周期信号的频谱

合集下载

周期信号的频谱解读

周期信号的频谱解读

X

3.3.2 周期矩形脉冲信号的频谱
本小节以周期矩形脉冲信号为例进行分析
7 页
主要讨论:频谱的特点,频谱结构,
频带宽度,能量分布。
X

一.频谱结构
f (t ) E
8 页
脉宽为 脉冲高度为E
T1
t
T1
O 2 2
周期为T1
1. 三角函数形式的谱系数 2. 指数函数形式的谱系数 3. 频谱特点

2
0
2


n 1
X
不变, T1改变
E 2π T1 幅度 , 谱线 间隔1 T1 T1
f (t )
2π 第一个过零点频率 不变
第 13 页
当ET1 ,时, 1 0, 为无限小, T1 f t 由周期信号 非周期信号。 4

T1 2T1
T1 5E
Fn

O 1 2 1


第一个零点集中了信号绝大部分能量(平均功率)
由频谱的收敛性可知,信号的功率集中在低频段。
X

周期矩形脉冲信号的功率
1 P T
16 页

T
0
f 2 ( t )dt
n


Fn
2

n


F ( n1 )
2
1 1 以 s, T1 s为例,取前5 次谐波 20 4
X
1 2 1



4.讨论
2π 谱 线 间 隔1 不变 T1不变, 改变 T1 E 2π 幅 度 , 第 一个 过零 点 T1
f (t ) E
12 页

4.3 周期信号的频谱及特点

4.3 周期信号的频谱及特点
A、计算|Fn |和θn
4.3
周期信号的频谱及特点
2)、周期矩形脉冲的频谱
有一幅度为E,脉冲宽度为τ的周期矩 形脉冲,其周期为T,如图所示。求 频谱。 T τ

τ
2
τ
2
Fn =
1 T

2
T − 2
f (t ) e
− jnΩt
E e− jnΩt = T − jnΩ
τ
2 −
τ
2
E 2 − jnΩt dt = dt τ e ∫ − T 2 nΩτ sin( ) Eτ sin nΩτ 2E 2 2 = = T nΩτ T nΩ
1)、定义
依据复傅立叶系数Fn随nΩ的变化关系所画的图称为 双边频谱图,简称双边谱; |Fn|~ nΩ为双边幅度谱,见图4.3-1(b);其 以纵轴对称。 θn~ nΩ为双边相位谱。见图4.3-1(d)图。其 以原点对称。
第 第23 23-8 8页 页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
, n = 0,1,2,..., φ0 = 0.
Fn ~ nΩ
θ n ~ nΩ
周期信号的频谱是指周期信号中各次谐波幅值、相位随 频率的变化关系。
第 第23 23-3 3页 页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
4.3
A0 f (t ) = + 2

周期信号的频谱及特点
ω1
T τ = = 2π Ω τ T

见课本P131 页图4.3-4。
增多。
(b)、 τ 一定,T增大,谱线间隔 Ω 减小,频谱谱 线密度增大。谐波幅度减小:

周期信号的频谱

周期信号的频谱
试画出 f (t) 的振幅谱和相位谱。
解: f(t)为周期信号,题中所给的 f(t) 表达式可视为 f(t) 的傅 里叶级数展开式。据
f(t)A0 Ancon s1t(n) n1
可知,其基波频率π(rad/s),基本周期T=2s,ω=2π、3π、 6 π 分别为二、 三、六次谐波频率。
编辑版
7
f(t)13cots1 (0 )2co2st (20 )
编辑版
13
3.3.2 双边频谱与信号的带宽
• 画周期矩形脉冲的频谱
1. 找出谐波次数为零的点(即包络与横轴的交点)
包络线方程为
Fn
A
T
San1
2
与横轴的交点由下式决定: n1 k
n1
2
离散自变量
k(1,2,3 )
n1
2k
2,4,6
编辑版
14
3.3.2 双边频谱与信号的带宽
2.确定各谐波分量的幅度
• 周期矩形脉冲信号
A f (t) 0
当t
2
当 T t , t T
2
22 2
f (t)
A
-T

T 2
-τ 2o
τ 2
T 2
T
编辑版
2T t
10
3.3.2 双边频谱与信号的带宽

复系数
Fn T1
T 2
T2
f(t)ejn1tdt 1 T
2
2
Aejn1tdt
T Aj1n 1(ej
n12ej
A0 0, 0 0,
A1
4A,
1

2
A3
4A,
3
3

2

4.2周期信号的频谱

4.2周期信号的频谱

2A ( n 1, 3, 5,) n 90o ( n 1,3,5,) n o ( n 1, 3, 5,) 90 Fn
信号与系统

周期矩形脉冲信号的频谱
对于周期矩形脉冲,在一个周期内为
A t t

4.2-5

f (t )
0

2 2
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
信号与系统
4.2

周期信号的频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:

离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
4.2 周期信号的频谱

信号与系统
4.2-1
4.2.1 周期信号频谱的特点
将周期信号分解为傅里叶级数(简称傅氏级数),为在频域 中认识信号特征提供了重要的手段。由于在时域内给出的 不同信号,不易简明地比较它们各自的特征,而当周期信 号分解为傅氏级数后,得到的是直流分量和无穷多正弦分 量的和,从而可在频域内方便地予以比较。为了直观地反 映周期信号中各频率分量的分布情形,可将其各频率分量 的振幅和相位随频率变化的关系用图形表示出来,这就是 信号的“频谱图”。频谱图包括振幅频谱和相位频谱。前 者表示谐波分量的振幅An随频率变化的关系;后者表示谐 波分量的相位φn 随频率变化的关系。习惯上常将振幅频谱 简称为频谱。
奇谐函数
偶谐函数
注:指交流分量
信号与系统

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1、周期信号频谱的特点
(1)周期信号频谱是指周期信号的函数X(t)的傅里叶变换结果。

它由若干不同的频率的正弦波组成,这些正弦波的频率正是信号的基本频率。

正弦波的幅值与其相应的频率乘积成正比,而每种频度的信号都有一个相应的幅值谱和一个同频率相等的相位谱。

(2)对小波周期信号出现的情况而言,它的频谱具有带状分布特点。

假设一个小波信号X(t)的基本频率为F0,它的频谱X(f)的分布范围接近[F0, 2F0]之间,其中最大的幅值在F0处,幅值谱有一个主峰,而且相位谱空间分布也同样有一个主峰。

(3)小波周期信号具有连续宏观理论谱线的特点,实际谱线与理论谱线相比会有一个谷底,其图形模型会形成一回带状,理论上谷底深度接近0.
(4)周期信号频谱中有定向性,主要表现在除脉冲信号以外的其他周期信号中。

针对某一个方向发射信号,其谱仍然会有以频率以F0作为中心呈现梯度变化和微小平移的特点。

如果从不同方向发射信号,最终得到的谱会有一定的差异,但其趋势仍然相同。

2、周期信号频谱的作用
(1)周期信号频谱是信号分析的基础,它包括了信号的基本指标,包括信号的频率、幅值谱和相位谱,可用于分析信号的特性和特征。

(2)有了周期信号频谱,可以更准确地测量一个周期信号的实际频率,利用其中的相位谱可以判断信号之间是否存在某些相关性。

(3)频谱可以用于检测信号中的杂波,如果周期信号频谱发现不属于原有频率的有害信号,则说明信号中出现了一些杂波,可以使用滤波等方法对这部分信号进行处理,从而提高信号的有效性。

(4)同时,周期信号频谱也可以用来研究信号强度分布情况,可以查看赋予信号的频率和相位,从而进行有效的信号处理。

典型周期信号的频谱

典型周期信号的频谱
f (t) f (t)(全波对称) f (t) f (t T() 半波对称)
2
T
证:an
T
8 T
4 0
f
(t) cosntdt
22
20
f (t) f (t) f (t) f (t T )
2
an T T f (t) cosntdt T T f (t) cosntdt
2
2
T
由复振幅cn 的表达式可知,频谱谱线顶点的联线所
sin x
构成的包络是 x 的形式----称为抽样函数。
1. 找出谐波次数为零的点(即包络与横轴的交点)
包络线方程为
cn
2E
T
sin 2
2
与横轴的交点由下式决定:
sin
2
0
即: ,2 ,3
2
2
0
2
4
6
2m
2f
f
f0
1, 2, 3
T
2 T
2
f (t)e jn1t dt
b.这样定义能确切的反映信号的频谱分布特性。 各个频率分量振幅之间的相对比例关系是固定不 变的。
2.几点说明
a.F ( j) 代表了信号中各频率分量振幅的相对
大小。
|
b.各频率分量的实际振幅为
F ( )
|
d
是无穷
小量。
C. F ( j )具有单位角频率振幅的量纲。
| f (t) | dt 存在。
六.周期和非周期矩形脉冲信号频谱的对比
1.它们都具有抽样函数 sin x 的形式。
2.
Cn
2E
T1
sin n1
2
n1
x

§3.2 周期信号的频谱和功率谱

§3.2 周期信号的频谱和功率谱

不变,T增大,谱线间隔
1
2 T
减小,谱线逐渐密集,幅度
A T
பைடு நூலகம்


当 T
1 0
A 0 T
非周期信号连续频谱
非周期信号 n1 连续频率
2.当T不变, 减小时
T不变
1
2 间隔不变
T
A 振幅为0的谐波频率
T
2
,
4
,......
信号与系统
练习:周期信号的频谱描绘
不改变 不改变 不改变
Fn
2 T
2
f (t)dt
T
2 A
2
Adt
2
T
信号与系统
练习:周期信号的频谱描绘
a 2 nT
T
2 T
2
f (t) cos n1tdt
2A sin n n T
2 A
T
sin n
T
n
2A Sa(n )
T
T
T
f (t)
A
T
2 A
T
n 1
Sa( n
T
)
cos(n1t )
A 2A
TT
S a(
立叶展开式并画出其频谱图。
1
解: f(t) 在一个周期内可写为如下形式
Tt
f (t) 2 t T t T
T
22
f(t) 是奇函数,故 an 0
信号与系统
4
bn T
T 2 0
f (t) sin n1tdt
4 T
T 2 0
2t T
sin
n1tdt
(1
2
T
)
An &n 2

信号与系统 §4.3 周期信号的频谱

信号与系统   §4.3  周期信号的频谱
理意义。为什么引入负频率? f(t)是实函数,分解成虚指数,必须有共轭对ejnΩt和
e-jnΩt,才能保证f(t)的实函数的性质不变。


第3页
二、周期信号频谱的特点
举例:有一幅度为1,脉冲宽
f(t) 1
度为的周期矩形脉冲,其周
0
期为T,如图所示。求频谱。
-T
Fn
1 T
T
2 T
2
f (t) e d jnt t
(3)离散谱(谐波性)
(4)第一个零点坐标:2π T
当ω nΩ时取值 (5)Fn是复函数(此

令 n n= 2π
为实函2数),幅度/相位
Fn 0,相位为 0,Fn 0, 相位为π 。 ▲

第5页
周期信号频谱的特点
(1)周期信号的频谱具有谐波(离散)性。谱线位置是基频 Ω的整数倍;(2)一般具有收敛性。总趋势减小。
1 T
2
e
jnt
dt
2
2
2
1 e jnt T jn
2
2
2
sin(
n
2
)
T n
T
sin n
2
n
2
令Sa(x)=sin(x)/x (取样函数)

T
t


第4页
Fn
Sa( n ) Sa( n )
T 2TT
, n = 0 ,±1,±2,…
图中T 5
Fn
T

O 2
(1)包络线形状:抽样函数 (2)其最大值在 n 0处,为 。
§4.3 周期信号的频谱
• 信号频谱的概念 • 周期信号频谱的特点

Signal_2_周期信号的频谱

Signal_2_周期信号的频谱

Cn
1 An 2
复指数形式的傅里叶级数的复系数
的计算公式为(P15)
1 Cn T0

T0 / 2
T0 / 2
f (t )e
jn0t
dt
24
例:求周期为T的矩形脉冲信号的频 谱图(见教案,难度较大,不讲)
25
周期矩形脉冲信号的频谱
E f (t ) 0 (t (t
2 T2 T 2 sin n 0tdt T 0 sin n 0 tdt
0


, ,
n 2, 4, (偶数) n 1,3, (奇数)
4 1 1 f (t ) sin 0 t sin 3 0 t sin 5 0 t 3 5
2 bn x(t ) sin n 0 tdt 0 T
18
T 2 T 2
2 an x(t ) cosn0tdt T
8E 1 2 T n 0
2
T 2 T 2


T 2
0
n 0 t cosn 0 td (n 0 )t
, n 1,3, n 2,4,
n
是单边频谱,只取n>0的项;
但就数学关系式本身而言,前者是关于n的偶函数, 后者是关于n的奇函数
10
例1 周期方波的傅里叶级数
11
• 解: (1)在一个周期内,波形与横轴围成的面 积上、下相等,所以它的平均值 T 1 2 a0 T x(t )dt 0 T 2 (2)为奇函数,因此余弦项的系数

29
位相谱的解释
注意: n
bn tg n an
(负号一定要写在上面)

3.3周期信号的频谱

3.3周期信号的频谱

Fn > 0 Fn < 0
时:
n = 0 n = ±π

时:
cosn < 0 sinn = 0
双边频谱与信号的带宽
周期矩形脉冲的频谱
Fn
Fn

nω1 的偶函数
n = ±π n 是 nω1 的奇函数
0 ω
1
nω1
π
0 ω π
n
1
nω1
双边频谱与信号的带宽
周期信号频谱的特点: 周期信号频谱的特点:
离散性: 离散性: 由不连续的谱线组成,每一条谱线代表一个正弦分量, 由不连续的谱线组成 , 每一条谱线代表一个正弦分量 , 所以 此频谱称为不连续谱或离散谱; 此频谱称为不连续谱或离散谱;每条谱线间的距离为 ω1 = 2π
谐波性: 谐波性: 的整数倍频率上, 每一条谱线只能出现在基波频率 ω1 的整数倍频率上,即含 的各次谐波分量, 的谐波分量. 有 ω1 的各次谐波分量,而决不含有非 ω1 的谐波分量. 收敛性: 收敛性: 各次谐波分量的振幅虽然随 趋势是随着 当
P=
= F
n = ∞ 2 0
∑F

2
∞ ∞
n
2
+ 2∑ Fn
n=0
A0 2 1 2 = ( ) + ∑ An 2 n =1 2
周期信号的功率
例:
试求周期矩形脉冲信号在其有效带宽内谐波分量所具有的平 均功率占整个信号平均功率的百分比.其中A=1,T=1/4, τ=1/20.
f T (t ) A
T
τ
1 T /2 2 P= ∫ f (t )dt = 0.2 T T / 2
周期信号的功率
包含在有效带宽内的各谐波平均功率为:

周期信号的频谱分析

周期信号的频谱分析

周期信号的频谱分析周期信号是指在一定时间内重复出现的信号,其频谱分析是对周期信号在频域上的描述和分析。

频谱分析是信号处理领域中的重要内容,它能够揭示周期信号的频率成分以及它们在信号中的相对强度。

周期信号可以用正弦函数来表示,即一个频率为f的正弦波。

频谱分析的目的就是要确定这个周期信号中包含的各个频率成分。

为了进行频谱分析,我们通常使用傅里叶变换。

傅里叶变换可以将一个周期信号转换为一系列频率成分的复数表示。

傅里叶变换将一个周期信号分解成一系列复振幅和相位分量。

复振幅表示了信号中每个频率分量的强度,而相位则表示了每个频率分量的相对位置。

通过傅里叶变换,我们可以得到一个频谱图,它显示了信号中各个频率成分的幅度和相位信息。

在频谱图中,横轴表示频率,纵轴表示振幅。

每个频率成分对应的幅度可以通过幅度谱来表示,而相位信息则可以通过相位谱来表示。

通过分析频谱图,我们可以得到周期信号中的主要频率成分、频率分量的强度以及它们在信号中的相对位置。

频谱分析在信号处理领域中有着广泛的应用。

例如,它可以用于音频信号的处理与分析。

在音频信号中,不同的频率成分对应着不同的音调和音色。

通过频谱分析,我们可以识别音频信号中的主要频率分量,从而实现对音频信号的合成、去噪等处理操作。

另外,频谱分析也可以用于振动信号和通信信号的分析。

在振动信号分析中,频谱分析可以帮助我们了解结构的固有频率以及存在的振动模态。

而在通信信号分析中,频谱分析可以帮助我们了解信号的带宽和调制方式,从而实现信号的解调和解码。

总之,周期信号的频谱分析是对周期信号在频域上的描述和分析。

通过傅里叶变换,我们可以将周期信号分解成一系列频率成分,并通过频谱图来展示这些成分的幅度和相位信息。

频谱分析在信号处理领域中有着广泛的应用,对于理解和处理周期信号具有重要作用。

周期信号的频谱

周期信号的频谱

例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。

已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。

输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。

3.2.1 周期信号的频谱周期信号的频谱分析——傅里叶级数

3.2.1  周期信号的频谱周期信号的频谱分析——傅里叶级数

4
狄利克雷(Dirichlet)条件 条件1:在一周期内,如果有间断点存在,则间断点的 数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有 限个;
条件3:在一周期内,信号绝对可积;
5
狄利克雷(Dirichlet)条件1:例1 不满足条件1的例子如下图所示,这个信号的周期 为8,它是这样组成的:后一个阶梯的高度和宽度是前一 个阶梯的一半。可见在一个周期内它的面积不会超过8, 但不连续点的数目是无穷多个。
0
1
1
0
1
2 1
2 1
指数形式的频谱图
F n 1
0.15
n
0.5
1.12
1
1.12
0.5
2 1
0.15 2 1
1
0.25
2 1 1
0
1
1
0
0.15
2 1
0.25
21
四.总结
(1)周期信号f(t)的傅里叶级数有两种形式

满足离散性,谐波性不满足收敛性,频带无限宽
26
一.频谱结构
f (t ) E
/ 2
脉宽为 脉冲高度为E 周期为T1
T1
/2
T1
t
1. 指数函数形式的谱系数
2. 频谱特点
27
1.指数形式的谱系数
1 F ( n 1 ) T1
1 = T1
jn 1 t

T1
T1
2 2
f ( t )e jn1t d t
bn n tg a n
1
关于的偶函数(实际 n 取正值) 关于的奇函数(实际 n 取正值) 关于的偶函数 关于 的奇函数

周期信号的频谱

周期信号的频谱
2 T 2 an = ∫ T f (t) cos nt dt T 2 n = 1, 2,
(17-3)
2
实验原理与说明
2 T 2 bn = ∫ T f (t) sin nt dt T 2

n = 1, 2,
(17-4)
若将(17-1)式中同频率项加以合并,可以写成另一种形式 式中同频率项加以合并, 若将 式中同频率项加以合并
周期信号的频谱
1
实验原理与说明
周期信号的分解与合成
周期为T的周期信号 f (t),满足狄里赫利(Dirichlet)条 周期为 的周期信号 满足狄里赫利( ) 实际中遇到的所有周期信号都符合该条件), ),便可 件(实际中遇到的所有周期信号都符合该条件),便可 以展开为傅里叶级数的三角形式, 以展开为傅里叶级数的三角形式,即:
2 T2 2 T 2 cos nt bn = ∫ sin ndt ∫ sin ndt = T 0 T T2
1
T 2
T
t
图17-1
T2
cos nt + n 0
T2
T
将 = 2π 代入上式,并且对所有的n有 cos nπ =1 ,可得 T 2 bn = (1 cos nπ ) nπ
4
实验原理与说明
周期信号频谱和特点
1、周期信号的频谱由不连续的线条组成,每一条线代表一个正弦量, 周期信号的频谱由不连续的线条组成,每一条线代表一个正弦量, 故称为离散频谱; 故称为离散频谱; 2、周期信号频谱的每条谱线只能出现在基波频率的整数倍频率上。 周期信号频谱的每条谱线只能出现在基波频率的整数倍频率上。 这就是周期信号频谱的谐波性; 这就是周期信号频谱的谐波性; 3、各次谐波的振幅,总的趋势是随着谐波次数的增高而逐渐减小。 各次谐波的振幅,总的趋势是随着谐波次数的增高而逐渐减小。 所以,周期信号的频谱具有收敛性。 所以,周期信号的频谱具有收敛性。 以上就是周期信号频谱的三个特点:离散性、谐波性、收敛性。 以上就是周期信号频谱的三个特点:离散性、谐波性、收敛性。这 是所有周期信号共有的特点。 是所有周期信号共有的特点。 4、离散频谱与连续频谱 当周期信号的周期T增大,其频谱中的谱线也相应地渐趋密集, 当周期信号的周期T增大,其频谱中的谱线也相应地渐趋密集,频 谱的幅度也相应的渐趋减小。当 频谱线无限密集, 谱的幅度也相应的渐趋减小。T →∞ 时,频谱线无限密集,频谱 幅度无限趋小。这时,离散频谱就变成连续频谱。 幅度无限趋小。这时,离散频谱就变成连续频谱。

4.3周期信号的频谱

4.3周期信号的频谱
4.3周期信号的频谱
一、频谱的概念
广义上,信号某些特征量随信号频率变化的关系称信号频谱
画出的图形称为信号的频谱图。 周期信号的频谱即周期信号的各次谐波幅值,相位随频率的变 化关系。
频谱的分类
幅度频谱:以角频率 (或角频率 )为横坐标,以 An / Fn 为 纵坐标 相位频谱:以频率 (或角频率 )为横坐标,以 n 为纵 坐标 (A0为直流分量幅度;An为n次谐波的振幅; n 为n次谐波 的初相角)
A0 2 1 2 1 A0 2 2 T [( ) T 0 A n ] ( ) A n T 2 2 2 n 1 n 1 2
周期信号的功率等于直流分量的功率和各次谐波的功 率之和。 1 | Fn | An 2
1 P T
n

T 2 T 2
谐波性
频谱的每条谱线只能出现在基波频率的整数倍频率上。
结论
周期信号的频谱特点:
(1)离散性
(2)谐波性 (3)收敛性
信号的有效带宽
0~2 / 这段频率范围称为周期矩形脉冲信号的有效频带宽 度,即第一个零点以内的这段频率范围称为信号的频带宽度或 者信号的带宽。
B


结论:矩形脉冲的频带宽度与脉冲宽度成反比。 即 越大,其wB越小;反之, 越小,其wB 越大。 物理意义:在信号的有效带宽内,集中了信号绝大部 分谐波分量。若信号丢失有效带宽以外的谐波成分,不 会对信号产生明显影响。
(3)频谱结构与波形参数的关系(T1, )
(1)设f(t)中的 E不变,不变, 当周期1变化时,频谱如何变化?
(1)


1 s 20
1 s 20
T1
T1

周期信号的频谱的特点

周期信号的频谱的特点

周期信号的频谱的特点一、 周期信号的频谱一个周期信号)(t f ,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。

其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。

不同的周期信号,其展开式组成情况也不尽相同。

在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。

描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。

根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。

1单边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-15),即∑ ∞=+Ω+=10)cos()(n n n t n A A t f ϕ (3-24)则对应的振幅频谱n A 和相位频谱n ϕ称为单边频谱。

例3-3 求图3-4所示周期矩形信号)(t f 的单边频谱图。

解 由)(t f 波形可知, )(t f 为偶函数,其傅里叶系数⎰==2/0021)(4T dt t f T a⎰=Ω=2/0)4/sin(2cos )(4T n n n tdt n t f T a ππ0=n b故∑∑∞=∞=Ω+=Ω+=110cos )4/sin(241cos 2)(n n n tn n n t n a a t f ππ因此410=A , ππn n A n)4/sin(2=即45.01=A , 32.02≈A , 15.03≈A , 04=A , 09.05≈A , 106.06≈A ┅单边振幅频谱如图3-5所示。

tf(t)图 3 - 4ττττ4 2/ 0 2/ 4--1图 3 - 50.250.450.320.150.090.106ΩΩΩΩΩΩΩ7 6 5 4 3 2 0A n2双边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-17),即25)-(3 )(∑∞-∞=Ω=n tjn neF t f则n F 与Ωn 所描述的振幅频谱以及n F 的相位n n F θ=arctan 与Ωn 所描述的相位频谱称为双边频谱。

4.2周期信号的频谱

4.2周期信号的频谱
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:

离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
图5
信号与系统
4.2-7
f( t ) 的双边谱
Sa( t ) :
Fn :
图6
信号与系统
f( t ) 的幅度谱和相位谱
4.2-8

图7

信号与系统
4.2-9
周期 T 和脉冲宽度τ与频谱的关系
从上述周期信号的频谱图可以看出,信号能量主要部 分集中在 0 2π 的低频分量上,那些次数较高的频率 2π 0 分量实际上可以忽略不计。因此,常把 这段频率 范围称为矩形信号的有效带宽,或称为 “频带宽度”, 简称带宽,即
则复系数
则f(t)的指数形式的傅里叶级数为
A f (t ) T
n1 sin( ) 1 2 jn1t A n1 A 2 Fn Ae dt Sa ( ) n1 T 2 T T 2 ( ) 2
1 2 A F0 a0 Adt T 2 T
当n 1,3,5时
当n 2,4,6时
an bn 0
4 an f ( t ) cosn 1t d t T1 T1 4 2 bn f ( t ) sinn 1t d t T1 0
T1 2 0
奇谐函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X

1.三角形式的谱系数
f (t ) E
9 页
T1

f t 是个偶函数
bn 0, 只有a0 , an
O 2 2
T1
t
X

2.指数形式的谱系数
1 Fn T1
10 页

1 = T1
T1 2 T 1 2
f ( t )e jn1t d t

2
E 1 jn 1 t 2 Ee dt e jn1t 2 T1 jn 1
P5 n F 0 F 1 F 2 1 F 3 1 F 4 1
2 2 2 2
2
F 1 F 2 1 F 3 1 F 4 1
2 2 2
2
0.181E 2 1 T1 2 f ( t )dt 0.2 E 2 而总功率 T1 0 P5 n 二者比值 90.5% P
jn 1 jn1 2 e e 2

2
E jn 1T1


2E sin n 1 n 1T1 2 sin n 1 E 2 E Sa n 1 T1 T1 2 n 1
X
3.频谱及其特点

n)
E

f (t )
E 2E 1 f (t ) [sin(1 t ) sin(31 t ) 2 3 1 1 sin(51 t ) sin(n1 t ) ] 5 n

T1

T1 2
0
T1 2
T1
t
n 1,3,5,
E 2E 2E f (t ) cos(1 t ) cos(31 t ) 2 2 3 2 2E 2E cos(51 t ) cos(71 t ) 5 2 7 2
Fn F n
n n
X

双边频谱图
1 1 1 1
6 页
E j( t ) j( t ) j ( 3 t ) j ( 3 t ) E E 2 e 2 ] 2 e 2 ] f (t ) [e [e 2 3 j ( 51 t ) j ( 51 t ) j ( 7 1 t ) j ( 7 1 t ) E E 2 e 2 ] 2 e 2 ] [e [e 5 7
17 页
3.系统的通频带>信号的带宽,才能不失真
语音信号 频率大约为 300~3400Hz, 音乐信号 50~15,000Hz, 扩音器与扬声器 有效带宽约为 15~20,000Hz。
X
X

2.频带宽度
在满足一定失真条件下,信号可以用某段频率范围 的信号来表示,此频率范围称为频带宽度。。 一般把第一个过零点作为信号的频带宽度。记为: 2π 1 B 或B f ,带宽与脉宽成反比。 1 对于一般周期信号,将幅度下降为 F n1 max的 10 频率区间定义为频带宽度。
图中T 5
E T1
E Fn Sa n1 T1 2
第 11 页
Fn

O
( )Fn 是复函数(此处为实 数),幅度 相位 5 函 /
Fn 0,相位为 0,Fn 0, 相位为 π 。
E 。 (1)包络线形状 抽样函数 ( 2)其最大值在 n 0处,为 T1 2π ( )第一个零点坐标: 4 (3)离散谱(谐波性) 2π 令 = 当 n 1时取值 2
X
1 2 1



4.讨论
2π 谱 线 间 隔1 不变 T1不变, 改变 T1 E 2π 幅 度 , 第 一个 过零 点 T1
f (t ) E
12 页
T1 5
2E 5
Fn

T1
t
f (t )
E
T1 10
T1
t

2
0
2
4



n1
E 5
Fn


2
0
2


n 1
X
不变, 1改变 T
E 2π T1 幅度 , 谱线 间隔1 T1 T1
f (t )
2π 第一个过零点频率 不变
第 13 页
当ET1 ,时, 1 0, 为无限小, T1 f t 由周期信号 非周期信号。 4

T1 2T1
Fn Fn e j n
n
幅 度 谱 :Fn ~ 相位谱: n ~
关系
1 Fn An n 0 2
1 Fn An e j ( n 1) 21 F n An e j ( n 1) 2
n
F0 A0 a0
● 幅度频谱为偶函数 ● 相位频谱为奇函数
§3.3 周期信号的频谱
•周期信号的频谱 • 周期矩形脉冲信号的频谱

3.3.1 周期信号的频谱
幅度频谱(简称幅度谱):
2 页
各次谐波振幅随频率变化的关系 相位频谱(简称相位谱) 各次谐波相位随频率变化的关系
X

1、单边频谱
f ( t ) A0
3 页
A cos(n t
n 1 n 1
X

单边频谱图
n
An
4 页
离散谱,谱线
1
2E 3 2E 5
5 1
2E E 2

31
51
7 1
91
0
2E 7
71 9 1
n1

0
1
3 1
n1


2
An ~ 曲 线
n ~ 曲 线
幅度谱
相位谱
X

2、双边频谱
f (t )
n
5 页


Fn e jn1 t
T1 5E
2E 5
Fn
t



2

0 2 T1
2
4


n 1
f (t )
E
T1 10
4 2
E 5
Fn

T1
t
0 2 T1
2
4
n 1
X

5、结论:
矩形脉冲的频谱说明了周期信号频谱的特点:
14 页
离散性
谐波性
收敛性
X

二.频带宽度
1.问题提出
X

3.3.2 周期矩形脉冲信号的频谱
本小节以周期矩形脉冲信号为例进行分析
7 页
主要讨论:频谱的特点,频谱结构,
频带宽度,能量分布。
X

一.频谱结构
f (t ) E
8 页
脉宽为 脉冲高度为 E
T1
t
T1
O 2 2
周期为T1
1. 三角函数形式的谱系数 2. 指数函数形式的谱系数 3. 频谱特点
E T1
15 页
Fn

O 1 2 1


第一个零点集中了信号绝大部分能量(平均功率)
由频谱的收敛性可知,信号的功率集中在低频段。
X

周期矩形脉冲信号的功率
1 P T
16 页

T
f 2 ( t )dt
0
n


Fn
பைடு நூலகம்
2

n


F ( n1 )
2
1 1 以 s, T1 s为例,取前5 次谐波 20 4
相关文档
最新文档