
本文为读者介绍函数周期
性与对称性常见的结论。
一、周期性
1. 可以说函数f(x+T)与f(x)的图像有周期性,T<>0是一个常数,也称为函数的周期,它可以定义一个函数的曲线;
2. 周期性循环是一种规律,表明函数的值随着参数的改变而不断变化,但最终又会
回到原来的状态;
3. 一般情况下,定义域内的函数都具有周期性,当x的取值超出定义域时,函数f(x)也可能有周期性;
4. 一个周期性函数的周期T是其变化模式的重要特征,其变化规律如果舍弃它,函
数f(x)就不再具有周期性;
5. 若函数f(x)具有周期性,那么它的最小正周期Tc就定义了整个函数的曲线,可以视为一种最基本的形状。
二、对称性
1. 当函数f(x)满足f(-x)=f(x)的性质时,称此函数具有对称性;
2. 一个函数的平行四边形对称性表明,函数f(-x)和f(x)的图像是完全一模一样的,而不管x的取值为多少;
3. 一些函数具有点对称性,点对称性表明f(-x0)=f(x0),即对称中心为x0的函数图像;
4. 如果一个函数的图象可以通过给定的任意角度旋转而不失真,则称其为角度对称性;
5. 对称性可有效描述函数f(x)的特征,常用于应用函数研究中。
函数的性质对称性
函数的性质对称性张磊函数的对称性是函数的重要性质之一,主要包括轴对称和中心对称两种.在解几中,许多问题中都隐含对称性,如角的平分线,线段的中垂线,光的反射等,要注意挖掘,充分利用对称性,中点坐标公式,斜率关系加以解决;在函数中,对称性与函数的奇偶性、周期性又有着内在的联系,解题时常常要进行相互转化,再加以解决.一对称性的有关结论1 y=f(x)关于x=a对称f(2ax) =f(x) f(2a+x) =f(-x)f(ax) =f(x+x) 内反外同轴对称对称f(ax) =f(bx)引申 y=f(x)关于x=a+b22 y=f(x)关于点(a,0)对称f(2ax) =-f(x)f(2a+x) =-f(-x)f(ax) =f(a+x) 内外都反点对称引申 y=f(x)关于点(a,b)对称 f(2ax) =2bf(x)二对称性与奇偶性关系奇函数的图像关于原点(0 ,0)对称;偶函数图像关于y轴对称.奇偶性实际是一种特殊的对称性.三对称性与周期性关系双对称周期性 (联系正余余弦函数对称性与周期性关系) 1 {f (2a +x ) =f (−x )f (2b +x ) =f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |2 {f (2a +x )=−f (−x )f (2b +x )=−f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |3 {f (2a +x )=f (−x )f (2b +x )=−f (−x )f (2a +x )=− f (2b +x ) f(2a-2b+x)= -f(x) f(4a-4b+x)= f(x)所以函数f(x)是周期函数,周期为|4a −4b |四 点关于线的对称点点(x 0 ,y 0)关于直线ax+by+c=0的对称点为(x 02a a 2+b 2(a x 0+by 0+c ) , y 02b a 2+b 2(a x 0+by 0+c ))。
一、有关对称性的常用结论
函数的对称性 一、有关对称性的常用结论(一)函数图象自身的对称关系1、轴对称(1))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;(2) 函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =- ⇔()(2)f x f a x -=+;(3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称。
2、中心对称(1))(x f -=-)(x f ⇔函数)(x f y =图象关于原点对称;.(2)函数)(x f y =图象关于(,0)a 对称⇔)()(x a f x a f --=+⇔()(2)f x f a x =-- ⇔)2()(x a f x f +=-;(3)函数)(x f y =图象关于),(b a 成中心对称⇔b x a f x a f 2)()(=++-⇔b x f x a f 2)()2(=+-(4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函数)(x f y =的图象关于点)2,2(c b a + 对称。
(二)两个函数图象之间的对称关系 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线2a b x -=对称。
推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。
推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。
2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点)2,2(c a b -对称。
推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。
函数的性质对称性
函数的性质对称性集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]函数的性质对称性张磊函数的对称性是函数的重要性质之一,主要包括轴对称和中心对称两种.在解几中,许多问题中都隐含对称性,如角的平分线,线段的中垂线,光的反射等,要注意挖掘,充分利用对称性,中点坐标公式,斜率关系加以解决;在函数中,对称性与函数的奇偶性、周期性又有着内在的联系,解题时常常要进行相互转化,再加以解决.一对称性的有关结论1 y=f(x)关于x=a对称f(2ax) =f(x) f(2a+x) =f(-x)f(ax) =f(x+x) 内反外同轴对称对称f(ax) =f(bx)引申 y=f(x)关于x=a+b22 y=f(x)关于点(a,0)对称f(2ax) =-f(x)f(2a+x) =-f(-x)f(ax) =f(a+x) 内外都反点对称引申 y=f(x)关于点(a,b)对称 f(2ax) =2bf(x)二对称性与奇偶性关系奇函数的图像关于原点(0 ,0)对称;偶函数图像关于y轴对称.奇偶性实际是一种特殊的对称性.三对称性与周期性关系双对称周期性 (联系正余余弦函数对称性与周期性关系)1 {f (2a +x ) =f (−x )f (2b +x ) =f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |2 {f (2a +x )=−f (−x )f (2b +x )=−f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |3 {f (2a +x )=f (−x )f (2b +x )=−f (−x )f (2a +x )=− f (2b +x ) f(2a-2b+x)= -f(x) f(4a-4b+x)= f(x)所以函数f(x)是周期函数,周期为|4a −4b |四 点关于线的对称点点(x 0 ,y 0)关于直线ax+by+c=0的对称点为(x 02a a 2+b 2(a x 0+by 0+c ) , y 02b a 2+b 2(a x 0+by 0+c ))。
函数的周期性和对称性常用结论
函数的周期性和对称性常用结论1.若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”.2.周期性:(1)若()()f x a f b x +=+,则||T b a =-(2)若()()f x a f b x +=-+,则2||T b a =-(3)若1()()f x a f x +=±,则2T a = (4)若1()()1()f x f x a f x -+=+,则2T a = (5)若1()()1()f x f x a f x ++=-,则4T a = 注:(3)、(4)、(5)要求知道并会推导,不要求死记3.对称性(1)若()()f a x f b x +=-,则()f x 的对称轴为2a b x += (2)若()()f a x f b x c +=--+,则()f x 的图象关于点(,)22a b c +中心对称 (3)函数()y f a x =+与()y f b x =-的图象关于2a b x +=对称 4.若函数的图象同时具备两种对称性:即两条对称轴、两个对称中心、一条对称轴一个对称中心,则函数必定为周期函数,反之亦然。
(只需要知道这个结论,用的时候会推导即可)(1)若()f x 的图象有两条对称轴x a =和x b =,则()f x 必定为周期函数,其一个周期为2||b a -;(2)若()f x 的图象有两个对称中心(,0)a 和(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为2||b a -;(3))若()f x 的图象有一条对称轴x a =和一个对称中心(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为4||b a -;。
(完整版)对称性和周期性性质总结
函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。
特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。
4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。
5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。
6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。
我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。
那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。
2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。
函数对称性的总结
函数对称性的总结1. 两个关于函数图象对称性的结论1.x=02.x=(a+b)/2.∵y=f(a+x)=f[(a+b)/2+(a-b)/2+x]=f[(a+b)/2+t],其中t=(a-b)/2+x,而y=f(b-x)=f[(a+b)/2-(a-b)/2-x]=f[(a+b)/2-((a-b)/2+x)]=f[(a+b )/2-t],所以:函数y=f(a+x)与函数y=f(b-x)的图象关于直线x=(a+b)/2对称。
楼主你好:2的答案就是x=(a+b)/2.不是x=(b-a)/2.若是后者,当a=b时对称轴就成x=0了,这明显错误。
其实当a=b时对称轴明显是x=a,与我这里的答案符合。
2. 函数对称性结论是怎样推出的周期函数是指函数值随自变量的变化而呈周期性变化,正弦、余弦函数都是周期函数.表达式是f(x+T)=f(x)(x取任意值),假如一个函数能找到满意这一条件的T,那么这个函数就叫做周期函数,周期为T.f(1+x)=f(1-x) (1+x)+(1-x)=2 也就是说在这个函数中假如两个自变量的平均值为1,则它们的函数值相等,也就是此函数关于x=1对称.同理,f(2+x)=f(2-x),(2+x)+(2-x)=4 也就是说在这个函数中假如两个自变量的平均值为2,则它们的函数值相等,也就是此函数关于x=2对称.假如一个函数同时具备两个对称轴,那么,相临的轴的间距就是函数的半个周期,你可以对比正弦、余弦函数的图像发觉这个规律.这样,本题的函数周期为2,那么函数必定还关于x=0对称,所以函数是偶函数.依据定义或者画图象,不过画图象比较麻烦,一般选择用定义3. 求真正有用的函数周期性对称性结论对于函数y=f(x)周期性1.关于x=a and x=b(a&gt;b) 都对称函数周期2(a-b)2.关于(a,0) (b,0)都对称周期同上3.关于(a,0)和x=b 都对称周期是4(a-b)对称性1. f(a+x)=f(b-x) 那么y=f(x)的图像关于y=(a+b)/2对称2.f(a-x)=-f(b+x),那么y=f(x)的图像关于((a+b)/2 ,0 )对称…………许多可以搜一下,更具体的现在考得不多了我感觉开辟思路吧。
函数的周期性和对称性常用结论
函数的周期性和对称性常用结论1.若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”.2.周期性:(1)若()()f x a f b x +=+,则||T b a =-(2)若()()f x a f b x +=-+,则2||T b a =-(3)若1()()f x a f x +=±,则2T a = (4)若1()()1()f x f x a f x -+=+,则2T a = (5)若1()()1()f x f x a f x ++=-,则4T a = 注:(3)、(4)、(5)要求知道并会推导,不要求死记3.对称性(1)若()()f a x f b x +=-,则()f x 的对称轴为2a b x += (2)若()()f a x f b x c +=--+,则()f x 的图象关于点(,)22a b c +中心对称 (3)函数()y f a x =+与()y f b x =-的图象关于2a b x +=对称 4.若函数的图象同时具备两种对称性:即两条对称轴、两个对称中心、一条对称轴一个对称中心,则函数必定为周期函数,反之亦然。
(只需要知道这个结论,用的时候会推导即可)(1)若()f x 的图象有两条对称轴x a =和x b =,则()f x 必定为周期函数,其一个周期为2||b a -;(2)若()f x 的图象有两个对称中心(,0)a 和(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为2||b a -;(3))若()f x 的图象有一条对称轴x a =和一个对称中心(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为4||b a -;。
函数对称性的总结
参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。
2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。
3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。
4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。
5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。
6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。
对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。
高考数学二级结论快速解题:专题06 函数图象的对称性(解析版)
专题06函数图象的对称性一、结论已知函数()f x 是定义在R 上的函数.(1)若()()f x a f b x 恒成立,则()y f x 的图象关于直线2a b x 对称,特别地,若()()f a x f a x 恒成立,则()y f x 的图象关于直线x a 对称;最常逆应用:若()y f x 关于x a 对称:可得到如下结论中任意一个:()()()(2)()(2)f a x f a x f x f a x f x f a x;周期性与对称性记忆口诀:同号周期,异号对称.(2)若()()f a x f b x c ,则()y f x 的图象关于点(,22a b c 对称.特别地,若()()2f a x f a x b 恒成立,则()y f x 的图象关于点(,)a b 对称.特别地,若()()f a x f a x 恒成立,则()y f x 的图象关于点(,0)a 对称.最常逆应用:若()y f x 关于x a 对称:可得到如下结论中任意一个:()()()(2)()(2)f a x f a x f x f a x f x f a x二、典型例题1.(2021·四川雅安·模拟预测(文))已知函数 f x 是定义域为R 的奇函数,且 1f x 是偶函数.当01x 时, 2815f x x x ,则 7f ()A .16B .8C .8D .16【答案】B【解析】由 1f x 是偶函数可知 f x 对称轴为1x ,故 2(1)f x f x ,又函数 f x 为奇函数,故 (2)f x f x ,综合(1)(2)得:(2)()f x f x 可得到函数最小正周期为4T ,所以 71118158f f f .故选:B【反思】函数的对称性和周期性,奇偶性,往往是紧密结合在一起的,其综合性更丰富考查函数的性质,如本例中 f x 对称轴为1x ,可以得到很多结论,比如:(1)(1)f x f x ,()(2)f x f x , 2f x f x 等,那么在解题时如何取舍呢,选哪个结论能更快的解题?对于这个疑问,需同时兼顾本例中 f x 是定义域为R 的奇函数,可得到 f x f x ,纵观整体,可以看出对于 f x 对称轴为1x 得到的结论中选取 2f x f x 从而进行快速求出周期.2.(2021·全国·模拟预测(文))已知定义在R 上的奇函数 f x 满足 11f x f x ,且在区间 1,2上 f x 是增函数,令πsin7a ,3πsin 7b ,5πsin 7c ,则 f a ,()f b , f c 的大小关系为___________.【答案】f a f c f b 【解析】f x 是定义在R 上的奇函数,可得到:()()f x f x ①11(2)()f x f x f x f x ②联立①②得(2)()f x f x 所以 f x 关于1x 对称.由于 f x 在 1,2上递增,所以 f x 在 0,1递减.5π2π2πsin sin πsin 777c,sin y x 在π0,2上递增,所以a c b ,所以 f a f c f b .故答案为:f a f c f b 【反思】函数的对称性和周期性,奇偶性,往往是紧密结合在一起的,其综合性更丰富考查函数的性质,本例中,用数学符号()()f x f x 表示出 f x 是定义在R 上的奇函数,通过化简 11(2)()f x f x f x f x 再联立,可得到:(2)()f x f x 这样就得到了: f x 关于1x 对称.这也是周期性,奇偶性,对称性常考的形式.解题时注意利用已知条件,尤其是对称性的逆应用.三、针对训练举一反三1.(2021·黑龙江·哈尔滨市第六中学校二模(理))已知定义域为R 的函数 f x 在2, 单调递减,且 40f x f x ,则使得不等式 2f x x 20f x 成立的实数x 的取值范围是()A .41x B .1x 或3xC .3x 或1x D .4x 或1x 【答案】D【详解】解: 40f x f x ,则 f x 关于 2,0对称,因为 f x 在 2, 单调递减,∴ f x 在R 上单调递减,又242f x f x ∴ 222042())0(f x x f x f x x f x ,∴ 2()42f x x f x ,∴2421x x x x 或4x ,故选:D .2.(2021·宁夏六盘山高级中学一模(理))已知函数()f x 是R 上的满足(1)(1)f x f x ,且()f x 的图象关于点 1,0对称,当 0,1x 时,()22x f x ,则0122021f f f f 的值为()A .2B .1C .0D .1【答案】D【详解】∵(1)(1)()()f x f x f x f x ,又()f x 关于(1,0)对称,∴(2)()()(4)(2)()f x f x f x f x f x f x ,∴()f x 的周期为4,由函数解析式及性质易知,(0)1f ,(1)0f ,(2)1f ,(3)0f ,(0)(1)(2)(2021)505[(0)(1)(2)(3)](2020)(2021)f f f f f f f f f f 0(0)(1)1f f 故选:D.3.(2021·全国·二模(理))已知()f x 是定义域为R 的奇函数,(1)(1)f x f x ,当01x 时,()1x f x e ,则23x 时,()f x 的解析式为()A .2()1x f x e B .2()1x f x e C .1()1x f x e D .1()1x f x e 【答案】A【详解】()f x 是定义域为R 的,所以()()f x f x ,因为(1)(1)f x f x ,所以()f x 的一条对称轴方程为1112x x x,当01x 时,()1x f x e ,所以当10x ≤≤时,01x ,()e 1()x f x f x 所以()1x f x e ,则23x 时,120x ,所以 22(2)11x x f x e e ,即2()1x f x e .故选:A.4.(2021·山东滨州·一模)定义在R 上的偶函数 f x 满足 22f x f x ,当2,0x 时, 2f x x ,设函数 2e 26x h x x (e 为自然对数的底数),则 f x 与h x 的图象所有交点的横坐标之和为()A .5B .6C .7D .8【答案】D【详解】因为 f x 满足 22f x f x ,所以 f x 图象关于直线2x 对称,因为 f x 是R 上的偶函数,所以 f x 图象关于直线0x 对称,所以 f x 的周期为4,2e 26x h x x 的图象关于直线2x 对称,由 2,0x 时, 2f x x ,作出 f x 图象如图和 2e 26x h x x 的图象由图知 f x 与 h x 的图象在区间 2,6 有四个交点,设交点横坐标分别为1234,,,x x x x ,且1422x x ,2322x x ,所以12348x x x x ,所以 f x 与 h x 的图象所有交点的横坐标之和为8,故选:D5.(2021·河南·二模(文))已知定义域为R 的函数()f x 在 2, 单调递减,且(4)()0f x f x ,则使得不等式2(1)0f x x f x 成立的实数x 的取值范围是()A .31x B .1x 或3x C .3x 或1x D .1x 【答案】C【详解】(4)()0f x f x ,则()f x 关于(2,0)对称,因为()f x 在 2, 单调递减,所以()f x 在R 上单调递减,所以(1)(3)f x f x ,由 2(1)0f x x f x 得2(3)0f x x f x ,所以 2(3)f x x f x ,所以23x x x ,解得1x 或3x .故选:C .6.(2021·黑龙江肇州·模拟预测(文))已知()f x 是定义在R 上的函数,且对任意x R 都有(2)(2)4(2)f x f x f ,若函数(1)y f x 的图象关于点(1,0) 对称,且(1)3f ,则(2021)f ()A .6B .3C .0D .3【答案】D 令0x ,得(2)(2)4(2)f f f ,即(2)0f ,所以(2)(2)f x f x ,因为函数(1)y f x 的图象关于点(1,0) 对称,所以函数()y f x 的图象关于点(0,0)对称,即()()f x f x ,所以(2)(2)(2)f x f x f x ,即(4)()f x f x ,可得(8)()f x f x ,则(2021)(25383)(3)(1)3f f f f ,故选:D.7.(2021·广西·模拟预测(文))已知()f x 是定义在R 上的奇函数,满足 11f x f x , 12f ,则 234f f f ()A .0B .2C .2D .6【答案】B【详解】因为 11f x f x ,所以()f x 关于直线1x 对称;又因为()f x 是定义在R 上的奇函数,所以 111f x f x f x , 00f ,则 2f x f x ,因此 42f x f x f x ,所以 f x 是周期为4的函数,因此 400f f , 3112f f f ;又()f x 关于直线1x 对称,所以 200f f ;因此 2340202f f f 。
有关函数对称性的几个重要结论
有关函数对称性的⼏个重要结论赵建刚河北省⽯家庄⼆中函数是中学数学教学的主线,是中学数学的核⼼内容,也是整个⾼中数学的基础。
函数的性质是竞赛和⾼考的重点与热点,函数的对称性是函数的⼀个基本性质,对称关系不仅⼴泛存在于数学问题之中,⽽且利⽤对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本⽂拟通过函数⾃⾝的对称性和不同函数之间的对称性这两个⽅⾯来探讨函数与对称有关的性质。
⼀函数⾃⾝的对称性[重要结论 1]函数 y=f(x)的图像关于点 A(a,b)对称的充要条件是 f(x)+f(2a-x)=2b。
证明:(必要性)设点 P(x,y)是 y=f(x)图像上任⼀点,∵点 P(x,y)关于点A(a,b)的对称点 P’(2a-x,2b-y)也在 y=f(x)图像上,∴ 2b-y=f(2a-x)。
即 y+f(2a-x)=2b,故 f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点 P(x0,y0)是 y=f(x)图像上任⼀点,则 y0=f(x0)。
∵f(x)+f(2a-x)=2b,∴f(x0)+f(2a-x0)=2b,即 2b-y0=f(2a-x0)。
故点 P’(2a-x0,2b-y0)也在 y=f(x)图像上,⽽点 P与点 P’关于点 A(a,b)对称,充分性得征。
推论 1:函数 y=f(x)的图像关于原点 O对称的充要条件是 f(x)+f(-x)=0。
[重要结论 2]函数 y=f(x)的图像关于直线 x=a对称的充要条件是:f(a+x)=f(a-x),即 f(x)=f(2a-x)(证明同上)推论 2:函数 y=f(x)的图像关于 y轴对称的充要条件是 f(x)=f(-x)[重要结论 3](1)若函数 y=f(x)图像同时关于点 A(a, c)和点 B(b,c)成中⼼对称( a≠b),则 y =f(x)是周期函数,且 2|a-b|是其⼀个周期。
(2)若函数 y=f(x)图像同时关于直线 x=a和直线 x=b成轴对称( a≠b),则 y=f(x)是周期函数,且 2|a-b|是其⼀个周期。
函数点对称线对称及周期总结
函数点对称线对称及周期总结
一、函数点对称
1、定义
2、对称性的分类
(1)沿直线对称:函数点沿直线x=a或y=b对称,其曲线图形同沿直
线x=a或y=b对称,//可逆置的对称转换关系为x→a-x或y→b-y
(2)沿原点对称:函数点沿对称轴x=0或y=0对称,其曲线图形同样
沿对称轴x=0或y=0对称,//可逆置的对称转换关系为(x,y)→(–x,–y)或(x,y)→(x,–y)
(3)沿圆心对称:函数点沿圆心(x–a,y–b)对称,其曲线图形同样沿圆心(x–a,y–b)对称,//可逆置的对称转换关系为(x,y)→(2a–x,2b–y)
(4)沿正负对称:函数点沿坐标轴x,y正负对称,其曲线图形同样沿坐标轴x,y正负对称,//可逆置的对称转换关系为(x,y)→(-x,y)或
(x,y)→(x,-y)
3、对称性的应用
(1)函数点判断对称性:由于函数上的点对称,通过函数的点来判断
函数的对称性,能够更加快速准确得出结论。
(2)推广法则:对称性可以推广法则,如果一个函数图像具有其中一
种对称性。