三相电压型逆变器课程设计

合集下载

3KVA三相逆变电源设计

3KVA三相逆变电源设计

学号:课程设计题目3KVA三相逆变电源设计学院自动化学院专业自动化班级姓名指导教师朱国荣2014年1月2日课程设计任务书学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院题目: 3KVA三相逆变电源设计初始条件:输入直流电压110V。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)设计容量为3KVA的三相逆变器,要求达到:1、输出380V,频率50Hz三相交流电。

2、完成总电路设计。

3、完成电路中各元件的参数计算。

时间安排:课程设计时间为两周,将其分为三个阶段。

第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。

第二阶段:根据设计的技术指标要求选择方案,设计计算。

第三阶段:完成设计和文档整理,约占总时间的40%。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)1 设计要求、意义及思路 (2)1.1 设计意义 (2)1.2 设计要求 (2)1.3 设计思路 (3)2 方案设计及原理 (3)2.1逆变电路 (3)2.2 SPWM采样方法选择 (4)2.3 LC滤波 (5)2.4 升压变压器 (6)3 主电路设计及参数设计 (7)3.1 IGBT三相桥式逆变电路 (7)3.2 脉宽控制电路的设计 (9)3.2.1 SG3524芯片 (9)3.2.2 调制波及载波的产生 (10)3.3 触发电路的设计 (11)3.3.1 IR2110芯片构成的触发 (11)3.3.2 M57962L芯片构成的触发电路 (12)3.4其他部分的参数设计 (13)结束语 (15)参考文献 (16)附录一: (17)附录二:主电路图 (18)摘要现代电力电子技术的迅猛发展,使逆变电源广泛应用于各个领域,同时对逆变电源输出电压波形质量提出了越来越高的要求。

逆变电源输出波形质量包括稳态精度高、动态性能好以及负载适应性强。

三相PWM逆变电路

三相PWM逆变电路

湖南工学院电力电子技术课程设计课程名称: 三相PWM逆变器控制电路设计姓名:专业名称:自动化班级:学号:指导老师:课程设计的目的及要求一、设计要求及技术指标主要技术数据输入交流电源:三相380V,f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=20Ω,L=15mH二、课程设计背景随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,和此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。

对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。

因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。

目录第一章整流和逆变电路原理及路图.................................................................................... - 0 -1.1.电容滤波的三相不可控整流电路原理..................................................................... - 0 - 第二章三相无源PWM逆变电路及原理................................................................................ - 2 -2.1 三相无源逆变电路及原理......................................................................................... - 2 - 第三章驱动电路........................................................................................................................ - 3 - 第四章保护电路设计.............................................................................................................. - 4 -4.1 过电流保护电路........................................................................................................ - 4 -4.2 过电压保护电路........................................................................................................ - 4 - 第五章仿真电路和波形.......................................................................................................... - 4 -5.1 三相桥式整流仿真电路及波形................................................................................. - 4 - 参考文献 .................................................................................................................................... - 6 - 课程设计的心得.......................................................................................................................... - 6 -第一章整流和逆变电路原理及路图1.1.电容滤波的三相不可控整流电路原理三相桥式不可控整流电路是由三相半波不可控整流电路演变而来的阴极连接在一起的3个二极管(VD1,VD3,VD5)称为共阴极组;阳极连接在一起的3个晶闸管(VD4,VD6,VD2)称为共阳极组。

逆变电源课程设计

逆变电源课程设计

课程设计报告题目:逆变电源设计姓名:xxx学号:xxx逆变电源设计一、方案论证1、设计实现要求本次课程设计要求对逆变电源进行Matlab仿真研究,输入为100V,输出为380V、50Hz三相交流电,采用PWM斩波控制技术,建立Matlab仿真模型并得到实验结果。

2、设计方案确定由于要求的输出为380V、50Hz三相交流电,显然不能直接由输入的100V直流电逆变产生,需将输入的100V直流电压通过升压斩波电路提高电压,再经过逆变过程及滤波电路得到要求的输出。

设计思路:根据课本所学的,可以采用升压斩波电路和三相电压型桥式逆变电路的组合电路,将升压后的电压作为逆变电路的直流侧,得到三相交流电,同时采用PWM控制技术,使其频率为50HZ。

根据直流侧电源性质不同,逆变电路可分为电压型逆变电路和电流型逆变电路。

这里的逆变电路属电压型。

采用等腰三角波作为载波,用SPWM进行双极性控制。

该电路的输出含有谐波,除了使波形具有对称性减少谐波和简化控制外,还需要专门的滤波电路进行滤波。

滤波电路采用RLC滤波电路。

设计思路如下:二、原理简介1、升压斩波电路工作原理:t=0时刻驱动V导通,电源E向负载供电,负载电压u o=E,负载电流i o按指数曲线上升。

t=t1时控制V关断,二极管VD续流,负载电压u o近似为零,负载电流呈指数曲线下降。

通常串接较大电感L使负载电流连续且脉动小数量关系:电流连续负载电压平均值: t on ——V 通的时间 t off ——V 断的时间 a--导通占空比E E Tt E t t t U α==+=on off on on o负载电流平均值:电流断续,U o 被抬高,一般不希望出现。

2、三相电压型桥式逆变电路基本工作方式——180°导电方式每桥臂导电180°,同一相上下两臂交替导电,各相开始导电的角度差120 °。

任一瞬间有三个桥臂同时导通。

每次换流都是在同一相上下两臂之间进行,也称为纵向换流。

三相电压型SPWM逆变器设计

三相电压型SPWM逆变器设计

三相电压型SPWM逆变器设计一、设计原理:三相电压型SPWM逆变器由一个直流输入端和一个交流输出端组成。

其主要原理是将直流电压转换为较高频率的脉冲宽度调制信号,然后通过逆变桥电路将直流电压转换为交流电压。

在逆变桥电路中,通过控制三相负载端的三个开关管的开关状态,可以实现对输出电压幅值、频率和相位的控制。

二、设计步骤:1.选择逆变桥电路拓扑:逆变桥电路有多种不同的拓扑结构,如全桥、半桥等,需要根据具体需求来选择合适的拓扑结构,一般来说,全桥结构应用较为广泛。

2.数据采样和计算:通过采样电路获取输入电流和输出电压的实时数据,并进行运算和控制。

一般需要采用高速的模数转换器(ADC)进行数据采集,并使用微控制器或数字信号处理器(DSP)进行计算和控制。

3.正弦脉宽调制(PWM):通过正弦脉宽调制技术,将直流电压转换为脉冲宽度调制信号。

正弦脉宽调制技术是一种通过比较三角波和参考正弦波来确定开关管的开关状态的方法,其核心思想是让输出电压的波形尽可能接近正弦波形。

4.控制逆变桥电路开关状态:通过控制逆变桥电路中的三个开关管的开关状态,可以实现对输出电压的控制。

一般来说,可以采用脉冲宽度调制技术控制开关管的开关时间,从而改变输出电压的幅值和频率。

5.输出滤波:由于逆变器输出为脉冲宽度调制信号,需要进行滤波处理,以减小输出电压的谐波含量,并使其接近纯正弦波形。

常用的滤波器包括LC滤波器和LCL滤波器。

6.过流、过压保护:为了保护逆变器和负载,需要设计过流和过压保护电路,并将其集成到逆变器中。

总结:通过以上的步骤,就可以设计出一款三相电压型SPWM逆变器。

设计时需要根据具体需求选择逆变桥电路拓扑、采集数据并进行计算,使用正弦脉宽调制技术控制开关管的开关状态,进行输出滤波,并设计过流、过压保护电路。

这些步骤需要结合电力电子、控制系统和信号处理等多个领域的知识和技术。

三相电压型SPWM逆变器设计

三相电压型SPWM逆变器设计
本设计进行了硬件电路的模块划分、微控制器引脚资源的分配、具体单元电路的设计等。硬件电路由五大模块即控制器模块、功率器件驱动模块、逆变模块、保护模块和显示模块构成,其中控制器模块由EasyARM1138开发板构成,完成SPWM脉宽调制信号产生、LCD显示信号的输出及A/D转换等工作;驱动模块由两片IR2110及外围电路组成,完成SPWM信号的隔离放大并驱动功率开关管;逆变模块由四片绝缘栅双极晶体管组成的全桥电路和LC低通滤波器构成,在SPWM信号的控制下完成外部直流电压向纯正弦波电压的转换;保护模块由LM393及外围电路构成,实现正弦波输出信号的过压和过流保护;显示模块由LCD12864及辅助电路组成,实现相关数据的显示输出。
subplot(3,1,1);
plot(inv.time,inv.signals(1).values);
title(Uab'线电压波形');
subplot(3,1,2);
plot(inv.time,inv.signals(2).values);
title('A相输出电压Ua波形');
subplot(3,1,3);
但是,SPWM的载波频率除了受功率器件的允许开关频率制约外,SPWM的开关频率也不宜过高,这是因为开关器件工作频率提高,开关损耗和换流损耗会随之增加。另外,开关瞬间电压或电流的急剧变化形成很大的du/dt或di/dt,会产生强的电磁干扰;高du/dt、di/dt还会在线路和器件的分布电容和电感上引起冲击电流和尖峰电压;这些也会因频率提高而变得严重。
三相电压型SPWM逆变器设计
摘要:本次设计采用EasyARM1138开发板,设计了一个基于新型32位微控制器LM3S1138的可调频率中频逆变电源,即克服了传统模拟逆变器电路复杂、灵活性差、系统不稳定等缺点,又兼具普通单片机控制系统的低成本和DSP控制系统的高性能等优点,有效解决了特种电源设计中存在的成本和性能矛盾问题,同时也可应用于对电源频率有不同要求的场合。

三相pwm电压型逆变器毕业设计正文

三相pwm电压型逆变器毕业设计正文

摘要近年来,一些清洁高效的能源,如太阳能,风能,地热,核能等得到了较为广泛的应用和关注,其发电系统产生的是直流电流和电压,而许多负载都使用交流电,因此需要通过逆变器把直流电变成交流电。

随着这些新能源发电系统的日益推广,逆变器的使用也越来越多。

如何获得高质量的电流成为研究的焦点。

由于对高频谐波的抑制效果明显好于L型滤波器,因此LCL滤波器在并网逆变器中应用越来越广泛,与传统的L滤波器相比,LCL滤波器可以降低电感量,提高系统动态性能,降低成本,在中大功率应用场合,其优势更为明显。

文章首先对PWM 逆变器的工作原理做了详细的介绍,并对基于LCL的滤波器,在ABC 静止坐标系,αβ静止坐标系和dq 旋转坐标系中建立了数学模型。

其次,文章讨论了LCL 滤波器的参数设计方法,给出了系统LCL 滤波器参数的设计步骤。

最后,在详细阐述各元件的取值原则与计算步骤的基础上,给出了设计实例,并对所设计的逆变器进行了仿真验证,结果表明,根据该方案设计的控制器参数能够使三相并网逆变器安全、可靠运行且具有较快的动态响应速度。

关键词:并网逆变器LCL滤波器有源阻尼无源阻尼,双闭环控制AbstractIn recent years, clean and efficient energy sources, such as solar energy, wind energy, geothermal energy, nuclear energy has been widely used and has gained widespread attention .The power system produce the DC current and voltage, and many are using the AC load, it need inverter into alternating current to direct current. With the increasing promotion of photovoltaic power generation systems, the use of inverters is more and more. How to get a high quality of the current becomes the focus of research.Because of the inhibitory effect of high frequency harmonics is better than L-type filter, the LCL filter grid inverter is widely applied, compared with the traditional L-filter, LCL filter can reduce the inductance improve the system dynamic performance, reduce costs, in the high-power applications, its advantages more apparent.This paper analyzes the high frequency PWM inverter principle, and then presents a three-phase ABC coordinates and dq coordinate system on the mathematical model of LCL-filter configuration.Secondly, the article discusses the LCL filter design parameters; parameters of the system are given LCL filter design steps.Finally, each component in detail the principles and calculation steps of the value based on the design example is given, and the design of the LCL filter simulation results show that, according to the design of the controller parameters can make three-phase inverter with safe, reliable operation and has a fast dynamic response speed.Key words: Grid-connected inverter,LCL filter,Active damping, passive damping,Double closed loop control目录摘要................................................. . (I)Abstract .............................................. .. (II)目录................................................ .. (IV)1. 绪论.............................................. . (1)1.1微电网的提出和发展 (1)1.1.1微电网提出的背景和研究意义 (1)1.1.2微电网的定义 (2)1.1.3国内外应用研究现状 (2)1.2 逆变器的研究现状 (3)1.2.1三相电压型PWM逆变器的产生背景 (3)1.2.2 PWM逆变器的研究现状 (4)1.2.3基于LCL滤波的PWM逆变器的研究现状 (6)2. PWM逆变器的原理及数学模型...................... (11)2.1并网逆变器的分类及拓扑结构 (11)2.1.1逆变器的作用 (11)2.1.2逆变器的分类 (11)2.1.3并网逆变器的拓扑结构 (12)2.2 逆变器的工作原理 (14)2.3 基于LCL滤波器的PWM逆变器数学模型 (16)2.4 锁相环节的工作原理 (22)2.5 逆变器的SPWM调制方式分析 (23)3. LCL滤波器和控制系统的设计 (27)3.1 LCL滤波器的参数设计 (27)3.1.1 L,LC,LCL滤波器的比较 (27)3.1.2 LCL滤波器的选定 (29)3.1.3 LCL滤波器数学模型及波特图分析 (29)3.1.4 LCL滤波器的谐振抑制方法 (33)3.1.5 滤波器参数变化对滤波性能的影响 (33)3.1.6 滤波器参数设计的约束条件 (34)3.1.7 滤波器参数的设计步骤 (35)3.2并网逆变器控制方案的确定 (35)3.2.1 基于无源阻尼的单电流环控制方案的设计 (37)3.2.2 基于双环控制网侧电感电流外环控制器的设计 (39)3.2.3 基于双环控制电容电流内环控制器的设计 (39)4. 系统参数设计及仿真验证............................. (41)4.1 系统参数设计 (41)4.2 有源阻尼双闭环控制仿真分析 (32)4.3 无源阻尼单环控制仿真分析.......。

毕业设计建模教程 [三相电压型PWM逆变电路建模与仿真毕业设计]

毕业设计建模教程 [三相电压型PWM逆变电路建模与仿真毕业设计]

毕业设计建模教程[三相电压型PWM逆变电路建模与仿真毕业设计]本科毕业设计题目:三相电压型PWM逆变电路建模与仿真姓名学院信息与电气工程学院专业电气工程及其自动化年级学号指导教师20XX年X月X目录1引言22三相PWM逆变电路的相关理论背景22.1逆变22.2PWM控制的基本原理32.3三相电压型PWM逆变电路控制原理53三相电压型PWM逆变电路模型的建立过程73.1三相电压型PWM逆变电路的建立步骤及相关说明73.1.1建立模型窗口73.1.2建立逆变器主电路模型并设置相关参数73.1.3PWM发生器的模型建立及其设置113.1.4LC滤波器的建立与参数设置123.1.5主回路负载建立及设置153.1.6直流电源设置163.1.7设置相应的测量和输入模块163.1.8对逆变系统各模块进行电气连接174对模型进行仿真设置及调整分析174.1对所搭建好的模型进行仿真174.2对仿真结果的分析及其调整195结束语21参考文献21致谢22三相电压型PWM 逆变电路的建模与仿真摘要:本文在以MATLAB软件中的Simulink为工具的基础上,对三相电压型PWM逆变电路进行了仿真研究。

根据三相电压型PWM逆变电路及MATLAB的相关理论背景,重点对逆变器系统模型的搭建进行详细说明,最后对模型进行了仿真研究。

本文首先详细分析了三相电压型PWM逆变器的电路结构、逆变的工作原理及PWM控制方法;在此基础上利用MATLAB这一仿真工具,对模型系统的每一个具体模块的建立及其相关参数进行了设置,并对主电路的模块进行了单独说明,同时也详细说明了LC滤波模块的设置及其封装;之后进行整体的连接搭建;最后设置仿真参数实现了对三相电压型PWM逆变电路的仿真研究,优化模型性能,获得了完美成果。

关键词:三相电压型PWM逆变器;调制法;MATLAB;仿真Three-phasevoltagetypePWMinvertercircuitmodelingandsimulation Abstract:Inthispaper,basedonSimulinkintheMATLABsoftware tools,three-phasePWMinvertercircuitissimulated.Thetheoreticalbackgr oundofthethree-phasevoltagesourcePWMinvertercircuitandMATLABfocusesont hestructuresoftheinvertersystemmodeldescribedindetail,thefinalmodel,asimulationstudy.Thisarticlefirstdetaileda nalysisofthecircuitstructureofthethree-phasevoltagesourcePWMinverter,theinverterworksandPWMcon trolmethod.Onthisbasis,usingMATLABsimulationtoolforeach specificmoduleofthemodelsystemtoestablishitsrelevantpar ametersset,andthemaincircuitmoduleseparateinstructions, aswellasdetaileddescriptionoftheLCfiltermodulesettingsa ndtheirpackaging.overallconnectionstructures.setthesimu lationparametersforthree-phasevoltagetypePWMinvertercircuitsimulationtooptimizem odelperformance,getperfectresults.Keywords:three-phasePWMinverter;modulationmethod;ofMATLAB;simulation1引言众所周知,当今控制技术高速迅猛发展,随之带来的是对于控制理论和相关电力电子器材及系统模型的性能的高效率、高稳定可靠性的要求。

三相电压型SPWM课程设计报告

三相电压型SPWM课程设计报告

目录一、摘要 (2)二、SPWM控制技术简介 (3)2.1. PWM控制的基本原理 (3)2.2.SPWM逆变电路及理论基础 (4)三、三相逆变器双极性SPWM控制技术仿真设计 (8)3.1 SPWM触发脉冲调制电路 (8)3.2主电路图 (9)四、实验调试心得 (10)五、不同参数时三相逆变器双极性SPWM控制技术的仿真波形及频谱分析 (12)5.1 fc=500,Ma=0.9 (12)5.2频谱分析 (13)六、心得体会 (23)参考文献 (24)附录 (25)一、摘要关键字:三相桥电压型全控逆变SPWM Simulink 本次实验主要为利用simulink中的块原件来构建电力电子中的一种基本逆变电路——三相逆变器双极性SPWM调制技术的仿真,PWM控制技术在逆变电路中的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM技术。

常用的PWM技术主要包括:正弦脉宽调制(SPWM)、选择谐波调制(SHEPWM)、电流滞环调制(CHPWM)和电压空间矢量调制(SVPWM)。

在逆变电路的设计过程中,需要对设计电路及有关参数选择是否合理、效果好坏进行验证。

如果通过实验来验证,需要经过反复多次的元件安装、调试、重新设计等步骤,这样使得设计耗资大,效率低,周期长。

现代计算机仿真技术为电力电子电路的设计和分析提供了崭新的方法,可以使复杂的电力电子电路、系统的分析和设计变得更加容易和有效。

Matlab 是一种计算机仿真软件,它是以矩阵为基础的交互式程序计算语言。

Simulink 是基于框图的仿真平台,它挂接在Matlab 环境上,以Matlab 的强大计算功能为基础,用直观的模块框图进行仿真和计算。

其中的电力系统(Power System)工具箱是专用于RLC电路、电力电子电路、电机传动控制系统和电力系统仿真用的模型库。

以Matlab7.0 为设计平台,利用Simulink 中的Power System工具箱来搭建整流电路仿真模型,设置参数进行仿真。

三相逆变方案

三相逆变方案

三相逆变方案
三相逆变器是一种将直流电转换成交流电的电子设备,主要用于电力系统、工业控制、家用电器等领域。

三相逆变器的主要工作原理是通过控制逆变器的开关元件,改变电路的连接方式,使直流电按照一定的规律变化为交流电。

三相逆变器主要由三个部分组成:整流器、滤波器和逆变器。

整流器的主要作用是将交流电转换为直流电,滤波器的作用是去除整流后的直流电中的交流成分,使其成为接近理想的直流电,逆变器则是将直流电转换为交流电。

三相逆变器具有输出电流稳定、效率高、可靠性好等优点。

三相电流逆变方案的设计主要包括以下几个步骤:
1. 设计逆变器的拓扑结构:根据应用需求,选择适合的逆变器拓扑结构,如全桥、半桥、推挽等。

2. 设计逆变换器的控制策略:根据应用需求和系统性能指标,选择适合的控制策略,如PWM控制、空间矢量控制等。

3. 设计逆换器的驱动电路:根据逆变器的工作原理和控制策略,
设计逆变器驱动电路,包括驱动信号产生、驱动信号放大、驱动信号控制等。

4. 设计逆变法的保护和控制系统:根据系统的工作环境和工作要求,设计逆变器具备的保护和控制功能,如过流保护、过热保护、短路保护等。

5. 进行系统的仿真和实验验证:通过仿真软件对系统进行仿真,验证系统的性能指标和工作特性,通过实验验证设计的合理性和可行性。

6. 优化和改进设计:根据仿真和实验的结果,对设计进行优化和改进,提高系统的性能和工作可靠性。

三相电压逆变方案的应用广泛,如在电力系统中,可以用于发电站的直流输电,提高输电效率;在家用电器中,可以用于电动工具的供电,提高工具的工作效率。

同时,三相电压逆变器还可以应用在新能源领域,如太阳能发电、风力发电等,提高能源的利用率。

5kW三相电压源型逆变电路设计 - 副本 - 副本

5kW三相电压源型逆变电路设计 - 副本 - 副本

辽宁工业大学交流调速控制系统课程设计(论文)题目:5kW三相电压源型逆变电路设计院(系):电气工程学院专业班级:自动化104学号: 100300111学生姓名:张飞指导教师:(签字)起止时间: 6.24-7.7课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 100300111学生姓名张飞专业班级自动化104课程设计(论文)题目5kW 三相电压源型逆变电路设计课程设计(论文)任务课题完成的功能:本课程设计是完成微机控制下的三相电压源型逆变电路,该逆变电路中以绝缘栅双极晶管IGBT 作为开关器件,采用单片机作为微机控制核心,实现IGBT 驱动信号的设计。

设计任务及要求:(1)完成电压源型逆变电路主电路设计,包括直流电压源输入、分立搭建IGBT 器件、三相逆变电路输出及相关辅助电路。

(2)完成IGBT 驱动电路设计,要求选择东芝公司的TLP 系列、(如三菱公司的M597系列、富士公司的EXB 系列、东芝公司的TLP 系列、法国汤姆森公司的UA4002系列等),完成驱动电路与主电路的接口设计及相关保护电路的设计。

(3)完成控制电路设计,包括单片机最小系统、与上面驱动电路的控制接口及软件流程图设计。

(4)撰写课程设计说明书(论文)。

技术参数:额定输入电压:直流DC220V ;输入电压范围:±15%;输入最大电流值:30A ;连续工作功率输出:5kW ;逆变输出电压:三相380VAC±2%;逆变输出波形:全正弦波;逆变输出频率值:50Hz±0.5%;转换效率:93%;功率因数:0.99 进度计划(1)布置任务,查阅资料,确定系统的组成(2天) (2)对系统各组成部件进行功能分析(3天) (3)系统电气电路设计及调试设计(3天) (4)撰写、打印设计说明书及答辩(2天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要三项电压源逆变电路从出现到发展已经有很多年了,它的应用也已经不只是普通的应急设备了,它在节能、变频调速以及改善电源质量等很多方面被广泛利用。

三相逆变器课课程设计

三相逆变器课课程设计

三相逆变器课课程设计一、教学目标本节课的教学目标是让学生掌握三相逆变器的基本原理、工作方式和应用场景。

具体包括以下三个方面:1.知识目标:(1)了解三相逆变器的定义、结构和分类;(2)掌握三相逆变器的工作原理及其工作过程;(3)熟悉三相逆变器的应用领域和优缺点。

2.技能目标:(1)能够分析三相逆变器的工作电路;(2)能够计算三相逆变器的各项参数;(3)能够设计简单的三相逆变器电路。

3.情感态度价值观目标:(1)培养学生对电力电子技术的兴趣和好奇心;(2)使学生认识到三相逆变器在现代社会中的重要性;(3)培养学生节能环保的意识,关注可持续发展。

二、教学内容本节课的教学内容主要包括以下几个部分:1.三相逆变器的定义和分类;2.三相逆变器的工作原理及其工作过程;3.三相逆变器的应用领域和优缺点;4.三相逆变器的设计和计算方法。

5.引入:介绍电力电子技术的发展背景,引出三相逆变器;6.讲解:详细讲解三相逆变器的定义、结构和分类;7.演示:通过实验或动画演示三相逆变器的工作原理;8.应用:介绍三相逆变器在实际应用中的案例;9.讨论:分析三相逆变器的优缺点及发展趋势;10.练习:布置相关练习题,巩固所学知识。

三、教学方法为了提高教学效果,本节课采用以下教学方法:1.讲授法:讲解三相逆变器的基本原理、结构和分类;2.演示法:通过实验或动画演示三相逆变器的工作原理;3.案例分析法:分析实际应用中的三相逆变器案例;4.讨论法:引导学生讨论三相逆变器的优缺点及发展趋势;5.练习法:布置练习题,巩固所学知识。

四、教学资源为了支持教学内容和教学方法的实施,本节课准备以下教学资源:1.教材:电力电子技术相关教材;2.参考书:提供电力电子技术及相关领域的参考书籍;3.多媒体资料:制作三相逆变器的原理动画、实际应用案例等;4.实验设备:准备三相逆变器实验装置,供学生动手实践。

五、教学评估为了全面、客观地评估学生的学习成果,本节课采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,记录并评价其表现;2.作业:布置相关作业,要求学生独立完成,通过批改作业了解学生对知识的掌握程度;3.实验报告:对学生进行实验操作的评估,要求撰写实验报告,分析实验结果;4.考试成绩:设置期末考试,测试学生对三相逆变器知识的综合运用能力。

三相逆变电路的参数设计研究课程设计

三相逆变电路的参数设计研究课程设计

目录第一部分课题要求一、课程设计的目的与要求 (2)二、课程设计报告的要求 (2)三、课程设计的内容 (2)第二部分基本概念简介一、逆变的基本概念 (3)二、换流的基本概念 (4)三、逆变电路的分类 (6)四、半桥逆变电路的基本概念 (6)五、全桥逆变电路的基本概念 (7)六、三相逆变电路的原理图 (8)第三部分三相逆变电路参数的设计一、具体电路设计 (9)二、课程设计总结 (13)三、参考资料 (14)第四部分 PSPICE仿真软件概述 (14)第一部分课题要求一课程设计的目的与要求1 进一步熟悉和掌握电力电子原器件的特性;2 进一步熟悉和掌握电力电子电路的拓扑结构和工作原理3 掌握电力电子电路设计的基本方法和技术,掌握有关电路参数设计方法;4 培养对电力电子电路的性能分析的能力;5 培养撰写研究设计报告的能力。

通过对一个电力电子电路的初步设计,巩固已学的电力电子技术课程设计知识,提高综合应用能力,为今后从事电力电子装置的设计工作打下基础。

二课程设计报告的要求1、研究题目:三相逆变电路的参数设计研究2、课程设计的内容1 主电路方案确定2 绘制电路原理图、分析理论波形3 器件额定参数的计算4 建立仿真模型并进行仿真实验5 电路性能分析:输出波形、器件上波形、参数的变化、谐波分析、故障分析等第二部分基本概念简介1、逆变的基本概念逆变——与整流相对应,直流电变成交流电。

交流侧接电网,为有源逆变。

交流侧接负载,为无源逆变。

变频电路:分为交交变频和交直交变频两种。

交直交变频由交直变换(整流)和直交变换两部分组成,后一部分就是逆变。

主要应用:1)各种直流电源,如蓄电池、干电池、太阳能电池等。

2)交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。

3)单相桥式逆变电路逆变以单相桥式逆变电路为例说明最基本的工作原理电路的基本工作原理S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。

三相电压源型SPWM逆变器的设计

三相电压源型SPWM逆变器的设计

摘要本次课程设计题目要求为三相电压源型SPWM逆变器的设计。

设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。

本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个部分电路以及元器件的取舍,比如驱动电路、抗干扰电路、正弦信号产生电路等,其中部分电路的绘制采用了Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。

关键词:三相电压源型逆变电路Matlab 仿真目录摘要........................................................................................................................... - 1 - 1 设计原理............................................................................................................... - 3 -1.1 SPWM控制原理分析................................................................................. - 3 -1.1.1 PWM的基本原理............................................................................. - 3 -1.1.2 SPWM逆变电路及其控制方法....................................................... - 3 -1.2 IGB T简介.................................................................................................... - 4 -1.3 逆变电路..................................................................................................... - 5 -1.4 三相电压型桥式逆变电路......................................................................... - 6 -2 设计方案............................................................................................................... - 9 -2.1 逆变器主电路设计..................................................................................... - 9 -2.2 脉宽控制电路的设计............................................................................... - 10 -2.2.1 SG3524芯片 ................................................................................... - 10 -2.2.2 利用SG3524生成SPWM信号.................................................... - 11 -2.3 驱动电路的设计....................................................................................... - 13 -2.3.1 IR2110芯片..................................................................................... - 13 -2.3.2 驱动电路......................................................................................... - 14 -3 软件仿真............................................................................................................. - 14 -3.1 Matlab软件 ............................................................................................... - 14 -3.2 建模仿真................................................................................................... - 15 -4 心得体会............................................................................................................. - 19 - 参考文献................................................................................................................. - 20 -三相电压源型SPWM逆变器的设计1 设计原理1.1 SPWM控制原理分析1.1.1 PWM的基本原理PWM(Pulse Width Modulation)控就是对脉冲的宽度进行调制的技术,即通过一系列脉冲的宽度进行调制,来等效地获得所需要的波形。

三相电压型z源逆变器的设计

三相电压型z源逆变器的设计

三相电压型z源逆变器的设计三相电压型Z源逆变器是一种逆变器拓扑结构,它结合了传统电流型逆变器和Z源逆变器的特点。

下面是三相电压型Z源逆变器的设计详细介绍:1. 拓扑结构设计:Z源网络:使用Z源网络,包括LC阻抗网络,用于提高逆变器的输入电压范围和提高系统的稳定性。

三相桥臂:采用三相全桥逆变器,实现对三相电压的控制。

2. 电路元件选择:电容和电感:选择适当的电容和电感,以确保Z源网络的性能和逆变器的工作频率。

开关器件:选择高性能的功率MOSFET或IGBT作为开关器件,以降低开关损耗和提高系统效率。

3. 控制策略设计:PWM控制:使用脉宽调制(PWM)控制策略,通过调整开关器件的占空比实现对输出电压的调节。

Z源网络控制:实现对Z源网络参数的控制,以适应不同的输入电压条件。

4. 电源管理:输入电压范围:设计逆变器以适应广泛的输入电压范围,提高系统的适用性。

电压稳定性:通过控制算法确保输出电压的稳定性,降低谐波失真。

5. 保护和故障检测:过电流保护:集成过电流保护电路,确保系统在异常工作条件下能够及时切断电源。

短路保护:实现短路保护,防止损坏逆变器和相关元件。

6. 效率优化:损耗降低:通过选择优质的元件、合理的设计和控制算法,降低逆变器的功耗,提高系统效率。

热管理:设计散热系统,确保逆变器在长时间运行时保持合适的温度。

7. 性能评估和测试:仿真分析:使用仿真工具对逆变器进行电路仿真和性能评估。

实验验证:进行实际电路板的设计、制造和测试,验证设计的性能和稳定性。

以上是三相电压型Z源逆变器设计的一般步骤和考虑因素。

在实际设计中,还需要考虑具体应用场景、成本效益等因素。

实验3电压型三相全桥逆变电路

实验3电压型三相全桥逆变电路

实验3 电压型三相全桥逆变电路1. 实验目的(1)熟悉电压型三相全桥逆变电路的组成及其工作原理。

(2)学会使用simulink 进行电路仿真,掌握各模块参数和仿真参数的设置。

2. 实验步骤(1)在MATLAB 中进入simulink 仿真界面,在编辑器窗口中绘制如图3.1 所示的电压型三相全桥逆变电路的模型。

图3.1 电压型三相全桥逆变电路的模型(2)设定图3.1电路模型中各模块的参数。

a .两个直流电源电压均为100V 。

b .负载为三相电阻电感负载:R=10Ω,L=0.02H ,C=inf 。

c .6个开关管采用MOSFET 为模型,参数设置如图3.2。

d .驱动信号由6个“Pulse Generator ”环节产生:振幅(amplitude )=1;周期(period, s )=0.02;脉冲宽度(pulse width, % of period )=49.5(两个驱动信号间留有0.5%的死区时间);滞后相位(phase delay, s )按编号依次相差3.33ms (对应50Hz 即为60˚),从脉冲1到脉冲6分别为0、0.00333、0.00667、0.01、0.01333、0.01667。

e .示波器:时间轴的时间范围(time range,s )=0.05。

图3.2 MOSFET 参数(3)设置仿真参数。

单击菜单“Simulation ”,选中“Configuration Parameters ”,弹出如图3.3所示的窗口,设置仿真时间、解算器选项。

图3.3 仿真参数的设定对话框(4)测试电压型三相全桥逆变电路的工作特性。

图3.4 电压型三相全桥逆变电路输出电压仿真波形图3. 实验报告内容(1)分析教材中电压型三相全桥逆变电路的工作原理。

(2)按照实验步骤的要求,记录有关波形,分析并得出结论。

4. 思考题电压型逆变电路和电流型逆变电路各有什么特点?图3.5直流电流及U 相输出电流仿真波形。

三相逆变电路设计

三相逆变电路设计

三相逆变电路设计
在三相逆变电路设计中,一个重要的参数是输出交流电的频率。

通常来说,三相逆变电路的频率应与输入交流电的频率相匹配,例如50Hz或60Hz。

此外,逆变器的输出电压和电流也是设计中的关键参数。

在设计整流器时,一个常见的方法是使用桥式整流电路。

桥式整流电路由四个二极管组成,可以将交流电的负半周期转换为正半周期。

这种电路具有较高的效率和可靠性,并且在工业和家庭应用中广泛使用。

逆变器的设计根据应用需求可以选择不同的拓扑结构,例如全桥、半桥和单桥逆变器。

其中,全桥逆变器是最常用的拓扑结构之一、全桥逆变器由四个开关管组成,可以通过适当的控制方式将直流电转换为输出的交流电。

全桥逆变器的输出电压和频率可以通过调节开关管的开关频率和占空比来控制。

在三相逆变电路设计中,还需要考虑到负载的特性和要求。

例如,负载的功率、电流和电压需求以及变化范围等。

根据负载的特性和要求,可以选择合适的控制策略和电路结构,以实现对负载的有效控制和保护。

此外,在三相逆变电路设计中,还需要考虑到电路的稳定性和效率。

稳定性是指电路在不同负载条件下的输出稳定性和响应速度,并且应具有过载和短路保护功能。

效率是指电路从输入到输出的能量转换效率,通常应尽可能高以减少能量损耗。

综上所述,三相逆变电路设计需要综合考虑输入输出电压、电流、频率、负载特性和要求等因素,并选择合适的整流器和逆变器拓扑结构、控制策略和保护措施,以实现稳定、高效的电能转换。

不同应用场景下的三
相逆变电路设计可能有所差异,因此在实际设计中还需要根据具体情况进行进一步的研究和优化。

三相电压型逆变器课程设计

三相电压型逆变器课程设计

三相电压型逆变器一.电力电子器件的发展:1.概述:1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。

20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。

随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。

80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。

(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。

电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。

广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。

2.发展:A.整流管:整流管是电力电子器件中结构最简单、应用最广泛的一种器件。

目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。

电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相电压型逆变器一.电力电子器件的发展:1.概述:1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。

20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。

随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。

80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。

(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。

电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。

广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。

2.发展:A.整流管:整流管是电力电子器件中结构最简单、应用最广泛的一种器件。

目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。

电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。

目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。

它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。

B.晶闸管:自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。

1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。

C.门极可关断晶闸管:GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到1kHz。

1964年,美国第一次试制成功了0.5kV/10A的GTO。

自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、25OOV/I000A、4500V/2400A的产品,目前已达到9kV/25kA/0.8kHz及6 kV/6kA/1kHz的水平。

GTO包括对称、非对称和逆导三种类型。

非对称GTO相对于对称GTO,具有通态压降小、抗浪涌电流能力强、易于提高耐压能力(3000v以上)的特点。

逆导型GTO,由于是在同一芯片上将GTO与整流二极管反并联制成的集成器件,因此不能承受反向电压,主要用于中等容量的牵引驱动中。

在当前各种自关断器件中,GTO容量最大,工作频率最低,通态压降大、/dvdt 及/didt耐量低,需要庞大的吸收电路。

但其在大功率电力牵引驱动中有明显的优势,因此它在中高压领域中必将占有一席之地。

D.大功率晶体管:GTR是一种电流控制的双极双结电力电子器件,20世纪70年代中期,双极性晶体管(BJT)扩展到高功率领域,产生大功率晶体管(GTR),它由基极(B)电流bi的正、负控制集电极(C)和发射极(E)的通、断,也属全控型器件。

由于能承受上千伏电压,具有大的电流密度和低的通态压降,曾经风靡一时,在20世纪七八十年代成为逆交器、变频器等电力电子装置的主导功率开关器件,开关频率可达5kHz。

但是GTR存在许多不足:①对驱动电流波形有一定要求,驱动电路较复杂;②存在局部热点引起的二次击穿现象,安全工作区(SOA)小;③通态损耗和关断时存储时间(st)存在矛盾,要前者小必须工作于深饱和,而如深饱和,st便长,既影响开关频率,又增加关断损耗大;④承受/dvdt及/didt能力低;⑤单管电流放大倍数小,为增加放大倍数,联成达林顿电路又使管压降增加等等,而为改善性能(抑制/dvdt及/didt,改变感性负载时的动态负载线使在SOA,减小动态损耗),运用时必须加缓冲电路。

目前的器件水平约为:1800V/800A,2kHz;1400V/600A,2kHz;600V/3A,100kHz。

E.功率MOSFET:功率MOSFET是一种电压控制型单极晶体管,它是通过栅极电压来控制漏极电流的,因而它的一个显著特点是驱动电路简单、驱动功率小;仅由多数载流子导电,无少子存储效应,高频特性好,工作频率高达100kHz以上,为所有电力电子器件中频率之最,因而最适合应用于开关电源、高频感应加热等高频场合;没有二次击穿问题,安全工作区广,耐破坏性强。

功率MOSFET的缺点是电流容量小、耐压低、通态压降大,不适宜运用于大功率装置。

顺便强调一下,由于MOSFET管阻与电压成比例,它在要求低压(3.3~1V)电源的电脑和通信等领域则可大显身手,目前MOSFET的导通电阻可减小至6~10mΩ,主要用于高频开关电源的同步电流。

F.绝缘栅双极晶体管(IGBT)20世纪80年代绝缘栅双极晶体管是一种复合型器件,综合了少子器件(G T O、G T R)和多子器件(MOSFET)各自的优良特性,既有输入阻抗高,开关速度快,驱动电路简单的优点,又有输出电流密度大,通态压降下,电压耐量高的长处。

IGBT可视为双极型大功率晶体管与功率场效应晶体管的复合。

通过施加正向门极电压形成沟道、提供晶体管基极电流使IGBT导通;反之,若提供反向门极电压则可消除沟道、使IGBT因流过反向门极电流而关断。

IGBT集GTR通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身,因此备受人们青睐。

它的研制成功为提高电力电子装置的性能,特别是为逆变器的小型化、高效化、低噪化提供了有利条件。

比较而言,IGBT的开关速度低于功率MOSFET,却明显高于GTR;IGBT的通态压降同GTR相近,但比功率MOSFET 低得多;IGBT的电流、电压等级与GTR接近,而比功率MOSFET高。

由于IGBT具有上述特点,在中等功率容量(600V以上)的UPS、开关电源及交流电机控制用PWM逆变器中,IGBT已逐步替代GTR成为核心元件。

IGBT早已做到1800V/800A,10kHz;1200V/600A,20kHz的商品化,600V/100A的硬开关工作频率可达150kHz。

高压IGBT已有3300V/1200A和4500V/900A的器件。

由于IGBT的综合优良性能,事实上已取代了GTR,现在成为中、小功率逆变器、变频器等成为了电力电子装置的主流器件。

目前,已经研制出的高功率沟槽栅结构IGBT(Trench IGBT)模块是高耐压大电流IGBT通常采用的结构,它避免了大电流IGBT模块部大量的电极引线,提高了可靠性和减少了引线电感.其缺点是芯片面积利用率下降.所以这种平板结构的高压大电流IGBT模块将在高压、大功率变流器中获得广泛应用。

3.软开关与硬开关:硬开关:1.开关损耗大。

开通时,开关器件的电流上升和电压下降同时进行;关断时,电压上升和电流下降同时进行。

电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高而急速增加。

2.感性关断电尖峰大。

当器件关断时,电路的感性元件感应出尖峰电压,开关频率愈高,关断愈快,该感应电压愈高。

此电压加在开关器件两端,易造成器件击穿。

3.容性开通电流尖峰大。

当开关器件在很高的电压下开通时,储存在开关器件结电容中的能量将以电流形式全部耗散在该器件。

频率愈高,开通电流尖峰愈大,从而引起器件过热损坏。

另外,二极管由导通变为截止时存在反向恢复期,开关管在此期间的开通动作,易产生很大的冲击电流。

频率愈高,该冲击电流愈大,对器件的安全运行造成危害。

4.电磁干扰严重。

随着频率提高,电路中的di/dt和dv/dt增大,从而导致电磁干扰(EMI)增大,影响整流器和周围电子设备的工作。

软开关:上述问题严重阻碍了开关器件工作频率的提高。

近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。

和硬开关工作不同,理想的软关断过程是电流先降到零,电压在缓慢上升到断态值,所以关断损耗近似为零。

由于器件关断前电流已下降到零,解决了感性关断问题。

理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压亦为零,解决了容性开通问题。

同时,开通时,二极管反向恢复过程已经结束,因此二极管方向恢复问题不存在。

4.应用与展望:电力电子应用领域十分广泛,用电领域中的电力电子技术有电动机的优化运行、高能量密度的电源应用;信息领域中电力电子技术为信息技术提供先进的电源和运动控制系统,日益成为信息产品中不可缺少的一部分;发电领域中的电力电子技术有发电机的直流励磁、水轮发电机的变频励磁、环保型能源发电;储能领域中的电力电子技术有蓄电池与电容器组储能、抽水储能发电、超导线圈的磁场储能;输电领域中的电力电子技术有动态无功功率补偿(SVC)技术、高压直流输电(HVDCT)技术、消除谐波改善电网供电品质等。

近年来,电力电子的环境及产业都有了很大的变化。

整体而言,电力电子技术的发展在许多应用领域上获得了认同。

然而,任何器件的发展,总是决定于两个因数,一是应用的需要,一是器件本身在理论上和工艺上的突破。

电力电子器件的发展也是这样,它大致有如下几个方面:A.现有器件扩大容量提高性能。

例如GTO,采用大直径均匀技术和全压接式结构,通过电子寿命控制,折衷通态电压和关断损耗二者之间矛盾,可望开发出12kV/10kA的器件。

例如IGBT,探索部功率引线尽量由超声压焊或改压接式结构,以进一步提高工作可靠性。

B.开发新的器件。

一是根据器件本身的特点提出。

例如MOS门控晶闸管(MCT),虽经十几年的研制,由于结构、工艺复杂,合格率低,成本高,没有达到期望的4.5kV/2kA的水平而暂被搁置,但有望具有MOS管优良的开关特性和晶闸管非常低的通态压降,并易于得到高的耐压,仍可能继续研制。

相关文档
最新文档