七年级数学有理数的除法2

合集下载

2022人教版数学《有理数的除法法则2》配套教案(精选)

2022人教版数学《有理数的除法法则2》配套教案(精选)

1.4.2 有理数的除法第1课时有理数的除法法则教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出y=a(x-h)2+k的图象.2.掌握形如y=a(x-h)2+k的二次函数图象的性质,并会应用.3.理解二次函数y=a(x-h)2+k与y=ax2之间的联系.一、情境导入对于二次函数y=(x-1)2+2的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数y=a(x-h)2+k的图象和性质【类型一】二次函数y=a(x-h)2+k的图象求二次函数y=x2-2x-1的顶点坐标、对称轴及其最值.解析:把二次函数y=x2-2x-1化为y=a(x-h)2+k(a≠0)的形式,就会很快求出二次函数y=x2-2x-1的顶点坐标及对称轴.解:y=x2-2x-1=x2-2x+1-2=(x-1)2-2,∴顶点坐标为(1,-2),对称轴是直线xx=1时,y最小值=-2.方法总结:把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)形式常用的方法是配方法和公式法.【类型二】二次函数y =a (x -h )2+k 的性质如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =-1是对称轴,有下列判断:①b -2a =0;②4a -2b +c <0;③a -b +c =-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④解析:∵-b 2a=-1,∴b =2a ,即b -2a =0,∴①正确;∵当x =-2时点在x 轴的上方,即4a -2b +c >0,②不正确;∵4a +2b +c =0,∴c =-4a -2b ,∵b =2a ,∴a -b +c =a -b -4a -2b =-3a -3b =-9a ,∴③正确;∵抛物线是轴对称图形,点(-3,y 1)到对称轴x =-1的距离小于点(32,y 2)到对称轴的距离,即y 1>y 2,∴④正确.综上所述,选B. 方法总结:抛物线在直角坐标系中的位置,由a 、b 、c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;抛物线的对称轴是x =-b2a ;当x =2时,二次函数的函数值为y =4a +2b +c ;函数的图象在x 轴上方时,y >0,函数的图象在x 轴下方时,y <0.【类型三】利用平移确定y =a (x -h )2+k 的解析式将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( ) A .y =13(x -2)2-1 B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为:y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1,故选A. 探究点二:二次函数y =a (x -h )2+k 的应用【类型一】y =a (x -h )2+k 的图象与几何图形的综合如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________.(用含a 的式子表示)解析:如图,∵对称轴为直线x =-2,抛物线经过原点,与x 轴负半轴交于点B ,∴OB =4,∵由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4.故答案是:a +4.方法总结:二次函数的图象关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.【类型二】二次函数y =a (x -h )2+k 的实际应用心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (分钟)之间满足函数y =-110(x -13)2+59.9(0≤x ≤30),y 值越大,表示接受能力越强. (1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?解:(1)0≤x ≤13时,学生的接受能力逐步增强;13≤x ≤30时,学生的接受能力逐步降低.(2)当x =10时,y =-110(10-13)2+59.9=59.故第10分钟时,学生的接受能力是59. (3)当x =13时,y 值最大,,故第13分钟时,学生的接受能力最强.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =a (x -h )2+k 的图象与性质,体会数学建模的数形结合思想方法.第2章 图形的轴对称复习课学习目标:1、理解轴对称与轴对称图形的概念,掌握轴对称的性质.2、掌握线段的垂直平分线、角的平分线的性质及应用.3、理解等腰三角形的性质并能够简单应用.4、理解等边三角形的性质并能够简单应用.5、能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏设计简单的轴对称图案.重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用.难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用复习过程:【课前准备】如何画一个图形关于某条直线对称的图形?【课内探究】知识点整理:1、如果一个图形沿着某条直线折叠..后,直线两旁的部分能够互相重合..,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴.轴对称图形是—个具有特殊性质的图形.常见的轴对称图形有:线段、角、等腰三角形、等边三角形、矩形、菱形、正方形、等腰梯形、正n 边形、圆形.2、 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关1、 什么叫轴对称图形?2、 什么叫做两个图形关于某一条直线成轴对称?3、 “轴对称图形”与“两个图形关于某一条直线成轴对称”有什么区别?4、 什么叫做线段的垂直平分线?线段的垂直平分线有什么性质?如何用尺规作出线段的垂直平分线?5、 角的平分线具有什么性质?如何做角平分线?6、 等腰三角形有哪些性质?等边三角形呢?已知哪些条件,可以用尺规做出等腰三角形?7、 如果两个图形关于某直线对称,那么这两个图形具有什么性质?E DBC A 于这条直线对称,这条直线就是它们的对称轴.而两个图形中的各自的相对应点叫做关于这条直线的对称点.(1) 轴对称是指两个图形之间的位置关系;(2) 关于某条直线对称的两个图形是互相重合的;如果两个图形关于某直线对称,那么对称轴是对应点所连的线段的垂直平分线. 牛刀小试:下面几种图形,一定是轴对称图形的是( )3、有两条边相等的三角形叫做等腰三角形.巩固训练:(1)已知△ABC 中,AB = AC ,其周长为18cm ,AB = 5cm ,则BC = .(2)已知等腰三角形的腰长为4cm ,底边长为6cm ,则它的周长为 .(3)已知等腰三角形的两边长分别为6cm 、3cm ,则它的周长是 .(4)已知等腰三角形一边长为3,另一边为5,则它的周长是 .4、线段垂直平分线、角平分线、等腰三角形的性质:① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;(三线合一) ③ 等腰三角形是轴对称图形,它的对称轴是顶角平分线(或底边上的高或底边上的中线)所在的直线.巩固训练:(1) 已知△ABC 中,AB = AC ,∠C = 50°,则∠B = .(2) △ABC 中,AB = AC ,若AD ⊥BC 于D ,则∠1 ∠2,BD CD.(3) 已知等腰三角形的一个底角为45°,则它的顶角为 .(4) 已知等腰三角形的一个角是70°,则其余两个角的度数是 .(5) 已知等腰三角形的一个角是120°,则其余两个角的度数是 . 思考:本章的作图有哪几种类型?(1)作线段的垂直平分线;(2)作角的平分线;(3)作等腰三角形;(4)作对称点.【巩固提升】1、已知A (-1,1),在y 轴上找一点P,使△AOP 是等腰三角形.这样的P 点可能有几个?2、已知Rt △ABC 中,∠C=90°,DE 垂直平分AB(1)若∠CAD=20°,则∠B=____°(2)若AC=4,BC=5,则△ACD 的周长为______.(3) 若∠B=30°,则∠CAD=____°图中共有几组相等的线段?为什么?【课堂小结】通过今天的学习,你对本章又增加了哪些新的认识?【达标检测】1、下列图形中一定是轴对称的图形是().A、梯形B、直角三角形C、角D、平行四边形2、等腰三角形的一个内角是50°,则另外两个角的度数分别是().A、65° 65°B、50°80°C、65°65°或50°80°D、50° 50°3、如果等腰三角形的两边长是6和3,那么它的周长是().A、9B、12C、12或 15D、154、到三角形的三个顶点距离相等的点是().A、三条角平分线的交点B、三条中线的交点C、三条高的交点D、三条边的垂直平分线的交点。

最新人教版数学七年级上册第一单元4.2 有理数的除法(第2课时)

最新人教版数学七年级上册第一单元4.2 有理数的除法(第2课时)
用计算器计算 (–1.5)×3+2×3+1.7×4+(–2.3)×2吗?
如果计算器带符号键(–) ,只需按键:
(–)
×
·
1
4
5
+
×
(–)
3
+
2
2
×
3
+
·
3
×
2
1 · 7
在用计算器进行有理数除法运算时,如果先确定商的符号,那么只需
用计算器计算商的绝对值,可以减少按键的次数(对比有理数的乘法运
算).
链接中考
1.4 有理数的乘除法/
1.某地某天的最高气温是6℃,最低气温是–4℃,则该地当天的
温差为 10 ℃.
2.计算
A.0






的结果是( A )
B.1
C.–1
D.


课堂检测
1.4 有理数的乘除法/
基础巩固题
1.下列各式中,结果相等的是( D )
A. 6÷(3×2)和 6÷3×2
1
5
1
= ( 30 ) [ 6 2 ]
1
1
= ( ) 3 =
30
10
.
.
按常规方
法计算
探究新知
1.4 有理数的乘除法/
(
方法二:
原式的倒数为
1
2 1 1 2
)( )
30
3 10 6 5
2 1 1 2
1
( ) ( )
3 10 6 5
30
=
20 3 5 12
答:这个公司去年全年盈利3.7万元.

七年级数学有理数加减乘除运算(二)(人教版)(含答案)

七年级数学有理数加减乘除运算(二)(人教版)(含答案)

学生做题前请先回答以下问题问题1:有理数的加法法则:①_______两数相加,取相同的符号,并把绝对值相加;②_______两数相加,绝对值相等时和为_____,绝对值不等时,取__________的数的符号,并用较大的绝对值减去较小的绝对值;③一个数同0相加,仍得这个数.问题2:有理数加法口诀:同号相加_______,异号相加_______.问题3:有理数减法法则:______________________,用字母表示为a-b=______.问题4:有理数的乘法法则:①两数相乘,____________________________,并把绝对值相乘;任何数与0相乘,积为0.②几个有理数相乘,因数都不为0时,积的符号由________________决定,当负因数为奇数个时,积为_______,当负因数为偶数个时,积为_______,并把绝对值相乘.有一个因数为0时,积为0.问题5:有理数的除法法则:______________________________________.有理数加减乘除运算(二)(人教版)一、单选题(共12道,每道8分)1.计算的结果是( )A.-3B.-21C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算2.计算:( )A.1B.-1C.16D.-16答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算3.计算的结果是( )A.-4B.-6C.-34D.-36答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算4.计算的结果是( )A.-2B.-5C.-82D.-86答案:C解题思路:故选C.试题难度:三颗星知识点:有理数的除法法则5.计算:( )A.-5B.5C.11D.-11答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算6.计算:( )A.4B.-9C.7D.-11答案:C解题思路:有理数混合运算要点:观察结构划部分,有序操作依法则,每步推进一点点.比如本道题第一部分用到乘法分配律,为了避免错误分两步进行,第一步先把12分配给每一项,把负号留在外边,然后再每步推进一点点计算.故选C.试题难度:三颗星知识点:有理数加减乘除混合运算7.计算:( )A. B.-8C.-2D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算8.计算:( )A.-14B.-2C.-16D.-4答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算9.计算:( )A.-1B.1C.-11D.-7答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算10.计算:( )A.-52B.-37C.5D.-2答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算11.计算:( )A.4B.-6C.0D.-2答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算12.计算:( )A.-22B.2C.10D.-14答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算。

部编人教版七年级数学上册优质课件 第2课时 分数化简及有理数的乘除混合运算

部编人教版七年级数学上册优质课件 第2课时 分数化简及有理数的乘除混合运算

(2) 2.5 5 ( 1) 84
581 254
1.
总结:
乘除混合运算往往先将除法化为乘法, 然后确定积的符号,最后求出结果.
强化练习
计算:
(1)123 1 3
27
(2) 0.75 16 1.2
5
解:(1)123
1 27
3
123
1 27
1 3
123
1 3
1 27
1 3
推进新课
知识点1 分数化简 例6 化简下列分数:
12
45
(1) 3
(2)
12
分数可以 理解为分子除 以分母.
解:(1)12 =(-12) ÷3=-4
3
(2)45 =(-45) ÷(-12) 12
=45÷12 = 15
4
总结: 化简分数的方法是怎样的?
分子分母同时除以它们的最大公约数.
强化练习
化简下列分数:
45
12
15
36
7 14
5 1
2解:Biblioteka 31110
3
2
知识点2 有理数的乘除混合运算
例7 计算:
(1)(125 5) (5); 7
(2) 2.5 5 ( 1). 84
解 : (1)(125 5) (5) 7
(125 5 ) 1 75
125 1 5 1 5 75
25 1 25 1 . 77
41
1 81
41
1 81
强化练习
计算:
(1)123 1 3
27
(2) 0.75 16 1.2
5
解: (2)0.75 16 1.2
5
3 4

人教七年级数学上册第二章 有理数的除法法则

人教七年级数学上册第二章 有理数的除法法则
2.2 有理数的乘法与除法
2.2.2 有理数的除法 第1课时 有理数的除法法则
1. 通过学生自主探究,初步掌握有理数的除法法则,能利 用有理数的除法法则进行简单的运算,提高学生的运算 能力.
2.让学生经历探索有理数除法法则的过程,体会转化的思 想,进一步发展学生观察、归纳、验证等能力.
旧知回顾
计算:(1)(-5)×3=___-_1_5___;
知识点2:分数的化简(难点)
化简分数的方法归纳:分数线具有除号的作用,因此化简分数时可 以将分数看成分子除以分母,利用除法法则进行化简.
【题型一】利用有理数的除法法则进行计算
例1:若两个有理数在数轴上对应的点分别在原点的两侧,则这 两个数相除所得的商( A ) A.一定是负数 B.一定是正数 C.等于0 D.以上都不对
②8÷(-4)__=____8×(-14); (-15)÷3__=____(-15)×13; -114÷(-2)__=____(-141)×-21.
2.通过上述三个式子的大小比较,你有什么发现吗? 有理数除法法则: 除以一个不1等于0的数,等于_乘___这个数的_倒__数___. a÷b=___a_·b____.(b≠0)
(3)--60.3=__2_0_____; (4)-065=___0_____.
本节课我们学习了哪些知识? 有理数的除法;分数的化简
同学们,有理数的四个基础运算——加法、减法、乘法、 除法,到这节课我们就全部学完了,课后同学们要及时 复习学过的知识,为我们之后的学习打好基础.
教材习题:完成课本45页练习. 作业本作业:完成
1 4
)=__3_2_;
除数的绝对值的__商__.0除以任何一个不
(5)0÷(-68)=__0__.

人教版七年级数学上册第一章1.4第4课时 有理数的四则混合运算2

人教版七年级数学上册第一章1.4第4课时 有理数的四则混合运算2

(2)(-3.85)×(-13)+(-13)×(-6.15)+0.79×175+185×0.79. 解:原式=(-13)×[(-3.85)+(-6.15)]+0.79×175+185 =(-13)×(-10)+0.79×1
=130.79.
9 【2021·沈阳第七中学月考】阅读材料:
计算:-310÷23-110+16-25. 解:原式的倒数为23-110+16-25÷-310=23-110+16-25 ×(-30)=-20+3-5+12=-10.故原式=-110.
人教版 七年级上
第1章 有理数
课1题. 42 有 理 数 的 乘 除 法
第5课时 有理数的加减乘除 混合运算
习题链接
温馨提示:点击 进入讲评
1D 2C 3C 4D
5D 6B 70 8
答案呈现
9
1 下列计算正确的是( D )
A.-9÷2×12=-9 B .6÷13-12=-1
C.14-14÷56=0
-10 (2)(-7)×(-5)-90÷(-15);
41 (3)42×-23+-34÷(-0.25). -25
小结:一般把减法转化为加法、除法转化为乘法来计算.统 一运算后,合理运用运算律.
变式练习 7.计算: (1)29-14+118÷-316; -1 (2)(-9)×(-5)-20÷4;
40
ห้องสมุดไป่ตู้
1.计算: (1)15÷(-3); -5 (3)(-2)÷3; -23
对点训练
(2)(-48)÷6; -8 (4)3÷(-0.3); -10
(5)-12÷-14; 2
(6)0÷(-1.5). 0
知识点二:有理数的四则运算 (1)有理数的加减乘除混合运算,如无括号,按照先 乘除 , 后 加减的顺序进行;有括号应先算 括号 里面的.同级运算 中,要按 从左到右 的顺序进行计算. 切记:只有加法和乘法才有交换律和分配律,除法没有这两 个运算律.

七年级数学上册第2章《有理数的除法》精品教案(北师大版)

七年级数学上册第2章《有理数的除法》精品教案(北师大版)

《2.8 有理数的除法》教案教学重点和难点教学重点:1.掌握有理数的除法法则,能够熟练地进行除法运算.2.通过将除法运算转化为乘法运算,培养学生的转化的思想.教学难点:寻找有理数除法转化为有理数乘法的方法和条件.学情分析认知基础:有理数除法的学习是在前面已学过有理数加、减、乘法的基础上进行的,这些运算的学习为学习有理数除法作了铺垫,学生已经开始熟悉“符号优先”的原则,即先确定符号,再求绝对值的算理.而除法在小学已经接触过,学生已掌握了倒数的意义,也知道除法是乘法的逆运算,知道0不能作除数的规定.活动经验基础:学生通过探索有理数的加、减、乘法的运算法则和运算律的过程,亲身经历了归纳、猜测、验证、推理、计算、交流等数学活动,理解了有理数的算理,初步体会了化归的思想方法,体验了数学与现实世界的密切联系及数学活动的探索性及创造性.教学目标1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程;掌握有理数的除法法则,并能够熟练地进行除法运算.2.通过将除法运算转化为乘法运算,培养学生的转化的思想.教学方法本节课采用“自学——辅导”的教学模式,将学生自主学习与教师辅导相结合.创设问题情境后,首先教师提出要求,引导学生带着与有理数的除法有关的问题自学,然后学生讨论交流,教师鉴疑讲解,最后通过练习巩固提高.这样有利于学生通过经历从具体情境中抽象出法则的过程,发现其中的规律,掌握必要的运算技能.在有理数除法运算的学习中继续发展数感,在符号法则的学习中增强符号感,从而在自学中学会学习,掌握学习方法.根据学生的认知水平,既要注重安排学生的自主探究活动,又要及时地加以引导、讲解,鼓励学生从学习中发现问题,并用所学知识解决它,从而激发学生的学习兴趣和参与数学活动的积极性.教学过程一、创设情境有四名同学参加数学测验,以90分为标准,超过的分数记为正数,不足的分数记为负数,评分记录如下:+5、-20、-19、-14.求:这四名同学的平均成绩是超过80分还是不足80分?引导学生独立思考,然后列式(+5-20-19-14)÷4,进一步化简得出:(-48)÷4=?(但不知如何计算)从而揭示本节课题.二、自学设计说明教师通过引导学生带着问题自学,不但有利于调动学生的积极性,而且能培养学生的自主意识,增强他们的自信心.请学生带着下面的问题自学本节教材内容:问题1:举例说明什么是倒数?如何求一个数的倒数?问题2:有理数的除法有几种算法?它们有什么相同与不同之处?问题3:怎样选择算法最简便?学生看书,边看边思考,时间大约为5分钟.教学说明在学生自学的过程中,教师要充分参与到学生的学习过程中去,同学生一起思考、计算、讨论、交流.要尊重学生的个体差异,尤其对于学习有困难的学生,及时予以关照与帮助,适当的点拨引导.根据学生的实际情况,自学时间可适当调整.三、讨论交流、鉴疑讲解1.总结乘法法则教师提问,引导学生自己归纳:问题1:乘积为1的两个数互为倒数.例如,2×12=1,所以2与12互为倒数. 又如,⎝⎛⎭⎫-23×⎝⎛⎭⎫-32=1,所以-23与-32互为倒数. 一般地,a ·1a =1,所以a 与1a互为倒数. 这里a ≠0,同小学一样在有理数范围内,0不能作除数,或者说0为分母时分数无意义. 整数可以看成分母是1的分数,求分数的倒数是把这个分数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分数,再求倒数;特殊的数π,它的倒数就可以表示成1π,或化成近似分数再求倒数. 问题2:有理数的除法有2种算法.法则1:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0.法则2:除以一个数,等于乘以这个数的倒数.它们的相同之处是都遵循“符号优先”原则,即先确定符号,再求绝对值.它们的不同之处是法则1确定符号后直接相除,法则2是将除法转化为乘法.问题3:一般能整除时用法则1,确定符号后直接除,在不能整除或有较复杂的分数及小数时采用法则2,将除法转化为乘法.教学说明 在解答两个问题的过程中,教师要尽可能地引导学生勇于发表自己的见解,并先请其他的学生予以评价.在学生思维的障碍点再适当的点拨引导,如研究两种法则的共性时可请学生思考两种法则都需要先算什么,后算什么,在两种法则的选择上可先举出几个具体的例子请学生思考用哪种方法合适,再进行规律的总结.2.例题分析设计说明本例题通过学生自己动手解决,不但能考查学生是否真正理解和掌握了两种法则的内在联系,而且能培养学生的自主意识,增强他们的自信心.例1 计算:(1)(-18)÷6;(2)(-12)÷⎝⎛⎭⎫-14;(3)⎝⎛⎭⎫-15÷⎝⎛⎭⎫-25;(4)625÷⎝⎛⎭⎫-45;(5)65÷⎝⎛⎭⎫-310. 解:(1)(-18)÷6=-18÷6=-3;(2)(-12)÷⎝⎛⎭⎫-14=+⎝⎛⎭⎫12÷14=48;(3)⎝⎛⎭⎫-15÷⎝⎛⎭⎫-25=+⎝⎛⎭⎫15×52=12; (4)625÷⎝⎛⎭⎫-45=-⎝⎛⎭⎫625×54=-310; (5)65÷⎝⎛⎭⎫-310=-⎝⎛⎭⎫65×103=-4. 先请学生观察、讨论几个小题用哪种法则比较适合,在学生口述的基础上,再请学生动手自己解决.设计说明本例题不但是对例1的深化,而且通过对多个数的乘除混合运算的分析,进一步寻找乘除法符号的一般规律,为今后研究有理数的混合运算打下基础.例2 计算:(1)-3.5÷78×⎝⎛⎭⎫-34;(2)⎝⎛⎭⎫-35×⎝⎛⎭⎫-312÷⎝⎛⎭⎫-114÷3. 解:(1)-3.5÷78×⎝⎛⎭⎫-34=72×87×34=3; (2)⎝⎛⎭⎫-35×⎝⎛⎭⎫-312÷⎝⎛⎭⎫-114÷3=-⎝⎛⎭⎫35×72×45×13=-1425. 首先引导学生联想多个有理数的乘法法则,因为除法可以转化为乘法,类比可以得出多个有理数的乘除混合运算的具有一般性的算法,即多个非零有理数的乘除混合运算,结果的符号由负因数的个数决定,负因数有奇数个时结果为负,负因数有偶数个时结果为正,结果的绝对值可由将除法转化为乘法求得.在学生独立解决本例题的基础上,请学生对比例1和例2,联系前面学习的有理数的乘法,得出乘除法的更具有一般性的算法,即不管是两个数还是多个非零有理数,不管是乘法、除法、还是乘除混合运算,结果的符号都由负因数的个数决定.3.课堂练习、巩固提高(1)写出下列各数的倒数:①-47;②0;③-5;④-1;⑤3.2. (2)计算:①84÷(-7);②(-65)÷0.13;③⎝⎛⎭⎫-35÷⎝⎛⎭⎫-25;④0.25÷⎝⎛⎭⎫-23×⎝⎛⎭⎫-135;⑤⎝⎛⎭⎫-34×⎝⎛⎭⎫-112÷⎝⎛⎭⎫-214. 答案:(1)①-74;②0没有倒数;③-15;④-1;⑤516. (2)①-12;②-500;③32;④35;⑤-12. 四、总结反思1.以学生讨论的方式对本节课进行总结:你有哪些收获?得到哪些启示?2.你还需要我的帮助吗?。

2.2.2 有理数的除法(第1课时有理数除法法则)(课件)七年级数学上册(人教版2024)

2.2.2 有理数的除法(第1课时有理数除法法则)(课件)七年级数学上册(人教版2024)
③利用乘法计算结果.
典例剖析
例4.(变式)计算:
(1)(-42)÷(-6); (2)(-12)÷(+


(3)(-1 )÷(-3 );



);

(4)0÷(-3.72);
(5)1.5÷(-1.5); (6)(-4.7)÷(-4.7)
解题秘方:灵活选择有理数除法的两个法则进行计算.
解:(1)(-42)÷(-6)=7;


点拨:因为 a1=- , a2=
a4=










= , a 3=







=4,
=- ,…所以结果以- , ,4三个数为一个循环.


因为2 024÷3=674……2,所以 a2 024= a2= .
13. [2023沧州期中]某同学在计算(-16)÷ a 时,误将“÷”看成
5 5 2
(3)1÷(−9);
6
2
(6) − ÷ − .
5
5
课本练习
2.化简:
−72
−30
0
(1)

(2)

(3)

9
−45
−75
−72
解: (1)
= (−72) ÷9=−( 72÷9) =−8;
9
−30
2
(2)
= (−30) ÷(−45)= 30÷45 = ;
−45
3
0
(3)
= 0;
−75
27
9



)


有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)

有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)
人教版(2024)七年级数学上册 第二章 有理数的运算
2.2.2 有理数的除法
第二课时 有理数加减乘除混合运算
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.
通过类比小学学过的运算顺序,能得出有理数的运算顺
序,按照有理数的运算顺序,正确熟练地进行有理数的加、
减、乘、除混合运算,提高学生的运算能力(重点).
-22 .

11.

【新视角·规律探究题】 a 是不为1的有理数,我们把


称为 a 的差倒数.如:2的差倒数是
=-1,-1的差倒




数是
= .已知 a1=- , a2是 a1的差倒数, a3是
−(−)


a2的差倒数, a4是 a3的差倒数,……,以此类推,则
a2 024=


.
只能用一次),使得运算结果为24或-24,其中红色扑克牌代表负数,黑色扑克牌
代表正数,A,J,Q,K分别代表1,11,12,13.
(1)如果抽到的四张牌是“黑桃3,4,10和红桃6”,请你运用上述规则写出三个
不同的算式,使其结果等于24或-24;
解: 答案不唯一.(1)(10-4)-3×(-6)=24;3×(-6)-(10-4)=-24;
2.有理数的加减乘除混合运算
问题:下列式子含有哪几种运算?先算什么,后算什么?
第二级运算
乘除运算
1
3 50 2 1 ?
5
第一级运算
加减运算
典例剖析
例7
计算:
(1) −8+4÷(−2);

有理数除法2教案

有理数除法2教案

人教版七年级第一章第四节 有理数的除法(二) 教案一、教学目标(一)知识技能1、熟练进行有理数的乘除混合运算,能运用简便算法计算;2、掌握有理数的加减乘除混合运算顺序,并能准确进行运算;3、能解决有理数混合运算的应用题.(二)过程方法在小学已有的乘除法混合运算顺序知识的基础上,把知识推广运用到有理数的范围,用类比的方法,感知新知和旧知的联系.(三)情感态度1.在数学学习活动中体验成功的喜悦,形成良好的数学思维习惯.2.结合实际问题,体验数学的实用价值.二、教学重点:加减乘除混和运算。

三、教学难点:运算时一定要注意运算顺序。

四、教学过程:【复习引入】1.复习有理数的乘除法法则(两个).(1)除以一个不为零的数,等于乘以这个数的倒数(2)两数相除,同号得正,异号得负,并把绝对值相除。

零除以不等于零的数。

都得0。

2.某人购买股票三月份亏损1500元,四月份赢利1200元,这两个月平均每月赢利多少元?应怎样列出式子?怎样计算?由此引出有理数混和运算问题。

【教学过程】1、例题分析例1 计算:(1)-54×(-241)÷(-421)×92; (2)63×(-194)+(-71)÷(-0.9). 解:(1)-54×(-241)÷(-421)×92 =-(54×929249⨯⨯) =-6(2)63×(-194)+(-71)÷(-0.9). =(-91)+6310[来源:Z*xx*] =635390- 说明:(1)将除法转化为乘法,再运用乘法的法则进行计算也可以从左至右依次进行计算,有理数的除法的符号法则与有理数的乘法法则是一样的;(2)先算乘除,再算加减.2、共同讨论:例2 观察下列解题过程,看有没有错误.如果有,请说明错误的原因,并给予纠正;如果没有错误,请指明用了什么运算律.计算:-9÷3223⨯=-9÷1=-9. 分析:-9÷3223⨯是乘除混合运算,应该从左到右按顺序进行计算,或者运用除法的法则将除法统一成乘法,再按乘法法则进行计算. 答:解法有错误,错误的原因是在只含乘除的同级运算里,没有按从左到右的顺序进行,而错误地先算3223⨯,正确的解答是: -9÷3223⨯=-9×3232⨯=-4. 说明:这是一个不注意就会出现的错误,另外,本例是阅读理解错题,是当前中考的一个热点题型.3.归纳概括:有理数加减乘除混合运算,无括号时,“先乘除,后加减”,有括号时,先算括号内的,同级运算,“从左到右”。

七年级数学教案:有理数的除法

七年级数学教案:有理数的除法

七年级数学教案:有理数的除法七年级数学教案:有理数的除法(精选12篇)作为一位兢兢业业的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。

那么教案应该怎么写才合适呢?下面是小编为大家整理的七年级数学教案:有理数的除法,希望能够帮助到大家。

七年级数学教案:有理数的除法1学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗?想过别的方法吗?2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的'倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题七年级数学教案:有理数的除法2一、素质教育目标(一)知识教学点1.了解有理数除法的定义。

人教新版(2024)七年级数学上册-2.2.2 有理数的除法(教案)

人教新版(2024)七年级数学上册-2.2.2 有理数的除法(教案)

2.2.2有理数的除法第1课时【教学目标】1.理解有理数除法法则,会进行有理数的除法运算.2.能够熟练地进行有理数乘法与有理数除法的相互转化,会进行分数的化简.3.根据有理数的除法,进一步理解有理数的定义.4.让学生经历有理数除法法则的探究过程,培养学生的观察、归纳、概括、运算及逆向思维能力.【教学重点难点】重点:探究有理数除法法则的形成过程,熟记两则有理数除法法则,能有根据地、有步骤地进行有理数除法运算.难点:有理数除法法则的灵活运用.【教学过程】一、创设情境课件出示:李明从家里到学校,每分钟走50米,共走了20分钟,问李明家离学校有多远?放学后,李明仍然以每分钟50米的速度回家,应该走多少分钟?1.师:从上面的例子你可以发现,有理数除法与乘法之间满足怎样的关系?生:除法与乘法之间有互逆关系.2.学生回答完问题后,教师提出课题——有理数的除法.3.你能很快地说出下列各数的倒数吗?原数-5 -98 7 0 -1 -123 倒数【让学生回顾之前学过的倒数知识,为学习有理数除法做好准备.】二、探究归纳探究点1:有理数的除法及分数化简问题1:根据“除法是乘法的逆运算”填空:(-4)×(-2)=8 8÷(-4)=6×(-6)=-36 -36÷6=-1225÷(-35)= (-1225)×(-53)= -72÷9= -72×(19)= 问题2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 要点归纳:有理数除法法则(一):除以一个不等于0的数,等于乘这个数的 .用字母表示为a ÷b =a ×1b (b ≠0). 问题3:利用上面的除法法则计算下列各题:(1)-54÷(-9);(2)-27÷3;(3)0÷(-7);(4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?你能类比有理数乘法法则,给出除法法则的另一种说法吗?要点归纳:有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 .0除以任何一个不等于0的数,都得 .两个有理数相除(除数不为0),商是一个有理数.【典例剖析】例1:(1)(-18)÷6.(2)(-15)÷(-25). (3)625÷(-45). 解:(1)原式=(-18)÷6=-(18÷6)=-3;(2)原式=(-15)÷(-25)=(-15)×(-52)=12; (3)原式=625÷(-45)=625×(-54)=-310. 【针对性训练】教材P45练习T1【典例剖析】例2:教材P44【例5】【点拨】带分数线的数可以理解为分子除以分母.【针对性训练】教材P45练习T2探究点2:有理数的定义的再认识结合例5及训练的计算,思考以下问题:问题1:计算中,我们得到-23=-23,这表明-23是什么数?反之-23=-23,又表明-23可以写成什么形式?问题2:整数可以看成什么样的分数?归纳总结:有理数是形如p q (p ,q 是整数,q ≠0)的数. 探究点3:有理数的乘除混合运算例3:教材P45【例6】方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算性质简化运算.(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(3)有理数乘除混合运算按从左到右的顺序进行计算.【针对性训练】教材P47练习T1三、检测反馈1.填空:(1)(-27)÷9= .(2)(-925)÷(-310)= . (3)1÷(-9)= .(4)0÷(-7)= .(5)43÷(-1)= . (6)-0.25÷34= . 2.化简下列分数:(1)-162. (2)12-48. (3)-54-6. (4)-9-0.3.3.计算:(1)(-12311)÷4.(2)(-24)÷(-2)÷(-115). 4.计算:(1)(-0.75)÷54÷(-0.3). (2)(-0.33)÷(-13)÷(-11). 5.计算:(1)-2.5÷58×(-14). (2)-27÷214×49÷(-24). (3)(-35)×(-312)÷(-114)÷3. (4)-4×12÷(-12)×2. 四、本课小结一、有理数除法法则:1.a ÷b =a ×1b (b ≠0).2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二、有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.三、乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).五、布置作业P48T6、8、9六、板书设计七、教学反思1.注重知识迁移,做到以旧带新.“数学教学是数学活动的教学”.我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程.也只有在数学活动的教学中,学生学习的主动性,才能得以发挥.2.注重自主探索,体验知识的产生过程.这一节课,从有理数除法问题的产生,到有理数除法法则的形成,以及归纳有理数除法的解题步骤等,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的.第2课时【教学目标】1.能按照有理数加减乘除的运算顺序正确熟练地进行运算.2.能运用有理数加减乘除运算解决简单的实际问题.3.会用计算器进行比较复杂的有理数加减乘除法计算.4.经历观察、比较、计算、概括、交流等过程,提高学生的运算能力,培养数感.【教学重点难点】重点:熟练掌握有理数的加减乘除混合运算.难点:按照有理数的运算顺序,正确而合理地进行计算,并能利用混合运算解决实际问题.【教学过程】一、创设情境复习导入:同学们,我们在前几节课中已经学习了有理数的加法、减法、乘法、除法,并且已经学习了加减混合运算、乘除混合运算,你知道这两种混合运算的运算顺序吗?【学生回答】我们今天要学习的是有理数的加减乘除四则混合运算,根据在小学时我们学习过的非负数的四则混合运算顺序,你能说一说有理数四则运算的运算顺序吗?【师】实际上,这个顺序在有理数范围内同样适用.二、探究归纳探究点1:有理数的加减乘除混合运算问题1:小学的四则混合运算的顺序是怎样的?先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号外.括号计算顺序:先小括号,再中括号,最后大括号.问题2:我们目前都学习了哪些运算?加法、减法、乘法、除法.师生活动:先由学生尝试说明,再由教师补充、归纳,最后得出:一个运算式中,含有有理数的加、减、乘、除等多种运算,则其称为有理数的混合运算.问题3:下列式子含有哪几种运算?先算什么,后算什么?3+50÷2×(-15)-1=? 师生活动:先由学生叙述,教师帮助完善.【归纳总结】有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.应用:【典例剖析】例1:教材P46【例7】(补充(3) [1124-(38+16-34)×24]÷5. ) 教师引导学生分析:本例3个小题都是有理数加减乘除法混合运算.1.第(1)(2)小题没有要先运算的括号,则运算应该是:先乘除、后加减.2.第(3)小题有小括号、中括号,则应先小括号、后中括号.在同一个括号内,应先乘除、后加减.3.能利用加法与乘法运算律的,应利用运算律.师生活动:先由学生独立思考,再由学生口述解题过程,教师先板书示范第(1)小题,然后学生口述,教师板书共同完成第(2)(3)小题.在这个过程中教师注意联系讲解法则的运用,追问每一步的依据是什么.【针对性训练】1.教材P47练习T22.下面两题的计算过程是否正确?若不正确,错误出现在哪一步? 解:(1)16÷(13-12) =16÷13-16÷12=16×3-16×2=12-13=16.(2)-3÷6×(-16) =-3÷(-1)=3.探究点2:有理数混合运算的应用【典例剖析】例2:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利32万元,7~10月平均每月盈利21.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?【思路点拨】师:有的月份亏损,有的月份盈利,我们如何表示? 生:用正数表示盈利,用负数表示亏损师:求全年的盈亏情况,就应该把12个月的全加起来,那有没有简单的方法呢?生:【自主解答】解:记盈利额为正数,亏损额为负数,公司去年全年盈亏额为:(-1.5)×3+32×3+21.7×4+(-2.3)×2=-4.5+96+86.8-4.6=173.7.答:这个公司去年全年盈利173.7万元.【教师引导学生应用有理数解决实际问题,体验有理数的加减乘除混合运算在实际生活中的应用】新知应用(1)计算器是一种方便实用的计算工具,用计算器进行比较复杂的计算比笔算要快捷得多.(2)提倡在明确算理的情况下,恰当地使用计算器进行一些比较复杂的有理数加减乘除法的混合运算.【针对训练】用两种方法计算(笔算与计算器)教材P47练习T3(1)(2)比较上面两种计算方法,你有什么体会?三、检测反馈).1.(1)18-6÷(-2)×(-13(2)11+(-22)-3×(-11).×(-100).(3)(-0.1)÷12(4)215×(13-12)×311÷(-114). 2.中国民航规定:乘坐飞机经济舱的旅客,一人最多可免费携带20千克行李,超过部分每千克按飞机票的1.5%购买行李票.一位乘坐经济舱的旅客付了120元的行李票,他所乘航班的机票为800元,这个旅客携带了多少千克的行李?四、本课小结1.有理数的加减乘除混合运算顺序先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.2.利用运算律进行简便计算.五、布置作业P48T10、P49T13六、板书设计七、教学反思有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标,在加减乘除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘除是第二级运算;有括号的先算括号内的.组织学生讨论有理数混合运算顺序,在教学时,要注意结合学生平时练习中出现的问题,及时纠正学生在运算上出现的问题,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘.学生在运算符号多的时候容易出错,需要进行针对性讲解.对于有理数混合运算,关键要把握好两点,运算顺序和符号,不必让学生训练太繁琐、太复杂的计算.反思本节课,存在以下问题:教学方式单一,由于教师总是担心学生忽略计算基本要点,又担心学生做题很慢,影响教学进度,因此给学生单独练习的时间很少,基本上都是老师带着学生一起算,这样并不能看出学生在计算中存在的问题,也就没能及时给予纠正.站在更高的角度去认识教材,站在平等的角度去对待学生.认真钻研教材,增加自己的知识储备量,把教材钻深、吃透真正理解教材的本意,然后去发展、延伸,只有这样才能达到事半功倍的效果,教师不能只停留在教材的表面,知其义而不知其理,这样只能是依样画瓢.再就是我觉得不能以教师的眼光去看学生,要和他们站在同一高度上去看待问题,发现学生出错的真正原因,共同去解决出现的问题.。

初中数学七年级有理数的除法(2)

初中数学七年级有理数的除法(2)
= 25 .
7
三、研学教材
(2)-2.5÷
解:原式=
58 25
1×85 (-
4
)14
1
=______.
温馨提示:乘乘除法混合运算要先将除法 化_______,然后确定积的_______, 最后求出结果.
符号
9
三、研学教材
11
练一练
1、计算: 9
(1)(-36 解:原式=-(36+ )×
=-(36× + × ) =-(4+ )
2、两数相除,同号 ,异号 ,并把
3、计算:
倒数
(1)-91÷13 (2)-56÷(-14)
(3)16÷(-4)
(4)
绝对值
(5)-0.25÷
. 相除 .
得正
=-7
=-4
- 4 (-1)= 4
5
3
5
-
2
83
得负 =4
三、研学教材 认真阅读课本第35页的内容,完成下面练习并体验知识点的形成过程.
=-4
1)1 ÷99
111
9 1
11 1
11
1 99 1 11 9
1
(2)(-12)÷(-4)÷(-1
解:原式=-(12 × × )
1
5
5)
=-
4
6
5
2
(3)(-
2 3
)(-
8 5

0.25
解:原式=
28 1
=
=
35 4
284
64
35
15
2、计算:
(1) 3 1 1 2 1 4 2 4
6 =-6÷(-0.3)=20 0.3

人教七年级数学上册第二章 有理数的加减乘除混合运算

人教七年级数学上册第二章 有理数的加减乘除混合运算
为( B )
A.45元
B.50元
C.55元
D.60元
同学们,今天我们学习了有理数的混合运算,我们要吸取
错题的教训,在计算前先厘清计算的顺序,再利用法则完
成计算,最后一定不要忘记检查!
教材习题:完成课本47页练习.
作业本作业:完成




1
3 2 7 14

(5)1÷16-84×7+18÷-27.




解:(1)原式=59.
(4)原式=6.
(2)原式=78.
3
(5)原式= -2.
3
(3)原式= -2.
【题型二】用计算器进行有理数的混合运算
例2:在计算器上依次按键
-11
后,显示的结果为_______.

7 9 5 8

(3)-3×-7+4×-5;





1 1 1 3 1
(4)25×3-2×11÷14.


(1)原式=-156.
(2)原式=-37.
(3)原式=1.2ຫໍສະໝຸດ (4)原式=-25
小组合作完成课本48页习题第10题.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
旧知回顾
我们小学阶段学过的加、减、乘、除混合运算的运算顺序是怎
样的?
先算乘除,后算加减,有括号先算括号里面的
视频导入
请同学们观看一段视频:
问题导入
请同学们先完成填空,再列出综合算式.



2
1



请同学们思考:有理数乘除混合运算的顺序是什么?
游戏导入

2.2.2有理数的除法《有理数的加、减、乘、除混合运算》2025学年人教版数学七年级上册

2.2.2有理数的除法《有理数的加、减、乘、除混合运算》2025学年人教版数学七年级上册
的特征合理选择运算定律进行简便运算,同时计算时注意正负号.
典例解析
二、有理数混合运算的应用
例8 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利32万元,
7~10月平均每月盈利21.7万元,11~12月平均每月亏损2.3万元,这个公司去年
总盈亏情况如何?
解:记盈利额为正数,亏损额为负数,由:
A. 6÷(3×2)和 6÷3×2
B. (-120+400)÷20和-120+400÷20
C. -3-(4-7)和-3-4-7
D. -4×(2÷8)和-4×2÷8
2.计算:
(1) 23 × (-5) - (-3) ÷
3
128
解:原式 = 23×(-5) - (-3) ×
(2) -7×(-3)×(-0.5)+(-12)×(-2.6)
2
=
-
2
(
3
2
(
3
1
10
1
6
2
5
+ - )
-
1
10
-
1
10
1
6
2
5
1
6
2
5
+ - )÷
+ - ) ×(-30)
= -20 +3 -5 +12
= -10

1
(- )
30
2
÷(
3
-
1
10
1
6
1
(- )
30
2
5
+ - )=
1
10
简便计算,
先取倒数
举一反三
3.
1
计算:(- )
42
1
÷(

人教版数学七年级上册1.4.2 有理数的除法第2课时有理数的加减乘除混合运算同步课时训练

人教版数学七年级上册1.4.2 有理数的除法第2课时有理数的加减乘除混合运算同步课时训练

人教版数学七年级上册1.4.2有理数的除法第2课时有理数的加减乘除混合运算同步课时训练自主预习基础达标要点1有理数的加减乘除混合运算1. 有理数的加减乘除混合运算顺序:在有理数的加减乘除混合运算中,若没有括号,则先算,再算,若有括号,则按照先算括号里的,再算括号外的顺序计算.2. 同级运算要按从至的顺序进行运算.要点2用计算器进行有理数的混合运算计算器的使用步骤:1.按开启键ON;2. 按照算式的输入数据,看显示器上的显示是否正确;3. 按=键执行运算,此时显示出计算结果.每次新的运算要按一下清零键AC.课后集训巩固提升1. 计算12+(-18)÷(-6)-(-3)×2的结果是()A. 7B. 8C. 21D. 362. 若两个数的和为0,且商为-1,则这两个数()A. 互为相反数B. 互为倒数C. 互为相反数且不为零D. 以上都不对3. 下列说法错误的是()A. 开启计算器使之工作的按键是ON键B. 输入-5.8的按键顺序是-5·8或(-)5·8C. 输入0.58的按键顺序是·58D. 按键69-87-=能计算-69-87的结果4. 在算式1-|-2※3|中的※里,填入下列哪种运算符号,使得算式的值最小()A. +B. -C. ×D. ÷5. 已知ac b<0,a >c ,ac <0,则下列结论正确的是( ) A. a <0,b <0,c >0 B. a >0,b >0,c <0C. a <0,b <0,c <0D. a >0,b >0,c >06. 计算12-7×(-4)+8÷(-2)的结果是 .7. 若ab <0,a >b ,则b 0;若ab c <0,ac >0,则b 0;若a b >0,b c<0,则ac 0. 8. 用计算器计算(结果保留两位小数):(1)2.52÷(-15)≈ ;(2)-2.34×(-0.12)-3.74÷(-2.68)≈ ;(3)-5.28÷0.75×(-3.14)≈ ;(4)37.5-(-4.2)×31÷(-16)≈ .9. 计算:(1)(-7.5)×(+25)×(-0.04); (2)(-12+16-38+512)×(-24);(3)(-112+116-1112)÷(-112); (4)-1108÷[124-(-112)-172];(5)(79-56+318)×18-1.45×6+3.95×6.10. 如果对于任意非零有理数a ,b ,定义新运算※如下:a ※b =(a -2b )÷(2a -b ).求(-3)※5的值.11. 已知m ,n 互为相反数,x ,y 互为倒数,求(4m +4n -24)÷(8xy -3)-2(m +n )的值.12. 已知有理数m,n,且在数轴上表示m的点距离原点的距离为4,|n|=12,求nm(m+n)的值.13. 有两个数-4和+6,它们相反数的和为a,倒数的和为b,和的倒数为c,求a÷b÷c的值.14. 若有理数a,b,c满足:|a-1|+|b-3+a|+|2a+b-c+1|=0.(1)求a,b,c的值;(2)求3a-2b+4(3-c)b-c的值.15. 赵先生将甲、乙两种股票都以1200元的价格同时卖出,其中甲股票盈利20%,乙股票亏损20%,问这次赵先生是盈利还是亏损?盈利或亏损多少元?16. 阅读材料,回答问题.计算:(-130)÷(23-110+16-25).解:方法一:原式=(-130)÷[(23+16)-(110+25)]=(-130)÷(56-12)=(-130)÷13=-110.方法二:原式的倒数为(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=-20+3-5+12=-10.故原式=-110.根据材料用适当的方法计算:(-142)÷(16-314+23-27). 参考答案自主预习 基础达标要点1 1. 乘除 加减 2. 左 右要点2 2. 书写顺序课后集训 巩固提升1. C2. C3. D4. C5. B6. 367. < < <8. (1)-0.17 (2)1.68 (3)22.11 (4)29.369. 解:(1)原式=7.5.(2)原式=7.(3)原式=17.(4)原式=-112. (5)原式=17.10. 解:由新运算知:(-3)※5=[(-3)-2×5]÷[2×(-3)-5]=(-3-10)÷(-6-5)=(-13)÷(-11)=1311. 11. 解:因为m ,n 互为相反数,所以m +n =0.因为x ,y 互为倒数,所以xy =1.所以(4m +4n -24)÷(8xy -3)-2(m +n )=(-24)÷5-0=-245. 12. 解:根据题意,可知|m |=4,得m =-4或m =4.由|n |=12,得n =-12或n =12.当m =4且n =12时,n m (m +n )=916;当m =4且n =-12时,n m (m +n )=-716;当m =-4且n =12时,n m (m +n )=716;当m =-4且n =-12时,n m (m +n )=-916.综上可知,n m (m +n )的值为±916或±716. 13. 解:由题意,得a =4+(-6)=-2,b =-14+16=-112,c =1-4+6=12,所以a ÷b ÷c =-2÷(-112)÷12=2×12×2=48. 14. 解:(1)由题意,得a -1=0,即a =1,b -3+a =b -3+1=0,即b =2,2a +b -c +1=2×1+2-c +1=0,即c =5.(2)原式=3a -2b -4c +12b -c =3×1-2×2-4×5+122-5=3.15. 解:由题意得1200×2-[1200÷(1+20%)+1200÷(1-20%)]=2400-(1200÷1.2+1200÷0.8)=2400-(1000+1500)=2400-2500=-100(元),因为-100<0,所以赵先生在这次交易中共亏损了100元.16. 解:原式的倒数为(16-314+23-27)÷(-142)=(16-314+23-27)×(-42)=-7+9-28+12=-14.故原式=-114.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缠中说禅 https:///chanlun/ 物理大气压等于工程大气压。 通信用支撑杆、升高架需采取防锈蚀措施,其材料、半成品、成品在安装前必须A.刷油漆;B.刷银粉;C.刷防锈漆;D.热镀锌; 个人理财投资者教育的教育对象是()。A.银行个人理财客户B.潜在银行个人理财客户C.潜在银行投资者D.商业银行E.中国银行业协会 我国实行公务员交流制度,公务员可以在公务员队伍内部交流,也可以与国有企业事业单位、人民团体和群众团体中从事公务的人员交流。下列有关公务员交流的表达正确的是______。A.对担任机关内设机构领导职务和工作性质特殊的非领导职务的公务员,应当有计划地在 本机关内转任B.交流的方式包括调任、转任、轮换和挂职锻炼C.公务员在挂职锻炼期间,应当变更与原机关的人事关系D.国有企业事业单位、人民团体和群众团体中从事公务员的人员可以调入机关担任主任科员和副主任科员等非领导职务 关于肥胖症的病因,叙述错误的是A.肥胖症是遗传和环境因素共同导致的B.某些心理疾病也与肥胖症的发生有关C.体力活动减少导致肥胖症风险增加D.高热量的快餐类食物可使患肥胖症风险增加E.低出生体重患儿成年后肥胖症风险小,而出生体重过重则成年后肥胖症风险增 加 连台手术之间不必对手术间进行及时清洁消毒处理。A.正确B.错误 预防雷诺病发作的措施是__________、__________、__________。 放射性核素检查的特点,除外A.可显示器官和病变的大小、形态B.是一种静态性显像C.可显示器官和病变的位置D.能提供器官组织生理、生化和代谢变化E.是一种动态性显像 乙型脑炎治疗中哪种疗法最重要A.支持疗法B.对症疗法C.抗病原体疗法D.康复疗法E.中医药疗法 五行学说认为病情较重的色脉关系是A.色与脉的五行属性相符B.色与脉的五行属性相生C.客色胜主色D.色与脉的五行属性相克E.以上都不是 流行性出血热属于A.反转录病毒B.副粘病毒C.正粘病毒D.布尼亚病毒E.小核糖核酸病毒 男,5岁。今起突然便血,初起为暗红色,后因排便次数增加转为鲜红色,量多,无明显前驱症状,考虑最可能的诊断是。A.出血性坏死性肠炎B.梅克尔憩室C.肠套叠D.溃疡性结肠炎E.结肠息肉脱落 两种资产组成的投资组合,其机会集曲线表述正确的有。A.当相关系数足够小时,该曲线向左弯曲B.该曲线包括有效集和无效集两部分C.该曲线反映了各种投资比例下的收益与风险的关系D.有效集是最小方差组合点到最高预期报酬率组合点的那段曲线 下面对专职监护人的叙述正确的是:。A.专职监护人不得做其他工作B.专职监护人可以做其他工作C.专职监护人可以兼任其他工作D.专职监护人应当协助其他人员工作 自由贸易是指国家取消对进出口贸易的限制和障碍,取消本国进出口商品各种优待和特权的自由竞争的贸易。该原则得到充分体现是在①19世纪早期的美国②19世纪中后期的英国③20世纪30年代的英国④20世纪中期的美国A.①②B.①③C.②④D.③④ 下列关于肥胖症的说法不正确的是A.肥胖症可作为某些疾病的临床表现之一B.肥胖症患者的预期寿命缩短C.梨形肥胖症患者发生代谢综合征的危险性大于苹果形肥胖症患者D.肥胖症患者恶性肿瘤的发生率升高E.遗传因素是肥胖症发生的主要原因之一 女性,56岁。患胆囊结石3年。平时无症状。B超检查示胆囊壁厚0.4cm,结石周围未见胆囊腔,胆囊肿胀,内回声不均匀,胆囊13cm×4cm,结石>2.0cm,胆总管1.1cm。下一步应选择。A.开腹手术胆囊切除B.腹腔镜胆囊切除C.腹腔镜胆囊切除,切除困难时中转开腹D. 做ERCP或MRCPE.保守治疗 下列属于经济法部门的有()。A.保险法B.预算法C.企业破产法D.商业银行法E.反不正当竞争法 马铃薯的薯块是的变态,而红薯的地下膨大部分是的变态。 [单选,共用题干题]某流水线浮点加法器分为五级,若每一级所需要的时间分别是6ns、7ns、8ns、9ns和6ns,则此流水线的最大加速比为(1)。若每一级的时间均为7ns,则最大加速比为(2)。空白(1)处应选择A.2.0B.4.0C.4.5D.5.2 甲公司20×1年7月10日购入某上市公司股票100万股,每股价格24元,实际支付购买价款2400万元,其中包括已宣告但尚未支付的现金股利120万元;另支付手续费等50万元。甲公司将其作为交易性金融资产核算。20×1年12月31日该股票每股价格26元。甲公司20×1年对该交 易性金融资产应确认的公允价值变动收益为()。A.150万元B.200万元C.270万元D.320万元 ABC会计师事务所为防止同一主任会计师或者经授权签字的注册会计师,由于长期执行某一被审计单位的鉴证业务可能对独立性产生不利影响,应当制定政策和程序,将由于关系密切造成的产生不利影响降至可接受的低水平。A.对所有实体财务报表审计,按照国家有关规定 定期轮换项目合伙人B.对所有实体财务报表审计,按照国家有关规定定期轮换注册会计师C.对所有的上市实体财务报表审计,按照国家有关规定定期轮换项目合伙人D.对所有的上市实体财务报表审计,按照国家有关规定定期轮换鉴证小组成员 易引起高血氨症的受血者是。A.肝血管瘤患者B.肝囊肿患者C.甲型肝炎患者D.早期肝癌E.接近肝性脑病患者 消除及避免引起虚劳的病因是预防虚劳的根本措施。A.正确B.错误 一个有酒精中毒和肝肿大病史的患者,肝显像示整个肝脏呈弥漫性分布不均匀,可能的诊断为A.肝炎B.肝肿瘤ennec&lsquo;s肝硬化D.肝脓肿E.肝癌 的广泛应用,使冷兵器得到了普及,冷兵器战争的规模迅速扩大。 重型颅脑损伤后控制颅内压增高的主要目的是和。 提出人是“社会人”,不仅仅是“经济人”的理论是A.泰勒的科学管理理论B.法约尔的管理过程理论C.麦戈雷戈德人性理论D.梅奥的人际关系学说E.马斯洛的人类需要层次理论 在感染过程的下列表现中,最易识别的是A.隐性感染B.潜伏性感染C.病原体被消灭或排出体外D.显性感染E.病原携带状态 定量分析工作要求测定结果的误差。A.愈小愈好B.等于零C.没有要求D.在允许误差范围内 下述哪一点不符合神经内分泌的细胞特征A.属于一些特化的神经细胞B.通过胞突接受神经冲动C.由轴突释放神经递质D.由轴突释放激素物质E.释放的激素经血运输后,发挥作用 49岁,女性,有轻瘫,头痛,CT表现如图,最可能的诊断是A.硬膜下血肿B.硬膜下积液C.Dandy-Walker综合征D.脑积水E.蛛网膜囊肿 阿米巴性肝脓肿的首选治疗是A.穿刺抽液B.经皮肝穿刺脓肿置管闭式引流术C.应用抗阿米巴药物D.切开引流E.首先反复穿刺吸脓 不属于半夏厚朴汤主治证候的是()A.咽中如有物阻B.咯吐不出C.吞咽不下D.脘腹疼痛E.或咳或呕 凯恩斯和多马的经济发展理论主要区别于()。A.凯思斯认为投资的变化量对总需求有乘数作用,而多马否认这种乘数作用B.多马的理论明显地没有认识到净投资能增加生产能力,而凯恩斯却把生产能力引入到了他的模型中C.多马认为经济总是以一种充分就业的均衡速度发展, 而凯恩斯否认这种看法D.凯思斯没有考虑净投资对于生产能力的影响,而多马却考虑到了这一点 保险合同中规定了受益人的保险金请求权。A.财产B.海上C.信用D.人身 表示放射性元素碘13&beta;衰变的方程是。A.B.C.D. 塑料全冠修复时牙颈部制成肩台是为了。A.有利于美观B.有利于边缘密合C.有利于保护牙髓D.有利于抗力E.有利于同位 男性,35岁,乏力、消瘦2个月,腰部出现带状疱疹。检测抗HIV阳性,CD4+T淋巴细胞0.3&times;109/L,总淋巴细胞数1.2&times;109/L。此患者属HIV感染的临床分类的哪一类哪一级A.a类3级B.b类2级C.b类3级D.C类2级E.C类3级 20世纪80年代的一体化的物流管理限于A.行业内部B.同一产品的下游关系中C.企业内部D.企业外部
ቤተ መጻሕፍቲ ባይዱ
相关文档
最新文档