碳纳米管简介PPT课件

合集下载

碳纳米管简介

碳纳米管简介

3)激光蒸发法. 这种方法是制备单壁纳米碳管的一种有效 方法。用高能CO2激光或Nd/YAG激光蒸发掺 有Fe、Co、Ni或其他合金的碳靶制备单壁纳 米碳管。用这种CO2激光蒸发法,在室温下 就可以得到单壁碳纳米管。
缺点: 单壁碳纳米管的纯度较低、易粘 结。
5.碳纳米管的独特性质
1)力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍 ,密度却只有钢的1/6,至少比常规石墨纤维高一 个数量级。它是最强的纤维,在强度与重量之比 方面,这种纤维是最理想的。
2) 电学性能 由于碳纳米管的结构与石墨的片层结构相 同,所以具有很好的电学性能。理论预测 其导电性能取决于其管径和管壁的螺旋角。 当CNTs(碳纳米管 )的管径大于6mm时, 导电性能下降;当管径小于6mm时,CNTs 可以被看成具有良好导电性能的一维量子 导线。
3) 热学性能 一维管具有非常大的长径比,因而大量热是 沿着长度方向传递的,通过合适的取向, 这种管子可以合成高各向异性材料。虽然 在管轴平行方向的热交换性能很高,但在 其垂直方向的热交换性能较低。适当排列 碳纳米管可得到非常高的各向异性热传导 材料。
4) 储氢性能 1997年,A. C. Dillon对单壁碳纳米管 (SWNT)的储氢性能做了研究,SWNT在0℃时 ,储氢量达到了5%。 DeLuchi指出:一辆燃料机车行驶500km,消耗 约31kg的氢气,以现有的油箱来推算,需 要氢气储存的重量和体积能量密度达到65% 和62kg/m3。 这两个结果大大增加了人们对碳纳米管储氢 应用前景的希望。
3.碳纳米管的分类
1)按形态分
普通封口型
变径型
洋葱型
海胆型
竹节型
2)按手性分
扶手椅型
锯齿型

《碳纳米管》PPT课件

《碳纳米管》PPT课件
分类:
离子液体修饰碳纳米管 、表面活性剂 (十二 烷基磺酸钠(SDS)和十二烷基苯磺酸钠 (SDBS) )、聚间亚苯基亚乙烯(PmPV) 等
4 碳纳米管的基本性质
(1)力学性能:sp2杂化形成的C=C共价键是自然界 最强的价键之一,赋予碳纳米管极强的强度、韧性 及弹性模量,使碳纳米管具有优异的力学性能。由 于碳纳米管的纳米尺度和易缠绕的特点,直接用传 统实验方法测量其力学性能比较困难,因此最初对 碳纳米管力学性能的研究集中在理论预测上。
当今世界公开报道高质、高效、连续大批 量工业化生产碳纳米管的实例:沸腾床催化法、 化学气相沉积法
碳纳米管结构示意图
(A) 椅形单壁碳纳米管 (B) Z字形单壁碳纳米管 (C) 手性单壁碳纳米管 (D) 螺旋状碳纳米管 (E) 多壁碳纳米管截面图
(方A)法电和弧设放备电都法较:相其似方。法阴及极设采备用与厚制约备10Cmm60的, 直径约为30mm的高纯高致密的石墨片,阳极 采用直径约为6mm的石墨棒,整个系统保持 在气压约104Pa的氦气气氛中,放电电流为50 A左右,放电电压20V。通过调节阳极进给速 度,可以保持在阳极不断消耗和阴极不断生长 的同时,两电极的放电端面距离不变,从而可 以得到大面积离散分布的碳纳米管,同时还可 能产生碳纳米微粒。
(D)激光法
机理:与电弧放电法类似,主要是将一根金属催化剂/ 石墨混合的石墨靶放置于一长形石英管中间,该管 则置于一加热炉内。当炉温升至1200℃时,将惰性 气体充入管内,并将一束激光聚焦于石墨靶上。石 墨靶在激光照射下将生成气态碳,这些气态碳和催 化剂粒子被气流从高温区带向低温区,在催化剂的 作用下生长成碳纳米管。
发现:1991年,日本学者Ijima和美国的Bethune 等人在掺加过渡金属催化剂的石墨电极间起弧放 电,并在制备产物中分别发现了单壁纳米管。

碳纳米管简介PPT课件

碳纳米管简介PPT课件

AFM image
CNT电性能测试装置(左) 电性能测试结果(右)
最新精品资料
➢ 热性能
性能
热稳定性 真空环境可耐温至2800oC,空气中700oC 热导率 理论值6000W.(m.K)-1;实验值3000W.(m.K)-1
❖ 单根MWNT(直径14nm)的热导性测 试结果
❖ 插图为用于热导性测试的微器件,标 尺为10μm
比碳纤维高一个数量级,约为钢的100
倍, 而密度仅为钢的1/6
拉伸强度 10~150GPa,石墨片层为36.5GPa,是
高强钢的20倍
韧性
拉伸形变至40%无明显脆性行为、塑性
形变和断裂
SWNT tensile test
before test
after test
before test
after test
率较低
最新精品资料
合成方法
➢激光烧蚀法(Laser Ablation)
惰性气氛中,利用激光的高能量蒸发石墨靶(含金属催化剂)来合成碳纳米管 可生产SWNT和MWNT 所得碳纳米管品质高,结构完整,缺陷较少,适合生长SWNT 成本高,收率低
最新精品资料
合成方法
➢化学气相沉积法(Chemical Vapor Deposition, CVD)
最新精品资料
应用前景
碳纳米管防弹衣
因纳米碳管既轻又强度极高, 是钢的10-100倍,用它来作 防弹衣就像用羽绒做成的防 寒服一样,既可折来叠去, 又能抵御强大的子弹的冲击 力。
最新精品资料
挑战与问题
与10年前相比,碳纳米管的价格有了显著降低,但仍显过高,特别是用于复合材料填 料时,与其它填料相比性价比偏高
品质和产量间存在矛盾,如CVD技术能用来大量生产碳管,但所得产品石墨化程度 低,缺陷多,性能不尽如人意

单壁碳纳米管综述PPT课件

单壁碳纳米管综述PPT课件
➢常用气体:
甲烷、一氧化碳、苯等
➢催化剂:
Fe、Co、Ni、Mo等以及它们的氧化物
第15页/共25页
优点:相对于电弧法和激光蒸发法而言,化学气相沉 积法因具有合成温度较低 产量高、 纳米碳管的直 径及螺旋性易控制等优点而逐渐成为合成纳米碳管 的一种主要方法。 缺点:产率较低且反应气体不能重复使用
第16页/共25页
由单层石墨片绕中心按一定角度卷曲而 成的无缝、中空纳米管。
单壁碳纳米管 直径为1-6 nm
第5页/共25页
2)特 性
•更为典型的一维结构 •无层间交互作用
单壁碳纳米管
•超级力学性能(钢的100倍)
•极强的吸附性能 优异的储氢特性
•更适于研究和理解碳管电子结构和输运现象
第6页/共25页
4 制备方法
第3页/共25页
碳纳米管的结构
• 碳纳米管是石墨管状晶体 • 是单层或多层石墨片围绕中心按一定
的螺旋角卷曲而成的无缝纳米级管
① 单壁碳纳米管(SWNTS)
碳纳米管
• 种类:
② 多壁碳纳米管(MWNTS)
长径比100~1000,甚至10000,为线状物
第4页/共25页
图示呈线状物
(1)定义:
碳的同素异形体
制备方法总结
制备的主要目标:(1)连续批量生产;(2)结构分布 均匀且可控;(3)成本低,纯度高; 有待优化的关键因素:(1)碳源;(2)催化剂及载体; (3)制备条件; 符合实际生产、能大批量制备的方法是石墨电弧法和化 学气相沉积法。
第17页/共25页
5 应用
储氢材料 电子领域 高强度复合材料领域 生物医学领域
第21页/共25页
谢谢
第22页/共25页

碳纳米管的应用ppt课件

碳纳米管的应用ppt课件
11
导电材料
将碳纳米管均匀地扩散到塑料中,可获得强度更高并具有导电 性能的塑料,可用于静电喷涂和静电消除材料,目前高档汽车的 塑料零件由于采用了这种材料
由于碳纳米管复合材料具有良好的导电性能,不会象绝缘塑料产 生静电堆积,因此是用于静电消除、晶片加工、磁盘制造及洁净 空间等领域的理想材料
当CNTs的管径大于6mm时,导电性能下降;当管径小于6mm时, CNTs可以被看成具有良好导电性能的一维量子导线。
12
储氢材料 氢气在未来的能源方面将扮演一个很重要的角色,
它在释放能量的过程中不会引起空气的污染和导致 温室效应,但目前仍然没有一个实用的办法存储和 运输氢气,而这对氢气能源的实用化是十分重要的。
最近的研究表明,碳纳米管非常适合于作为储氢材 料。由于碳纳米管具有独特的纳米级尺寸和中空结 构,具有更大的表面积,相对于常用的吸附剂活性 炭而言,具有更大的氢气吸附能力。
14
储存器 由于优异的化学稳定性(C-C键,
无悬空键) 因此碳纳米管具有化学惰性,经
历充放电不发生化学作用。因此, 数据保存在这样的一个存储器中 可以拥有更长的保存时间。
15
四、碳纳米管的新应用发现
麻省理工大科学家发现,在电池一 端电极使用含碳纳米管可以比现在 的锂电池蓄存更多的电力 。这种电 池在充电效率及蓄电能力远比目前 最高端的锂电池更优良。科新研发 的含碳纳米管电池进行1000次充 放电实验。结果在经历1000次充 放电后,含碳纳米管电池内的物质 属性变化极微,电池蓄电力丝毫未
9
电磁干扰屏蔽材料及隐形材料 碳纳米管是一种有前途的理想微波吸收剂,可用于 隐形材料、电磁屏蔽材料或暗室吸波材料。碳纳米 管对红外和电磁波有隐身作用。
10
超级电容器 作为电双层电容电极材料,要

新材料概论碳纳米管课件

新材料概论碳纳米管课件
通过化学或物理方法对碳纳米管进行改性, 以提高其分散性和界面稳定性。
环保与可持续性
在合成和使用过程中,考虑碳纳米管的环保 和可持续性问题也正在成为研究热点。
05
碳纳米管的生产与市场产主要采用气相沉积、电弧放 电和激光脉冲等方法。其中,气相沉积法具 有生长速度快、纯度高、可大规模生产等优 点,但设备成本较高。电弧放电法和激光脉 冲法具有设备简单、成本低等优点,但产量 较低。
02 将不同性能的材料进行复合,实现材料的多功能特性
,如强度、韧性、耐磨性、导电性、导热性等。
多功能复合材料应用
03
将多功能复合材料应用于不同的领域,如航空航天、
汽车、能源、生物医学等。
新兴应用领域拓展
01
新一代信息技术
发展新型电子器件、光电器件、 传感器的应用,推动信息技术领 域的创新发展。
02
化学稳定性
碳纳米管在大多数化学环境下都具 有很好的稳定性,使其在化学反应中 具有很好的应用前景。
挑战与瓶颈
01
生产与合成难度
碳纳米管的制备和合成仍存在一 定的挑战,其大规模生产和成本
控制是当前的研究重点。
03
界面稳定性差
在某些应用中,碳纳米管的界面 稳定性较差,可能会影响其性能

02
分散与纯化问题
其他制备方法
总结词
其他制备碳纳米管的方法
VS
详细描述
除上述方法外,还有许多其他制备碳纳米 管的方法,如燃烧合成法、溶胶凝胶法等 。这些方法各有优缺点,可根据实际需求 选择合适的方法。
03
碳纳米管的应用领域
纳米电子器件
碳纳米管在制造纳米电子器件方面具有高导电性和稳定性,可以用于制造高灵敏 度的场效应晶体管、逻辑电路和存储器等。

碳纳米管介绍ppt课件

碳纳米管介绍ppt课件

激光蒸发法制备碳纳米管的装置
ppt精选版
21
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相 比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得 到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无 无定形碳出现。
这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结, 且需要昂贵的激光器,耗费大。
ppt精选版
15
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能, 由于是一维材料,其在径向上的导热 性能优越,我们甚至可以在复合材料 中掺杂微量的碳纳米管 ,使得复合材料 的热导率得到很大的改善。
ppt精选版
16
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且 具有大量的微孔,其储氢量远远大于 传统材料的储氢量,因此被认为是良 好的存储材料。
ppt精选版
30
新型芯片
在硅芯片晶体管接近其物理性能极限的当今, 碳纳米管是未来替代硅芯片极具竞争力的候选材 料之一。科学家预计碳纳米晶体管的运算速度将 比目前看好的下一代硅芯片的还要快10倍,而且 耗能更少,这将有助于研发具有超级运算速度和 低能耗的微处理器。
ppt精选版
31
触摸屏
在消费性电子产品中,常见的是电容性触摸屏, 而它常用的材料则是ITO(纳米铟锡金属氧化物) 导体。ITO薄膜是制造触摸屏导体的理想材料。但 铟非常稀有,且ITO薄膜还有易碎、可塑性差的缺 点,处理过程需要在真空环境下进行,导致价格非 常昂贵。
ppt精选版
18
1.电弧法(Arc Discharge Methods)
主要工艺:
在真空容器中充满一定压力的 惰性气体或氢气,以掺有催化剂 (金属镍、钴、铁等) 的石墨为电 极,在电弧放电的过程中,两石墨 电极间总保持一定的间隙。阳极石 墨被蒸发消耗,同时在阴极石墨上 沉积碳纳米管,从而生产出碳纳米 管。

碳纳米管的制备与纯化ppt课件

碳纳米管的制备与纯化ppt课件
匀混合后可用于固相热解法。
.
一般说来,碳源的选择不影响产物的性质,但是 对碳纳米管的成长速率有一定的影响。不同的碳 源,分解温度不同,因而热传导率也不同。另外, 在反应中加入一些生长促进剂(如硫、磷、唾吩等) 可以加速碳源的分解,有利于生成纳米管。 此外,载体法中随着碳源的分解,碳的浓度和压 强在载体孔隙中逐渐增大,达到一定浓度时,便开 始在催化剂颗粒上沉积成核,开始碳纳米管的生 长。所以与其它方法相比,载体催化热解法能充分 利用载体孔隙增大积碳压强而降低合成温度。
场对碳管的开口生长起稳定作用并诱导碳纳
米管生长。而Zhang等认为,电弧条件下的 CNTs生长是阴极上的场发射结构与等离子体
相互作用的结果。Satio等认为电场的静电引 力是碳纳米管生长的原因,在电场力作用
下,液态的小微粒呈椭圆形,并沿着电场作 .
用方向生长。
➲ 电弧法制备碳纳米管的生长机理 在观察电弧法制备的纳米管结构时发现,很 难用闭口模型生长机理来解释其结构的形成, 例如:闭口生长模型不可能解释为什么在多壁 的生长过程中内层的长度和外层的不同。另 外,在如此高温下,碳管沿径向和轴向同时生 长,所有的同轴碳管将瞬间形成,表明这种生 长更倾向于开口生长。
超声震荡2h后,在N2(压力200kPa)中磁力搅 拌下微孔过滤,大部分的金属纳米粒子和碳纳 米球都进人滤液而被除去,最后所得SWNTs 的纯度>90%。与此同时,Shelimov等发现 结合超声振荡技术和微量过滤方法,可将由激 光蒸发法制备出的SWNTs从含有无定形碳、 石墨多面体和金属催化剂微粒等杂质的产物中 有效地分离出来。在过滤过程中,超声技术的 引人可以防止过滤器受到污染,同时还可以保 持一个充分分散的碳纳米管与纳米颗粒共存的 悬浮液环境。由于起始原料的不同,这种方法 可以得到产率为30%~70%、纯度>90%的单 壁碳纳米管,由于超声. 展荡的切割作用,纯化

碳纳米管的结构PPT课件

碳纳米管的结构PPT课件
第10页/共43页
★石墨层间化合物的功能与应用
石墨层间化合物的性质因嵌入物不同、阶数不同而不同,因而其 功能及应用是多方面的,主要可用于: 轻型高导电材料、电极材料、 新型催化剂、固体润滑剂、贮氢及同位素分离材料、防水防油剂等。
电极材料
石墨间隙化合物的电阻比石墨本身还低,在垂直方向降低了约10倍,沿石墨
碳纤维增强复合材料作结构材料, 可作飞机的尾翼或副翼, 通信卫星的天线系统和导波管、航天飞机的货舱门、燃料箱、 助推火箭的外壳。在建筑方面,可作碳纤维增强水泥地板,并 有取代钢筋的可能性。
作为非结构材料, 碳纤维复合材料可作密封材料、耐磨材料、 隔热材料、电极材料。
在原子能工程上用碳纤维-石墨复合材料作铀棒的幕墙材 料, 不仅可以防止铀棒的辐射变形, 使其对中子的吸收截面变小, 反射中子能力增强, 而且在光氧条件下能耐3000 ℃以上的高温。
碳纤维复合材料可作优质的化工容器、设备或零部件。 将碳纤维进行活化处理,得到活性碳纤维,是已知的比表 面积最大的物质之一(2500 m2·g-1),被称为第3代活性炭,作为 新型吸附剂具有重要的应用前景。 在医学上,碳纤维增强型塑料是一种理想的人工心肺管道 材料,也可作人工关节、假第肢16、页/假共4牙3页等。
性能的优点(而一般的石墨存在润滑性能下降的缺陷)。这是由于氟化石墨的层面由C -F键构成,其表面能极小,容易滑动之故。
贮氢及同位素分离材料 钾、铷、铯等碱金属的石墨层间化合物在一定温度下能化学或物理吸附氢。如
C8K吸附氢生成C8KHx(0≤x≤2),且离解温度及离解能低,吸附与解吸完全可逆,达 平衡的时间短,因而可作贮氢材料。更有趣的是这种吸附对氢、氖、氖有选择性, 因而可用于氢同位素分离,其H2-D2及H2-HT分离系数都高于硅酸盐系离子交换 体系。

神奇的储氢材料――碳纳米管PPT课件

神奇的储氢材料――碳纳米管PPT课件
目前的储氢材料都不能满足这一要求。
9
碳纳米管
Carbon nanotube (CNT)
由于纳米材料的研究热潮的带动,以碳和 纳米碳材料进行储氢成为新的研究热点。
10
纳米材料(1—100nm)的基本效应 1、小尺寸效应(体积效应) 2、量子尺寸效应 3、宏观量子隧道效应
4、表面效应
11
• 又叫巴基管,碳的同素异形体
2
氢能
hydrogen energy
3氢能被人们称ຫໍສະໝຸດ 理想的“绿色能源”氢能的优越性
1、安全环保:氢气分子量为2,比空气轻1/14,因此氢气泄露 空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会 聚集地面而构成易燃易爆危险。无味无毒,不会造成人体中毒, 燃料产物仅为水,不污染环境。 2、高温高能:1kg氢气的热值为34000Kcal, 是汽油的三倍。氢 氧焰温度高达2800度,高于常规液体。
31
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
32
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
24
储氢量与储氢压力(温度)关系图
25
氢气释放问题:
2005年7月26日,美国NIST和Turkey's Bilkent大学发 现,钛修饰碳纳米管可以解决有效储氢的两个关键 问题:不但能够吸附足够数量的氢分子,而且可以 在加热时轻易地释放.
研究人员正在试图用碳纳米管制作轻便的可携带 式的储氢容器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 现在被称作的“Carbon nanotube”,即碳纳米管,又 名巴基管
.
2
分类
▪ 碳纳米管按照石墨烯片的 层数分类可分为:
▪ 单壁碳纳米管( SWNT) 多壁碳纳米管(MWNT)
▪ 碳纳米管依其结构特征可 以分为三种类型:
A:扶椅式单壁碳纳米管
B:锯齿形单壁碳纳米管
C:手性单壁碳纳米管
D:螺旋状碳纳米管
利用纳米尺度的过渡金属或其氧化物为催化剂,在相对较低的温度 (500-1200℃)下热解碳 源气体(甲烷、乙炔、乙烯、丙烯、苯和一氧化碳等)来合成碳纳米管 可生产SWNT和MWNT 成本低,收率高,可大量生产 碳纳米管的管径在很大程度上依赖于催化剂颗粒的成分和尺寸,分布较宽;较多的结晶
缺陷,石墨化程度较低,常发生弯曲和变形,管端和管壁上包有催化剂颗粒
before test
after test
before test
after test
.
4
性能
➢ 电性能
根据螺旋结构的不同,碳纳米管的电学特性可表现为金属性和半导体性 电特性与管径有较大关系
d > 6nm 导电性明显下降 d < 6nm 优良的导电性 d ~ 0.7 nm 表现出超导性
电阻率 0.05 µΩ~ 10 mΩ.m 电流密度 1010 ~ 1013 A/m2
.
6
合成方法
➢ 电弧放电法(Arc-Discharge )
以掺有过渡金属(如Fe, Co, Ni, Mo等)或 其氧化物的石墨为电极,在惰性气体环境中, 电弧放电,消耗阳极石墨,在阴极上生成碳 纳米管
电压 - 12~25 V; 电流 - 50~120 A; 电极间 隙 - ~1 mm
最早应用的碳纳米管合成方法 可生产SWNT和MWNT 简单、快速,制得的碳纳米管直而管径较细 碳纳米管易烧结成束,难于分离和提纯,收
可用于制备高性能化和多功能性兼备的纳米复合材料 小尺寸特点决定了其聚合物复合材料可通过通用型聚合物加工设备进行生产
➢ 生物、医药领域
利用其高强度和柔韧性制备人造肌肉、人造骨骼等
药物输运(drug delivery)
.
11
应用前景
.
12
应用前景
碳纳米制造“太空电梯”
或许有一天我们会沿着超轻超强的碳纳米管 电缆,搭乘太空电梯上太空观光旅行。 .
➢ 储氢材料
室温、1bar压力下,SWNT可储氢5-10wt%,MWNT则为14wt% 可逆储/放氢量~5 wt%,迄今为止最好的储氢材料 嵌入碱金属后,能极大地提高储氢性能
➢ 催化剂载体
比表面积大,表面原子与总原子比率可高达50% 气体通过碳纳米管的扩散速度为通过常规催化剂颗粒的上千倍
➢ 复合材料填料
这种高科技材料在科学方面有非常有趣的应 用,像在太空中,舱外作业的宇航员就可以穿 上这种具有吸盘粘附功能的衣服。 据估计,世 界第一套“蜘蛛衣”有望在2017年前问世。
.
16
应用前景
碳纳米管制成像纸一样薄的弹簧
莫斯科大学的研究人员为了弄清 纳米管的受压强度,将少量纳米管 置于29Kpa的水压下(相当于水下 18000千米深的压力)做实验。不 料未加到预定压力的1/3,纳米管 就被压扁了。他们马上卸去压力, 它却像弹簧一样立即恢复了原来形 状。应用:科学家得到启发,发明 了用碳纳米管制成像纸一样薄的弹 簧,用作汽车或火车的减震装置, 可大大减轻车辆的重量。
13
“太空电梯”工作原理图
应用前景
碳纳米管制造人造卫星的拖绳
在航天事业中, 利用碳纳米管制 造人造卫星的拖 绳,不仅可以为 卫星供电,还可 以耐受很高的温 度而不会烧毁。
.
14
应用前景
碳纳米管“蜘蛛衣”
一教授计划用一种名为 碳纳米管的超细纤维来制 造“蜘蛛衣”,这种材料 内部中空。由于非常微小 ,它具有像壁虎刚毛一样 的吸附效果。壁虎、蜘蛛 的脚上长满了细小的刚毛 ,能敏锐地寻找到各种固 体表面的细微凹凸并吸附 在上面。
率较低
.
7
合成方法
➢激光烧蚀法(Laser Ablation )
惰性气氛中,利用激光的高能量蒸发石墨靶(含金属催化剂)来合成碳纳米管 可生产SWNT和MWNT 所得碳纳米管品质高,结构完整,缺陷较少,适合生长SWNT 成本高,收率低
.
8
合成方法
➢化学气相沉积法(Chemical Vapor Deposition, CVD)
.
15
应用前景
蜘蛛衣”的吸附力取决于与固体表面接触处 的碳纳米管数量。这种材料的外部直径只有几 到几十纳米,相当于头发丝的1/10万,因此一 片手掌大小的纤维中可容纳数十亿的碳纳米管, 由此产生的单位面积吸附力是壁虎脚的200倍。 把一双用这种材料制成、手掌面积为200平方 厘米的高粘力手套粘在屋顶上,可以同时吊起 14个重量为83公斤的壮汉。当然,要移动也很 简单,只要沿着表面稍微上下左右挪动一下, 粘结处就会一点点断开。
.
9
分离提纯
➢ 碳纳米管在进行结构表征、性能测试和应用之前,通常须进行分离与提纯 ➢ CVD碳纳米管,根据应用需要,有时须进行高温石墨化处理以提高其结构完整性
合成产物中,常伴有大量杂质,如无定型碳、富勒烯、金属催化剂等 常用的提纯方法 氧化法和高温热处理
直接合成的SWNT
提纯后的SWNT
.
10
应用领域
AFM image
CNT电性能测试装置(左) 电性能测试结果(右)
.
5
➢ 热性能
性能
热稳定性 真空环境可耐温至2800oC,空气中700oC 热导率 理论值6000W.(m.K)-1;实验值3000W.(m.K)-1
❖ 单根MWNT(直径14nm)的热导性测 试结果
❖ 插图为用于热导性测试的微器件,标 尺为10μm
.
3
性能
➢ 力学性能
杨氏模量 1~5 TPa,与石墨片层相当(1.06TPa),
比碳纤维高一个数量级,约为钢的100
倍, 而密度仅为钢的1/6
拉伸强度 10~150GPa,石墨片层为36.5GPa,是
高强钢的20倍
韧性
拉伸形变至40%无明显脆性行为、塑性
形变和断裂
SWNT tensile test
碳纳米管简介
Presentation
工程试验1班
主讲:#### 组员:#######
.
1
碳纳米管
▪ 简介
▪ 在1991年日本NEC公司基础 研究实验室的电子显微镜专 家饭岛(Iijima)在高分辨透射 电子显微镜下检验石墨电弧 设备中产生的球状碳分子时 ,意外发现了由管状的同轴 纳米管组成的碳分子,这就 是碳纳米管
相关文档
最新文档