【数学一】2007年全国硕士研究生入学统一考试真题
2007—数一真题、标准答案及解析
(B) 合同,但不相似 (D)既不合同,也不相似
(9)某人向同一目标独立重复射击,每次射击命中目标的概率为 p (0 < p < 1) ,则此人第
4 次射击恰好第 2 次命中目标的概率为:
()
(A) 3 p(1− p)2 (B) 6 p(1− p)2
(C) 3 p2 (1− p)2 (D) 6 p2 (1− p)2
(7)设向量组α1 ,α 2 ,α 3 线形无关,则下列向量组线形相关的是:
(A)
(A) α1 − α2 ,α2 − α3 ,α3 − α1 (B) α1 + α2 ,α2 + α3 ,α3 + α1
(C) α1 − 2α 2,α 2 − 2α 3,α 3 − 2α1 (D)α1 + 2α 2,α 2 + 2α 3,α 3 + 2α1
第 3/12页
梦飞翔考研论坛
梦飞翔考研论坛
(24)设总体 X 的概率密度为
⎧1
⎪ ⎪
2θ
0< x<θ
f
(
x,θ
)
=
⎪ ⎨ ⎪
1 2(1 −
θ
)
θ ≤ x <1
⎪0 其他
⎪⎩
X1 , X 2 ,… X n 是来自总体 X 的简单随机样本, X 是样本均值
三.解答题:17~24 小题,共 86 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、 证明过程或演算步骤.
(17)(本题满分11分)求函数f (x, y) = x2 + 2y2 − x2 y2在区域D = {(x, y) x2 + y2 ≤ 4, y ≥ 0}
上的最大值和最小值。
2007年全国硕士研究生入学考试数学一真题及答案详解
Y 的概率密度,则在 Y = y 的条件下, X 的条件概率密度 f X Y (x y) 为( A )。
(A) f X (x)
(B) fY ( y)
(C) f X (x) fY ( y)
(D) f X (x) fY (y)
【解析与点评】由于 ( X ,Y ) 服从二维正态分布,且 X 与 Y 不相关,所以 X 与 Y 相互独立,
(13)二阶常系数非齐次线性微分方程 y′′ − 4 y′ + 3y = 2e2x 的通解为 y = __________。
【 解 】 齐 次 解 为 y = C1e x + C2e3x , 设 特 解 为 y = Ae2x , 由 待 定 系 数 法 得 到
4 Ae2x − 8Ae2x + 3Ae2x = 2e2x , A − 2 , 答案: y = C1e x + C2e3x − 2e2x 。
(A)若 lim f (x) = 0 ,则 f (0) = 0 x→0 x
(B)若 lim f ( x) + f (− x) = 0 ,则 f (0) = 0
x→0
x
(C)若 lim f (x) 存在,则 f ′(0) 存在 x→0 x
(D)若 lim f (x) − f (−x) 存在,则 f ′(0) 存在
(D)若 u1 < u2 ,则 {un }必发散
【解】答案 D。画出草图,结论显见。下面证明 D:
u1 < u2 ,则 u2 − u1 > c > 0 ,其中 c 是某个确定的正数,于是存在 ξ1 ∈ (1,2) 使得
u2 − u1 2 −1
=
f (2) − f (1) = 2 −1
f ′(ξ1 ) > c > 0 ,
2007考研数一真题及解析
2007年全国硕士研究生入学统一考试数学一试题一、选择题:110小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1) 当0x +→等价的无穷小量是( )A.1-B1C.1c D -(2) 曲线1ln(1)x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(3) 如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F = .D (3)F -5(2)4F =--(4) 设函数()f x 在0x =连续,则下列命题错误的是( ).A 若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C 若0()limx f x x →存在,则(0)f '存在 .D 若0()()lim x f x f x x→--存在,则(0)f '存在(5) 设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()(1,2,)n u f n n ==,则下列结论正确的是( ).A 若12u u >,则{}n u 必收敛 .B 若12u u >,则{}n u 必发散.C 若12u u <,则{}n u 必收敛 .D 若12u u <,则{}n u 必发散(6) 设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数)过第Ⅱ象限内的点M 和第IV 象限内的点N ,Γ为L 上从点M 到点N 的一段弧,则下列积分小于零的是( ).A(,)f x y dx Γ⎰.B (,)f x y dy Γ⎰.C (,)f x y ds Γ⎰ .D (,)(,)x y f x y dx f x y dy Γ''+⎰(7) 设向量组123,,ααα线性无关,则下列向量组线性相关的是( )A .12αα-2331,,αααα--B .12αα+2331,,αααα++C .1223312,2,2αααααα---D .1223312,2,2αααααα+++(8) 设矩阵211121112A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,100010000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 与B ( ) A . 合同,且相似 B . 合同,但不相似C . 不合同,但相似D . 既不合同,也不相似(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为(01),p p <<则此人第4次射击恰好第2次命中目标的概率为 ( )A .23(1)p p -B .26(1)p p -C .223(1)p p -D .226(1)p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y f x y 为( )A .()X f xB .()Y f yC .()()X Y f x f yD .()()X Y f x f y二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(11)12311x e dx x=⎰_________ (12) 设(,)f u v 为二元可微函数,(,),yxz f x y =则______zx∂=∂ (13) 二阶常系数非齐次线性微分方程2432xy y y e '''-+=的通解为_____y =(14) 设曲面:1x y z ∑++=,则()_____x y dS ∑+=⎰⎰(15) 设距阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为_____(16) 在区间(0,1)中随机地取两个数,则这两数之差的绝对值小于12的概率为______三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)求函数2222(,)2,f x y x y x y =+-在区域{}22(,)4,0D x y x y y =+≤≥上的最大值和最小值.(18)(本题满分11分)计算曲面积分 23,I xzdydz zydzdx xydxdy ∑=++⎰⎰ 其中∑为曲面221(01)4y z x z =--≤≤的上侧.(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上连续,在(,)a b 内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:存在(,),a b ξ∈使得''()''().f g ξξ=(20)(本题满分10分)设幂级数nn n a x∞=∑在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0)1y xy y y y ''''--===(I) 证明22,1,2,1n n a a n n +==+(II) 求()y x 的表达式(21)(本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩ (1)与方程 12321x x x a ++=- (2)有公共解,求a 得值及所有公共解.(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵.(I) 验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II) 求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为 2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(I) 求{}2P X Y >;(II) 求Z X Y =+的概率密度()Z f z .(24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(I) 求参数θ的矩估计量θ;(II) 判断24X 是否为2θ的无偏估计量,并说明理由.2007年全国硕士研究生入学统一考试数学一试题解析一、选择题 (1)【答案】B 【详解】方法1:排除法:由几个常见的等价无穷小,当0x →时,11;11;2xe x x x -+-2221cos 2sin 2(),222x xx x -==当0x +→0→,所以11();11;2x x x --+-211(),2x-可以排除A 、C 、D ,所以选(B). 方法2:==ln[1+当0x +→时,11-→0→,又因为0x →时,()ln 1x x+,所以)ln[1~~1~x =(B).方法3:000lim lim lim x x x +++''→→→=11lim lim 1x x x++→→--==11xA x -=++(()1142AB x x ++=+对应系数相等得:1A B = =,所以原式01lim lim 1x x xx ++→→-⎡⎤==⎢+⎣0lim lim 011x x x ++→→=+=++1=,选(B).(2)【答案】D【详解】因为001lim lim ln(1)x x x y e x →→⎛⎫=++⎪⎝⎭001lim limln(1)x x x e x →→=++=∞,所以0x =是一条铅直渐近线; 因为1lim lim ln(1)x x x y e x →-∞→-∞⎛⎫=++⎪⎝⎭--1lim lim ln(1)000x x x e x →∞→∞=++=+=, 所以0y =是沿x →-∞方向的一条水平渐近线;令 21l n (1)1l n (1)l i m l i m l i m x x x x x e y e x a x xx x →+∞→+∞→+∞++⎛⎫+===+ ⎪⎝⎭21ln(1)lim lim x x x e x x →+∞→+∞+=+10lim 11xx x e e →+∞+ +=洛必达法则令 ()1l i m l i m l n (1)x x x b y a x e x x →+∞→+∞⎛⎫=-⋅=++- ⎪⎝⎭()1limlim ln(1)x x x e x x →+∞→+∞=++-()ln 0lim ln(1)ln x x x x x e e e →+∞ = ++-1lim ln()xx x e e→+∞+=lim ln(1)ln10x x e -→+∞=+== 所以y x =是曲线的斜渐近线,所以共有3条,选择(D)(3)【答案】C【详解】由题给条件知,()f x 为x 的奇函数,则()()f x f x -=-,由0()(),xF x f t dt =⎰ 知()()()()()()()()xx xF x f t dt t u f u d u f u f u f u du F x --==- -- -=- =⎰⎰⎰令因为,故()F x 为x 的偶函数,所以(3)(3)F F -=.而2(2)()F f t dt =⎰表示半径1R =的半圆的面积,所以22(2)()22R F f t dt ππ===⎰,3232(3)()()()F f t dt f t dt f t dt ==+⎰⎰⎰,其中32()f t dt ⎰表示半径12r =的半圆的面积的负值,所以22321()2228r f t dt πππ⎛⎫=-=-⋅=- ⎪⎝⎭⎰所以 232333(3)()()(2)288424F f t dt f t dt F ππππ=+=-==⋅=⎰⎰ 所以 3(3)(3)(2)4F F F -==,选择C(4)【答案】( D) 【详解】方法1:论证法,证明..A B C 都正确,从而只有.D 不正确.由0()limx f x x→存在及()f x 在0x =处连续,所以0(0)lim ()x f f x →=0000()()()lim()lim lim 0lim x x x x f x f x f x x x x x x→→→→==⋅=⋅0=,所以(A)正确;由选项(A)知,(0)0f =,所以00()(0)()lim lim 0x x f x f f x x x→→-=-存在,根据导数定义,0()(0)'(0)limx f x f f x →-=-存在,所以(C)也正确; 由()f x 在0x =处连续,所以()f x -在0x =处连续,从而[]0lim ()()lim ()lim ()(0)(0)2(0)x x x f x f x f x f x f f f →→→+-=+-=+=所以0000()()()()()()2(0)lim lim lim 0lim 0x x x x f x f x f x f x f x f x f x x x x x →→→→+-+-+-⎡⎤=⋅=⋅=⋅=⎢⎥⎣⎦即有(0)0f =.所以(B)正确,故此题选择(D).方法2:举例法,举例说明(D)不正确. 例如取()f x x =,有0()()limlim 00x x x x f x f x x x→→----==-存在 而 ()()0000lim lim 100x x f x f x x x --→→---==---,()()0000lim lim 100x x f x f x x x +-→→--==--, 左右极限存在但不相等,所以()f x x =在0x =的导数'(0)f 不存在. (D)不正确,选(D).(5)【答案】( D)【详解】()n u f n =,由拉格朗日中值定理,有1n n (1)()'()(1)'(),(1,2,)n n u u f n f n f n n f n ξξ+-=+-=+-==,其中n 1n n ξ<<+,12n .ξξξ<<<<由''()0,f x >知'()f x 严格单调增,故 12n '()'()'().f f f ξξξ<<<<若12u u <,则121'()0,f u u ξ=-> 所以12n 0'()'()'().f f f ξξξ<<<<<1111k 1111()'()'().nnn k k k k u u u u u f u nf ξξ++===+-=+>+∑∑而1'()f ξ是一个确定的正数. 于是推知1lim ,n n u +→∞=+∞故{}n u 发散. 选(D)(6)【答案】B【详解】用排除法.将(,)1f x y =代入知(,)0f x y ds ds s ΓΓ==>⎰⎰,排除C.取22(,)f x y x y =+,M 、N 依次为(、,则37cos ,sin 44x y Γθθπθπ:== ≤≤734(,)cos 0f x y dx d πΓπθ=>⎰⎰,排除A7434(,)(,)2cos (sin )2sin cos 0x y f x y dx f x y dy d πΓπθθθθθ''+=-+=⎰⎰,排除D7434(,)sin 0f x y dy d πΓπθ=<⎰⎰,选B(7) 【答案】A 【详解】方法1:根据线性相关的定义,若存在不全为零的数123,,k k k ,使得1122330k k k ααα++=成立,则称123,,ααα线性相关.因122331()()()0αααααα-+-+-=,故122331αααααα---,,线性相关,所以选择(A).方法2:排除法因为()122331,,αααααα+++()()1231232101,,110,,,011C αααααα⎛⎫ ⎪== ⎪ ⎪⎝⎭其中2101110011C ⎛⎫ ⎪= ⎪ ⎪⎝⎭,且 2101110011C =11101111(1)2011111011+-⨯-+-=-行行()1111=⨯-⨯-()20=≠.故2C 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积,2C 右乘()123,,ααα时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有122331123(,,)(,,)3r r ααααααααα+++==所以122331,,αααααα+++线性无关,排除(B). 因为()1223312,2,2αααααα---()()1231233102,,210,,,021C αααααα-⎛⎫ ⎪=-= ⎪ ⎪-⎝⎭ 其中3102210021C -⎛⎫⎪=- ⎪ ⎪-⎝⎭,3102210021C -=--11102141014121021+--⨯-=---行2+2行()1124=⨯--⨯-()()≠=-70.故3C 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, 3C 右乘()123,,ααα时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有122331123(2,2,2)(,,)3r r ααααααααα---==所以1223312,2,2αααααα---线性无关,排除(C). 因为()1223312,2,2αααααα+++()()1231234102,,210,,,021C αααααα⎛⎫ ⎪== ⎪ ⎪⎝⎭ 其中4102210021C ⎛⎫⎪= ⎪ ⎪⎝⎭,4102210021C =11102141(2)2014121021+-⨯-+-=-行行()1124=⨯-⨯-()90.=≠故4C 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, 4C 右乘()123,,ααα时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有122331123(2,2,2)(,,)3r r ααααααααα+++==所以1223312,2,2αααααα+++线性无关,排除(D).综上知应选(A).(8) 【答案】B 【详解】方法1:211121112E A λλλλ--=--112312112λλλλλ--、列分别加到列 111121112λλλλ--提出1111103112λλλ⨯---行()+2行11111033λλλ⨯---行()+3行113103λλλ+-=--()()230λλ=-=则A 的特征值为3,3,0;B 是对角阵,对应元素即是的特征值,则B 的特征值为1,1,0. ,A B 的特征值不相同,由相似矩阵的特征值相同知,A B 与不相似.由,A B 的特征值可知,,A B 的正惯性指数都是2,又秩都等于2可知负惯性指数也相同,则由实对称矩阵合同的充要条件是有相同的正惯性指数和相同的负惯性指数,知A 与B 合同,应选(B).方法2: 因为迹(A )=2+2+2=6,迹(B )=1+1=2≠6,所以A 与B 不相似(不满足相似的必要条件).又2(3)E A λλλ-=-,2(1)E B λλλ-=-,A 与B 是同阶实对称矩阵,其秩相等,且有相同的正惯性指数,故A 与B 合同.(9)【答案】C【详解】把独立重复射击看成独立重复试验.射中目标看成试验成功. 第4次射击恰好是第2次命中目标可以理解为:第4次试验成功而前三次试验中必有1次成功,2次失败.根据独立重复的伯努利试验,前3次试验中有1次成功2次失败.其概率必为123(1).C p p -再加上第4次是成功的,其概率为p .根据独立性原理:若事件1,,n A A 独立,则{}{}{}{}1212n n P A A A P A P A P A =所以,第4次射击为第二次命中目标的概率为12223(1)3(1).C p p p p p -⋅=- 所以选(C)(10)【答案】A【详解】二维正态随机变量(,)X Y 中,X 与Y 的独立等价于X 与Y 不相关. 而对任意两个随机变量X 与Y ,如果它们相互独立,则有(,)()()X Y f x y f x f y =.由于二维正态随机变量(,)X Y 中X 与Y 不相关,故X 与Y 独立,且(,)()()X Y f x y f x f y =. 根据条件概率密度的定义,当在Y y =条件下,如果()0,Y f y ≠则(,)(|)()X Y Y f x y f x y f y =()()()()X Y X Y f x f y f x f y ==.现()Y f y 显然不为0,因此(|)().X X Y f x y f x = 所以应选(A).二、填空题 (11)【详解】命1t x=,有211,,x dx dt t t ==-12311x e dx x ⎰111133222121112111t t t t t t e d t e dt te dt te dt x t t ⎛⎫ = =-=-= ⎪⎝⎭⎰⎰⎰⎰ ()1111121111222212t t tt tde tee dt e e e =-=--⎰⎰分部积分11122211222e e e e e ⎛⎫=---== ⎪⎝⎭(12)【答案】112(,)(,)ln yxy y x x f x y yxf x y y y -''+【详解】z x∂=∂12(,)(,)(,)y x y xy x y xf x y x y f x y f x y x x x ∂∂∂''=+∂∂∂112(,)(,)ln y x y y x x f x y yx f x y y y -''=+(13)【答案】32122x x xC e C e e +-【详解】这是二阶常系数非齐次线性微分方程,且函数()f x 是()xm P x e λ型(其中()2,2m P x λ= =).所给方程对应的齐次方程为430y y y '''-+=,它的特征方程为2430,r r -+= 得特征根121,3,r r == 对应齐次方程的通解1231212r x r x x x y C e C e C e C e =+=+由于这里2λ=不是特征方程的根,所以应设该非齐次方程的一个特解为*2,xy Ae = 所以()*22xy Ae'=,()*24xyAe''=,代入原方程:222244232xx x x AeAe Ae e -⋅+=,则2A =-,所以*22.xy e =- 故得原方程的通解为32122x x x y C e C e e =+-.(14)【详解】 ()x y dS xdS y dS ∑∑∑+=+⎰⎰⎰⎰⎰⎰,对于第一部分,由于积分区域关于x 轴、y 轴是对称的面,被积函数x 为x 的奇函数,所以0.xdS ∑=⎰⎰对于第二部分,因∑关于,,x y z 轮换对称,所以,xdS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰那么()1133y dS x y z dS dS ∑∑∑=++=⎰⎰⎰⎰⎰⎰,由曲面积分的几何意义,dS ∑⎰⎰为曲面的表面积,所以13y dS dS ∑∑=⎰⎰⎰⎰()1.3=⨯∑的面积 而∑为8,所以∑的面积218sin23π=⋅=所以1()433x y dS y dS ∑∑+==⋅=⎰⎰⎰⎰(15)【答案】1 【详解】2010001000010*********001000100010000000000000000A ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 32001001000001000100100000000000010000000000000000A A A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⋅==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由阶梯矩阵的行秩等于列秩,其值等于阶梯形矩阵的非零行的行数,知()3 1.r A =(16) 【答案】34【详解】不妨假定随机地抽出两个数分别 为X Y 和,它们应是相互独立的. 如果把 ,X Y ()看成平面上一个点的坐标,则由于 01,01,X Y <<<<所以,X Y ()为平面上 正方形:01,01X Y <<<<中的一个点.X Y 和两个数之差的绝对值小于12对应于正方形中12X Y -<的区域.所有可能在区间(0,1)中随机取的两个数,X Y ,可以被看成上图中单位正方形里的点.12X Y -<的区域就是正方形中阴影的面积D . 根据几何概率的定义:()211213.214D P X Y -⎛⎫-<=== ⎪⎝⎭的面积单位正方形面积三、解答题 (17)【详解】方法1:先求函数(,)f x y 在D 的内部驻点,由22220420x y f x xy f y x y ⎧'=-=⎪⎨'=-=⎪⎩,解得D内的驻点为(,相应的函数值为(2f =再考虑在D 的边界1L :0(22)y x =-≤≤上的(,)f x y . 即2(,0)(22)f x x x =-≤≤,易知函数(,)f x y 在此边界上的最大值为(2,0)4f ±=,最小值为(0,0)0f =.考虑在D 的边界2L :224(0)x y y +=≥上的(,)f x y,所以y =令222242()(2(4)(4)58,22h x f x x x x x x x x ==+---=-+-≤≤由3()4100h x x x '=-=得驻点1230,x x x === 所以函数()h x 在相应点处的函数值为(0)(0,2)8h f ==,7((4h f ==,74h f == 综上可知函数在D 上的最大值为(0,2)8f =,最小值为(0,0)0f =. 方法2:在D 内与边界1L 上,同方法1 .在边界2L :224(0)x y y +=≥上,构造函数222222(,,)2(4)F x y x y x y x y λλ=+-++-令 22222220422040x y F x xy x F y x y y F x y λλλ'⎧=-+=⎪'=-+=⎨⎪'=+-=⎩,解得x y ⎧=⎪⎨=⎪⎩,02x y =⎧⎨=⎩(74f =,(0,2)8f =综上,(,)f x y 在D 上的最大值为8,最小值为0(18)【详解】方法1:增加一个曲面使之成为闭合曲面,从而利用高斯公式,补充曲面片22:0,14y S z x =+≤,下侧为正,有 122323SSI xzdydz zydzdx xydxdy xzdydz zydzdx xydxdy II ∑+=++-++=+⎰⎰⎰⎰根据高斯公式,1(2)I z z dv Ω=+⎰⎰⎰221111436(1)x y zzdzdxdy z z dz ππ+<-==-=⎰⎰⎰⎰其中,22(,,)1,014y x y z x z z ⎧⎫⎪⎪Ω=+≤-≤≤⎨⎬⎪⎪⎩⎭. 又2221143x y I xydxdy +≤=-⎰⎰ 由函数奇偶性可知2211430x y xydxdy +≤=⎰⎰,从而0I ππ=+=.方法2:曲面∑在xOy 上的投影记为xy D ,由于曲面∑的正向法向量为1(,,1)(2,,1)2x y n z z x y ''=--=,所以23(,,)xyD I xzdydz zydzdx xydxdy X Y Z ndxdy ∑=++=⎰⎰⎰⎰2222222211411[2(1)(1)3]44x y x x y y x y xy dxdy +≤=--+--+⎰⎰令 c o s ,02,01s i nx r r y r θθπθ=⎧≤≤≤≤⎨=⎩,则 2122222220[2(1)cos 2(1)sin 6cos sin ]2I d r r r r r rdr πθθθθθ=-+-+⎰⎰132012(1)r r dr ππ=-=⎰方法3:记曲面∑在三个坐标平面上的投影分别为,,xy yz zx D D D ,则利用函数奇偶性有,330xyD xydxdy xydxdy ∑==⎰⎰⎰⎰1022yzD xzdydz zdz -∑==⎰⎰⎰⎰⎰⎰10[2(1)]3z z dz ππ=-=⎰1288zxD zydzdx zdz ∑==⎰⎰⎰⎰⎰124(1)3z z dz ππ=-=⎰ 所以 223033I xzdydz zydzdx xydxdy πππ∑=++=++=⎰⎰(19)【详解】欲证明存在(,)a b ξ∈使得()()f g ξξ''''=,可构造函数((),())0f x g x ϕ=,从而使用介值定理、微分中值定理等证明之.令()()()x f x g x ϕ=-,由题设(),()f x g x 存在相等的最大值,设1(,)x a b ∈,2(,)x a b ∈使得12[.][.]()max ()()max ()a b a b f x f x g x g x ===. 于是111()()()0x f x g x ϕ=-≥,222()()()0x f x g x ϕ=-≤若1()0x ϕ=,则取1(,)x a b η=∈有()0ϕη=. 若2()0x ϕ=,则取2(,)x a b η=∈有()0ϕη=.若12()0,()0x x ϕϕ><,则由连续函数介值定理知,存在12(,)x x η∈使()0ϕη=. 不论以上哪种情况,总存在(,),a b η∈使()0ϕη=.再()()()0,()()()0a f a g a b f b g b ϕϕ=-==-=,将()x ϕ在区间[,],[,]a b ηη分别应用罗尔定理,得存在12(,),(,),a b ξηξη∈∈使得12()()0ϕξϕξ''==0,;再由罗尔定理知,存在12(,)ξξξ∈,使()0ϕξ''=.即有()()f g ξξ''''=.(20)【详解】(I) 证法一:对0nn n y a x∞==∑求一阶和二阶导数,得 1212,(1),n n nn n n y na xy n n a x ∞∞--=='''==-∑∑代入240y xy y '''--=,得2121(1)240n n n nn n n n n n n a xx na xa x ∞∞∞--===---=∑∑∑即21(1)(2)240nnn n n n n n n n n ax na x a x ∞∞∞+===++--=∑∑∑于是 202240(1)20,n n a a n a a +-=⎧⎨+-=⎩1,2,,n = 从而 22,1,2,,1n n a a n n +==+ 证法二:由于0nn n y a x ∞==∑,根据泰勒级数的唯一性便知()(0)!n n y a n =.在方程240y xy y '''--=两端求n 阶导数,得(2)(1)()22(2)0n n n y xy n y ++--+=令0x =,得(2)()(0)2(2)(0)0n n yn y +-+=,即 2(2)!2(2)!0n n n a n n a ++-+⋅=, 故 22,1,2,1n n a a n n +==+(II) 证法一:由于2202,1,2,,2,1n n a a n a a n +===+且根据题设中条件 01(0)0,(0)1,a y a y '====所以 20,1,2,n a n ==;21211221,0,1,2,22(22)42!nn n a a a n nn n n +-=====-从而 22212121001()()!!nnn n x n n n n n n x y x a x axx x xe n n ∞∞∞∞+++=========∑∑∑∑.证法二:因为0nn n y a x ∞==∑,所以11n n n y a x x ∞-==∑,两边求导,得2220()(1)(1)n n n n n n y n a xn a x x ∞∞-+=='=-=+∑∑ 由于 22,1,2,1n n a a n n +==+,所以 0()22nn n y a x y x ∞='==∑,即函数()y x 满足方程()20y y x '-=令()y u x x =,则上述方程变为20u xu '-=,即2du xdx u=,解之得2x u Ce =,从而2x y Cxe =. 由(0)1y '=得1C =,所以2x y xe =.(21) 【详解】方法1:因为方程组(1)、(2)有公共解,将方程组联立得1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩对联立方程组的增广矩阵作初等行变换21110120()140121a A b a a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭211100110112140121a a a ⎛⎫ ⎪- ⎪⨯-+ ⎪ ⎪⎝⎭行()行 2111001101130310121a a a ⎛⎫ ⎪- ⎪⨯-+ ⎪- ⎪⎝⎭行()行21110011011403100101a a a ⎛⎫⎪- ⎪⨯-+ ⎪-⎪-⎝⎭行()行2111000111203100101a a a a ⎛⎫ ⎪--⎪⨯-+ ⎪- ⎪-⎝⎭4行()行2111001133001330101a a a a a ⎛⎫⎪-- ⎪⨯-+ ⎪--⎪-⎝⎭4行()行21110101001100133a a a a a ⎛⎫ ⎪-⎪ ⎪-- ⎪--⎝⎭换行111001013--140011000(1)(2)a a a aa a ⎛⎫⎪-⎪⨯+ ⎪--⎪--⎝⎭行()行由此知,要使此线性方程组有解,a 必须满足(1)(2)0a a --=,即1a =或2a =.当1a =时,()2r A =,联立方程组(3)的同解方程组为12320x x x x ++=⎧⎨=⎩,由()2r A =,方程组有321n r -=-=个自由未知量. 选1x 为自由未知量,取11x =,解得两方程组的公共解为()1,0,1Tk -,其中k 是任意常数.当2a =时, 联立方程组(3)的同解方程组为1232301x x x x x ++=⎧⎪=⎨⎪=-⎩,解得两方程的公共解为()0,1,1T -.方法2:将方程组(1)的系数矩阵A 作初等行变换21111214A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦211111201114a a ⎡⎤⎢⎥⨯-+-⎢⎥⎢⎥⎣⎦行()行2111113011031a a ⎡⎤⎢⎥⨯-+-⎢⎥⎢⎥-⎣⎦行()行1113301100(1)(2)a a a ⎡⎤⎢⎥⨯-+-⎢⎥⎢⎥--⎣⎦2行()行当1a =时,()2r A =,方程组(1)的同解方程组为12320x x x x ++=⎧⎨=⎩,由()2r A =,方程组有321n r -=-=个自由未知量.选1x 为自由未知量,取11x =,解得(1)的通解为()1,0,1Tk -,其中k 是任意常数. 将通解()1,0,1Tk -代入方程(2)得0()0k k ++-=,对任意的k 成立,故当1a =时,()1,0,1Tk -是(1)、(2)的公共解.当2a =时,()2r A =,方程组(1)的同解方程组为123230x x x x x ++=⎧⎨+=⎩,由()2r A =,方程组有321n r -=-=个自由未知量.选2x 为自由未知量,取21x =,解得(1)的通解为()0,1,1Tμ-,其中μ是任意常数. 将通解()0,1,1Tμ-代入方程(2)得21μμ-=,即1μ=,故当2a =时,(1)和(2)的公共解为()0,1,1T-.(22) 【详解】(I)由11A αα=,可得 111111()k k k A A A A αααα--====,k 是正整数,故5311(4)B A A E αα=-+531114A A E ααα=-+111142αααα=-+=-于是1α是矩阵B 的特征向量(对应的特征值为12λ'=-).若Ax x λ=,则()(),mmkA x k x A x x λλ==因此对任意多项式()f x ,()()f A x f x λ=,即()f λ是()f A 的特征值.故B 的特征值可以由A 的特征值以及B 与A 的关系得到,A 的特征值11,λ=22,λ=32,λ=- 则B有特征值112233()2,()1,()1,f f f λλλλλλ'''==-====所以B 的全部特征值为-2,1,1. 由A 是实对称矩阵及B 与A 的关系可以知道,B 也是实对称矩阵,属于不同的特征值的特征向量正交. 由前面证明知1α是矩阵B 的属于特征值12λ'=-的特征向量,设B 的属于1的特征向量为123(,,)T x x x ,1α与123(,,)T x x x 正交,所以有方程如下:1230x x x -+=选23,x x 为自由未知量,取23230,11,0x x x x ====和,于是求得B 的属于1的特征向量为223(1,0,1),(1,1,0)T T k αα=-=故B 的所有的特征向量为:对应于12λ'=-的全体特征向量为11k α,其中1k 是非零任意常数,对应于231λλ''==的全体特征向量为2233k k αα+,其中23,k k 是不同时为零的任意常数. ()II 方法1:令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,求逆矩阵1P -.111100101010110001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦11110012012110110001-⎡⎤⎢⎥+-⎢⎥⎢⎥⎣⎦行行 11110013012110021101-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦行行1111003012110003121-⎡⎤⎢⎥⨯+-⎢⎥⎢⎥⎣⎦行2行 1111011110330121100101/31/32/30011/32/31/30011/32/31/3--⎡⎤⎡⎤⎢⎥⎢⎥÷-⨯---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦行3行(-2)+2行 1102/32/31/30101/31/32/30011/32/31/3---⎡⎤⎢⎥⨯---⎢⎥⎢⎥⎣⎦3行(-1)+1行1001/31/31/30101/31/32/30011/32/31/3-⎡⎤⎢⎥⨯---⎢⎥⎢⎥⎣⎦2行(-1)+1行1001/31/31/30101/31/32/30011/32/31/3-⎡⎤⎢⎥⨯-⎢⎥⎢⎥⎣⎦2行(-1) 则 1P -1/31/31/311111/31/32/311231/32/31/3121--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦由1(2,1,1)P BP diag -=-,所以11112001111(2,1,1)1010101123110001121B P diag P ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1112220331110111230333110121330----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦方法2:由()I 知1α与23,αα分别正交,但是23αα和不正交,现将23,αα正交化:取 22331221111,(1,1,0)(,0,)(,1,)2222k βαβαβ==+=+-=. 其中,3212222(,)1(1)11(1,0,1)(,0,)(,)(1)(1)1122T k αββββ⨯-=-=--=--⨯-+⨯再对1,α23,ββ单位化:312123123111,1),1,0,1),(,1,)22βαβξξξαββ==-==-===其中,1233,2,αββ=阵,记0Q ⎡⎤⎢⎥⎥=⎥⎥ 由1(2,1,1)Q BQ diag -=-,有1(2,1,1)B Q diag Q -=⋅-⋅. 又由正交矩阵的性质:1TQ Q -=,得200(2,1,1)00100001TB Q diag Q ⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎥=⋅-⋅=⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎥⎢⎥00⎡⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎥=⎢⎥⎥⎢⎥⎥⎢⎥011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(23)【详解】 计算{}2P X Y >可用公式{}22(,)x yP X Y f x y dxdy >>=⎰⎰求Z X Y =+的概率密度()Z f z :可用两个随机变量和的概率密度的一般公式求解.(卷积公式)()(,)(,).Z f z f z y y dy f x z x dx +∞+∞-∞-∞=-=-⎰⎰此公式简单,但讨论具体的积分上下限会较复杂.另一种方法可用定义先求出{}{}(),Z F z P Z z P X Y z =≤=+≤然后再'()()Z Z f z F z =.(I){}2(2)DP X Y x y dxdy >=--⎰⎰,其中D为01,01x y <<<<中2x y >的那部分区域(右 图阴影部分);求此二重积分可得{}11202(2)x P X Y dx x y dy >=--⎰⎰1205()8x x dx =-⎰724=(Ⅱ)方法1:根据两个随机变量和的概率密度的卷积公式有()(,).Z f z f x z x dx +∞-∞=-⎰先考虑被积函数(,)f x z x -中第一个自变量x 的变化范围,根据题设条件只有当01x <<时(,)f x z x -才不等于0. 因此,不妨将积分范围改成1()(,).Z f z f x z x dx =-⎰现再考虑被积函数(,)f x z x -的第二个变量z x -.显然,只有当01z x <-<时,(,)f x z x -才不等于0.且为2()2.x z x z ---=-为此,我们将z 分段讨论.因为有01z x <-<,即是1,x z x <<+而x 的取值范围是(0,1),所以使得(,)f x z x -不等于0的z 取值范围是(0,2] 如下图,在01x <<情况下,在阴影区域1D 和2D ,密度函数值不为0,积分方向如图所示,积分上下限就很好确定了,所以很容易由卷积公式得出答案。
2007年全国硕士研究生入学统一考试(数一)试题及答案
2007年全国硕士研究生入学统一考试数学一试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x +→时,与(A )1-(B )ln(C 1 (D )1-(2)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0. (B )1. (C )2. (D )3. [ ] (3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是: (A )3(3)(2)4F F =-- (B) 5(3)(2)4F F = (C )3(3)(2)4F F = (D )5(3)(2)4F F =-- [ ](4)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f = .(C )若0()lim x f x x →存在,则(0)0f '= (D )若0()()lim x f x f x x→--存在,则(0)0f '=.[ ] (5)设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()n u f n =,则下列结论正确的是:(A) 若12u u > ,则{}n u 必收敛. (B) 若12u u > ,则{}n u 必发散(C) 若12u u < ,则{}n u 必收敛. (D) 若12u u < ,则{}n u 必发散. [ ](6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第Ⅱ象限内的点M 和第Ⅳ象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是 (A )(,)d Tf x y x ⎰. (B )(,)d Tf x y y ⎰(C )(,)d Tf x y s ⎰. (D )(,)d (,)d x y Tf x y x f x y y ''+⎰. [ ](7)设向量组123,,ααα线性无关,则下列向量组线性相关的是 (A) 122331,,αααααα---(B) 122331,,αααααα+++(C) 1223312,2,2αααααα---. (D) 1223312,2,2αααααα+++.[ ](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A) 合同且相似 (B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] (9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为(A )23(1)p p -. (B )26(1)p p -.(C )223(1)p p -. (D )226(1)p p - [ ] (10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为(A) ()X f x . (B) ()Y f y . (C) ()()X Y f x f y . (D)()()X Y f x f y . [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上. (11)12211e d x x x=⎰=__________. (12) 设(,)f u v 是二元可微函数,(,)yxz f x y =,则zx∂=∂ __________. (13) 二阶常系数非齐次微分方程2432e xy y y '''-+=的通解为y =________.(14) 设曲面:||||||1x y z ∑++=,则()||d x y S ∑+=⎰⎰Ò(15)设矩阵0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为 .(16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤. (17) (本题满分11分)求函数2222(,)2f x y x y x y =+-在区域(){}22,|4,0D x y xy y =+≤≥上的最大值和最小值.(18)(本题满分10分) 计算曲面积分 d d 2d d 3d d Ixz y z yz z x xy x y ∑=++⎰⎰,其中∑为曲面221(01)4y z x z =--≤≤ 的上侧. (19) (本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=.(20) (本题满分10分)设幂级数nn n a x∞=∑在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0)1y xy y y y ''''--===.(Ⅰ)证明:22,1,21n n a a n n +==+L ; (II )求()y x 的表达式.(21) (本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解.(22) (本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵.(I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23) (本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他.(I )求{}2P X Y >;(II) 求ZX Y =+的概率密度.(24) (本题满分11分)设总体X 的概率密度为12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值.(I )求参数θ的矩估计量θ);(II )判断24X 是否为2θ的无偏估计量,并说明理由.2007年考研数学试题答案解析(数学一)一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→ (B)A. 1-B.C. 1D.1-(2) 曲线y=1ln(1x e x++), 渐近线的条数为 (D)(3)如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的上、下半圆周,设F(x)=0()xf t dt ⎰.则下列结论正确的是 (C) A. F(3)=3(2)4F -- B. F(3)=5(2)4F C. F(3)=3(2)4F + D. F(3)= 5(2)4F -- (4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则f (0)=0 B. 若0()()lim x f x f x x→+- 存在,则f (0)=0C. 若0()lim x f x x → 存在,则'(0)f =0D. 若0()()lim x f x f x x→-- 存在,则'(0)f =0(5)设函数f (x )在(0, +∞)上具有二阶导数,且"()f x o >, 令n u =f(n)=1,2,…..n, 则下列结论正确的是(D)A.若12u u >,则{n u }必收敛B. 若12u u >,则{n u }必发散C. 若12u u <,则{n u }必收敛D. 若12u u <,则{n u }必发散(6)设曲线L :f(x, y) = 1 (f(x, y)具有一阶连续偏导数),过第Ⅱ象限内的点M 和第Ⅳ象限内的点N,T 为L 上从点M 到N 的一段弧,则下列小于零的是 (B) A.(,)rx y dx ⎰ B. (,)rf x y dy ⎰C.(,)rf x y ds ⎰D.'(,)'(,)x y rf x y dx f x y dy +⎰(7)设向量组1α,2α,3α线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++(C )1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(8)设矩阵A=211121112--⎛⎫⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭,则A 于B , (B)(A) 合同,且相似(B) 合同,但不相似 (C) 不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为p()01p <<,则此人第4次射击恰好第2次命中目标的概率为: (C) (A )23(1)p p - (B)26(1)p p - (C) 223(1)p p -(D) 226(1)p p -(10) 设随即变量(X ,Y )服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示X ,Y 的概率密度,则在Y =y 的条件下,X 的条件概率密度|(|)X Yf x y 为 (A)(A )()X f x(B) ()Y f y(C) ()X f x ()Y f y (D)()()X Y f x f y 二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上。
2007数学考研真题(一)
2007年硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→(A) 1- (B) ln(C) 1. (D) 1- [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). (2) 曲线1ln(1)x y e x=++,渐近线的条数为 (A) 0. (B) 1. (C) 2. (D) 3. [ D ] 【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim [ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim[]lim x x x x x y e e x x x x→+∞→+∞→+∞++=+==lim11xx x e e →+∞=+, 1lim [1]lim [ln(1)]x x x y x e x x→+∞→+∞-⋅=++-=lim[ln(1)]xx e x →+∞+-=lim [ln (1)]lim ln(1)0x xxx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
2007年考研数学一真题及问题详解
2007年考研数学一真题一、选择题(110小题,每小题4分,共40分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)当时,与等价的无穷小量是(A) (B)(C) (D)【答案】B。
【解析】当时几个不同阶的无穷小量的代数和,其阶数由其中阶数最低的项来决定。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)曲线渐近线的条数为(A)0 (B)1(C)2 (D)3【答案】D。
【解析】由于∞,则是曲线的垂直渐近线;又∞∞∞∞∞所以是曲线的水平渐近线;斜渐近线:由于∞一侧有水平渐近线,则斜渐近线只可能出现在∞一侧。
∞∞∞∞∞∞∞∞∞则曲线有斜渐近线,故该曲线有三条渐近线。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是(A)(B)(C)(D)【答案】C。
【解析】【方法一】四个选项中出现的在四个点上的函数值可根据定积分的几何意义确定则【方法二】由定积分几何意义知,排除(B)又由的图形可知的奇函数,则为偶函数,从而显然排除(A)和(D),故选(C)。
综上所述,本题正确答案是C。
【考点】高等数学—一元函数积分学—定积分的概念和基本性质,定积分的应用(4)设函数在处连续,下列命题错误..的是(A)若存在,则(B)若存在,则(C) 若存在,则′存在(D) 若存在,则′存在【答案】D。
【解析】(A):若存在,因为,则,又已知函数在处连续,所以,故,(A)正确;(B):若存在,则,则,故(B)正确。
(C)存在,知,则′则′存在,故(C)正确(D)存在,不能说明存在例如在处连续,存在,但是′不存在,故命题(D)不正确。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—导数和微分的概念(5)设函数在∞内具有二阶导数,且′′,令,则下列结论正确的是(A)若,则必收敛 (B)若,则必发散(C)若,则必收敛 (D)若,则必发散【答案】D。
2007年考研数学一真题与答案
2007年考研数学一真题一、选择题(110小题,每小题4分,共40分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)当时,与等价的无穷小量是(A) (B)(C) (D)【答案】B。
【解析】时几个不同阶的无穷小量的代数和,其阶数由其中阶数最低的项来决定。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)曲线渐近线的条数为(A)0 (B)1(C)2 (D)3【答案】D。
【解析】由于,则是曲线的垂直渐近线;又所以是曲线的水平渐近线;斜渐近线:由于一侧有水平渐近线,则斜渐近线只可能出现在一侧。
则曲线有斜渐近线,故该曲线有三条渐近线。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是(A)(B)(C)(D)【答案】C。
【解析】【方法一】四个选项中出现的在四个点上的函数值可根据定积分的几何意义确定-3 -2 -1 0 1 2 3则【方法二】由定积分几何意义知,排除(B)又由的图形可知的奇函数,则为偶函数,从而显然排除(A)和(D),故选(C)。
综上所述,本题正确答案是C。
【考点】高等数学—一元函数积分学—定积分的概念和基本性质,定积分的应用(4)设函数在处连续,下列命题错误..的是(A)若存在,则(B)若存在,则(C) 若存在,则存在(D) 若存在,则存在【答案】D。
【解析】(A):若存在,因为,则,又已知函数在处连续,所以,故,(A)正确;(B):若存在,则,则,故(B)正确。
(C)存在,知,则则存在,故(C)正确(D)存在,不能说明存在例如在处连续,存在,但是不存在,故命题(D)不正确。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—导数和微分的概念(5)设函数在内具有二阶导数,且,令,则下列结论正确的是(A)若,则必收敛 (B)若,则必发散(C)若,则必收敛 (D)若,则必发散【答案】D。
2007年考研数学一真题及解析
一、选择题(本题共 10 小题,每小题 4 分,满分 40 分,在每小题给的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后括号内)
+ (1) 当 x → 0 时,与
x 等价的无穷小量是 (
C.
) D. 1 − cos x
A. 1 − e
x
B. ln
1+ x 1− x
1+ x −1
)
(2)
曲线 y=
1 x + ln(1 + e ), 渐近线的条数为 ( x
A.0 B.1 C.2 D.3 (3) 如图,连续函数 y=f(x) 在区间 [-3,-2] ,[2,3] 上的图形分别是直径为 1 的上、下半圆周, 在区间[-2 ,0],[0,2] 的图形分别是直径为 2 的上、下半圆周,设 F(x)= 论正确的是 ( A. F(3)= − ) B. F(3)=
(18)(本题满分10分 ) 计算曲面积分
I = ∫∫ xzdydz + 2xydzdx + 3xydxdy ,
∑
其中 ∑ 为曲面z = 1 − x2 − (19)( 本题是11分)
y2 (0 ≤ z ≤ 1)的上侧. 4
设函数f ( x), g( x) 在[ a, b]上连续,在( a, b)内二阶导数且存在相等的最大值,
2x
(13) 二阶常系数非齐次线性方程 y ''− 4 y ' + 3 y = 2 e 的通解为 y=____________. (14) 设曲面
∑
:| x | +|
y | + | z |= 1,则 � ∫∫ ( x + | y |)ds =_____________.
2007年数一真题试题+答案
2007 年全年硕士研究生入学统一考试数学一试题一、选择题: 1~10小题,每小题 4分,共40 分,下列每题给出的四个选项中 题目要求 , 请将所选项前的字母填在答题.纸..指定位置上. (1)当 x 0 时,与 x 等价的无穷小量是 ( )(A) 1 e x. (B) ln 1 x. (C) 1 x 1. (D) 1 cos x . 1x 答案: (B) .(2) 曲线 y 1ln(1 e x) 渐近线的条数为 ( )x(A) 0. (B)1.(C)2.(D)3.答案: (D) .(3)如图,连续函数 y f ( x)在区间 3, 2, 2,3 上的图形分别是直径为 1的上、下半圆周,在区 间 2,0 , 0,2 上的图形分别是直径为 2 的上、下半圆周 , 设 F(x) f (t)dt, 则下列结论正确 的是 ( )3(A) F(3) F( 2). (B)4 3(C) F( 3) F(2) . (D)4答案: (C) .(4)设函数 f(x)在x 0处连续 ,则下列命题错.误.的是( )(A) 若lim xf (x)存在,则 f (0) 0. 0x (B) 若 lim x0 f(x) f( x)存在,则 f (0) 0. x (C) 若 lim f (x)存在,则 f (0) 存在. (D)若lim f(x) f( x)存在,则f (0)存在x 0xx0x答案:(D) .(5)设函数 f (x) 在 (0, ) 上具有二阶导数 ,且f (x) 0,令u n f(n) (n 1,2, ) ,则下列结论正 确的是()(A) 若 u 1 u 2 , 则 u n 必收敛 . (B) 若u 1u 2 , 则 u n 必发散 .(C) 若u 1 u 2,则 u n 必收敛 .(D)若 u 1 u 2, 则 u n 必发散 ., 只有一个选项符合 5F(3) F(2) .45 F( 3)F( 2).4答案: (D) .(11)(11)(6)设曲线 L: f(x,y) 1( f (x, y)具有一阶连续偏导数 ), 过第Ⅱ象限内的点 M 和第Ⅳ象限内的 点 N , 为 L 上从点 M 到点 N 的一段弧 , 则下列积分小.于.零.的是 ( )(A) f (x,y)dx . (B) f (x,y)dy .(C) f (x,y)ds . (D)f x (x,y)dx f y (x, y)dy .答案: (B) .(7)设向量组 1, 2, 3线性无关 ,则下列向量组线性.相.关..的是( )(C)12 2, 2 2 3,3 2 1.(D) 1 2 2, 2 2 3, 3 2 1 .答案: (A) .好第 2 次命中目标的概率为 ( )答案: (C) .(10)设随机变量 ( X ,Y)服从二维正态分布 ,且 X 与Y 不相关 , f X (x),f Y (y)分别表示 X,Y 的概率密度 , 则在 Y y 条件下 , X 的条件概率密度 f X Y (x y) 为( )(A) f X (x).(B)f Y (y). (C) f X (x) f Y (y). (D) 答案: (A) .二、填空题: 11~16 小题,每小题 4分,共24 分,请将答案写在答题.纸..指定位置上211 10 0(8) 设矩阵 A 1 21 , B 01 0 ,则 A 与 B ( )1120 0(A ) 合同,且相似 .(B)合同,但不相似 . (C ) 不合同 , 但相似 .(D)既不合同 , 也不相似答案: (B) .(9)某人向同一目标独立重复射击(A)1 2, 23, 3 1. (B)1 2, 23, 3 1, 每次射击命中目标的概率为 p(0 p 1), 则此人第 4 次射击恰(A) 3p(1 p)2. (B) 6p(1 p)2. (C)22 3p 2(1 p)2. (D)226p 2(1f X (x) f (y)12x13e x dx1x(11)答案:(12)设f(u,v)为二元可微函数 , z f(x y,y x),则x答案:z y x y 1 y x xxf1(x y,y x)yx y1f2(x y,y x)y x ln y(13)二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y . 答案:非齐次线性微分方程的通解为y C1e x C2e3x 2e2x.(14)设曲面: x y z 1, 则(x y)dS .答案:(x y)dS ydS 4 3 3 .3301000 0 1 0 3(15)设距阵A , 则A3的秩为.00010000答案:r A3 1.1(16)在区间(0,1)中随机地取两个数 , 则这两数之差的绝对值小于的概率为 .23答案:3.4三、解答题: 17~24 小题,共 86 分.请将解答写在答题.纸..指定的位置上 .解答应写出文字说明、证明过程或演算步骤 .(17)(本题满分 11 分)求函数f(x,y) x2 2y2 x2y2, 在区域D (x,y) x2 y2 4,y 0 上的最大值和最小值 . 答案:函数在D上的最大值为f (0, 2) 8 ,最小值为f (0,0) 0.(18)(本题满分 10 分)24计算曲面积分I xzdydz 2zydzdx 3xydxdy, 其中为曲面z 1 x2 y (0 z 1)的上侧 .答案:I .(19)(本题满分 11 分 )设函数f(x), g(x)在a,b 上连续 ,在(a,b)内二阶可导且存在相等的最大值 ,又f(a)=g(a), f (b)=g(b),证明:存在(a,b),使得f''( ) g''( ).证明:设(x) f(x) g(x),由题设f ( x), g ( x)存在相等的最大值 ,设x1 (a,b),x2 (a,b) 使f(x1) max f(x) g(x2) max g(x) .[a.b] [ a.b]若x1 x2,即f ( x)与g( x)在同一点取得最大值 ,此时,取x1,有f ( ) g( );若x1 x2, 不妨设x1 x2,则(x1) f(x1) g(x1) 0, (x2) f(x2) g(x2) 0, 且(x)在a,b 上连续,则由零点定理得存在(a, b),使得( ) 0,即f( ) g( );由题设f (a)=g(a), f(b)=g(b),则(a) 0 (b),结合( ) 0,且(x)在a,b 上连续 ,在(a,b) 内二阶可导 ,应用两次使用罗尔定理知:存在 1 (a, ), 2 ( ,b),使得( 1)=0, ( 2) 0 .在[ 1, 2 ]再由罗尔定理 ,存在( 1, 2),使( ) 0.即f ( ) g( ).(20)(本题满分 10 分 )设幂级数a n x n在( , )内收敛,其和函数y(x)满足y 2xy 4y 0, y (0) 0, y (0)1. n02证明a n 2a n,n 1,2, .(I)n1(II) 求y(x) 的表达式 .答案: (I) 证明:对y a x n n,求一阶和二阶导数 ,得y na n x n 1,y n(n 1)a n x n 2,n0 n1 n 2代入y 2xy 4y 0,得n(n 1)a n x n 22x na n x n 1 4 a n x n0 .n 2 n 1 n 0即(n 1)(n 2)a n 2x n2na n x n4a n x n0.n 0 n1 n 02a 2 4a 0 0 2n 1,2, , 从而 a n 2 a n ,n 1,2, .(n 1)a n 2 2a n 0, n 2 n 1 n2(II) y xe x.(21) ( 本题满分 11 分 )x 1 x 2 x 3 0x 1 2x 2 ax 3 0(1) 与 方程x 1 2x 2 x 3 a 1 2 x 1 4x 2 a x 3 0值及所有公共解 .方程组 (1) 与 (2) 的公共解 .(2) 的公共解 .(22) ( 本题满分 11 分 ) 特征向量 .记 B A 54A 3E ,其中 E 为 3阶单位矩阵 .(I) 验证 1是矩阵 B 的特征向量 ,并求 B 的全部特征值与特征向量; (II) 求矩阵 B . 答案:(I) 由 A 1 1,可得 A k1 A k 1(A 1) A k 11 1, k 是正整数 ,则B 1 (A 5 4A 3 E) 1 A 5 1 4A 31 E 1 1 4 1 12 1,于是 1 是矩阵 B 的属于特征值 1 2 特征向量 .所以 B 的所有的特征向量为:对应于 1 2的全体特征向量为 k 1 1,其中 k 1是非零任意常数,对应于 2 3 1的全体特征向量为 k 2 2 k 3 3,其中 k 2,k 3是不同时为零的任意常数设线性方程组 (2) 有公共解 , 求 a 得答案:当 a 1时, (Ab) 1 0 0 0 1 1 0 0 1 0 0 0 00 0 0, 所以方程组的通解为 k(1,0, 1)T, k 为任意常数 , 此即为 当 a 2 时 , (Ab) 1 0 0 0 110 01 1 1 0 00 1 0, 此时方程组有唯一解 (0,1, 1)T, 此即为方程组 (1) 与 设 3 阶实对称矩阵 A 的特征值1 1,2 2,3 2, 1(1, 1,1)T是 A 的属于 1 的一个2 0 0 0 1 1 (II) B P 0 1 0 P 11 0 1 . 0 0 1 1 1 0(23) (本题满分 11 分) 2 x y,0 x 1,0 y 1, 设二维随机变量 ( X ,Y)的概率密度为 f(x, y)0, 其他 ,(I) 求 P X 2Y ;(II) 求Z X Y 的概率密度 f Z (z).答案: 1 1 x 15 2 7(I) P X 2Y 0 dx 02(2 x y)dy 0 (x x 2)dx .8 24 2z z 2, (II) f Z (z) z 24z 4, 0, (24) (本题满分 11 分) 0 z 1, 1 z 2,其他.设 总 体 X 的 概 率 密 度 为 f(x; )1, 2,1 , x 1, 其 中 参 数 (0 1) 未 2(1 ) 0, 其他知,X 1,X 2,...X n 是来自总体 X 的简单随机样本 , X 是样本均值 (I) 求参数 的矩估计量 ; 22(II) 判断 4X是否为 2的无偏估计量 , 并说明理由 . 答案: 1 (I) 2X ;222 22 1 2E(4X ) 4E(X ) 4(DX (EX)2) 4( DX (EX)2) , n1 12 1 2E(X) , E(X 2) (1 2 2),4 2 62 2 5 1 2D(X) E(X 2) (EX)2 2,48 12 12代入得E(4X2) 5 3n 3n 1 3n 1 2 2,所以4X2不是2的无偏估计量12n 3n 3n。
2007年全国硕士研究生入学统一考试数学一试题答案
全国硕士研究生入学统一考试数学一试题答案答案速查: 一、选择题二、填空题三、解答题(17)()f x 在D 上的最大值为8,最小值为0 (18)I π= (19)略(20)(Ⅰ)略;(Ⅱ)2()x y x xe =(21)1a =,此时所有公共解为[1,0,1]Tx k =-,其中k 为任意常数;2a =,此时唯一公共解为[0,1,1]Tx =-(22)(Ⅰ)B 的特征值为-2,1,1;B 的属于特征值-2的全部特征向量为11k α(1k 为非零的任意常数),B 的属于特征值1的全部特征向量为2233k k αα+(23,kk 为不全为零的任意常数)(Ⅱ)011101110B-⎛⎫⎪=⎪ ⎪-⎝⎭(23)(Ⅰ){}7224P X Y >=;(Ⅱ)2(2),01,()(2),12,0,Z z z z f z z z -<<⎧⎪=-≤<⎨⎪⎩其他(24)(Ⅰ)1ˆ=22X θ-;(Ⅱ)24()X 不是2θ的无偏估计量 一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1)【答案】(B )【解析】方法1:排斥法:由几个常见的等价无穷小, 有:0x +→时,1(1-::211,2-:所以选(B ).方法2:当0x +→时,ln[1~~~x =+选(B ).方法3:00lim lim 11x x x →→+⎡⎤=⎢+⎣,选(B ). (2)【答案】(D ) 【解析】001lim lim ln(1),x x x y e x →→⎛⎫=++=∞⎪⎝⎭所以0x =是一条垂直渐近线;1lim lim ln(1)0,x x x y e x →-∞→-∞⎛⎫=++= ⎪⎝⎭所以0y =是沿x →-∞方向的一条水平渐近线; 又 21ln(1)ln(1)lim lim lim lim 1,1x x xx x x x x y e e e x x x x e →+∞→+∞→+∞→+∞⎛⎫++=+== ⎪+⎝⎭洛 ()()1lim lim ln(1)lim ln(1)x x x x x y x e x e x x →+∞→+∞→+∞⎛⎫-=++-=+- ⎪⎝⎭ 1lim ln()lim ln(1)0,xx x x x e e e-→+∞→+∞+=+== 所以y x =也是一条渐近线,所以共有3条,选择(D ) (3)【答案】(C )【解析】由题给条件知,()f x 为x 的奇函数,故()F x 为x 的偶函数,所以(3)(3).F F -=而323223(3)()()(),288(2)(),2F f t dt f t dt f t dt F f t dt ππππ==+=-===⎰⎰⎰⎰所以(3)F - 3(2)4F =,选择C (4)【答案】 (D)【解析】方法1:论证法,由0()limx f x x→存在及()f x 在0x =处连续,所以00()(0)lim ()lim()0,x x f x f f x x x→→===(A )正确;由于00()(0)()lim lim 0x x f x f f x x x→→-=-存在,所以'(0)f 存在.(C )也正确;由()f x 在0x =处连续,所以()f x -在0x =处连续,从而()()f x f x +-在0x =处连续,将它看成(A )中的()f x ,从而推知(0)(0)0,f f +-=即有2(0)0,(0)0f f ==.所以(B )正确,此题选择(D ).方法2:举例法,举例说明(D )不正确.例如取()f x x =,有0()()limlim 00x x x x f x f x x x→→----==- 而'(0)f 并不存在. (D )不正确,选(D ). (5)【答案】 (D)【解析】由拉格朗日中值定理,有1n n (1)()'()(1)'(),(1,2,)n n u u f n f n f n n f n ξξ+-=+-=+-==L12n .ξξξ<<<<L L由''()0,f x >知'()f x 严格单调增,故12n '()'()'().f f f ξξξ<<<<L L由于121'()0,f u u ξ=->所以1111k 1111()'()'().n nn k k k k u u u u u f u nf ξξ++===+-=+>+∑∑而1'()f ξ是一个确定的正数.于是推知1lim ,n n u +→∞=+∞故{}n u 发散.选(D )(6)【答案】 (B)【解析】记1122(,),(,),M x y N x y 由条件11220,0,0,0,x y x y <>><并注意到在积分的弧段上(,) 1.f x y =于是212121212211(A)(,)0.B (,)0.D (,),0.(,)D (,)(,)(,)(,)(,)x x y y x y f x y dx dx dx x x f x y dy dy dy y y f x y ds ds l l l x y f x y dx f x y dy df x y f x y x y ΓΓΓΓΓΓΓΓ===->===-<==Γ>''+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()()为弧的长,()2211(,)(,)110.f x y f x y =-=-=所以选择(B) (7)【答案】(A)【解析】根据线性相关的定义,若存在不全为零的数123,,k k k ,使得1122330k k k ααα++=成立.则称123,,ααα线性相关.因1223310αααααα-+-+-=, 故122331αααααα---,,线性相关,所以选择(A ). (8)【答案】(B )【解析】2111111111211210311211203E A λλλλλλλλλλ--=-=-=----()230λλ=-=因为A 的特征值是3,3,0,B 的特征值1,1,0,因为特征值不等,故不相似. A 与B 有相同的正惯性指数2,秩都等于2,所以A 与B 合同,应选(B ). (9)【答案】(C)【解析】根据独立重复的贝努利试验,前3次试验中有1次成功2次失败.其概率必为123(1).C p p -再加上第4次是成功的,其概率为p .根据独立性,第4次射击为第二次命中目标的概率为12223(1)3(1).C p p p p p -=-g 所以应选(C )(10)【答案】(A)【解析】由于二维正态的(,)X Y 中X 与Y 不相关,故X 与Y 独立,且(,)()()X Y f x y f x f y =.根据条件概率密度的定义,当在Y y =条件下,如果()0,Y f y ≠则(,)()()X Y Y f x y f x y f y =()()()()X Y X Y f x f y f x f y ==.现()Y f y 显然不为0,因此()().X X Y f x y f x = 应选(A).二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上 (11)【答案】2【解析】令1t x=,有211,,x dx dt t t ==-111222311112t t t x e dx te dt te e x ⎡⎤=-=--=⎣⎦⎰⎰ (12)【答案】112ln y x yxf y y f -''+g【解析】求复合函数的偏导数112()()ln y xy x z f f x y yx f y y f x u x v x-∂∂∂∂∂''=+=+∂∂∂∂∂g (13)【答案】32122xx x C eC e e +-【解析】特征方程为2430,r r -+=特征根121,3,r r ==对应齐次方程的通解312.x x Y C e C e =+设该齐次方程的一个特解为*2,xy Ae =代入原方程,可求得*22.xy e =-故得原方程的通解为32122xx x y C eC e e =+-.(14)【答案】【解析】曲面∑对称于yOz 平面,x 为x 的奇函数,所以0.xdS ∑=⎰⎰Ò又因∑关于,,x y z 轮换对称,所以,xdS ydS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰乙?()1133y dS x y z dS dS ∑∑∑=++=⎰⎰⎰⎰⎰⎰乙?()1.3=⨯∑的面积而∑为8,所以∑的面积218sin23π=⋅=所以()x y dS ∑+=⎰⎰Ò(15)【答案】 1 【解析】2010001000010*********001000100010000000000000000A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭32001001000001000100100000000000010000000000000000A A A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⋅==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭显然()31.r A=(16)【答案】34【解析】所有可能随机在区间(0,1)中随机取的两个数,X Y ,12X Y -<。
2007年考研数一真题及解析
2007年考研数学一真题及参考答案一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→时,与x 等价的无穷小量是 (B) A. 1xe- B.1ln1xx+- C. 11x +- D.1cos x -(2) 曲线y=1ln(1x e x++), 渐近线的条数为 (D) A.0 B.1 C.2 D.3(3)如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的上、下半圆周,设F(x)=0()xf t dt ⎰.则下列结论正确的是 (C) A. F(3)=3(2)4F -- B. F(3)=5(2)4F C. F(3)=3(2)4F + D. F(3)= 5(2)4F --(4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则f (0)=0 B. 若0()()lim x f x f x x→+- 存在,则f (0)=0C. 若0()lim x f x x → 存在,则'(0)f =0D. 若0()()lim x f x f x x→-- 存在,则'(0)f =0(5)设函数f (x )在(0, +∞)上具有二阶导数,且"()f x o >, 令n u =f(n)=1,2,…..n, 则下列结论正确的是(D)A.若12u u >,则{n u }必收敛B. 若12u u >,则{n u }必发散C. 若12u u <,则{n u }必收敛D. 若12u u <,则{n u }必发散(6)设曲线L :f(x, y) = 1 (f(x, y)具有一阶连续偏导数),过第Ⅱ象限内的点M 和第Ⅳ象限内的点N,T 为L 上从点M 到N 的一段弧,则下列小于零的是 (B) A.(,)rx y dx ⎰ B. (,)rf x y dy ⎰C.(,)rf x y ds ⎰D.'(,)'(,)x y rf x y dx f x y dy +⎰(7)设向量组1α,2α,3α线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++(C )1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(8)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B)(A) 合同,且相似(B) 合同,但不相似 (C) 不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为p ()01p <<,则此人第4次射击恰好第2次命中目标的概率为: (C) (A )23(1)p p - (B)26(1)p p - (C) 223(1)p p -(D) 226(1)p p -(10) 设随即变量(X ,Y )服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示X ,Y 的概率密度,则在Y =y 的条件下,X 的条件概率密度|(|)XYf x y 为 (A)(A )()X f x(B) ()Y f y(C) ()X f x ()Y f y(D)()()X Y f x f y 二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上。
2007年全国硕士研究生入学统一考试数学一真题及答案
2007年全国硕士研究生入学统一考试数学一试题一、 选择题:110:小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1) 当0x +→)A.1-B1C.1D -【答案】(B)【考点】等价无穷小 【难易度】★★【详解】解析:方法1:排斥法:由几个常见的等价无穷小,当0x +→0→,所以1(1-::211,2-:可以排除A 、C 、D ,所以选(B ). 方法2:==ln 1⎛⎫+ ⎝ 当0x +→时,11→0→,又因为0x →时,()ln 1x x +:,所以)ln 1~~1~x ⎛= ⎝B ).方法3:0lim x +→00lim x x →→'洛1lim lim 1x x ++→→==1A x=+(()111A B x x ++=- 对应系数相等得:1A B = =,所以原式00lim lim 1x x x ++→→⎡⎤==+⎢+⎣0lim lim 011x x x ++→→=+=++1=,选(B ).(2) 曲线1ln(1)x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3【答案】( D)【考点】函数图形的渐近线 【难易度】★★★【详解】解析:001lim lim ln(1)x x x y e x →→⎛⎫=++⎪⎝⎭=∞,所以0x =是一条铅直渐近线;1lim lim ln(1)x x x y e x →-∞→-∞⎛⎫=++ ⎪⎝⎭1lim lim ln(1)000x x x e x →-∞→-∞=++=+=,所以0y =是沿x →-∞方向的一条水平渐近线;令21ln(1)1ln(1)lim lim lim x x x x x e y e x a x x x x →+∞→+∞→+∞++⎛⎫+===+ ⎪⎝⎭21ln(1)lim lim x x x e x x →+∞→+∞+=+ln(1)0lim x x e x →+∞+=+1lim 11xx x e e →+∞+ =洛必达法则令()1lim lim ln(1)x x x b y a x e x x →+∞→+∞⎛⎫=-⋅=++- ⎪⎝⎭()()1limlim ln(1)0lim ln(1)x x x x x e x e x x →+∞→+∞→+∞=++-=++- ()1ln lim ln(1)ln lim ln()xxxxx x x e x e e e e→+∞→+∞+ = +-=lim ln(1)ln10x x e -→+∞=+==所以y ax b x =+=是曲线的斜渐近线,所以共有3条,选择(D )(3) 如下图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F = .D (3)F -5(2)4F =--【答案】( C)【考点】定积分的概念、定积分的基本性质,积分上限的函数及其导数 【难易度】★★★【详解】解析:由题给条件知,()f x 为x 的奇函数,则()()f x f x -=-,由0()(),xF x f t dt =⎰知()()()()()()()()xx xF x f t dt t u f u d u f u f u f u du F x --= =- -- -=- =⎰⎰⎰,故()F x 为x 的偶函数,所以(3)(3).F F -=而2(2)()F f t dt =⎰表示半径1R =的半圆的面积,所以22(2)()22R F f t dt ππ===⎰,32302(3)()()()F f t dt f t dt f t dt ==+⎰⎰⎰,其中32()f t dt ⎰表示半径12r =的半圆的面积的负值,所以22321()2228r f t dt πππ⎛⎫=-=-⋅=- ⎪⎝⎭⎰所以3232333(3)()()()(2)288424F f t dt f t dt f t dt F ππππ==+=-==⋅=⎰⎰⎰ 所以3(3)(3)(2)4F F F -==,选择( C)(4) 设函数()f x 在0x =处连续,则下列命题错误的是( ).A 若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x →+-存在,则(0)0f =.C 若0()lim x f x x →存在,则(0)f '存在 .D 若0()()lim x f x f x x→--存在,则(0)f '存在【答案】( D)【考点】极限的四则运算,函数连续的概念,导数的概念【难易度】★★【详解】解析:方法1:论证法,证明..A B C 都正确,从而只有.D 不正确。
07考研数一真题及答案
2007年硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(2) 曲线1ln(1)x y e x=++,渐近线的条数为_______ 【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim[ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim []lim x x x x x y e e x x x x →+∞→+∞→+∞++=+==lim 11xx x e e→+∞=+, 1lim[1]lim[ln(1)]x x x y x e x x→+∞→+∞-⋅=++-=lim[ln(1)]xx e x →+∞+-=lim[ln (1)]lim ln(1)0x x xx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故3条(8) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B , 则A 与B_______(填是否合同,相似)【详解】 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似.又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同.二、填空题:(11-16小题,每小题4分,共24分. 把答案填在题中横线上)(11)12311x e dx x⎰=_______ 【分析】 先作变量代换,再分部积分。
【详解】111213213211211()t xt txe dx t e dt te dt x t ==-=⎰⎰⎰ =111121112221.2tt t tdetee dt e =-=⎰⎰(12) 设f (u ,v )为二元可微函数,(,)yxz f x y =,则zx∂∂=_______ 【详解】 利用复合函数求偏导公式,有z x∂∂=112ln .y xf yx f y y -''⋅+⋅ (13) 二阶常系数非齐次线性微分方程2432xy y y e'''-+=的通解为_______ 其中21,C C 为任意常数.【详解】 特征方程为2430λλ-+=,解得121, 3.λλ== 可见对应齐次线性微分方程430y y y '''-+=的通解为 312.x xy C e C e =+设非齐次线性微分方程2432xy y y e'''-+=的特解为*2xy ke=,代入非齐次方程可得k= −2. 故通解为32122.x x xy C e C e e =+-(14) 设曲面:1x y z ∑++=,则dS y x ⎰⎰∑+|)|(= _______【详解】 由于曲面∑关于平面x =0对称,因此dS x ⎰⎰∑=0. 又曲面:1x y z ∑++=具有轮换对称性,于是dS y x ⎰⎰∑+|)|(=dS y ⎰⎰∑||=dS x ⎰⎰∑||=dS z ⎰⎰∑||=dS z y x ⎰⎰∑++|)||||(|31=dS ⎰⎰∑3123831⨯⨯==43.3 (15) 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001000010A , 则3A 的秩为_______. 【详解】 依矩阵乘法直接计算得 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000000010003A , 故r (3A )=1. 三、解答题:(17-24小题,共86分. ) (17) (本题满分11分)求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值。
2007考研数学一真题解析
2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4 分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当0x +→时,(A)1−(B)ln1(D)1−【考点分析】:等价无穷小的定义和常用的等价无穷小 【求解过程】:◼ 方法一:利用等价无穷小0x +→时,()11~−=−−()12111~=+−2111~22x −=,(ln 1~=+◼ 方法二:可用洛必达法则和等价无穷小的定义来求解 验证极限,,lim x A B C D +→是否等于1,其中(),,A B C D 表示A ,B ,C ,D 四个选项中的式子。
故选B【基础回顾】:下面,我们就无穷小之比的极限存在或为无穷大时。
来说明两个无穷小之间的比较。
应当注意,下面的α及β都是在同一个自变量的变化过程中的无穷小,且0α≠,lim βα也是在这个变化过程中的极限。
定义:如果lim0βα=就说β是比α高阶的无穷小,记作()o βα=; 如果lim βα=∞,就说β是比α低阶的无穷小。
如果lim 0c βα=≠,就说β与α是同阶无穷小;如果lim 0,0k c k βα=≠>,就说β是关于α的k 阶无穷小。
如果lim1βα=,就说β与α是等价无穷小,记作αβ。
显然,等价无穷小是同阶无穷小的特殊情形,即1c =的情形。
常用等价无穷小,当0x →时,1~ln(1)~sin ~tan ~xe x x x x −+()11~x x αα+−, 211cos ~2x x −(2)曲线()1ln 1x y e x=++,渐近线的条数为 (A)0 (B)1 (C)2 (D)3 【考点分析】:曲线的渐近线(水平、垂直、斜渐近线)的条数 【求解过程】:计算垂直渐近线:求函数在其不连续点0x x =处的极限,若为∞则存在垂直渐近线0x x =函数只有间断点0x =,()001lim lim ln 1x x x y e x →→=++=∞⎪⎝⎭,故存在垂直渐近线0x =计算水平渐近线:求函数在,x x →+∞→−∞时的极限a ,若a 存在,则有水平渐近线y a =()1lim lim ln 10x x x y e x →−∞→−∞⎛⎫=++= ⎪⎝⎭,故存在水平渐近线0y = 计算斜渐近线:求yx在,x x →+∞→−∞时的极限a ,若a 存在,且0a ≠,求出y ax −在相应处的极限b ,则有斜渐近线y ax b =+()2ln 11lim lim 0lim 11x xx x x x e y e x x x e→+∞→+∞→+∞⎛⎫+ ⎪=+=+= ⎪+⎝⎭()()111lim lim ln 1lim ln 0x xx x x x e y x e x x x e →+∞→+∞→+∞⎛⎫⎛⎫+⎛⎫−=++−=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故存在斜渐近线y x = 选D 。
2007年考研数学试题详解及评分参考
设 M 和 N 点的坐标分别为 M (x1, y1), N (x2 , y2 ) ,则由题设可知 x1 < x2 , y1 > y2 . 于是
ò ò 对选项(A),有
f (x, y)dx =
G
G dx = x2 - x1 > 0 ,应排除;
ò ò 对选项(B),有
则下列结论正确的是
(A) 若 u1 > u2 ,则{un} 必收敛
(B) 若 u1 > u2 ,则{un} 必发散
(C) 若 u1 < u2 ,则{un} 必收敛
(D) 若 u1 < u2 ,则{un} 必发散
【答】 应选 (D) .
【解法一】 由拉格朗日中值定理,存在xn Î (n, n +1) , n = 1, 2,L,使得 un+1 - un = f (n +1) - f (n) = f ¢(xn ) (n +1- n) = f ¢(xn ) ,即 un+1 = un + f ¢(xn ) . 因 f ''(x) > 0 ,故 f ¢( x) 单调增加,于是有 f ¢(x1 ) < f ¢(x2 ) < L < f ¢(xn ) < L ,因此
(A) fX (x)
(B) fY ( y)
(C) f X (x) fY ( y)
-
a1
)
=
(a1,a2
,a3
)
ç ç
-1
1
0
÷ ÷
,
çè 0 -1 1 ÷ø
1 0 -1
而 -1 1 0 = 0 ,所以a1 - a2 ,a2 - a3,a3 - a1 线性相关,故选 (A) . 0 -1 1
考研数学历年真题(1998-2007)年数学一
2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当0x +→时,与x 等价的无穷小量是( ) (A)1ex-(B)ln1x-(C)11x +- (D)1cos x -(2)曲线1ln(1e )x y x=++,渐近线的条数为( ) (A)0(B)1(C)2(D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设0()()xF x f t dt =⎰.则下列结论正确的是( )(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F =(D)5(3)(2)4F F =--(4)设函数()f x 在0x =处连续,下列命题错误的是( )(A)若0()lim x f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()lim x f x x→ 存在,则(0)0f '=(D)若0()()lim x f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n ==L 则下列结论正确的是( ) (A)若12u u >,则{n u }必收敛 (B)若12u u >,则{n u }必发散 (C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是( )(A)(,)x y dx Γ⎰(B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰ (D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是( ) (A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则A 与B ( )(A)合同,且相似(B)合同,但不相似 (C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为( ) (A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为( )(A)()X f x(B)()Y f y(C)()X f x ()Y f y (D)()()X Y f x f y二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______. (12)设(,)f u v 为二元可微函数,(,)yxz f x y =,则zx∂∂=______. (13)二阶常系数非齐次线性方程2''4'32e xy y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰Ò=_____________.(15)设矩阵0100001000010000⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则3A 的秩为________.(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤) (17)(本题满分11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值.(18)(本题满分10分)计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中 ∑为曲面221(01)4y z x z =--≤≤的上侧.(19)(本题满分11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=.(20)(本题满分10分)设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足 240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+L (2)求()y x 的表达式.(21)(本题满分11分)设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程 12321,x x x a ++=-有公共解,求a 的值及所有公共解.(22)(本题满分11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)Tλλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2}.P X Y > (2)求Z X Y =+的概率密度)(z fz .(24)(本题满分11分)设总体X 的概率密度为1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他其中参数未知,12,,n X X X L 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ. (2)判断24X 是否为2θ的无偏估计量,并说明理由.2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离d = .(5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则( ) (A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A)2210(,)x xf x y dy -⎰⎰(B)2210(,)x f x y dy -⎰⎰(C)2210(,)y yf x y dx -⎰⎰(D)2210(,)y f x y dx -⎰⎰(9)若级数1nn a∞=∑收敛,则级数( )(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A)若00(,)0x f x y '=,则00(,)0y f x y '= (B)若00(,)0x f x y '=,则00(,)0y f x y '≠ (C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,,s αααL 线性相关,则12,,,,s A αA αA αL 线性相关 (B)若12,,,,s αααL 线性相关,则12,,,,s A αA αA αL 线性无关 (C)若12,,,,s αααL 线性无关,则12,,,,s A αA αA αL 线性相关 (D)若12,,,,s αααL 线性无关,则12,,,,s A αA αA αL 线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则( )(A)1-=C P AP (B)1-=C PAP (C)T =C P AP (D)T =C PAP (13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A)()()P A B P A >U (B)()()P A B P B >U(C)()()P A B P A =U(D)()()P A B P B =U(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则必有( ) (A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分)设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==.求:(1)证明lim n x x →∞存在,并求该极限. (2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭.(17)(本题满分12分)将函数()22xf x x x =+-展开成x 的幂级数.(18)(本题满分12分)设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂.(1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式.(19)(本题满分12分)设在上半平面(){},0D x y y =>内,函数(),f x y 是有连续偏导数,且对任意的0t >都有.证明: 对D 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰Ñ.(20)(本题满分9分)已知非齐次线性方程组有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A ; (2)求,a b 的值及方程组的通解.(21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A .(22)(本题满分9分)设随机变量X 的概率密度为为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫- ⎪⎝⎭.(23)(本题满分9分)设总体X 的概率密度为,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量,则)3,2,1(nu ∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P =____________. 二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求) (7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内( )(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有( ) (A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有( )(A)2222yu x u ∂∂-=∂∂ (B)2222y u x u ∂∂=∂∂ (C)222y uy x u ∂∂=∂∂∂ (D)222x u y x u ∂∂=∂∂∂ (10)设有三元方程ln e1xzxy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是( ) (A)01≠λ(B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则( ) (A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则( ) (A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==(D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n Λ为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则( ) (A))1,0(~N X n(B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yφ++⎰Ñ的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx y φ+=+⎰Ñ.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形.(3)求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 1001,02x y x<<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X .(2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-= 求:(1)i Y 的方差n i DY i ,,2,1,Λ=.(2)1Y 与n Y 的协方差1Cov(,).n Y Y2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e xxf x -'=,且(1)0f =,则()f x =__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ .(5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求) (7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是( ) (A)γβα,,(B)βγα,,(C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得( ) (A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是( )(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n na收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于( )(A)2(2)f(B)(2)f(C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为( )(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010 (B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010 (D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有( ) (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于( ) (A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ=(C)212)(σn n Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布.(2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本, 求:(1)β的矩估计量.(2)β的最大似然估计量2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y = 60x 01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求) (1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有( )(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立 (B)n n c b <对任意n 成立 (C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点(C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点(4)设向量组I:12,,,r αααL 可由向量组II:12,,,s βββL 线性表示,则( )(A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关 (C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题:最新整理① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是( )(A)①② (B)①③ (C)②④ (D)③④(6)设随机变量21),1)((~XY n n t X =>,则( ) (A)2~()Y n χ(B)2~(1)Y n χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin e e e e y x y x LLx dy y dx x dy y dx ---=-⎰⎰蜒.最新整理(2)sin sin 2e e 2.y x Lx dy y dx π--≥⎰Ñ六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望;(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为()f x =2()2e 0x θ-- 0x x θ>≤ 其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21Λ,记).,,,min(ˆ21nX X X Λ=θ(1)求总体X 的分布函数()F x .(2)求统计量θˆ的分布函数)(ˆx F θ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________. (2)已知函数)(x y y =由方程2e 610y xy x ++-=,则(0)y ''=_____________. (3)微分方程02='+''y y y 满足初始条件21|,1|00='===x x y y 的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换Py x =可化为标准型216y f =,则a =_____________.(5)设随机变量X 服从正态分布),02>σσμ)(,(N 且二次方程042=++X y y 无实根的概率为21,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求) (1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的两个偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的两个偏导数存在. 若用“Q P ⇒”表示可由性质P 推出性质,Q 则有:( )(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒① (D)③⇒①⇒④(2)设0≠n u )(Λ,3,2,1=n ,且1lim =∞→nn u n ,则级数∑∞=+-+-111)11()1(n n n n u u ( ) (A)发散 (B)绝对收敛 (C)条件收敛 (D)收敛性根据所给条件不能判定.(3)设函数),在(∞+=0)(x f y 内有界且可导,则( )(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为,3,2,1,321==++i b z a y a x a i i i i 它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为( )(5)设21X X 和是相互独立的连续型随机变量,它们的概率密度分别为)()(21x f x f 和,分布函数分别为)()和(x F x F 21,则( ) (A))(21x f x f +)(必为某一随机变量的概率密度 (B) )(21x f x f )(必为某一随机变量的概率密度 (C))(21x F x F +)(必为某一随机变量的分布函数 (D) )(21x F x F +)(必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0(,0)0(≠'≠f f ,若0)0()2()(→-+h f h bf h af 在时是比h 高阶的无穷小,,试求b a ,的值.四、(本题满分7分)已知两曲线)(x f y =与2arctan 0e x t y dt -=⎰在点(0,0)处的切线相同.写出此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}e xy Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在),(∞+∞-内具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记⎰-++=L dy xy f y yx dx xy f y y I ,]1)([)](1[1222, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数L n x L x x y n+++++=)!3(!99!66!31)(3333(+∞<<∞-x )满足微分方程e x y y y '''++=.(2)利用(2)的结果求幂级数∑∞=03)!3(n nn x 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向的方向导数的最大值为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分)设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,00,2cos 21)(其他πx x x f 对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十一、(本题满分7分)设总体X 的概率分布为其中)210<<θθ(是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3, 求θ的矩估计值和最大似然估计值.2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)设222z y x r ++=,则div(grad r))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________.(5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P _____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示则)(x f y '= 的图yOx最新整理形为(2)设),(yxf在点(0,0)附近有定义,且1)0,0(,3)0,0(='='yxff,则(A)(0,0)|3zd dx dy=+.(B) 曲面),(yxfz=在点(0,0,(0,0))f处的法向量为{3,1,1}.(C) 曲线⎩⎨⎧==),(yyxfz在点(0,0,(0,0))f处的切向量为{1,0,3}.(D) 曲线⎩⎨⎧==),(yyxfz在点(0,0,(0,0))f处的切向量为{3,0,1}.(3)设0)0(=f,则)(xf在x=0处可导的充要条件为(A)21lim(1cosh)hfh→-存在. (B)1lim(1)hhf eh→-存在.(C)21lim(sinh)hf hh→-存在. (D)1lim[(2)()]hf h f hh→-存在.(4)设1111400011110000,,1111000011110000A B⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A与B(A) 合同且相似. (B) 合同但不相似.(C) 不合同但相似. (D) 不合同且不相似.(5)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数, 则X和Y的相关系数等于(A)-1. (B) 0. (C)12. (D) 1.三、(本题满分6分)求dxeexx⎰2arctan.四、(本题满分6分)设函数),(y x f z =在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分)计算dz y x dy x z dx z yI L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f y =)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21Λ为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+L ,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21Λ也为0Ax =的一个基础解系.十、(本题满分8分)已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分)设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,L ,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)⎰=_____________.(2)曲面2222321x y z ++=在点),(2,21-的法线方程为_____________.(3)微分方程30xy y '''+=的通解为_____________.(4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = _____________. (5)设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求)(1)设()f x 、()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,有( )(A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x >(C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >(2)设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有( )(A)14SS xdS xdS =⎰⎰⎰⎰(B)14SS ydS xdS =⎰⎰⎰⎰(C)14SS zdS xdS =⎰⎰⎰⎰(D)14SS xyzdS xyzdS =⎰⎰⎰⎰(3)设级数1nn u∞=∑收敛,则必收敛的级数为( )(A)1(1)nn n un ∞=-∑(B)21nn u∞=∑(C)2121()n n n uu ∞-=-∑(D)11()nn n uu ∞+=+∑(4)设n 维列向量组1,,()m m n <ααL 线性无关,则n 维列向量组1,,m ββL 线性无关的充分必要条件为( )(A)向量组1,,m ααL 可由向量组1,,m ββL 线性表示 (B)向量组1,,m ββL 可由向量组1,,m ααL 线性表示(C)向量组1,,m ααL 与向量组1,,m ββL 等价 (D)矩阵1(,,)m =A ααL 与矩阵1(,,)m =B ββL 等价(5)设二维随机变量(,)X Y 服从二维正态分布,则随机变量X Y ξ=+与 X Y η=-不相关的充分必要条件为( )(A)()()E X E Y = (B)2222()[()]()[()]E X E X E Y E Y -=-(C)22()()E X E Y =(D)2222()[()]()[()]E X E X E Y E Y +=+三、(本题满分6分)求.||sin 12lim 410⎪⎪⎪⎭⎫ ⎝⎛+++→x x e e x x x四、(本题满分5分)设(,)()x x z f xy g y y =+,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.zx y ∂∂∂五、(本题满分6分)计算曲线积分224L xdy ydxI x y -=+⎰Ñ,其中L 是以点(1,0)为中心,R 为半径的圆周(1),R >取逆时针方向.六、(本题满分7分)设对于半空间0x >内任意的光滑有向封闭曲面,S 都有2()()e 0,xSxf x dydz xyf x dzdx zdxdy --=⎰⎰Ò其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1,x f x +→=求()f x .七、(本题满分6分)求幂级数113(2)nn nn x n ∞=+-∑的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为R 的球体0,P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、(本题满分6分)设函数()f x 在[0,]π上连续,且()0,()cos 0.f x dx f x xdx ππ==⎰⎰试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ⎛⎫⎪⎝⎭(1)求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:11.n n n n x x y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A(2)验证1241,11-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ηη是A 的两个线性无关的特征向量,并求出相应的特征值.(3)当111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭时,求11.n n x y ++⎛⎫ ⎪⎝⎭十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p <<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X ,求X 的数学期望()E X 和方差()D X .十三、(本题满分6分)设某种元件的使用寿命X 的概率密度为2()2e (;)0x x f x x θθθθ-->⎧=⎨≤⎩,其中0θ>为未知参数.又设12,,,n x x x L 是X 的一组样本观测值,求参数θ的最大似然估计值.1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2011lim()tan x x x x→-=_____________. (2)20sin()x d x t dt dx -⎰=_____________. (3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 _____________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→等价的无穷小量是(A) 1- (B) ln(C) 1. (D) 1- [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). (2) 曲线1ln(1)x y e x=++,渐近线的条数为 (A) 0. (B) 1. (C) 2. (D) 3. [ D ]【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim[ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim []lim x x x x x y e e x x x x →+∞→+∞→+∞++=+==lim 11xx x e e→+∞=+, 1lim[1]lim[ln(1)]x x x y x e x x→+∞→+∞-⋅=++-=lim[ln(1)]xx e x →+∞+-=lim[ln (1)]lim ln(1)0x x xx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
【详解】 根据定积分的几何意义,知F (2)为半径是1的半圆面积:1(2)2F π=,F (3)是两个半圆面积之差:22113(3)[1()]228F πππ=⋅-⋅==3(2)4F ,⎰⎰---==-033)()()3(dx x f dx x f F )3()(3F dx x f ==⎰因此应选(C).(4) 设函数f (x )在x =0处连续,下列命题错误的是(A) 若0()limx f x x →存在,则f (0)=0. (B) 若0()()lim x f x f x x→+-存在,则f (0)=0.(C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()()lim x f x f x x→--存在,则(0)f '存在[ D ] 【分析】 本题为极限的逆问题,已知某极限存在的情况下,需要利用极限的四则运算等进行分析讨论。
【详解】 (A),(B)两项中分母的极限为0,因此分子的极限也必须为0,均可推导出f (0)=0. 若0()limx f x x →存在,则00()(0)()(0)0,(0)lim lim 00x x f x f f x f f x x→→-'====-,可见(C)也正确,故应选(D). 事实上,可举反例:()f x x =在x =0处连续,且()()limx f x f x x→--=0lim0x x x x →--=存在,但()f x x =在x =0处不可导。
(5) 设函数f (x )在(0,)+∞上具有二阶导数,且()0.f x ''> 令),,2,1)(( ==n n f u n , 则下列结论正确的是(A) 若12u u >,则{}n u 必收敛. (B) 若12u u >,则{}n u 必发散.(C) 若12u u <,则{}n u 必收敛. (D) 若12u u <,则{}n u 必发散. [ D ]【分析】 可直接证明或利用反例通过排除法进行讨论。
【详解】 设f (x )=2x , 则f (x )在(0,)+∞上具有二阶导数,且12()0,f x u u ''><,但2{}{}n u n =发散,排除(C); 设f (x )=1x, 则f (x )在(0,)+∞上具有二阶导数,且12()0,f x u u ''>>,但1{}{}n u n=收敛,排除(B); 又若设()ln f x x =-,则f (x )在(0,)+∞上具有二阶导数,且12()0,f x u u ''>>,但{}{ln }n u n =-发散,排除(A). 故应选(D).(6) 设曲线:(,)1((,)L f x y f x y =具有一阶连续偏导数),过第II 象限内的点M 和第IV 象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是(A) (,)Tf x y dx ⎰. (B) (,)Tf x y dy ⎰.(C)(,)T f x y ds ⎰. (D)(,)(,)x y Tf x y dx f x y dy ''+⎰. [ B ]【分析】 直接计算出四个积分的值,从而可确定正确选项。
【详解】 设M 、N 点的坐标分别为11221212(,),(,),,M x y N x y x x y y <>. 先将曲线方程代入积分表达式,再计算有:21(,)0TT f x y dx dx x x ==->⎰⎰;21(,)0TTf x y dy dy y y ==-<⎰⎰;(,)0TT f x y ds ds s ==>⎰⎰;(,)(,)(,)0x y TTf x y dx f x y dy df x y ''+==⎰⎰.故正确选项为(B).(7) 设向量组321,,ααα线性无关,则下列向量组线性相关的是(A) 133221,,αααααα---. (B) 133221,,αααααα+++.(C) 1332212,2,2αααααα---. (D) 1332212,2,2αααααα+++. [ A ]【详解】用定义进行判定:令0)()()(133322211=-+-+-ααααααx x x ,得 0)()()(332221131=+-++-+-αααx x x x x x .因321,,ααα线性无关,所以 1312230,0,0.x x x x x x -=⎧⎪-+=⎨⎪-+=⎩ 又 0110011101=---, 故上述齐次线性方程组有非零解, 即133221,,αααααα---线性相关. 类似可得(B), (C), (D)中的向量组都是线性无关的.(8) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B , 则A 与B(A) 合同, 且相似. (B) 合同, 但不相似 .(C) 不合同, 但相似. (D) 既不合同, 又不相似. [ B ]【详解】 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似.又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同. 故选(B) .(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p <1), 则此人第4次射击恰好第2次命中目标的概率为(A) 2)1(3p p -. (B) 2)1(6p p -.(C) 22)1(3p p -. (D) 22)1(6p p -. [ C ] 【详解】 “第4次射击恰好第2次命中”表示4次射击中第4次命中目标, 前3次射击中有1次命中目标, 由独立重复性知所求概率为:2213)1(p p C -. 故选(C) .(10) 设随机变量(X,Y)服从二维正态分布,且X与Y不相关,)()(y f x f Y X 分别表示X,Y的概率密度,则在Y=y 的条件下,X的条件概率密度)|(|y x f Y X 为(A) )(x f X . (B) )(y f Y . (C ) )()(y f x f Y X . (D))()(y f x f Y X . [ A ] 【详解】 因(X,Y)服从二维正态分布,且X与Y不相关,故X与Y相互独立,于是)|(|y x f Y X =)(x f X . 因此选(A) .二、填空题:(11-16小题,每小题4分,共24分. 把答案填在题中横线上)(11)12311xe dx x ⎰= 121.2e 【分析】 先作变量代换,再分部积分。
【详解】111213213211211()t xt t xe dx t e dt te dt x t ==-=⎰⎰⎰=111121112221.2tt t tdetee dt e =-=⎰⎰(12) 设f (u ,v )为二元可微函数,(,)yxz f x y =,则z x∂∂=112ln .y xf yx f y y -''⋅+⋅ 【详解】 利用复合函数求偏导公式,有z x∂∂=112ln .y xf yx f y y -''⋅+⋅ (13) 二阶常系数非齐次线性微分方程2432xy y y e'''-+=的通解为32122.x x x y C e C e e =+- 其中21,C C 为任意常数.【详解】 特征方程为2430λλ-+=,解得121, 3.λλ== 可见对应齐次线性微分方程430y y y '''-+=的通解为 312.x xy C e C e =+设非齐次线性微分方程2432xy y y e'''-+=的特解为*2xy ke=,代入非齐次方程可得k= −2. 故通解为32122.x x xy C e C e e =+-(14) 设曲面:1x y z ∑++=,则dS y x ⎰⎰∑+|)|(=【详解】 由于曲面∑关于平面x =0对称,因此dS x ⎰⎰∑=0. 又曲面:1x y z ∑++=具有轮换对称性,于是dS y x ⎰⎰∑+|)|(=dS y ⎰⎰∑||=dS x ⎰⎰∑||=dS z ⎰⎰∑||=dS z y x ⎰⎰∑++|)||||(|31=dS ⎰⎰∑3123831⨯⨯=(15) 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001000010A , 则3A 的秩为1. 【详解】 依矩阵乘法直接计算得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000000010003A , 故r (3A )=1. (16) 在区间(0, 1)中随机地取两个数, 则两数之差的绝对值小于21的概率为43. 【详解】 这是一个几何概型, 设x , y 为所取的两个数, 则样本空间}1,0|),{(<<=y x y x Ω, 记}21||,),(|),{(<-∈=y x y x y x A Ω.故 ΩS S A P A =)(43143==,其中ΩS S A ,分别表示A 与Ω 的面积. 三、解答题:(17-24小题,共86分. ) (17) (本题满分11分)求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值。