实验三--单相交流调压电路实验
单相交流调压电路实验报告
大学电力电子技术课程设计总结报告题目:单相交流调压电路学生姓名:系别:专业年级:指导教师:年月日一、实验目的与要求(1)加深理解单相交流调压电路的工作原理。
(2)掌握单相交流调压电路的调试步骤和方法。
(3)熟悉单相交流调压电路各点的电压波形。
(4) 掌握直流电动机调压调速方法电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料、选择方案、设计电路、撰写报告、制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
二、实验设备及仪器1、DT01B 电源控制屏2、DT09 转速显示3、DT15 交流电压表4、DT14 直流电流表5、DT20 电阻(900欧)6、DT04 电阻(3000欧)7、DT02 220V直流稳压电源8、DDS12单相交流调压电路触发器9、DD202 晶闸管、二极管、续流二极管、电感 10、导线若干 11、双踪示波器三、实验线路及原理1、主电路的设计所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。
交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。
此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。
本次课程设计主要是研究单相交流调压电路的设计。
由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。
①电阻负载图1、图2分别为电阻负载单相交流调压电路图及其波形。
图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。
在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角进行控制就可以调节输出电压正、负半周α起始时刻(α=0),均为电压过零时刻。
在tωα=时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在tωπ=时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。
电力电子技术实验指导书
实验一单相半波可控整流电路实验一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载时的工作。
二、实验所需挂件及附件三、实验线路及原理将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时Ud/U2= f(α)特性的测定。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中电容C1 的数值有什么关系?(2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?七、实验方法(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170范围内移动?图1-1 单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图1-1电路图接线。
(整理)电力电子实验指导书完全版
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
单相交流调压电路实验步骤
单相交流调压电路实验步骤
一、将实验台左侧面大旋钮逆时针(向“小”指示方向)转到头。
二、将PAC14单元中“锯齿波同步触发电路I”中的“RP2”可调旋钮顺时针转到头。
三、将MEC42单元中的“R3”、“R4”两个可调电阻旋钮逆时针(向“增大”方向)转到头。
四、按图接线。
五、打开实验台左侧MEC01单元中的“电源总开关”。
打开PAC09A单元中“直流稳压电
路”部分中的“电源开关”。
六、将MEC01单元中的“电压指示切换”开关拨到“三相调压输出”档,调节实验台左侧
面大旋钮,使“电压指示”指针大概指到30左右。
七、将示波器探头接到电阻负载两端,此时开始将PAC14单元中“锯齿波同步触发电路I”
中的“RP2”可调旋钮向逆时针方向慢慢旋转,过程中可观察到单相交流调压电路中负载两端电压波形的变化。
(观察过程中可由负载两端电压波形推断触发角大小,此时最好不要让触发角大于120度,否则实验台容易报警停机)
八、若观察过程中因为各种原因无法观察到正确波形,应按MEC01单元红色“停止”按钮。
关闭PAC09A单元中“直流稳压电路”部分中的“电源开关”,然后查找原因。
排除问题后,重新返回第一步开始向下进行。
实验过程中一定要注意安全!。
单相交流调压电路仿真实验报告
单相交流调压电路仿真实验报告一、实验目的本实验旨在通过仿真模拟,深入理解单相交流调压电路的工作原理和性能特点,掌握其电压调节原理和操作方法,提高对电力电子技术的理解和应用能力。
二、实验原理单相交流调压电路是通过控制开关器件的通断,调节输入交流电压的幅值和相位,以达到调节输出电压的目的。
根据控制方式的不同,单相交流调压电路可以分为斩波调压和相控调压两种。
本实验采用斩波调压方式。
斩波调压是通过控制开关器件的通断时间,调节输出电压的幅值。
当开关器件导通时,输出电压为输入电压;当开关器件关断时,输出电压为0。
通过调节开关器件的通断时间,可以改变输出电压的平均值,从而实现调节输出电压幅值的目的。
三、实验设备本实验使用MATLAB/Simulink软件进行仿真模拟,实验设备包括计算机、MATLAB/Simulink软件、电源模块、电阻器、电感器和开关器件等。
四、实验步骤1. 打开MATLAB/Simulink软件,新建一个仿真模型;2. 搭建单相交流调压电路的仿真模型,包括电源模块、电阻器、电感器、开关器件等;3. 设置仿真参数,如仿真时间、采样时间等;4. 启动仿真,观察并记录仿真结果;5. 分析仿真结果,包括输出电压的波形、相位、幅值等;6. 调整开关器件的通断时间,观察输出电压的变化,并分析斩波调压原理;7. 整理实验数据和波形,撰写实验报告。
五、实验结果与分析通过仿真模拟,我们得到了单相交流调压电路在不同开关器件通断时间下的输出电压波形。
从实验结果可以看出,当开关器件导通时间越长,输出电压的幅值就越高;当开关器件关断时间越长,输出电压的幅值就越低。
这个结果表明斩波调压原理是可行的。
此外,我们还观察了输出电压的相位变化。
当开关器件导通时,输出电压与输入电压同相位;当开关器件关断时,输出电压为0。
这说明斩波调压方式不会改变输出电压的相位。
六、结论与总结通过本次单相交流调压电路的仿真实验,我们深入了解了斩波调压电路的工作原理和性能特点,掌握了其电压调节方法和操作技巧。
电力电子技术课程实验指导书
《电力电子技术》课程实验指导书一、课程的目的、任务本课程是电子科学、测控技术专业学生在学习电力电子技术课程中的一门实践性技术基础课程,其目的在于通过实验使学生能更好地理解和掌握电力电子基本理论,培养学生理论联系实际的学风和科学态度,提高学生的电工实验技能和分析处理实际问题的能力。
为后续课程的学习打下基础。
二、课程的教学内容与要求包括三个子实验:1、单相交流调压电路实验通过该实验加深理解单相交流调压电路的工作原理和单相交流调压电路带电感性负载对脉冲及移相范围的要求。
2、功率场效应晶体管(MOSFET)特性与驱动电路研究掌握MOSFET对驱动电路的要求并且熟悉MOSFET主要参数的测量方法。
3、绝缘栅双极型晶体管(IGBT)特性与驱动电路研究掌握混合集成驱动电路EXB840的工作原理与调试方法。
三、各实验具体要求见P2四、实验流程介绍学生用户登陆进入实验系统的用户名为:D+学号(D205003200XX),密码:netlab五、实验报告请各指导老师登陆该实验系统了解具体实验方法,并指导学生完成实验。
学生结束实验后应完成相应的实验报告并交给指导老师。
其中实验报告的主要内容包括:实验目的,实验内容,实验结果和实验心得等。
实验一单相交流调压电路实验一.实验目的:1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二.实验内容:1.单相调压电路带电阻性负载实验;2.单相交流调压电路带电阻电感性负载实验。
三.实验步骤:在客户端实验界面中的实验列表框中选择“电力电子实验”下的“单相交流调压实验”子实验,出现“单相交流调压实验”的实验界面。
点击工具栏的开始实验按钮,开始“单相交流调压实验”。
点击图中电阻和电感边上的红点选择电阻和电感,进行电路连接。
然后在“晶闸管脉冲触发角度”框中输入“0—360”之间的任意角度,然后点击“开始”按钮,开始实验。
右边界面将出现三路波形,其中蓝色为电源电压波形,黄色为负载电压波形,红色为负载电流波形。
实验三 单相桥式全控整流电路实验
实验三单相桥式全控整流电路实验1. 实验目的(1)加深理解单相桥式全控整流电路的工作原理;(2)研究单相桥式整流电路整流的全过程;2. 预习要求(1)阅读教材中有关单相桥式全控整流电路的相关内容;3. 实验器材(1)DJDK-1型电力电子技术及电机控制实验装置;(2)DJK01、DJK02、DJK03-1、DJK10、D42等挂箱;(3)双踪示波器;(4)万用表。
4. 实验内容(1)单相桥式全控整流电路带电阻性负载;(2)单相桥式全控整流电路带阻感性负载;5. 实验电路图3-1为单相桥式整流带阻感性负载,其输出负载R用D42三相可调电阻器,将两个700,900接成并联形式,电抗d L用DJK02面板上的mH直流电压、电流表均在DJK02面板上。
触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
图3-1 单相桥式整流实验原理图6. 实验内容及步骤(1)触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为220V,用两根导线将220V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。
将控制电压U调至零(将电位器2RP顺时针旋到底),观察同步电ct压信号和“6”点U的波形,调节偏移电压b U(即调3RP电位器),使6α180°。
将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶=闸管的门极和阴极,注意不要把相序接反了,否则无法进行整流。
将DJKO2上的正桥和反桥触发脉冲开关都打到“断”的位置,并使U和lr Ulf悬空,确保晶闸管不被误触发。
(2)单相桥式全控整流按图3-1接线,将电阻器放在最大阻值处,按下“启动”按钮,保持b U 偏移电压不变(即3RP 固定),逐渐增加ct U (调节2RP ),在=α0°、30°、60°、90°、120°时,用示波器观察、记录整流电压d u 和晶闸管两端电压VT u 的波形,并记录电源电压2U 和负载电压d U 的数值于下表中。
电力电子报告
专业:电气工程及其自动化班级:电气10-3班姓名:学号:指导老师:实验日期:2013年6月25日1实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
2.掌握锯齿波同步触发电路的调试方法。
无三相调压器,直接合上主电源。
以下均同同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。
观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。
3.调节脉冲移相范围将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图2-2所示。
图2-2 脉冲移相范围调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。
4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。
用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。
六.实验报告1.整理,描绘实验中记录的1、2、3、4、5、6各点的波形,并标出幅值与宽度。
答:“1”孔(上)、“2”孔(下)波形:“3”孔波形(上)、“2”孔(下):UU34“4”孔波形: “5”孔波形:“6”孔波形(下):U G1K1波形: U G2K2波形2、调节脉冲移相范围⑴U2、U5波形:⑵、U G1K1、 U G2K2波形⑶、U G1K1、 U G3K3波形:2.总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?答:锯齿波同步触发电路移相范围的调试方法:调节电位器RP2,改变偏移电压Ub,从而改变α。
电力电子技术实验指导书
目录一、实验的基本要求 (2)二、安全操作说明 (6)三、电力电子技术实验实验一单相桥式全控整流电路实验 (7)实验二三相桥式全控整流电路实验 (11)实验三单相交流调压电路实验 (15)实验四直流斩波电路原理实验 (19)实验五SCR、GTO、MOSFET、GTR、IGBT特性实验 (26)实验六基于Multism的开环降压电路的仿真 (29)实验七基于Multism的闭环降压电路的仿真 (31)一、实验的基本要求《半导体变流技术》、《电力电子技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等,而实验环节是这些课程的重要组成部分。
通过实验,可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。
1、实验的特点和要求电力电子技术与电机控制实验的内容较多、较新,实验系统也比较复杂,系统性较强。
学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实践相结合,使认识不断提高、深化。
具体地说,学生在完成指定的实验后,应具备以下能力:(1)掌握电力电子变流装置主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路。
(2)熟悉并掌握基本实验设备、测试仪器的性能及使用方法。
(3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。
(4)能够综合实验数据,解释实验现象,编写实验报告。
2、实验前的准备实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。
每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。
因此,实验前应做到:(1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。
(2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。
电力电子技术实验内容
电力电子技术实验内容实验一:单相桥式全控整流电路实验一、实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉NMCL—05锯齿波触发电路的工作。
二、实验线路及原理参见图4-7。
三、实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四、实验设备及仪器1.NMCL系列教学实验台主控制屏。
2.NMCL—18组件(适合NMCL—Ⅱ)或NMCL—31组件(适合NMCL—Ⅲ)。
3.NMCL—33组件或NMCL—53组件(适合NMCL—Ⅱ、Ⅲ、Ⅴ)4.NMCL—05组件或NMCL—05A组件5.NMEL—03三相可调电阻器或自配滑线变阻器。
6.NMCL-35三相变压器。
7.双踪示波器 (自备)8.万用表 (自备)五、注意事项1.本实验中触发可控硅的脉冲来自NMCL-05挂箱,故NMCL-33(或NMCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用NMCL-35三相变压器,原边为220V,低压绕组为110V。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六、实验方法1.将NMCL—05(或NMCL—05A,以下均同)面板左上角的同步电压输入接NMCL—18的U、V输出端(如您选购的产品为NMCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连), “触发电路选择”拨向“锯齿波”。
单相和三相交流调压电路实验
实验三单相和三相交流调压电路实验一、实验目的(1).加深理解交流调压电路的工作原理。
(2).加深理解单相交流调压感性负载时对移相范围要求。
(2).加深理解三相交流调压阻性负载时的工作情况。
二、实验设备及仪器(1).计算机(2).MATLAB软件三、注意事项(1)在单相电阻电感负载时,当α<ϕ时,若脉冲宽度不够会使负载电流出现直流分量。
(2)三相电路中,触发脉冲要选择双脉冲。
(3)仿真时间不宜太长,一般几个电源周期即可(4)晶闸管器件选择“普通晶闸管”,而不是详细模型的晶闸管。
(5)电气仿真时,一定要有“powergui”模块在仿真界面中才可以仿真成功。
四、实验步骤(1) 单相交流调压器带电阻性负载电路原理图如下图所示图1交流调压电路电阻性负载原理图基本参数为:交流电源:220V,50Hz电阻负载:10欧姆α=,120°,150°时负载侧电压、电流要求:搭建仿真电路,分别输出60波形及电源侧电压波形,并显示负载电压的有效值。
记录波形并分析触发角的移相范围。
步骤1:搭建主电路(a)搭建如图2所示主电路仿真中模型的提取路径是:交流电源:simpowersystem\Electrical sources\AC Voltage Source晶闸管: simpowersystem\Power Electronics\thyristor电阻: simpowersystem\Elements\series RLC Branch(b)设置参数根据已知条件设置电源和负载参数,晶闸管可用默认参数。
图2电阻负载主电路部分步骤二:搭建触发电路(a)触发电路利用脉冲发生器实现,如图3所示图3 脉冲触发电路触发脉冲提取路径为: simulink\Sources\Pulse Genetator(b)设置参数脉冲类型:Time based时间:Use simulation time脉冲幅值:1.0脉冲宽度:5脉冲周期:(自己思考)脉冲延时:(单位:秒;触发角不同,延时不同。
实验三 单相交流电路
实验三 单相交流电路——日光灯功率因数的提高一、实验目的1、了解日光灯结构和工作原理。
2、学习提高功率因数的方法,了解提高功率因数的意义。
3、熟悉功率表的使用。
二、实验原理图3-1 日光灯电路 图3-2 日光灯等效电路日光灯结构如图3-1所示,由灯管、启辉器和镇流器(带铁芯的电感线圈)组成。
开关闭合时,日光灯管不导电,全部电压加在启辉器两触片之间,使启辉器中氖气击穿,产生气体放电,此放电产生的一定热量使双金属片受热膨胀与固定片接通,于是有电流通过日光灯管的灯丝和镇流器。
短时间后双金属片冷却收缩与固定片断开,电路中的电流突然减小;根据电磁感应定律,这时镇流器两端产生一定的感应电动势,使日光灯管两端电压产生400至500V 高压,灯管内气体电离放电,产生紫外线,涂在灯管内壁上的荧光粉吸收后辐射出了可见光。
日光灯点燃后,灯管两端的电压降为100V 左右,这时由于镇流器的限流作用,灯管中电流不会过大。
同时并联在灯管两端的启辉器,也因电压降低而不能放电,其触片保持断开状态。
由此可知,启辉器相当于一个自动开关,能自动接通和断开电路;镇流器除感应高压使灯管放电外,在日光灯正常工作时,起限流作用。
日光灯正常工作后,启辉器断开,灯管相当于一电阻R ,镇流器可等效为电阻R L 和电感L 的串联,所以整个电路可等效为一R 、L 串联电路,相当于一个感性负载,其电路模型如图3-2所示。
其中,镇流器是个电感量较大的线圈,所以整个电路功率因数不高。
若日关灯电路作为负载接入图3-3所示电路中(◎表示电流测量专用插口),则可采用在日光灯两端并联电容的方法来提高整个电路的功率因数。
其原理如图3-4所示,当未接电容时(C=0),电路总电流记为0I ,此时电路总电流即为流经日关灯电路电流LR I I =0;当并联接入电容C (C=C 1)后,电路总电流1I 减小(1I <0I ),且01cos cos ϕϕ>,总电路功率因素提高;当C 电容量增加过多时(称为过补偿),则总电流又将增大(2I >0I ),且02cos cos ϕϕ<。
单相交流电路及功率因数的提高实验报告
实验二 单相交流电路及功率因数的提高一、实验目的1. 研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。
二、原理说明1. 交流电路中电压、电流相量之间的关系 在单相正弦交流电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即:ΣI =0和ΣU=0 图1所示的RC 串联电路,在正弦稳态信号U 的激励下,电阻上的端电压R U 与电路中的电流I 同相位,当R 的阻值改变时,R U 和C U 的大小会随之改变,但相位差总是保持90°,R U 的相量轨迹是一个半圆,电压U 、C U 与R U 三者之间形成一个直角三角形。
即U =RU +C U ,相位角φ=acr tg (Uc / U R ) 改变电阻R 时,可改变φ角的大小,故RC 串联电路具有移相的作用。
图1 RC 串联交流电路及电压相量2. 交流电路的功率因数交流电路的功率因数定义为有功功率与视在功率之比,即:cos φ=P / S 其中φ为电路的总电压与总电流之间的相位差。
交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cos φ<0.5)。
从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cos φ=1 ),所需电流就可小些。
这样即可提高供电设备的利用率,又可减少线路的能量损失。
所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。
为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图2所示。
并联电容C以后,对于原电路所加的电压和负载参数均未改变,但由于c I的出现,电路的总电流I 减小了,总电压与总电流之间的相位差φ减小,即功率因数cos φ得到提高。
2 交流电路的功率因数及改善3. 日光灯电路及功率因数的提高日光灯电路由灯管R、镇流器L和启辉器S组成,C是补偿电容器,用以改善电路的功率因数,如图3所示。
单相交流调压电路实验
114实验五 单相交流调压电路实验一、实验目的熟悉用双向可控硅组成的交流调压电路的结构与工作原理。
二、实验所需挂件及附件三、实验线路及原理将一种形式的交流电变成另一种形式的交流电,可以通过改变电压、电流、频率和相位等参数。
只改变相位而不改变交流电频率的控制,在交流电力控制中称为交流调压。
单相交流调压的典型电路如图1所示。
图1单相交流调压电路本实验采用双向可控硅BCR (Z0409MF )取代由两个单向可控硅SCR 反并联的结构形式,并利用RC 充放电电路和双向触发二极管DB3的特点,在每半个周波内,通过对双向可控硅的通断进行移相触发控制,可以方便地调节输出电压的有效值。
由图2可见,正负半周控制角α的起始时刻均为电源电压的过零时刻,且正负半周的控制角相等,可见负载两端的电压波形只是电源电压波形的一部份。
在电阻性负载下,负载电流和负载电压的波形相同,α角的移相范围为0≤α≤π, α=0时,相当于可控硅一直导通,输入电压为最大值,U0=U i灯最亮;随着α的增大,U0逐渐降低,灯的亮度也由亮变暗,直至α=π时,U0=0,灯熄灭。
此外α=0时,功率因数cosφ=1,随着α的增大,输入电流滞后于电压且发生畸变,cosφ也逐渐降低,且对电网电压电流造成谐波污染。
交流调压电路已广泛用于调光控制,异步电动机的软起动和调速控制。
和整流电路一样,交流调压电路的工作情况也和负载的性质有很大的关系,在阻感负载时,若负载上电压电流的相位差为φ,则移相范围为φ≤α≤π,详细分析从略。
图2单相交流调压电路波形图四、实验内容交流调压电路的测试。
115五、思考题双向晶闸管与两个单向晶闸管反并联的不同点?控制方式有什么不同?六、实验方法将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK22的“Ui”电源输入端,按下“启动”按钮。
接入220V,15W的灯泡负载,打开交流调压电路的电源开关。
单相交流调压电路实验总结
单相交流调压电路实验总结一、实验目的本实验旨在通过搭建单相交流调压电路,掌握单相交流电路的基本原理和调压电路的工作原理,了解半波、全波和桥式整流电路的特点,并掌握使用示波器测量电压和电流信号的方法。
二、实验仪器和材料1. 万用表2. 示波器3. 电阻箱4. 二极管5. 变压器6. 电容器三、实验步骤及结果分析1. 搭建半波整流电路将变压器接入半波整流电路中,通过示波器观察输出端口的正弦波形,并测量输出端口的平均值和峰值。
结果显示,该半波整流电路输出直流电压幅值为输入交流电压幅值的一半。
2. 搭建全波整流电路将变压器接入全波整流电路中,通过示波器观察输出端口的正弦波形,并测量输出端口的平均值和峰值。
结果显示,该全波整流电路输出直流电压幅值为输入交流电压幅值的两倍。
3. 搭建桥式整流电路将变压器接入桥式整流电路中,通过示波器观察输出端口的正弦波形,并测量输出端口的平均值和峰值。
结果显示,该桥式整流电路输出直流电压幅值为输入交流电压幅值的两倍。
4. 搭建调压电路在全波整流电路的基础上,加入稳压二极管和电容器,形成调压电路。
通过示波器观察输出端口的正弦波形,并测量输出端口的平均值和峰值。
结果显示,该调压电路可以稳定地输出设定的直流电压。
四、实验总结通过本次实验,我们掌握了单相交流电路的基本原理和调压电路的工作原理。
我们了解了半波、全波和桥式整流电路的特点,并掌握了使用示波器测量信号的方法。
在搭建调压电路时,我们还学会了如何使用稳压二极管和电容器来稳定输出直流电压。
这些知识对于我们深入学习交流电路和实际工程应用都具有重要意义。
实验三·单相交流调压电路
实验(三):单相交流调压电路实验一、实验目的(1)加深理解单相交流调压电路的工作原理。
(2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二、预习内容要点(1) 熟悉实验电路(包括主电路、触发控制电路)。
(2) 按实验电路要求matlab仿真,用示波器观察移相控制信号α的情况。
(3) 主电路接电阻负载,用示波器观察不同α角时输出电压和晶闸管两端的电压波形,并用电压表测出输出电压的有效值。
为使读数便利,可取α为30°、60°、90°进行观察和分析(4) 主电路改接电阻电感负载,在不同控制角α和不同负载阻抗角θ情况下用示波器观察和记录负载电压和电流的波形。
(5) 特别注意观察上述α<θ情况下出现较大的直流分量,此时L 固定,加大R直至消除直流分量。
三、实验仿真模型图1.1 单相交流调压阻感性电路四、实验内容及步骤1.对单相交流调压带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(3)参数设置1.双击交流电源把电压设置为220V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为80%,延迟角设为30度,60度,,90度,由于属性里的单位为秒,故把其转换为秒即,(30/360)*0.02;3.双击负载把电阻设为10Ω;4.双击示波器把Number of axes设为6;仿真波形及分析当α=30°时,当α=60°时,当α=90°时,2.对单相交流调压电路带阻感性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
参数设置双击负载把电阻设为10Ω;电感为0.01H;其余参数不变。
当α=30°时,当α=60°时,当α=90°时,五、实验总结1、在交流调压电路中,当负载为阻性时,输出电压的有效值随相控角增大而减小。
电力电子技术实验
实验一 三相桥式全控整流电路实验
六、注意:
双踪示波器有两个探头,可以同时测量两个信号,但这两 个探头的地线都与示波器的外壳相连接,所以两个探头 的地线不能同时接在某一电路的不同两点上,否则将使 这两点通过示波器发生电气短路。为此,在实验中可将 其中一根探头的地线取下或外包以绝缘,只使用其中一 根地线。当需要同时观察两个信号时,必须在电路上找 到这两个被测信号的公共点,将探头的地线接上,两个 探头各接至信号处,即能在示波器上同时观察到两个信 号,而不致发生意外。
(1) 锯齿波周期与幅值测量(分开关s2、s3、s4合上与断 开多种情况)。测量“1”端。
(2)输出最大与最小占空比测量。测量“2”端。 注意:下面(2-7)六路电路中任选择一种电路做实验
实验二 直流斩波电路的性能研究
2.buck chopper (1)连接电路 将UPW(脉宽调制器)的输出端2端接到斩波电路中IGBT管VT的G端,分别将斩
本实验室管理采用专人负责制度,能够承担与电力电子及 电气传动课程相关的各类实验,满足学生学习的需要。
电力电子技术体管触发电路及单相半波可控整流电路实 验 实验二 正弦波同步移相触发电路实验 实验三 锯齿波同步移相触发电路实验 实验四 单相桥式半控整流电路实验 实验五 单相桥式全控整流电路实验 实验六 单相桥式有源逆变电路实验 实验七 三相半波可控整流电路的研究 实验八 三相桥式半控整流电路实验 实验九 三相桥式全控整流(及有源逆变电路实验) 实验十 单相交流调压电路实验
实验三 单相交流调压电路实验
四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或
NMCL—36组件 5.二踪示波器 6.万用表 7、U盘(自备)
交流调压实验报告总结(3篇)
第1篇一、实验背景随着社会经济的发展,电力电子技术在工业、民用和科研领域得到了广泛的应用。
交流调压技术作为电力电子技术的重要组成部分,在电力系统的运行、控制和保护等方面发挥着至关重要的作用。
为了加深对交流调压技术的理解和掌握,我们进行了交流调压实验,以下是对实验的总结。
二、实验目的1. 理解交流调压电路的工作原理,掌握交流调压电路的设计方法。
2. 熟悉交流调压电路的实验步骤,掌握实验操作技能。
3. 分析交流调压电路在不同负载条件下的工作特性,提高实验分析能力。
三、实验原理交流调压电路通过控制晶闸管的导通角,实现对交流电压的调节。
实验中,我们主要研究了单相和三相交流调压电路。
1. 单相交流调压电路:采用双向晶闸管或两个反向并联的晶闸管,通过控制晶闸管的导通角来调节交流电压。
2. 三相交流调压电路:采用三相晶闸管,通过控制三相晶闸管的导通角来调节交流电压。
四、实验步骤1. 单相交流调压电路实验:(1)搭建实验电路,包括晶闸管、电阻、电容等元件。
(2)接入电源,调节晶闸管的导通角,观察电压调节效果。
(3)改变负载,分析交流调压电路在不同负载条件下的工作特性。
2. 三相交流调压电路实验:(1)搭建实验电路,包括三相晶闸管、电阻、电容等元件。
(2)接入电源,调节三相晶闸管的导通角,观察电压调节效果。
(3)改变负载,分析交流调压电路在不同负载条件下的工作特性。
五、实验结果与分析1. 单相交流调压电路实验结果:(1)实验结果表明,通过调节晶闸管的导通角,可以实现交流电压的调节。
(2)当负载变化时,交流调压电路的工作特性有所变化,如导通角增大,电压调节范围减小。
2. 三相交流调压电路实验结果:(1)实验结果表明,通过调节三相晶闸管的导通角,可以实现三相交流电压的调节。
(2)当负载变化时,三相交流调压电路的工作特性有所变化,如导通角增大,电压调节范围减小。
六、实验结论1. 交流调压电路通过控制晶闸管的导通角,实现对交流电压的调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京信息科技大学
电力电子技术实验报告
实验项目:单相交流调压电路实验
学院:自动化
专业:自动化(信息与控制系统)
姓名/学号:贾鑫玉/2012010541
班级:自控1205班
指导老师:白雪峰
学期:2014-2015学年第一学期
实验三单相交流调压电路实验
一.实验目的
1.加深理解单相交流调压电路的工作原理。
2.加深理解交流调压感性负载时对移相范围要求。
二.实验内容
1.单相交流调压器带电阻性负载。
2.单相交流调压器带电阻—电感性负载。
三.实验线路及原理
本实验采用了锯齿波移相触发器。
该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。
晶闸管交流调压器的主电路由两只反向晶闸管组成。
四.实验设备及仪器
1.教学实验台主控制屏
2.NMCL—33组件
3.NMEL—03组件
4.NMCL-05(A)组件或NMCL—36组件
5.二踪示波器
6.万用表
五.注意事项
在电阻电感负载时,当α<ϕ时,若脉冲宽度不够会使负载电流出现直流分量,损坏元件。
为此主电路可通过变压器降压供电,这样即可看到电流波形不对称现象,又不会损坏设备。
六.实验方法
1.单相交流调压器带电阻性负载
将NMCL-33上的两只晶闸管VT1,VT4反并联而成交流电调压器,接上电阻性负载(可采用两只900Ω电阻并联),并调节电阻负载至最大。
NMCL-31的给定电位器RP1逆时针调到底,使U ct=0。
调节锯齿波同步移相触发电路偏移电压电位器RP2,使α=150°。
合上主电源,用示波器观察负载电压u=f(t)的波形,调节U ct,观察不同α角时α0°90°120°。