2020年中考数学一模试卷(I)卷

合集下载

2020年中考模拟上海市静安区中考数学一模试卷 含解析

2020年中考模拟上海市静安区中考数学一模试卷 含解析

2020年上海市静安区中考数学一模试卷一、选择题(本大题共6题)1.已知a x y =+,b x y =-,那么ab 的值为( ) A .2xB .2yC .x y -D .x y +2.已知点P 在线段AB 上,且:2:3AP PB =,那么:AB PB 为( ) A .3:2B .3:5C .5:2D .5:33.在ABC ∆中,点D 、E 分别在边AB 、AC 上,//DE BC ,:4:5AD DB =,下列结论中正确的是( ) A .45DE BC = B .94BC DE = C .45AE AC = D .54EC AC = 4.在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,如果3a b =,那么A ∠的余切值为( )A .13B .3C .24D .10105.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r rC .DC a b =-+u u u r r rD .DC a b =--u u u r r r6.如果将抛物线22y x =-平移,使平移后的抛物线与抛物线289y x x =-+重合,那么它平移的过程可以是( )A .向右平移4个单位,向上平移11个单位B .向左平移4个单位,向上平移11个单位C .向左平移4个单位,向上平移5个单位D .向右平移4个单位,向下平移5个单位 二、填空题(本大题共12题) 7.因式分解:25x x -= .8.已知()31f x x =+,那么f (3)= .9.方程1112x x -=+的根为 . 10.已知:34x y =,且4y ≠,那么34x y -=- .11.在ABC ∆中,边BC 、AC 上的中线AD 、BE 相交于点G ,6AD =,那么AG = . 12.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是 . 13.如图,在大楼AB 的楼顶B 处测得另一栋楼CD 底部C 的俯角为60度,已知A 、C 两点间的距离为15米,那么大楼AB 的高度为 米.(结果保留根号)14.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为(0)x x >,六月份的营业额为y 万元,那么y 关于x 的函数解式是 . 15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为513,那么该矩形的面积为 .16.已知二次函数2228(y a x a x a a =++是常数,0)a ≠,当自变量x 分别取6-、4-时,对应的函数值分别为1y 、2y ,那么1y 、2y 的大小关系是:1y 2y (填“>”、“ <”或“=” ).17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,//AD BC ,4AD =,9BC =,点E 、F 分别在边AB 、CD 上,且EF 是梯形ABCD 的“比例中线”,那么DFFC= . 18.如图,有一菱形纸片ABCD ,60A ∠=︒,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos EFB ∠的值为 .三、解答题(本大题共7题)19.先化简,再求值:2222244x y x y x y x xy y --÷+++,其中sin 45x =︒,cos60y =︒.20.如图,在Rt ABC ∆中,90ACB ∠=︒,20AC =,3sin 4A =,CD AB ⊥,垂足为D . (1)求BD 的长;(2)设AC a =u u u r r ,BC b =u u u r r ,用a r、b r 表示AD u u u r .21.已知在平面直角坐标系xOy 中,抛物线21(y x bx b =++为常数)的对称轴是直线1x =. (1)求该抛物线的表达式;(2)点(8,)A m 在该抛物线上,它关于该抛物线对称轴对称的点为A ',求点A '的坐标; (3)选取适当的数据填入下表,并在如图所示的平面直角坐标系内描点,画出该抛物线.x⋯ ⋯ y⋯⋯22.如图,在东西方向的海岸线l 上有长为300米的码头AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 点正东方向距离100米的C 处测得轮船M 在北偏东22︒方向上.(1)求轮船M 到海岸线l 的距离;(结果精确到0.01米)(2)如果轮船M 沿着南偏东30︒的方向航行,那么该轮船能否行至码头AB 靠岸?请说明理由.(参考数据:sin 220.375︒≈,cos 220.927︒≈,tan 220.404︒≈,3 1.732≈.)23.如图,在梯形ABCD 中,//AD BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,2OD OB OE =g . (1)求证:四边形AFCD 是平行四边形;(2)如果BC BD =,AE AF AD BF =g g ,求证:ABE ACD ∆∆∽.24.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且0)a ≠的图象经过点(0,3)A -、(1,0)B 、(3,0)C ,联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan DBC ∠的值; (3)如果点E 在该二次函数图象的对称轴上,当AC 平分BAE ∠时,求点E 的坐标.25.已知:如图1,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、DC 上,2AB BE DC =g ,:3:1DE EC =,F 是边AC 上的一点,DF 与AE 交于点G .(1)找出图中与ACD ∆相似的三角形,并说明理由; (2)当DF 平分ADC ∠时,求:DG DF 的值;(3)如图2,当90BAC ∠=︒,且DF AE ⊥时,求:DG DF 的值.参考答案一、选择题1.已知a=+b=,那么ab的值为()A.B.C.x y-D.x y+【解答】解:a=+Q,b,ab x y∴=-=-,故选:C.2.已知点P在线段AB上,且:2:3AP PB=,那么:AB PB为()A.3:2B.3:5C.5:2D.5:3【解答】解:由题意:2:3AP PB=,:():(23):35:3AB PB AP PB PB=+=+=;故选:D.3.在ABC∆中,点D、E分别在边AB、AC上,//DE BC,:4:5AD DB=,下列结论中正确的是()A.45DEBC=B.94BCDE=C.45AEAC=D.54ECAC=【解答】解:如图所示::4:5AD DB=Q,∴49 ADAB=,//DE BCQ,ADE ABC∴∆∆∽,∴49 AE DE ADAC BC AB===,∴94 BCDE=;故选:B.4.在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,如果3a b =,那么A ∠的余切值为( ) A .13B .3C .24D .1010【解答】解:Q 在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,3a b =, 1cot 3b A a ∴==. 故选:A .5.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r rC .DC a b =-+u u u r r rD .DC a b =--u u u r r r【解答】解:Q 四边形ABCD 是平行四边形, //AB CD ∴,AB CD =,Q AB AO OB =+u u u r u u u r u u u r ∴DC AB a b ==-+u u u r u u u r r r ,故选:C .6.如果将抛物线22y x =-平移,使平移后的抛物线与抛物线289y x x =-+重合,那么它平移的过程可以是( )A .向右平移4个单位,向上平移11个单位B .向左平移4个单位,向上平移11个单位C .向左平移4个单位,向上平移5个单位D .向右平移4个单位,向下平移5个单位【解答】解:Q 抛物线2289(4)7y x x x =-+=--的顶点坐标为(4,7)-,抛物线22y x =-的顶点坐标为(0,2)-,∴顶点由(0,2)-到(4,7)-需要向右平移4个单位再向下平移5个单位.故选:D .二、填空题(本大题共12题) 7.因式分解:25x x -= (5)x x - . 【解答】解:25(5)x x x x -=-. 故答案为:(5)x x -.8.已知()f x =,那么f (3)=【解答】解:当3x =是,f (3)==,9.方程1112x x -=+的根为 3x = . 【解答】解:方程两边同时乘以2(1)x +,得 2(1)1x x -=+,解得3x =,经检验,3x =是原方程的根, ∴原方程的解为3x =,故答案为3x =. 10.已知:34x y =,且4y ≠,那么34x y -- 4. 【解答】解:Q 34x y =,且4y ≠, ∴3344x y -=-. 故答案为:3411.在ABC ∆中,边BC 、AC 上的中线AD 、BE 相交于点G ,6AD =,那么AG = 4 . 【解答】解:AD Q 、BE 为ABC ∆的中线,且AD 与BE 相交于点G , G ∴点是三角形ABC 的重心,226433AG AD ∴==⨯=, 故答案为4.12.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是 16:25 . 【解答】解:两个相似三角形面积的比是2(4:5)16:25=. 故答案为:16:2513.如图,在大楼AB 的楼顶B 处测得另一栋楼CD 底部C 的俯角为60度,已知A 、C 两点间的距离为15米,那么大楼AB 的高度为 153 米.(结果保留根号)【解答】解:由题意得,90BAC ∠=︒,60ACB ∠=︒,15AC =, tan 315AB ABACB AC ∴∠=== 3153AB ∴==,答:大楼AB 的高度为153米.14.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为(0)x x >,六月份的营业额为y 万元,那么y 关于x 的函数解式是2200400200y x x =++ .【解答】解:根据题意,得2200(1)y x =+2200400200x x =++.故答案为2200400200y x x =++.15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为513,那么该矩形的面积为 240 . 【解答】解:如图所示:Q 四边形ABCD 是矩形, 90BAD ∴∠=︒,26AC BD ==,5tan 13CD DAC AC ∠==Q , 10CD ∴=,2222261024AD AC CD ∴=-=-=,∴矩形的面积2420240AD CD =⨯=⨯=,故答案为:240.16.已知二次函数2228(y a x a x a a =++是常数,0)a ≠,当自变量x 分别取6-、4-时,对应的函数值分别为1y 、2y ,那么1y 、2y 的大小关系是:1y > 2y (填“>”、“ <”或“=” ).【解答】解:222222228(8)(4)16y a x a x a a x x a a x a a =++=++=++-, ∴对称轴4x =-,x Q 分别取6-、4-时,在对称轴左侧,y ∴随x 的增大而减小,12y y ∴>,故答案为>.17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,//AD BC ,4AD =,9BC =,点E 、F 分别在边AB 、CD 上,且EF 是梯形ABCD 的“比例中线”,那么DF FC3. 【解答】解:连接BD 交EF 于G ,如图所示: EF Q 是梯形ABCD 的“比例中线”, 24936EF AD BC ∴=⨯=⨯=, 6EF ∴=, ////EF AD BC Q ,BEG BAD ∴∆∆∽,DFG DCB ∆∆∽, ∴EG BG AD BD =,DF GF DGDC BC BD==, ∴1EG GF BG DG BD AD BC BD BD BD +=+==,即6149EG EG-+=, 解得:125EG =, 1865GF EG ∴=-=, ∴182595DF DC ==, ∴23DF FC =; 故答案为:23.18.如图,有一菱形纸片ABCD ,60A ∠=︒,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos EFB ∠的值为 17.【解答】解:如图,连接BD .设2BC a =.Q 四边形ABC 都是菱形,2AB BC CD AD a ∴====,60A C ∠=∠=︒, BDC ∴∆是等边三角形,DE EC a ==Q , BE CD ∴⊥,BE ∴==,//AB CD Q ,BE CD ⊥,BE AB ∴⊥, 90EBF ∴∠=︒,设AF EF x ==,在Rt EFB ∆中,则有222(2))x a x =-+, 74a x ∴=, 74a AF EF ∴==,4a BF AB AF =-=, 14cos 774a BF EFB a EF ∴∠===,故答案为17. 三、解答题19.先化简,再求值:2222244x y x y x y x xy y --÷+++,其中sin 45x =︒,cos60y =︒. 【解答】解:原式22()()(2)22(2)2()()x y x y x y x y x y x yx y x y x y x y x y x y-+--++=÷==++++-+g ,当sin 45x =︒=1cos602y =︒=时,原式== 20.如图,在Rt ABC ∆中,90ACB ∠=︒,20AC =,3sin 4A =,CD AB ⊥,垂足为D . (1)求BD 的长;(2)设AC a =u u u r r ,BC b =u u u r r ,用a r、b r 表示AD u u u r .【解答】解:(1)CD AB ⊥Q ,90ADC BDC ∴∠=∠=︒, 在Rt ACD ∆中,sin CDA AC =, 3sin 20125CD AC A ∴==⨯=g , 2222201216AD AC CD ∴=-=-=,3tan 4CD A AD ∴==, 90ACB ∠=︒Q ,90DCB B A B ∴∠+∠=∠+∠=︒, DCB A ∴∠=∠.3tan tan 1294BD CD DCB CD A ∴=∠==⨯=g g . (2)16925AB AD DB =+=+=Q , ∴1625AD AB =, 又Q AB AC CB a b =+=-u u u r u u u r u u u r r r ,∴161616252525AD AB a b ==-u u u r u u u r r r .21.已知在平面直角坐标系xOy 中,抛物线21(y x bx b =++为常数)的对称轴是直线1x =. (1)求该抛物线的表达式;(2)点(8,)A m 在该抛物线上,它关于该抛物线对称轴对称的点为A ',求点A '的坐标; (3)选取适当的数据填入下表,并在如图所示的平面直角坐标系内描点,画出该抛物线.x⋯ 1- ⋯ y⋯⋯【解答】解:(1)Q 对称轴为2bx =-,12b∴-=, 2b ∴=-,∴抛物线的表达式为221y x x =-+;(2)Q 点(8,)A m 在该抛物线的图象上, ∴当8x =时,2221828149y x x =-+=-⨯+=. ∴点(8,49)A ,∴点(8,49)A 关于对称轴对称的点A '的坐标为(6,49)-;(3)列表:x⋯ 1- 0 1 2 3 ⋯ y⋯4114⋯描点、连线,画出图象如图:22.如图,在东西方向的海岸线l 上有长为300米的码头AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 点正东方向距离100米的C 处测得轮船M 在北偏东22︒方向上.(1)求轮船M 到海岸线l 的距离;(结果精确到0.01米)(2)如果轮船M 沿着南偏东30︒的方向航行,那么该轮船能否行至码头AB 靠岸?请说明理由.(参考数据:sin 220.375︒≈,cos 220.927︒≈,tan 220.404︒≈,3 1.732≈.)【解答】解:(1)过点M 作MD AC ⊥交AC 的延长线于D ,设DM x =, Q 在Rt CDM ∆中,tan tan 22CD DM CMD x =∠=︒g g ,又Q 在Rt ADM ∆中,45MAC ∠=︒, AD DM ∴=,100tan 22AD AC CD x =+=+︒Q g , 100tan 22x x ∴+︒=g ,100100167.791tan 2210.404x ∴=≈≈-︒-,答:轮船M 到海岸线l 的距离约为167.79米. (2)作30DMF ∠=︒,交l 于点F .在Rt DMF ∆中,tan tan 30DF DM FMD DM =∠=︒g g 33167.7996.8733DM =≈⨯≈米, 167.7996.87264.66300AF AC CD DF DM DF ∴=++=+≈+=<,所以该轮船能行至码头靠岸.23.如图,在梯形ABCD 中,//AD BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,2OD OB OE =g . (1)求证:四边形AFCD 是平行四边形;(2)如果BC BD =,AE AF AD BF =g g ,求证:ABE ACD ∆∆∽.【解答】(1)证明:2OD OE OB =Q g , ∴OE ODOD OB=, //AD BC Q , AOD COB ∴∆∆∽, ∴OA ODOC OB =∴OA OEOC OD=//AF CD ∴,∴四边形AFCD 是平行四边形;(2)证明://AF CD Q ,AED BDC ∴∠=∠,BEF BDC ∆∆∽,∴BE BF BD BC=,BC BD=Q,BE BF∴=,BDC BCD∠=∠,AED BCD∴∠=∠.180AEB AED∠=︒-∠Q,180ADC BCD∠=︒-∠,AEB ADC∴∠=∠.AE AF AD BF=Q g g,∴AE ADBF AF=,Q四边形AFCD是平行四边形,AF CD∴=,∴AE ADBE DC=,ABE ADC∴∆∆∽.24.在平面直角坐标系xOy中(如图),已知二次函数2y ax bx c=++(其中a、b、c是常数,且0)a≠的图象经过点(0,3)A-、(1,0)B、(3,0)C,联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan DBC∠的值;(3)如果点E在该二次函数图象的对称轴上,当AC平分BAE∠时,求点E的坐标.【解答】解:(1)将(0,3)A-、(1,0)B、(3,0)C代入2y ax bx c=++,得,3930ca b ca b c=-⎧⎪++=⎨⎪++=⎩,解得,143a b c =-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是243y x x =-+-;(2)过点D 作DH BC ⊥于H ,在ABC ∆中,设AC 边上的高为h ,则132122ABD BCDAD hS AD S DC DC h ∆∆===g g ,又//DH y Q 轴, CHD COA ∴∆∆∽, ∴25CH DC DH OC AC OA ===, 26355CH DH ∴==⨯=, 64255BH BC CH ∴=-=-=, 3tan 2DH DBC BH ∴∠==;(3)2243(2)1y x x x =-+-=--+Q ,∴对称轴为直线2x =,设直线2x =与x 轴交于点G ,过点A 作AF 垂直于直线2x =,垂足为F ,3OA OC ==Q , 90AOC ∠=︒,45OAC OCA ∴∠=∠=︒, //AF x Q 轴,45FAC OCA ∴∠=∠=︒, AC Q 平分BAE ∠, BAC EAC ∴∠=∠,BAO OAC BAC ∠=∠-∠Q ,EAF FAC EAC ∠=∠-∠, BAO EAF ∴∠=∠,90AOB AFE ∠=∠=︒Q , OAB FEA ∴∆∆∽, ∴13OB EF OA AF ==, 2AF =Q , 23EF ∴=, 27333EG GF EF AO EF ∴=-=-=-=, 7(2,)3E ∴-.25.已知:如图1,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、DC 上,2AB BE DC =g ,:3:1DE EC =,F 是边AC 上的一点,DF 与AE 交于点G .(1)找出图中与ACD ∆相似的三角形,并说明理由; (2)当DF 平分ADC ∠时,求:DG DF 的值;(3)如图2,当90BAC ∠=︒,且DF AE ⊥时,求:DG DF 的值.【解答】解:(1)与ACD ∆相似的三角形有:ABE ∆、ADC ∆,理由如下: 2AB BE DC =Q g , ∴BE ABAB DC=, AB AC =Q , B C ∴∠=∠,BE ACAB DC=, ABE DCA ∴∆∆∽. ABE DCA ∆∆Q ∽, AED DAC ∴∠=∠.AED C EAC ∠=∠+∠Q ,DAC DAE EAC ∠=∠+∠, DAE C ∴∠=∠. ADE CDA ∴∆∆∽;(2)ADE CDA ∆∆Q ∽, 又DF Q 平分ADC ∠, ∴DG DE ADDF AD CD==, 设CE a =,则33DE CE a ==,4CD a =, ∴34a ADAD a=, 解得:23AD a =, ∴233DF AD a DG CD ===(3)90BAC ∠=︒Q ,AB AC =, 45B C ∴∠=∠=︒, 45DAE C ∴∠=∠=︒DG AE ⊥Q ,45DAG ADF∴∠=∠=︒,AG DG∴====,EG∴===,AE AG EG a∴=+=+,AED DAC∠=∠Q,ADE DFA∴∆∆∽,∴AD AEDF AD=,2ADDF a AE∴===,∴DGDF==.。

【精品】2020年北京市中考数学一模试卷及答案解析

【精品】2020年北京市中考数学一模试卷及答案解析

2020年北京市中考数学一模试卷一、单选题(共0分)1.(本题0分)某几何体从三个不同方向看到的形状图如图,则该几何体是( )A.圆锥B.圆柱C.球D.长方体2.(本题0分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×1063.(本题0分)如图所示,BE,CF是直线,OA,OD是射线,其中构成对顶角的是( )A.∠AOE与∠COD B.∠AOD与∠BODC.∠BOF与∠COE D.∠AOF与∠BOC4.(本题0分)下列轴对称图形中,对称轴最多的图形是()A.B.C.D.5.(本题0分)将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180°C.减少360°D.增加360°6.(本题0分)数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为2015cm的线段AB,则线段AB盖住的整点的个数为()A.2015 B.2014 C.2015或2014 D.2015或20167.(本题0分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A .16B .13C .12D .23 8.(本题0分)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(共0分)9.(本题0分)要使分式有意义,则x 的取值范围是 .10.(本题0分)已知关于 x 的一元二次方程20x k -+= 有两个相等的实数根,则 k 的值为_____.11.(本题0分)若a 是一个含有根号的无理数,且3<a <4.写出任意一个符合条件的值____. 12.(本题0分)对于两个实数,m n ,定义一种新运算,规定2m n m n =+☆,例如3523511=⨯+=☆,若2a b ☆且21b a =☆,则b a =__________.13.(本题0分)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点,若有一直线l 经过点(-1,3)且与y 轴垂直,则l 也会经过的点是_____(填A 、B 、C 或D )14.(本题0分)如图已知∠ABC=∠DEF,BE=FC,要证明△ABC≌△DEF,若以“ASA”为依据,还需要添加的条件__________.15.(本题0分)如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)16.(本题0分)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(共0分)17.(本题0分)计算:11()4523---︒18.(本题0分)解不等式组()324211122x x x x ⎧--≥⎪⎨-++≥⎪⎩①②. 19.(本题0分)不解方程组23532x y x y +=⎧⎨-=-⎩,求(2x+y)(2x-3y)+3x(2x+y)的值 20.(本题0分)等角转化;如图1,已知点A 是BC 外一点,连结AB 、AC ,求∠BAC +∠B +∠C 的度数.(1)阅读并补充下面的推理过程解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C = ( )又∵∠EAB +∠BAC +∠DAC =180°∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数(提示:过点C作CF∥AB);(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=80°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,点E在两条平行线AB与CD之间,求∠BED的度数.21.(本题0分)如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:ABCD是矩形;(2)若AD=cos∠,求AC的长.22.(本题0分)如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求线段AD所在直线的函数表达式.(2)动点P从点A出发,以每秒2个单位长度的速度,按照A→D→C→B的顺序在菱形的边上匀速运动,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?23.(本题0分)如图,ABC 中,ACB 90∠=,D 为AB 上一点,以CD 为直径的O 交BC 于点,连接AE 交CD 于点,交O 于点F ,连接DF ,CAE ADF ∠∠=.()1判断AB 与O 的位置关系,并说明理由.()2若PF :PC 1=:2,AF 5=,求CP 的长.24.(本题0分)在平面直角坐标系中,直线l 1:y=﹣12x+4分别与x 轴、y 轴交于点A 、点B ,且与直线l 2:y=x 于点C .(1)如图①,求出B 、C 两点的坐标; (2)若D 是线段OC 上的点,且△BOD 的面积为4,求直线BD 的函数解析式.(3)如图②,在(2)的条件下,设P 是射线BD 上的点,在平面内是否存在点Q ,使以O 、B 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.25.(本题0分)学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?26.(本题0分)在平面直角坐标系xOy 中,抛物线()2420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).(1)求抛物线()2420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示); (2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时,请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.27.(本题0分)如图,在平面直角坐标系中,点A(4,0),B(0,3),以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC =90°.若第二象限内有一点P 1,2a ⎛⎫ ⎪⎝⎭,且△ABP 的面积与△ABC 的面积相等.(1)求直线AB 的函数表达式.(2)求a 的值.(3)在x轴上是否存在一点M,使△MAC为等腰三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.28.(本题0分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为1-4,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK 绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.。

2020年中考数学全真模拟卷1(南京专版)(解析版)

2020年中考数学全真模拟卷1(南京专版)(解析版)

2020年中考数学名校地市好题必刷全真模拟卷一(江苏南京专版)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.2020年2月14日,电影《刺猬索尼克》在美国上映,据悉,该片仅在首映当日就轻松将2100万美元票房收入囊中.数据“2100万“用科学记数法表示为()A .32.110⨯B .40.2110⨯C .80.2110⨯D .72.110⨯【解答】2100万用科学记数法表示为72.110⨯.故选:D .2.计算20202019(4)0.25(-⨯=)A .4-B .1-C .4D .1【解答】原式201920194(4)0.25=-⨯-⨯,20194(40.25)=-⨯-⨯,4(1)=-⨯-,4=,故选:C .3.2764-的立方根是()A .34-B .38C .49-D .916【解答】34- 的立方等于2764-,2764∴-的立方根等于34-.故选:A .4.已知实数a ,b 满足11a b +>+,则下列选项错误的是()A .a b>B .a b->-C .22a b +>+D .22a b>【解答】由不等式的性质得a b >,22a b +>+,a b -<-,22a b >.故选:B .5.与2+最接近的整数是()A .2B .3C .4D .5【解答】 <<,23∴<<,则最接近的有理数是2,2∴+4.故选:C .6.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC ∆的对称图形ABD ∆和ACE ∆,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;其中正确的结论个数是()A .0个B .3个C .2个D .1个【解答】ABD ∆ 和ACE ∆是ABC ∆的轴对称图形,BAD CAE BAC ∴∠=∠=∠,AB AE =,AC AD =,3360315036090EAD BAC ∴∠=∠-︒=⨯︒-︒=︒,故①正确.1(36090150)602BAE CAD ∴∠=∠=︒-︒-︒=︒,由翻折的性质得,AEC ABD ABC ∠=∠=∠,又EPO BPA ∠=∠ ,60BOE BAE ∴∠=∠=︒,故②正确.ACE ADB ∆≅∆ ,ACE ADB S S ∆∆∴=,BD CE =,BD ∴边上的高与CE 边上的高相等,即点A 到BOC ∠两边的距离相等,OA ∴平分BOC ∠,故③正确.故选:B .二.填空题(本大题共10小题,每小题2分,共20分。

2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷一、选择题(共8小题).1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×1033.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.10.因式分解:m2﹣4m+4=.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为.12.如图,一束平行太阳光线照射到正五边形上,则∠1=.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为cm.14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.2.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×103【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:42000=4.2×104,故选:B.3.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.【分析】找到各选项中从左面看不是所给视图的立体图形即可.解:各选项中只有选项D从左面看得到从左往右2列正方形的个数依次为2,1,1,故选:D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.解:移项,得2x≤2,系数化为1,得x≤1,不等式的解集在数轴上表示如下:.故选:D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.解:设有x匹大马,y匹小马,根据题意得,故选:C.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【分析】如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.【分析】作BC⊥AC,垂足为C,在Rt△ABC中,利用三角函数解答即可.解:如图,作BC⊥AC,垂足为C.在Rt△ABC中,∠ACB=90°,∠BAC=32°,AB=50×16=800(米),sin∠BAC=,∴BC=sin∠BAC•AB=800•sin32°.故选:A.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2【分析】过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(﹣a),进而可得出结论.解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOM:S△BON=1:(﹣a),∴AO:BO=1:,∵OB:OA=2,∴a=﹣4,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.解:原式=2﹣=.故答案为:.10.因式分解:m2﹣4m+4=(m﹣2)2.【分析】原式利用完全平方公式分解即可.解:原式=(m﹣2)2.故答案为:(m﹣2)2.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为﹣.【分析】根据关于x的方程2x2﹣3x﹣k=0有两个相等的实数根可得△=(﹣3)2﹣4×2(﹣k)=0,求出k的值即可.解:∵关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,∴△=(﹣3)2﹣4×2(﹣k)=0,∴9+8k=0,∴k=﹣.故答案为:﹣.12.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为(16+3)cm.【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出FA″=3,得出答案即可.解:∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点55分时,∠A″OA′=45°,∴FA″=3,∴A点距桌面的高度为:16+3(cm).故答案为:().14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=a2﹣2a+1﹣2a2+2a+4a2﹣1=3a2,当a=时,原式=3×5=15.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.【分析】首先根据题意列表求得所有等可能的结果与抽到的两张卡片上的数字之和为偶数的情况,再利用概率公式即可求得答案.解:根据题意,列表如下:1271238234978914所以P(两次抽取的卡片上数字之和为偶数)=.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.【分析】设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为1.4x 元/个,根据数量=总价÷单价结合第二次比第一次多购进了10000个,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为 1.4x 元/个,依题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.答;该爱心人士第一次购进口罩的单价为5元/个.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠CAD=∠ODA,由∠ODA=∠OAD,所以∠CAD=∠DAE;(2)由(1)知,∠FAE=50°,由弧长公式可得答案.解:(1)如图,连结OD,∵⊙O与边BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠C=∠ODB=90°,∴OD∥AC.∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)如图,连结OF,∵AD平分∠BAC,且∠CAD=25°,∴12﹣3=9,∴∠EOF=100°,∴的长为.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.【分析】(1)根据线段垂直平分线的性质画图即可;(2)根据相似三角形的性质,构造相似三角形即可;(3)由相似三角形的性质,构造相似三角形即可.解:(1)如图①所示,点C即为所求;(2)如图②所示,点M即为所求;(3)如图③所示,点P即为所求.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为20米/分,无人机在40米的高度上飞行了3分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.【分析】(1)利用图象信息,根据速度=计算即可解决问题;(2)利用待定系数法即可解决问题;(3)求出无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),分两种情形构建方程即可解决问题;解:(1)无人机上升的速度为=20米/分,无人机在40米的高度上飞行了6﹣1﹣2=3分.故答案为20,3;(2)设y=kx+b,把(9,60)和(12,0)代入得到,解得,∴无人机下落过程中,y与x之间的函数关系式为y=﹣20x+240.(3)易知无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),由20x﹣60=50,解得x=5.5,由﹣20x+240=50,解得x=9.5,综上所述,无人机距地面的高度为50米时x的值为5.5和9.5.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为6.【分析】教材呈现:如图①中,证明△PAC≌△PBC即可解决问题.定理应用:(1)如图②中,设直线l、m交于点O,连结AO、BO、CO.利用线段的垂直平分线的判定和性质解决问题即可.(2)连接BD,BE,证明△BDE是等边三角形即可.【解答】教材呈现:解:如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)证明:如图②中,设直线l、m交于点O,连结AO、BO、CO.∵直线l是边AB的垂直平分线,∴OA=OB,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(2)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=18,∴DE=AC=6.故答案为6.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°,BC=4,∴CD′=BD′=4,∴AD′===3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3;(2)①如图2中,当点N在AC上时,∵MN∥AD,∴,∴,解得t=;②如图3中,当点N在BC上时,∵MN∥BD,∴,∴,解得t=5;综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,S=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣t+;②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,S=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,S=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,S=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴,则,解得t=1;如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴,∴,解得t=;如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.【分析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,CD=DD′,即可求解;(4)通先分段表示出y',进而确定出最大值,最后用m的范围建立不等式组,即可得出结论.解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx+3图象上,∴k+3=2,解得:k=﹣1∴一次函数解析式为y=﹣x+3②m<0时,m+1=﹣2,m=﹣3∴B(﹣3,﹣2)∵点B在一次函数y=kx+3图象上,∴﹣3k+3=﹣2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,∴点C的坐标为(n,﹣n2+4),∴点D的坐标为(﹣n,﹣n2+4),D′(﹣n,n2﹣4)∵CD=DD′,∴2n=2(﹣n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)当﹣1≤x≤0时,y'=x2﹣n,此时,﹣n≤y'≤1﹣n,当0≤x≤2时,y'=﹣x2+n,此时,n﹣4≤y'≤n,当n≥1﹣n时,即:n≥,y'的最大值是n,①∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤n≤3,当n<时,y'最大值为1﹣n,②∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤1﹣n≤3,∴﹣2≤n≤0,∴n的取值范围应为1≤n≤3或﹣2≤n≤0.。

2020年中考模拟江苏省南通市海安市中考数学一模试卷 含解析

2020年中考模拟江苏省南通市海安市中考数学一模试卷 含解析

2020年中考模拟中考数学一模试卷一、选择题(共10小题)1.化简(﹣a)2a3所得的结果是()A.a5B.﹣a5C.a6D.﹣a62.下列事件是随机事件的是()A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.射击运动员射击一次,命中靶心D.在只装了红球的不透明袋子里,摸出黑球3.下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个4.若(x﹣1)2+|2y+1|=0,则x+y的值为()A.B.C.D.5.如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,若AD:AB=2:3,则△ADE和△ABC的面积之比等于()A.2:3B.4:9C.4:5D.6.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64 cm D.54cm7.若点A(﹣2020,y1)、B(2021,y2)都在双曲线上,且y1>y2,则a的取值范围是()A.a<0B.a>0C.D.8.若x1=a+1(a不取0和﹣1),,,…,,则x2020等于()A.a+1B.C.D.a9.一辆货车早晨7:00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图象(其中点B、C、D在同一条直线上),小明研究图象得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8:00时,货车已行驶的路程是60km;④最后40km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8:24.其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤10.已知:如图,AC,BC分别是半圆O和半圆O'的直径,半圆O的弦MC交半圆O'于N.若MN=2,则AB等于()A.B.C.2•cosαD.2•sinα二、填空题(共8小题)11.比较大小:.(填“>”或“<”号).12.在比例尺为1:500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为km.13.如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为.14.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球个(以上球除颜色外其他都相同).15.为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.设甲工程队每天整治河道xm,根据题意列方程为.16.已知一次函数y=kx﹣3的图象与x轴的交点坐标为(x0,0),且2≤x0≤3,则k的取值范围是.17.如图,点E在正方形ABCD的边BC上,连接AE,设点B关于直线AE的对称点为点B',且点B'在正方形内部,连接EB'并延长交边CD于点F,过点E作EG⊥AE交射线AF于点G,连接CG.若BE=17,则CG的长为.18.若二次函数y=x2﹣2ax﹣1(a为常数)的图象在﹣2≤x≤5的部分与x轴有两个公共点,则a的取值范围是.三、解答题(共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:|﹣2|+(﹣1)2+(﹣2020)0﹣sin30°;(2)解方程组:20.先化简,再求值:,其中.21.热气球的探测器显示,从热气球R看一栋楼顶部P的仰角α为45°,看这栋楼底部Q 的俯角β为60°,热气球与楼的水平距离为200,求这栋楼的高度(结果保留根号).22.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.23.已知,矩形ABCD中,AB=6,AD=10,E是边DC上一点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,当DE=2时,延长AF交边CD于点G,求CG的长.24.在平面直角坐标系中,已知A(t,0),B(0,﹣t),C(t,2t)三点,其中t>0,双曲线y=分别与线段BC,AC交于点D,E.(1)当t=1时,求点D的坐标;(2)当S△ABE=时,求△ADE的面积;(3)若S△DAB﹣S△BDE=,求t的值.25.定义:如果一个直角三角形的两条直角边的比为1:2,那么这个三角形叫做“半正切三角形”.(1)如图①,正方形网格中,已知格点A,B,在格点C,D,E,F中,与A,B能构成“半正切三角形”的是点;(2)如图②,△ABC(BC<AC)为“半正切三角形”,点M在斜边AB上,点D在边AC上,将射线MD绕点M逆时针旋转90°,所得射线交边BC于点E,连接DE.①小彤发现:若M为斜边AB的中点,则△DEM一定为“半正切三角形”.请判断“小彤发现”是否正确?并说明理由;②连接CM,当∠BMC=45°时,求tan∠DEM的值.26.已知平面直角坐标系xOy中,直线y=kx﹣k+1与抛物线L:y=ax2﹣2ax+a(a>0)相交于A,B两点(点A在点B的左侧),与抛物线L的对称轴相交于点C,记抛物线L 的顶点为D,过点A作AE⊥x轴,垂足为E.(1)若AB∥x轴,AB=2,求a的值;(2)当k=1,抛物线L与y轴交于(0,2)时,设射线AE与直线BD相交于P点,求的值;(3)延长AE,BD相交于点F,求证:四边形ECDF是平行四边形.参考答案一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.化简(﹣a)2a3所得的结果是()A.a5B.﹣a5C.a6D.﹣a6【分析】直接利用同底数幂的乘法运算法则计算得出答案.解:(﹣a)2a3=a2•a3=a5.故选:A.2.下列事件是随机事件的是()A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.射击运动员射击一次,命中靶心D.在只装了红球的不透明袋子里,摸出黑球【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、画一个三角形,其内角和是360°是不可能事件,故本选项错误;B、投掷一枚正六面体骰子,朝上一面的点数小于7是必然事件,故本选项错误;C、射击运动员射击一次,命中靶心是随机事件,故本选项正确;D、在只装了红球的不透明袋子里,摸出黑球是不可能事件,故本选项错误.故选:C.3.下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个【分析】根据俯视图是从上面看所得到的图形判断即可.解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.4.若(x﹣1)2+|2y+1|=0,则x+y的值为()A.B.C.D.【分析】直接利用非负数的性质得出x,y的值,进而得出答案.解:∵(x﹣1)2+|2y+1|=0,∴x﹣1=0,2y+1=0,解得:x=1,y=﹣,则x+y的值为:1﹣=.故选:D.5.如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,若AD:AB=2:3,则△ADE和△ABC的面积之比等于()A.2:3B.4:9C.4:5D.【分析】由DE∥BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED =∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.解:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴=()2=.故选:B.6.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64 cm D.54cm【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.7.若点A(﹣2020,y1)、B(2021,y2)都在双曲线上,且y1>y2,则a的取值范围是()A.a<0B.a>0C.D.【分析】根据已知得3+2a<0,从而得出a的取值范围.解:∵点A(﹣2020,y1),B(2021,y2)两点在双曲线y=上,且y1>y2,∴3+2a<0,∴a<﹣,∴a的取值范围是a<﹣,故选:D.8.若x1=a+1(a不取0和﹣1),,,…,,则x2020等于()A.a+1B.C.D.a【分析】根据题意对前面几个数进行计算,直到结果出现重复现象,由此得出规律,再按规律解答便可.解:∵x1=a+1,∴=,=,,…由上可知,x1,x2,x3,…,x n,这列数依次按a+1,﹣,三个结果进行循环,∵2020÷3=673…1,∴x2020=x1=a+1,故选:A.9.一辆货车早晨7:00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图象(其中点B、C、D在同一条直线上),小明研究图象得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8:00时,货车已行驶的路程是60km;④最后40km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8:24.其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤【分析】①由图象可知到达D点货车到达乙地了;②货车的平均速度是40÷0.5=80km/h;③当x=1时,y=60;④货车在BC段行驶的速度为v==100km/h;⑤货车到达乙地的总行驶时间为1.3+=1.4.解:①由图象可知到达D点货车到达乙地了,∴甲乙两地之间的路程是100km;②由图象可知,x=0.5时y=40,∴货车的平均速度是40÷0.5=80km/h;③当x=1时,y=60,∴8:00时,货车已行驶的路程是60km;④由图可知B(1,60),C(1.3,90),∴货车在BC段行驶的速度为v==100km/h;⑤从C点到D点行驶的路程是100﹣90=10km,∴时间为=0.1h,∴从C点到D点行驶的时间为0.1h,∴货车到达乙地的总行驶时间为1.3+0.1=1.4,∴货车到达乙地的时间是8:24;∴①③④⑤正确,故选:D.10.已知:如图,AC,BC分别是半圆O和半圆O'的直径,半圆O的弦MC交半圆O'于N.若MN=2,则AB等于()A.B.C.2•cosαD.2•sinα【分析】由圆周角定理得∠AMC=∠BNC=90°,由三角函数定义得cosα==,得出CM=AC×cosα,CN=BC×cosα,由已知得出(AC﹣BC)cosα=2,即可得出答案.解:∵AC,BC分别是半圆O和半圆O'的直径,∴∠AMC=∠BNC=90°,∴cosα==,∴CM=AC×cosα,CN=BC×cosα,∵MN=CM﹣CN=2,∴AC×cosα﹣BC×cosα=2,∴(AC﹣BC)cosα=2,即AB×cosα=2,∴AB=;故选:A.二、填空题(共8小题,第11~13题每小题3分,第14~18题每小题3分,共29分.需写出解答过程,请把答案直接填写在答题卡相应位置上)11.比较大小:>.(填“>”或“<”号).【分析】根据两个负数作比较,绝对值大的反而小解答.解:|﹣|>|﹣|,所以﹣>﹣.答案:>.12.在比例尺为1:500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为15km.【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.13.如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为(1,2).【分析】根据位似变换的性质,坐标与图形性质计算.解:点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),∴以原点O为位似中心,把△OAB缩小,得到△OA'B',∵点A的坐标为(2,4),∴点A'的坐标为(2×,4×),即(1,2),故答案为:(1,2).14.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球3个(以上球除颜色外其他都相同).【分析】首先设应在该盒子中再添加红球x个,根据题意得:=,解此分式方程即可求得答案.解:设应在该盒子中再添加红球x个,根据题意得:=,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.15.为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.设甲工程队每天整治河道xm,根据题意列方程为=.【分析】直接利用甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等得出等式求出答案.解:设甲工程队每天整治河道xm,根据题意列方程为:=.故答案为:=.16.已知一次函数y=kx﹣3的图象与x轴的交点坐标为(x0,0),且2≤x0≤3,则k的取值范围是.【分析】分别将(2,0)和(3,0)代入一次函数的解析式,得出k的两个临界值,再结合函数过定点(0,﹣3),可得答案.解:将(2,0)代入y=kx﹣3得:0=2k﹣3,∴k=.将(3,0)代入y=kx﹣3得:0=3k﹣3∴k=1.∵一次函数y=kx﹣3过定点(0,﹣3),函数图象与x轴的交点坐标为(x0,0),且2≤x0≤3,∴1≤k≤.故答案为:1≤k≤.17.如图,点E在正方形ABCD的边BC上,连接AE,设点B关于直线AE的对称点为点B',且点B'在正方形内部,连接EB'并延长交边CD于点F,过点E作EG⊥AE交射线AF于点G,连接CG.若BE=17,则CG的长为.【分析】过G作GH⊥BC于H,则∠EHG=90°,依据△ABE≌△AB'E(SSS),Rt△ADF≌Rt△AB'F(HL),即可得到∠EAF=∠BAD=45°,进而得到△AEG是等腰直角三角形,再根据△ABE≌△EHG(AAS),即可得到BE=GH=CH=17,再根据勾股定理进行计算即可.解:如图所示,过G作GH⊥BC于H,则∠EHG=90°,∵点B关于直线AE的对称点为点B',∴AB=AB',BE=B'E,而AE=AE,∴△ABE≌△AB'E(SSS),∴∠BAE=∠B'AE,∠AB'E=∠B=90°,∴∠D=∠AB'F=90°,又∵AD=AB',AF=AF,∴Rt△ADF≌Rt△AB'F(HL),∴∠DAF=∠B'AF,∴∠EAF=∠BAD=45°,又∵EG⊥AE,∴△AEG是等腰直角三角形,∴AE=GE,∵∠BAE+∠AEB=∠HEG+∠AEB=90°,∴∠BAE=∠HEG,又∵∠B=∠EHG=90°,∴△ABE≌△EHG(AAS),∴BE=GH=17,AB=EH=BC,∴BE=CH=17,∴Rt△CHG中,CG===.故答案为:.18.若二次函数y=x2﹣2ax﹣1(a为常数)的图象在﹣2≤x≤5的部分与x轴有两个公共点,则a的取值范围是.【分析】根据图象在﹣2≤x≤5的部分与x轴有两个公共点,则满足△=4a2+4>0,且当x=﹣2和5时函数图象不在x轴下方列出a的不等式组,解答便可.解:∵若二次函数y=x2﹣2ax﹣1(a为常数)的图象在﹣2≤x≤5的部分与x轴有两个公共点,∴△=4a2+4>0,且,由4a2+4>0得a为一切实数,解不等式组得,,故答案为:.三、解答题(共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:|﹣2|+(﹣1)2+(﹣2020)0﹣sin30°;(2)解方程组:【分析】(1)根据绝对值的定义,幂的定义,任何非零数的零次幂等于1以及特殊角的三角函数值计算即可;(2)由方程①和②中未知数y的系数化为相反数,用①+②,消去y即可求解.解:(1)原式==.(2)①+②,得4x=4.解得x=1.把x=1代入①,得1+2y=9.解得y=4.∴这个方程组的解为20.先化简,再求值:,其中.【分析】先把括号内通分,再进行约分得到原式=2m+6.然后把m的值代入计算即可.解:原式===2m+6.当时,原式=2×(﹣)+6=5.21.热气球的探测器显示,从热气球R看一栋楼顶部P的仰角α为45°,看这栋楼底部Q 的俯角β为60°,热气球与楼的水平距离为200,求这栋楼的高度(结果保留根号).【分析】过点R作RD⊥PQ,垂足为D,则RD=200.直角三角形分别求出PD,QD即可解决问题.解:过点R作RD⊥PQ,垂足为D,则RD=200.在Rt△RPD中,∵,∴PD=RD•tanα=RD•tan45°=200.在Rt△RQD中,∵,∴.∴.答:这栋楼的高度为.22.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.【分析】(1)根据平均数,方差的定义计算即可.(2)从成绩的变化趋势解答也可以从130分以上(含130分)的次数判断即可.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.23.已知,矩形ABCD中,AB=6,AD=10,E是边DC上一点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,当DE=2时,延长AF交边CD于点G,求CG的长.【分析】(1)由折叠可得∠D=∠EFA=90°.证出∠CEF=∠AFB.由∠B=∠C=90°.即可得出△ABF∽△FCE.(2)过点F作FM⊥DC交DC于点M,延长MF交AB于点H,则MH=AD=10,证明△FME∽△AHF,得出AH=5MF.由勾股定理得出AH2+FH2=AF2,求出,得出..由平行线的性质得出∠AGD=∠FAH,由三角函数定义进而得出答案.【解答】(1)证明:在矩形ABCD中,∠B=∠C=∠D=90°.由折叠可得:∠D=∠EFA=90°.∵∠EFA=∠C=90°,∴∠CEF+∠CFE=∠CFE+∠AFB=90°.∴∠CEF=∠AFB.在△ABF和△FCE中,∵∠AFB=∠CEF,∠B=∠C=90°.∴△ABF∽△FCE.(2)解:过点F作FM⊥DC交DC于点M,延长MF交AB于点H,如图②所示:则MH=AD=10,∠EMF=∠AHF=90°.在矩形ABCD中,∠D=90°.由折叠可得:∠D=∠EFA=90°,DE=EF=2,AD=AF=10.∵∠EMF=∠EFA=90°,∴∠MEF+∠MFE=∠AFH+∠MFE=90°.∴∠MEF=∠AFH.在△FME和△AHF中,∵∠MEF=∠AFH,∠EMF=∠FHA=90°,∴△FME∽△AHF.∴.∴=.∴AH=5MF.在Rt△AHF中,∠AHF=90°,∵AH2+FH2=AF2,∴(5MF)2+(10﹣MF)2=102.解得:,或MF=0(舍去),∴.∴.∵四边形ABCD是矩形,∴AB∥CD,CD=AB=6,∴∠AGD=∠FAH,∵tan∠FAH==,∴=.∴DG=AD=×10=∴CG=CD﹣DG=6﹣=.24.在平面直角坐标系中,已知A(t,0),B(0,﹣t),C(t,2t)三点,其中t>0,双曲线y=分别与线段BC,AC交于点D,E.(1)当t=1时,求点D的坐标;(2)当S△ABE=时,求△ADE的面积;(3)若S△DAB﹣S△BDE=,求t的值.【分析】(1)求出直线BC的解析式为y=3x﹣t,可求出D点坐标;(2)根据面积关系求出E点坐标,则可求出答案;(3)求出D点坐标.根据S△DAB﹣S△BDE=可得出方程,解方程即可.【解答】(1)解:设直线BC解析式为y=kx+b,∵直线过点B(0,﹣t),C(t,2t),∴直线BC:y=3x﹣t.当t=1时,直线BC与双曲线y=的交点D的横坐标满足3x﹣1=,解得x=或﹣.∵D的横坐标在0到1之间,∴x=.∴.(2)解:∵A(t,0),C(t,2t),∴直线AC的解析式为x=t.∴直线AC与双曲线y=的交点E的纵坐标为.AE=.∵S△ABE=,∴当S△ABE=时,t=2.(负解舍去)∴BC所在直线的解析式为y=3x﹣2,双曲线解析式为y=,解得D点坐标为(1,1),∴E为.∴S△ADE=.(3)解:直线BC与双曲线y=的交点D的横坐标满足3x﹣t=.解得x=(舍去负解).∴D点坐标.又∵双曲线y=与AC的交点E坐标为,∴S△DAB﹣S△BDE=S△ABE﹣S△ADE=,又S△DAB﹣S△BDE=,∴,解得t=3.(舍去t=0)25.定义:如果一个直角三角形的两条直角边的比为1:2,那么这个三角形叫做“半正切三角形”.(1)如图①,正方形网格中,已知格点A,B,在格点C,D,E,F中,与A,B能构成“半正切三角形”的是点C,F;(2)如图②,△ABC(BC<AC)为“半正切三角形”,点M在斜边AB上,点D在边AC上,将射线MD绕点M逆时针旋转90°,所得射线交边BC于点E,连接DE.①小彤发现:若M为斜边AB的中点,则△DEM一定为“半正切三角形”.请判断“小彤发现”是否正确?并说明理由;②连接CM,当∠BMC=45°时,求tan∠DEM的值.【分析】(1)按照“半正切三角形”的条件,分别求解即可;(2)连接CM,PE⊥PF,证明E、M、D、C四点共圆,即可求解;(3)作MG⊥AC于G,MH⊥BC于H,由旋转可知∠DME=90°,证,证明△BHM∽△BCA,得出HM=2BH,.过点C作CR⊥AB交AB于点R,证△BRC也为“半正切三角形”,证△BMH也是“半正切三角形”.设BR=x,则MR=CR=2x,,BM=3x,在Rt△BHM中,.则.即可得出答案.解:(1)Rt△ABC中,BC=2,AC=4,∴BC=AC,∴Rt△ABC为“半正切三角形”;∵AF==,AB==2,BF==5,∴AF2+AB2=BF2,AF=AB,∴△ABF是直角三角形,∴Rt△ABF为“半正切三角形”.同理得:D、E不是“半正切三角形”.故答案为:C,F.(2)①“小彤发现”正确,理由如下:连接CM,如图②,∵P为斜边AB的中点,∴CM=AB=AM,∴∠MCA=∠A,由旋转的性质得:∠DME=∠C=90°,∴E、M、D、C四点共圆,∴∠MCA=∠DEM=∠A,∴tan∠DEM==tan A==,∴△DEM为“半正切三角形”.(3)作MG⊥AC于G,MH⊥BC于H,如图③:则∠MGD=∠MHE=90°,四边形MGCH是矩形,MH∥AC,MG∥BC,∴∠GMH=90°,MH=GC,CH=MG,由旋转可知∠DME=90°,∴∠DME=∠GMH,∴∠DMG=∠EMH,∴△DMG∽△EMH,∴=∴,∵MH∥AC,∴△BHM∽△BCA,==2,∴HM=2BH,∴.过点C作CR⊥AB交AB于点R,则∠BCR+∠B=∠A+∠B=90°,∴∠BCR=∠A,∴tan∠BCR=tan A==,∴△BRC也为“半正切三角形”,∵∠BMC=45°,∴△MCR是等腰直角三角形,∴MR=CR,∵∠CRB=∠MHB=90°,∠B=∠B,∴△CRB∽△MHB,∴△BMH也是“半正切三角形”.设BR=x,则MR=CR=2x,,BM=3x,在Rt△BHM中,.则.∴tan∠DEM===.26.已知平面直角坐标系xOy中,直线y=kx﹣k+1与抛物线L:y=ax2﹣2ax+a(a>0)相交于A,B两点(点A在点B的左侧),与抛物线L的对称轴相交于点C,记抛物线L 的顶点为D,过点A作AE⊥x轴,垂足为E.(1)若AB∥x轴,AB=2,求a的值;(2)当k=1,抛物线L与y轴交于(0,2)时,设射线AE与直线BD相交于P点,求的值;(3)延长AE,BD相交于点F,求证:四边形ECDF是平行四边形.【分析】(1)由AB∥x轴,可得k=0,可求点A,点B坐标,代入解析式可求a的值;(2)先求出直线和抛物线解析式,再求出点A,点B,点P,点C,点D坐标,即可求解;(3)设点A坐标为[x1,a(x1﹣1)2],B点坐标为[x2,a(x2﹣1)2],DB所在直线解析式为:y=k1(x﹣1),由题意可求CD=1,先求出点F坐标,可求EF=1,可得结论.解:(1)∵AB∥x轴,∴k=0,即直线解析式为y=1,∵AB=2且抛物线L对称轴为x=1,∴x A=0,x B=2.∴点A坐标为(0,1),点B坐标为(2,1),∴1=0+0+a,∴a=1;(2)∵k=1,∴直线解析式为y=x;∵抛物线L与y轴交于(0,2)时,∴a=2,∴抛物线L解析式为y=2x2﹣4x+2=2(x﹣1)2,∴点D(1,0)联立方程组可得∴或,∴直线y=x与抛物线y=2x2﹣4x+2交点坐标为,B(2,2),∵直线y=x与抛物线L的对称轴相交于点C,∴点C坐标(1,1),∴CD=1,设直线BD解析式为y=mx+n,过B(2,2),D(1,0),∴∴∴直线BD解析式y=2x﹣2.∵射线AE与直线BD相交于P点,∴y=2×﹣2=﹣1,∴点P坐标为∴AP=∴=;(3)设点A坐标为[x1,a(x1﹣1)2],B点坐标为[x2,a(x2﹣1)2],DB所在直线解析式为:y=k1(x﹣1).将点B代入DB解析式中得:k1=a(x2﹣1).∴直线DB解析式为:y=a(x2﹣1)(x﹣1).∴令x=x1,可得点F坐标为[x1,a(x1﹣1)(x2﹣1)],∵y=ax2﹣2ax+a=a(x﹣1)2,∴点D(1,0),当x=1,y=k﹣k+1=1,∴点C(1,1)∴CD=1,∵A,B为直线y=kx﹣k+1与抛物线L:y=ax2﹣2ax+a的交点,∴kx﹣k+1=ax2﹣2ax+a.设x1,x2是方程kx﹣k+1=ax2﹣2ax+a的两根,∴,.∴a(x1﹣1)(x2﹣1)=a(x1x2﹣x1﹣x2+1)=﹣1.∴EF=CD=1,又∵EF∥CD,∴四边形ECDF是平行四边形.。

2020年陕西省宝鸡市岐山县中考数学一模试卷 (解析版)

2020年陕西省宝鸡市岐山县中考数学一模试卷 (解析版)

2020年陕西省宝鸡市岐山县中考数学一模试卷一、选择题1.﹣7的绝对值是()A.7B.﹣7C.D.﹣2.把如图所示的几何体组合中的A正方体放到B正方体的上面,则下列说法正确的是()A.主视图不变B.俯视图不变C.左视图不变D.三种视图都不变3.如图,DE与△ABC的底边AB平行,OF是∠COE的角平分线,若∠B=62°,则∠1的度数为()A.54°B.59°C.62°D.64°4.已知函数y=kx(k≠0)的图象经过A(2,﹣3),则k=()A.B.C.D.5.下列运算正确的是()A.a4•a2=a8B.﹣a2=C.﹣a2+2a2=a2D.(x2)3=x5 6.如图,在△ABC中,DE∥BC,AF⊥BC,∠ADE=30°,2DE=BC,BF=3,则DF的长为()A.4B.2C.3D.37.在平面直角坐标系中,函数y=2kx(k≠0)的图象如图所示,则函数y=2kx﹣3+2k的图象大致是()A.B.C.D.8.如图,AB,BC为⊙O中异于直径的两条弦,OA交BC于点D,若∠AOC=50°,∠C =35°,则∠A的度数为()A.35°B.50°C.60°D.70°9.如图,E是矩形ABCD中AD边的中点,BE交AC于点F,△ABF的面积为2,则四边CDEF的面积为()A.4B.5C.6D.710.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x ≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x≤3内的函数最大值为()A.10B.17C.5D.2二、填空题(共4小题,每小题3分,计12分)11.最接近的整数是.12.如图,在正六边形ABCDEF中,∠CAD的度数为.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于E,F 两点,且A,C两点在x轴上,点E的坐标为(2,4),则点F的坐标为.14.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P为AD的中点,F 是边AB上不与点A,B重合的一个动点,将△APF沿PF折叠,得到△A'PF,连接BA',则△BA'F周长的最小值为.三、解答题(共11小题,计78分.解答应写出文字说明、证明过程或演算步骤)15.计算:()﹣1﹣×+(π﹣3.14)0+cos60°.16.化简:(1﹣)÷.17.如图,在△ABC中,∠BAC=90°,请用尺规作图法,作△ABC绕点A逆时针旋转45°后的△AB1C1.(不写作法,保留作图痕迹)18.如图,在△ABC中,F为BC边上一点,过点F作FD∥AC,且FD=AC,延长BC 至点E,使BF=CE,连接DE.求证:AB∥DE.19.某校为了解该校初三学生居家学习期间参加“网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加“网络自习室”自主学习的天数,并用得到的数据绘制了如图两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加“网络自习室”自主学习天数的众数为,中位数为.(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加“网络自习室”自主学习的天数不少于7天.20.如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分4层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部O,他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点A,并在点A处安装了测量器AB,在点B处测得该灯的顶点P的仰角为60°;再在OA的延长线上确定一点C,使AC=15米,在点D处测得该灯的顶点P的仰角为45°.若测量过程中测量器的高度始终为1.6米,求“天下第一灯”的高度.(≈1.414,≈1.732,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量162m3及以下,终端水价为3.80元/m3.第二阶梯:年用水量162m3一275m3(含),终端水价为4.65元/m3.第三阶梯:年用水量275m3以上,终端水价为7.18元/m3.城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为x(m3),应缴水费为y(元).(1)写出该户居民2019年的年用水量为162m3一275m3(含)的y与x之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为3的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,⊙O与Rt△ABF的边BF,AF分别交于点C,D,连接AC,CD,∠BAF=90°,点E在CF上,且∠DEC=∠BAC.(1)试判断DE与⊙O的位置关系,并说明理由.(2)若AB=AC,CE=4,EF=6,求⊙O的直径.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此拋物线的解析式.(2)点M是抛物线上的动点,设点M的横坐标为m.当∠MBA=∠BDE时,求点M 的坐标.25.【问题发现】如图1,半圆O的直径AB=10,P是半圆O上的一个动点,则△PAB面积的最大值是.【问题解决】如图2所示的是某街心花园的一角.在扇形OAB中,∠AOB=90°,OA =12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE,DE从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣7的绝对值是()A.7B.﹣7C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.解:|﹣7|=7.故选:A.2.把如图所示的几何体组合中的A正方体放到B正方体的上面,则下列说法正确的是()A.主视图不变B.俯视图不变C.左视图不变D.三种视图都不变【分析】根据三视图的定义,可得答案.解:主视图由原来的三列变成两列,故选项A错误;俯视图由原来的三列变成两列,故选项B错误;左视图没有变化,依然是两列,左边的一列有3个小正方形,右边的一列有一个小正方形,故选项C正确.故选:C.3.如图,DE与△ABC的底边AB平行,OF是∠COE的角平分线,若∠B=62°,则∠1的度数为()A.54°B.59°C.62°D.64°【分析】根据两直线平行,同位角相等可得∠B=∠COD=62°,再利用角平分线的定义可得∠1=∠COE,即可得解.解:∵DE与△ABC的底边AB平行,∴∠B=∠COD=62°,∴∠COE=180°﹣∠COD=118°,∵OF是∠COE的角平分线,∴∠1=∠COE=59°;故选:B.4.已知函数y=kx(k≠0)的图象经过A(2,﹣3),则k=()A.B.C.D.【分析】因为正比例函数y=kx的图象经过点(2,﹣3),所以2k=﹣3,解之即可解决问题.解:∵正比例函数y=kx的图象经过点(2,﹣3),∴k=﹣,∴该正比例函数的解析式为:y=﹣x.故选:C.5.下列运算正确的是()A.a4•a2=a8B.﹣a2=C.﹣a2+2a2=a2D.(x2)3=x5【分析】分别根据同底数幂的乘法法则,幂的乘方的定义,合并同类项法则以及幂的乘方的运算法则逐一判断即可.解:A.a4•a2=a6,故本选项不合题意;B.﹣a2=,运算错误,故本选项不合题意;C.﹣a2+2a2=a2,运算正确;D.(x2)3=x6,故本选项不合题意;故选:C.6.如图,在△ABC中,DE∥BC,AF⊥BC,∠ADE=30°,2DE=BC,BF=3,则DF的长为()A.4B.2C.3D.3【分析】根据平行线的性质求出∠B,根据余弦的定义求出AB,根据相似三角形的性质得到点D是AB的中点,根据直角三角形的性质解答即可.解:∵DE∥BC,∴∠B=∠ADE=30°,∵AF⊥BC,∴∠AFB=90°,∴AB==6,∵DE∥BC,∴△ADE∽△ABC,∴==,∴点D是AB的中点,在Rt△AFB中,点D是AB的中点,∴DF=AB=3,故选:D.7.在平面直角坐标系中,函数y=2kx(k≠0)的图象如图所示,则函数y=2kx﹣3+2k的图象大致是()A.B.C.D.【分析】根据正比例函数图象可得2k<0,然后再判断出﹣3+2k<0,然后可得一次函数图象经过的象限,从而可得答案.解:根据图象可得:2k<0,∴﹣3+2k<0,∴函数y=2kx﹣3+2k的图象是经过第二、三、四象限的直线,故选:C.8.如图,AB,BC为⊙O中异于直径的两条弦,OA交BC于点D,若∠AOC=50°,∠C =35°,则∠A的度数为()A.35°B.50°C.60°D.70°【分析】先根据三角形外角性质得出∠ADC度数,再由同弧所对圆周角等于圆心角的一半得出∠B度数,继而再次利用三角形外角的性质可得答案.解:∵∠C=35°,∠AOC=50°,∴∠ADC=85°,∠B=∠AOC=25°,∴∠A=∠ADC﹣∠B=85°﹣25°=60°,故选:C.9.如图,E是矩形ABCD中AD边的中点,BE交AC于点F,△ABF的面积为2,则四边CDEF的面积为()A.4B.5C.6D.7【分析】利用矩形的性质得到AD∥BC,BC=AD,再证明△AEF∽△CBF得到===,则利用三角形面积公式得到S△BCF=2S△ABF=4,S△AEF=S△ABF=1,然后利用△ADC的面积减去△AEF的面积得到四边CDEF的面积.解:∵四边形ABCD为矩形,∴AD∥BC,BC=AD,∵E是矩形ABCD中AD边的中点,∴BC=AD=2AE,∵AE∥BC,∴△AEF∽△CBF,∴===,∴S△BCF=2S△ABF=2×2=4,S△AEF=S△ABF=×2=1,∴四边CDEF的面积=2+4﹣1=5.故选:B.10.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x ≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x≤3内的函数最大值为()A.10B.17C.5D.2【分析】根据题意得出a>0,且x≤1时,y随x的增大而减小,当﹣2≤x≤0时,y的最大值为10.即当x=﹣2时,y=a2+8a+1=10,求得a=1,得到抛物线解析式为y=x2﹣2x+2,根据关于y轴对称的特征得到关于y轴对称的抛物线为y=(x+1)2+1,即可得到在﹣2≤x≤3内,当x=3时取最大值,从而求得函数在此范围内的最大值为17.解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.二、填空题(共4小题,每小题3分,计12分)11.最接近的整数是2.【分析】通过估算得出所求即可.解:∵4<5<9,∴2<<3,则最接近是2,故答案为:2.12.如图,在正六边形ABCDEF中,∠CAD的度数为30°.【分析】根据多边形的内角和公式即可求出每个内角的度数,进而得出∠BAD的度数;再根据等腰三角形的性质即可得出∠BAC的度数,再根据角的和差关系计算即可.解:正六边形的每个内角为:,∴,∵六边形是轴对称图形,∴,∴∠CAD=∠BAD﹣∠BAC=30°.故答案为:30°.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于E,F 两点,且A,C两点在x轴上,点E的坐标为(2,4),则点F的坐标为(6,).【分析】根据待定系数法即可求得反比例函数的解析式,结合正方形的性质,再利用反比例函数图象上点的坐标特征可求出点F的坐标.解:设反比例函数的解析式为y=,∵反比例函数的图象经过点E(2,4),∴k=2×4=8,∵正方形ABEC中,AC=EC,∴A(6,0),∴F点的横坐标为6,把x=6代入y=得y=,∴F(6,),故答案为(6,).14.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P为AD的中点,F 是边AB上不与点A,B重合的一个动点,将△APF沿PF折叠,得到△A'PF,连接BA',则△BA'F周长的最小值为2+2.【分析】△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,推出当BA′的周长最小时,△BFA′的周长最小,由此即可解决问题.解:如图,作BH⊥AD于H,连接BP.∵PA=8,AH=5,∴PH=8﹣5=3,∵BH=5,∴PB===2,由翻折可知:PA=PA′=8,FA=FA′,∴△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,∴当BA′的周长最小时,△BFA′的周长最小,∵BA′≥PB﹣PA′,∴BA′≥2﹣8,∴BA′的最小值为2﹣8,∴△BFA′的周长的最小值为10+2﹣8=2+2.故答案为:2+2.三、解答题(共11小题,计78分.解答应写出文字说明、证明过程或演算步骤)15.计算:()﹣1﹣×+(π﹣3.14)0+cos60°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和零指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式=2﹣2×+1+=2﹣4+1+=﹣.16.化简:(1﹣)÷.【分析】根据分式的减法和除法可以解答本题.解:(1﹣)÷===a.17.如图,在△ABC中,∠BAC=90°,请用尺规作图法,作△ABC绕点A逆时针旋转45°后的△AB1C1.(不写作法,保留作图痕迹)【分析】先作∠BAC的平分线,在平分线上截取AB1=AB,分别以A,B1为圆心,AC,BC的长为半径画弧,两弧交于点C1,连接AC1,B1C1,则△AB1C1即为△ABC绕点A 逆时针旋转45°后的图形.解:如图,△AB1C1即为所求.18.如图,在△ABC中,F为BC边上一点,过点F作FD∥AC,且FD=AC,延长BC 至点E,使BF=CE,连接DE.求证:AB∥DE.【分析】根据全等三角形的判定定理SAS证得△ABC≌△DEF;然后由全等三角形的对应角相等证得该结论.【解答】证明:∵AC∥FD,∴∠ACB=∠DFE,又∵CE=FB,∴CE+EB=FB+EB,即CB=FE;∵AC=FD,∴△ABC≌△DEF(SAS),∴∠B=∠E,∴AB∥DE.19.某校为了解该校初三学生居家学习期间参加“网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加“网络自习室”自主学习的天数,并用得到的数据绘制了如图两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加“网络自习室”自主学习天数的众数为5天,中位数为6天.(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加“网络自习室”自主学习的天数不少于7天.【分析】(1)根据学习9天和9天以上的人数和所占的百分比可以求得本次抽查的人数,然后根据条形统计图中的数据,即可计算出学习8天的学生人数,从而可以将条形统计图补充完整;(2)根据条形统计图中的数据,可以得到众数和中位数;(3)根据统计图中的数据,可以计算出在这两周内全校初三年级可能有多少名学生参加“网络自习室”自主学习的天数不少于7天.解:(1)本次抽查的人数为:3÷5%=60,学习8天的学生有:60﹣24﹣12﹣15﹣3=6(人),补全的条形统计图,如右图所示;(2)由条形统计图可得,部分学生在两周内参加“网络自习室”自主学习天数的众数为5天,中位数为6天,故答案为:5天,6天;(3)1500×=600(名),答:在这两周内全校初三年级可能有600名学生参加“网络自习室”自主学习的天数不少于7天.20.如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分4层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部O,他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点A,并在点A处安装了测量器AB,在点B处测得该灯的顶点P的仰角为60°;再在OA的延长线上确定一点C,使AC=15米,在点D处测得该灯的顶点P的仰角为45°.若测量过程中测量器的高度始终为1.6米,求“天下第一灯”的高度.(≈1.414,≈1.732,最后结果取整数)【分析】此题求的是线段OP的长度,所以根据图示,需要先求得OO′、O′P的长度;通过解直角△PO′B得到O′B=O′P;通过解直角△PO′D得到O′D=O′P,所以BD=O′D﹣O′B=(1﹣)O′P=15米,由此求得线段O′P的长度.解:根据题意,得BD⊥OP于点O′,∠PBO′=60°,∠PDO′=45°,BD=AC=15米,OO′=AB=1.6米.在直角△PO′B中,∠PO′B=90°,∠PBO′=60°,∴O′B=O′P.在直角△PO′D中,∠PO′D=90°,∠PDO′=45°,∴O′D=O′P.∴BD=O′D﹣O′B=(1﹣)O′P=15米,∴O′P=≈35.49(米).∴OP=OO′+O′P=37.09米≈37米.答:“天下第一灯”的高度约为37米.21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量162m3及以下,终端水价为3.80元/m3.第二阶梯:年用水量162m3一275m3(含),终端水价为4.65元/m3.第三阶梯:年用水量275m3以上,终端水价为7.18元/m3.城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为x(m3),应缴水费为y(元).(1)写出该户居民2019年的年用水量为162m3一275m3(含)的y与x之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【分析】(1)根据题意即可得出该户居民2019年的年用水量为162m3一275m3(含)的y与x之间的函数表达式;(2)根据(1)的结论,结合自变量的范围分情况讨论解答即可.解:(1)由题意得:y=3.80×162+4.65(x﹣162),即y=4.65x﹣137.7;(2)由(1)知,当162≤x≤275时,y=4.65x﹣137.7,∴当x=275时,y=1141.05,∵y=1141.05<1320.55,∴该户居民2019年的年用水量在275m3以上,终端水价为7.18元/m3.∵当x>275时,y=1141.05+7.18(x﹣275),即y=7.18x﹣833.45,∴7.18x﹣833.45=1320.55,解得x=300.答:该户居民2019年的年用水量为300m3.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为3的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【分析】(1)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得;(2)先找到数字和为3的倍数和5的倍数的结果数,再根据概率公式计算,比较大小即可得出答案.解:(1)列表如下:3456 3(3,3)(4,3)(5,3)(6,3)4(3,4)(4,4)(5,4)(6,4)5(3,5)(4,5)(5,5)(6,5)6(3,6)(4,6)(5,6)(6,6)由表可知共有16种等可能结果,其中两人抽取相同数字的有4种结果,所以两人抽取相同数字的概率为=;(2)不公平,从上表中可以看出,两人抽取数字和为3的倍数的结果有6种,两人抽取数字和为5的倍数的结果有3种,所以甲获胜的概率为,乙获胜的概率为,∵>,∴甲获胜的概率大,游戏不公平.23.如图,⊙O与Rt△ABF的边BF,AF分别交于点C,D,连接AC,CD,∠BAF=90°,点E在CF上,且∠DEC=∠BAC.(1)试判断DE与⊙O的位置关系,并说明理由.(2)若AB=AC,CE=4,EF=6,求⊙O的直径.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的性质得到DE=EF=3,根据勾股定理得到CD,根据相似三角形的性质即可得到结论.解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=6,∵CE=4,∠BCD=90°,∴∠DCE=90°,∴CD==2,∵∠BDE=90°,CD⊥BE,∴△CDE∽△CBD,∴=,∴BD==3,∴⊙O的直径=3.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此拋物线的解析式.(2)点M是抛物线上的动点,设点M的横坐标为m.当∠MBA=∠BDE时,求点M 的坐标.【分析】(1)利用待定系数法即可解决问题;(2)根据tan∠MBA==,tan∠BDE=,由∠MBA=∠BDE,构建方程即可解决问题.解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE=,∵∠MBA=∠BDE,∴,当点M在x轴上方时,,解得m=﹣或3(舍去),∴M(﹣,),当点M在x轴下方时,,解得m=﹣或m=3(舍去),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣).25.【问题发现】如图1,半圆O的直径AB=10,P是半圆O上的一个动点,则△PAB面积的最大值是25.【问题解决】如图2所示的是某街心花园的一角.在扇形OAB中,∠AOB=90°,OA =12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE,DE从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.【分析】【问题发现】如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O=r=5,求出此时△P'AB的面积即可;【问题解决】①作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE的面积最大,可求出其值;作E′H⊥OB,垂足为H,证△COD∽△OHE',即可求出E′H的长,即可写出结论;②铺设小路CE和DE的总造价为200CE+400DE=200(CE+2DE),连接OE,延长OB到点Q,使BQ=OB=12,连接EQ,推出QE=2DE,所以CE+2DE=CE+QE,问题转化为求CE+QE的最小值,连接CQ,交弧AB于点E′,此时CE+QE取得最小值为CQ,可求出CQ的长度及总造价最小值;作E′H⊥OB,垂足为H,连接OE′,设E′H=x,则QH=3x,由勾股定理可求出x的值,即出口E距直线OB的距离.解:【问题发现】如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O =r=5,此时△PAB的面积最大值∴S△P'AB=×10×5=25,故答案为:25;【问题解决】①如图2﹣1,作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE的面积最大.∵OA=OB=12,AC=4,点D为OB的中点,∴OC=8,OD=6,在Rt△COD中,CD=10,OG=4.8,∴GE′=12﹣4.8=7.2,∴四边形CODE面积的最大值为S△CDO+S△CDE′=×6×8+×10×7.2=60;作E′H⊥OB,垂足为H,∵∠E'OH+∠OE'H=90°,∠E'OH+∠ODC=90°,∴∠OE'H=∠ODC,又∵∠COD=∠E'HO=90°,∴△COD∽△OHE',∴,∴,∴E′H=7.2;∴出口E设在距直线OB的7.2米处可以使四边形CODE的面积最大为60平方米;②铺设小路CE和DE的总造价为200CE+400DE=200(CE+2DE),如图2﹣2,连接OE,延长OB到点Q,使BQ=OB=12,连接EQ,在△EOD与△QOE中,∠EOD=∠QOE,∴,∴△EOD∽△QOE,故QE=2DE,∴CE+2DE=CE+QE,问题转化为求CE+QE的最小值,连接CQ,交弧AB于点E′,此时CE+QE取得最小值为CQ,在Rt△COQ中,CO=8,OQ=24,∴CQ=8,故总造价的最小值为1600,作E′H⊥OB,垂足为H,连接OE′,设E′H=x,则QH=3x,∵在Rt△E′OH中,OH2+HE'2=OE'2,∴(24﹣3x)2+x2=122,解得,x1=,x2=(舍去),∴总造价的最小值为1600元,出口E距直线OB的距离为.。

2020年广东省广州市增城区中考数学一模试卷一卷

2020年广东省广州市增城区中考数学一模试卷一卷

2020年广东省广州市增城区中考数学一模试卷一卷一.选择题(共10小题)1.下面各数中,比﹣2小的数是()A.﹣1B.﹣3C.0D.22.如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A.B.C.D.3.下列运算正确的是()A.2m3+m3=3m6B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2 4.如图,AB∥CD,AD=CD,∠1=50°,则∠2的度数是()A.55°B.60°C.65°D.70°5.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30B.25和29C.28和30D.28和296.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=(k<0)的图象上.则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y1>y3>y28.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.9.函数y=ax﹣2(a≠0)与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2020次操作时,余下纸片的面积为()A.22019B.C.D.二.填空题(共6小题)11.如图,P A、PB是⊙O的切线,若∠APO=25°,则∠BP A=.12.分解因式:4x2y﹣4xy+y=.13.函数y=的自变量x的取值范围是.14.元朝朱世杰的(算学启蒙)一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”运用数学知识求得:良马行日追上驽马.15.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.16.如图,正方形ABCD的边长是3,BP=CQ,连接AQ、DP交于点O,并分别与边CD、BC交于点F、E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD<S四边;①当BP=1时,tan∠OAE=,其中正确结论的是.(请将正确结论形OECF的序号填写在横线上)一.解答题(共9小题)1.解不等式组:,并把解集在数轴上表示出来.2.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.3.已知A=().(1)化简A;(2)已知x2=4x+5,求A的值.4.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.5.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?6.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)点P是x轴上的一动点,试确定点P并求出它的坐标,使P A+PB最小.7.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.8.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.9.如图,在ABC中,∠A=90°,AB=3,AC=4,点M、Q分别是边AB、BC上的动点(点M不与A、B重合),且MQ⊥BC,过点M作MN∥BC.交AC于点N,连接NQ,设BQ=x.(1)是否存在一点Q,使得四边形BMNQ为平行四边形,并说明理由;(2)当BM=2时,求x的值;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.。

2020年江苏省徐州市中考数学一模试卷及解析

2020年江苏省徐州市中考数学一模试卷及解析

2020年江苏省徐州市中考一模试卷数学试卷一、选择题(本大题共8小题,共24分)1. −12的相反数是( ) A. −2 B. 2 C. −12 D. 12 2. 下列运算正确的是( )A. (2a)3=6a 3B. 2a 2−a 2=2C. √8−√2=√2D. a 2⋅a 3=a 63. 某公司以81710000元的价格中标我市城市轨道交通6号线工程,81710000科学记数法可表示为( )A. 8.171×106B. 81.71×106C. 8.171×107D. 0.8171×1084. 下列事件中,是必然事件的是( )A. 掷一枚均匀的骰子,骰子停止正面朝上的数字大于4B. 13个人中至少有两个人出生月份相同C. 车辆随机到达一个路口,遇到红灯D. 明天一定会下雨5. 如图是由5个大小相同的正方体组合而成的几何体,其左视图是( )A. B. C. D.6. 若关于x 的一元二次方程x 2−2x +m =0有两个不相等的实数根,则m 的取值范围是( )A. m >1B. m >−1C. m <1D. m <−17. 二次函数y =ax 2+bx +c 的图象如图所示,它的对称轴是经过(−1,0)且平行于y 轴的直线,当m 取任意实数时,am 2+bm 与a −b 的大小关系是( )A. am 2+bm >a −bB. am 2+bm <a −bC. am 2+bm ≥a −bD. am 2+bm ≤a −b8. 如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,如果点A 的坐标为(1,0),那么点B 2019的坐标为( )A. (1,1)B. (0,√2)C. (−√2,0)D. (−1,1)二、填空题(本大题共10小题,共30分)9. 分解因式:a 3−a =______.10. 若{x +y =53x −5y =7,则x −y =______. 11. 已知m +n =mn ,则(m −1)(n −1)=______.12. 关于x 的一元二次方程x 2+mx +3=0的一个根是1,则m 的值为______.13. 点A(2,6),点B(−3,n)均在反比例函数y =kx 的图象上,则n =______.14. 如图,AD 、CE 分别为△ABC 的中线与角平分线,若AB =AC ,∠CAD =20°,则∠ACE的度数是______.15. 抛物线y =x 2−1向上平移3个单位长度后得到的抛物线表达式为______.16. 如图,△ABC 内接于半径为2的⊙O ,且∠A =60°,连接OB 、OC ,则边BC =______.17. 一个圆锥的主视图是边长为6cm 的正三角形,则这个圆锥的侧面积等于______.18. 已知点C 在反比例函数y =k x 的图象上,点D 在x 轴正半轴上,∠COD =60°,OB平分∠COD 交反比例函数y =k x 的图象于点B ,过点B 作AB//x 轴,交OC 于点A ,若△AOB 的面积为2,则k 的值为______.三、计算题(本大题共2小题,共18分)19. 计算:(1)|−3|+(√3−1)0+(12)−1−√16(2)x+2x 2÷(1+2x )20. 如图(1)所示,在A ,B 两地间有一车站C ,一辆汽车从A 地出发经C 站匀速驶往B地.如图(2)是汽车行驶时离C 站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a =______km ,AB 两地的距离为______km ;(2)求线段PM 、MN 所表示的y 与x 之间的函数表达式;(3)求行驶时间x 在什么范围时,小汽车离车站C 的路程不超过60千米?四、解答题(本大题共8小题,共68分)21.(1)解方程:x2+2x−3=0;(2)解不等式组:{2x>3−x4x−2<x+422.徐州具有丰富的旅游资源,小明、小丽、小红利用周日到徐州游玩,每人随机从云龙湖、龟山中选择一个景点.请用列表或画树状图的方法,求小明、小丽,小红3人恰好同到云龙湖游玩的概率.23.24.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查的样本容量为______;(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为______度;(3)若该超市一周内有3000名购买者,请你估计一周内分别使用A和B两种支付方式的购买者人数.26.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.27.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金980元;若购买甲种书柜4个,乙种书柜2个,共需资金1080元.甲、乙两种书柜每个的价格分别是多少元?28.据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:√2≈1.41,√3≈1.73)29.已知:如图①,矩形ABCD中,AB=4,AD=6,点P是AD的中点,点F是AB上的动点,PE⊥PF交BC所在直线于点E,连接EF.(1)EF的最小值是为______;(2)点F从A点向B点运动的过程中,∠PFE的大小是否改变?请说明理由;(3)如图②延长FP交CD延长线于点M,连接EM、Q点是EM的中点.①当AF=1时,求PQ的长;②请直接写出点F从A点运动到B点时,Q点经过的路径长为______.30.已知,如图,二次函数y=−x2+bx+c的图象经过点A(−1,0),B(3,0),点E为二次函数第一象限内抛物线上一动点,EH⊥x轴于点H,交直线BC于点F,以EF为直径的圆⊙M与BC交于点R.(1)b=______;c=______;(2)当△EFR周长最大时.①求此时点E点坐标及△EFR周长;②点P为⊙M上一动点,连接BP,点Q为BP的中点,连接HQ,直接写出HQ的最大值为______;(3)连接CE、BE,当△ERC∽△BRE时,求出点E点坐标.答案和解析1.【答案】D【解析】【分析】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.【解答】解:根据相反数的含义,可得−12的相反数是:−(−12)=12. 故选:D .2.【答案】C【解析】解:A.(2a)3=8a 3,此选项错误;B .2a 2−a 2=a 2,此选项错误;C .√8−√2=2√2−√2=√2,此选项正确;D .a 2⋅a 3=a 5,此选项错误;故选:C .根据幂的乘方与积的乘方,合并同类项法则、二次根式的加减运算法则和同底数幂的乘法法则逐一计算可得.本题主要考查二次根式的加减法,解题的关键是掌握幂的乘方与积的乘方,合并同类项法则、二次根式的加减运算法则和同底数幂的乘法法则.3.【答案】C【解析】解:81710000=8.171×107.故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.【答案】B【解析】【分析】本题考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A.掷一枚均匀的骰子,骰子停止正面朝上的数字大于4;不符合题意;B .13个人中至少有两个人出生月份相同,符合题意;C .车辆随机到达一个路口,遇到红灯,不符合题意;D .明天一定会下雨,不符合题意.5.【答案】B【解析】解:如图所示几何体的左视图是:故选:B.从左面看:共有1列,有3个小正方形;据此可画出图形.本题考查了简单组合体的三视图.用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.6.【答案】C【解析】解:∵关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,∴△=(−2)2−4m=4−4m>0,解得:m<1.故选:C.根据方程有两个不相等的实数根结合根的判别式即可得出△=4−4m>0,解之即可得出结论.本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.7.【答案】D【解析】解:观察图象得:二次函数y=ax2+bx+c的图象的开口向下,对称轴为x=−1,所以当x=−1时有最大值y=a−b+c,∵当x=m时,y=am2+bm+c,∴am2+bm+c≤a−b+c,∴am2+bm≤a−b,故选:D.根据函数的图象确定开口方向和最大值,然后确定答案即可.本题考查了二次函数的图象及二次函数的性质的知识,解题的关键是根据题意确定最值,难度不大.8.【答案】C【解析】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=√2,由旋转得:OB=OB1=OB2=OB3=⋯=√2,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=⋯=45°,∴B1(0,√2),B2(−1,1),B3(−√2,0),…,发现是8次一循环,所以2019÷8=252 (3)∴点B2019的坐标为(−√2,0)根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.9.【答案】a(a+1)(a−1)【解析】解:a3−a,=a(a2−1),=a(a+1)(a−1).故答案为:a(a+1)(a−1).先提取公因式a,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.10.【答案】3【解析】解:{x+y=5①3x−5y=7②,①+②得:4x−4y=12,方程两边同时除以4得:x−y=3,故答案为:3.利用加减消元法解之即可.本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.11.【答案】1【解析】解:(m−1)(n−1)=mn−(m+n)+1,∵m+n=mn,∴(m−1)(n−1)=mn−(m+n)+1=1,故答案为1.先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.12.【答案】−4【解析】解:把x=1代入得:4+m=0解得:m=−4,故答案为:−4.把x=1代入方程得到一个关于m的方程,求出方程的解即可.本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握,能得到方程4+m=0是解此题的关键.13.【答案】−4【解析】解:把A(2,6)代入y=kx,得k=2×6=12,所以反比例函数解析式为y=12x,把B(−3,n)代入y=12x,得−3n=12,解得n=−4,故答案为−4.先把A点坐标代入y=kx 求出k,从而得到反比例函数解析式为y=12x,再把点B(−3,n)代入即可求得n.本题考查了反比例函数图象上点的在特征,图象上点的坐标适合解析式.14.【答案】35°【解析】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°−∠CAB)÷2=70°.∵CE是△ABC的角平分线,∴∠ACE=35°.故答案为:35°.先根据等腰三角形的性质以及三角形内角和定理,求出∠CAB=2∠CAD=40°,∠B=∠ACB=70°.再利用角平分线定义即可得出∠ACE=35°.本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB= 70°是解题的关键.15.【答案】y=x2+2【解析】解:将抛物线y=x2−1向上平移3个单位长度后,得到的抛物线的表达式为y=x2−1+3,即:y=x2+2,故答案为:y=x2+2.根据平移的规律:左加右减,上加下减可得函数解析式.此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.16.【答案】2√3【解析】解:过点O作OD⊥BC于点D,∵△ABC内接于半径为2的⊙O,且∠A=60°,∴∠BOD=∠COD=60°,CO=BO=2,∴DC=CO⋅sin60°=√3,∴BC=2√3.故答案为:2√3.直接利用垂径定理以及圆周角定理得出DC的长进而得出答案.此题主要考查了三角形的外接圆与外心,正确运用垂径定理是解题关键.17.【答案】18πcm2【解析】解:根据题意得圆锥的母线长为6cm,底面圆的半径为3cm,所以这个圆锥的侧面积=12×6×2π×3=18π(cm2).故答案为:18πcm2.根据视图的意义得到圆锥的母线长为6cm,底面圆的半径为3cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.【答案】6【解析】解:∵∠COD=60°,OB平分∠COD交反比例函数y=kx的图象于点B,∴∠BOD=30°,∴直线OC为y=√3x,直线OB为y=√33x,∴设B(m,√33m),则A(13m,√33m),∵AB//x轴,∴AB=m−13m=23m,∵△AOB的面积为2,∴12⋅23m⋅√33m=2,∴√33m2=6,∵点B(m,√33m)在反比例函数y=kx的图象上,∴k=m⋅√33m=√33m2,∴k=6,故答案为6.根据题意设B(m,√33m),则A(13m,√33m),然后根据AOB的面积为2,列出12⋅23m⋅√33m=2,得到√33m2=6,即可求得k的值.此题考查了反比例函数的系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识.注意根据三角形的面积列出方程是关键.19.【答案】解:(1)|−3|+(√3−1)0+(12)−1−√16=3+1+2−4=2;(2)x+2x2÷(1+2x)=x+2x2÷x+2x=x+2x2⋅xx+2=1x.【解析】(1)根据绝对值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的加法和除法可以解答本题.本题考查分式的混合运算、绝对值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.【答案】(1)240,390 ;(2)由图象可得,A与C之间的距离为150km,汽车的速度1502.5=60km/ℎ,PM所表示的函数关系式为:y1=150−60x,MN所表示的函数关系式为:y2=60x−150;(3)由y1=60得150−60x=60,解得:x=1.5,由y2=60得60x−150=60,解得:x=3.5,由图象可知当行驶时间满足:1.5ℎ≤x≤3.5ℎ,小汽车离车站C的路程不超过60千米.【解析】解:(1)由题意和图象可得,a=1502.5×4=240千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)见答案;(3)见答案.(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.21.【答案】解:(1)x2+2x−3=0,(x+3)(x−1)=0,∴x+3=0或x−1=0,∴x1=−3,x2=1;(2){2x>3−x ①4x−2<x+4 ②由①得,x>1,由②得,x<2,所以不等式组的解集为1<x<2.【解析】(1)利用因式分解法解方程即可;(2)先求出各个不等式的解集,再求出这些解集的公共部分即可.本题考查了解一元二次方程,利用因式分解解法一元二次方程的关键是对方程因式分解将次转化成两个一元一次方程;也考查了解一元一次不等式组.22.【答案】解:如图所示,共有8种可能的结果.小明,小丽,小红三人恰好同到云龙湖游玩的结果有1种,小明,小丽,小红三人恰好同到云龙湖游玩的概率是P=18【解析】本题解题关键是每人有两种.小丽有两种选择,小丽,小红也各有两种选择,依题意可列树状图,由树状图可得出本题答案.本题是典型的概率问题,我们首先认真分析题目,然后根据题意可列表和画树状图,然后结果就显而易见了.23.【答案】(1)200;(2)144;(3)A种支付方式的购买者人数为:3000×80200=1200,B种支付方式的购买者人数为:3000×30%=900,答:一周内分别使用A和B两种支付方式的购买者人数为1200、900.【解析】解:(1)本次调查的样本容量为:20÷10%=200,故答案为:200;(2)B种支付方式的人数为:200×30%=60,C种支付方式的人数为:200×20%=40,补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×80200=144°,故答案为:144;(3)见答案.【分析】(1)根据D种支付方式的人数和所占的百分比可以求得样本容量;(2)根据(1)中的答案和统计图中的数据可以求得B和C种支付方式的人数,从而可以将条形统计图补充完整,再根据统计图中的数据可以计算出在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以估计一周内分别使用A和B两种支付方式的购买者人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AF=CE,∴OE=OF,在△BEO和△DFO中,{OB=OD∠BOE=∠DOF OE=OF,∴△BEO≌△DFO,∴BE=DF.【解析】只要证明△BEO≌△DFO即可;本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:{2x +3y =9804x +2y =1080, 解之得:{x =160y =220, 答:甲种书柜单价为160元,乙种书柜的单价为220元.【解析】设甲种书柜单价为x 元,乙种书柜的单价为y 元,根据:购买甲种书柜2个、乙种书柜3个,共需资金980元;若购买甲种书柜4个,乙种书柜2个,共需资金1080元列出方程组求解即可.本题主要考查二元一次方程组的应用,根据题意准确抓住相等关系是解题的关键. 26.【答案】解:由题意得:∠DCA =60°,∠DCB =45°,在Rt △CDB 中,tan ∠DCB =DB DC =DB 200=1,解得:DB =200,在Rt △CDA 中,tan ∠DCA =DA DC =DA 200=√3,解得:DA =200√3,∴AB =DA −DB =200√3−200≈146米,轿车速度v =AB t =14610=14.6<16,答:此车没有超过了该路段16m/s 的限制速度.【解析】根据直角三角形的性质和三角函数得出DB ,DA ,进而解答即可.本题考查了解直角三角形的应用−方向角问题,解答本题的关键是利用三角函数求出AD 与BD 的长度,难度一般.27.【答案】解:(1)5(2)∠PFE 的大小不改变,理由如下:作EG ⊥AD 于G ,如图2所示:则EG =CD =4,∵PE ⊥PF ,∴∠EPF =90°,∴∠APF +∠GPE =90°,∵∠APF +∠AFP =90°,∴∠AFP =∠GPE ,又∵∠A =∠EPF =90°,∴△APF∽△GEP , ∴PE PF =EG PA =43,∴tan ∠PFE =PE PF =43,∴∠PFE 的大小不改变;(3)①如图,∵∠ADC =90°,∴∠PDM =90°,在△APF 和△DPM 中,{∠A =∠PDM PA =PD∠APF =∠DPM ,∴△APF≌△DPM(ASA),∴AF =DM =1,PF =FM ,∴CM =4+1=5,∵PE ⊥PF ,∴PE 垂直平分FM ,∴EF =EM ,设CE =x ,则BE =6−x ,由勾股定理得:EF 2=bf 2+BE 2=32+(6−x)2,EM 2=CE 2+CM 2=x 2+52,∴32+(6−x)2=x 2+52解得:x =53, ∴CE =53,EM =√(53)2+52=5√103, ∵∠EPF =90°,Q 点是EM 的中点,∴PQ =12EM =5√106;②103【解析】解:(1)当PF 和PE 最短时,EF 有最小值,此时点F 与A 重合,如图1所示:则四边形PABE 是矩形,∴PE =AB =4,∵四边形ABCD 是矩形,∴BC =AD =6,CD =AB =4,∠A =∠ADC =90°,∵点P 是AD 的中点,∴PA =3,即PF =3,由勾股定理得:EF =√PF 2+PE 2=√32+42=5,即EF 的最小值为5; 故答案为:5;(2)①见答案②如图③中,点Q的运动轨迹是线段QQ 1.作QH ⊥AD 于H .当点F 与A 重合时,点Q 是矩形CDPE 对角线DE 的中点,则QH =2,DH =32,当点F 与B 重合时,点Q 1在AD 的延长线上,设BE 1=M 1E 1=m ,在Rt △CM 1E 1中,m 2=(m −6)2+82,解得:m =253, ∴CE 1=253−6=73,∴DQ 1=12CE 1=76,∴HQ 1=32+76=83, 在Rt △HQQ 1中,QQ 1=√22+(83)2=103, ∴点P 的运动路径为103;故答案为:103.(1)当PF 和PE 最短时,EF 有最小值,此时点F 与A 重合,则四边形PABE 是矩形,得出PE =AB =4,由矩形的性质得出BC =AD =6,CD =AB =4,∠A =∠ADC =90°,由勾股定理求出EF 即可;(2)∠PFE 的大小不改变,作EG ⊥AD 于G ,则EG =CD =4,证明△APF∽△GEP ,得出PE PF =EG PA =43,求出tan ∠PFE =PE PF =43即可; (3)①证明△APF≌△DPM ,得出AF =DM =1,PF =FM ,求出CM =5,由线段垂直平分线的性质得出EF =EM ,设CE =x ,则BE =6−x ,由勾股定理得出32+(6−x)2=x 2+52,求出CE =53,由勾股定理求出EM 的长,再由直角三角形斜边上的中线性质即可得出结果;②点Q 的运动轨迹是线段QQ 1.作QH ⊥AD 于H.当点F 与A 重合时,点Q 是矩形CDPE 对角线DE 的中点,则QH =2,DH =32,当点F 与B 重合时,点Q 1在AD 的延长线上,设BE 1=M 1E 1=m ,在Rt △CM 1E 1中,由勾股定理得出m 2=(m −6)2+82,求出m =253,得出CE 1=73,DQ 1=12CE 1=76,求出HQ 1=83,然后在Rt △HQQ 1中,由勾股定理求出QQ 1的长即可.本题是四边形综合题,考查了全等三角形的判定和性质、矩形的性质、相似三角形的判定与性质、线段的垂直平分线的性质、直角三角形的斜边中线性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题. 28.【答案】(1)2 3(2)①∵△ERF ∽△BCO∴△ERF 为等腰直角三角形当△EFR 周长最大时,EF 最长设E(m,−m 2+2m +3),F(m,−m +3)∴EF =−m 2+3m当m =32时EF =94,E(32,154) 在Rt △EFR 中,ER =FR =98√2△EFR 的周长为94+94√2② 316√65+916(3)若△ERC∽△BRE则∠CER =∠EBR∴∠CEB =90°设E(m,−m 2+2m +3),如图,过点B 和E 分别作平行于x 轴、y 轴的直线,垂足为N ,直线交于点G∵△CNE∽△EGB∴NE BG =CN EG∴m −m 2+2m +3=−m 2+3m 3−m解得m 1=1+√52,m 2=1−√52(舍去)∴E(1+√52,5+√52)【解析】解:(1)解析式为y =−(x +1)(x −3)=−x 2+2x +3∴b =2,c =3(2)见答案②如图,连接OP ,点H(32,0)为OB 的中点∵Q 为BP 中点∴HQ//OP ,HQ =12OP∵EF =94,FH =32∴M(32,218) ∴OM =BM =38√65 ∵OP ≤OM +PM∴OP ≤38√65+98∴HQ ≤316√65+916∴HQ 的最大值为316√65+916(3)见答案(1)待定系数法求解析式,可用交点式求解析式;(2)①△ERF为等腰直角三角形,三边之间有比例关系,所以当EF最长时,三角形的周长也最大,问题转化为求EF最长,设出点E、F坐标,列出EF线段的函数关系式即可求得此时点E坐标;②将HQ的最大值转化为中位线的二倍关系,OP有最大值时,HQ即有最大值;(3)当△ERC∽△BRE时,∠CEB=90°,可利用K字型构造相似图形,列出方程求出此时点E坐标.本题考查了二次函数的交点式,周长最大值问题,线段极值问题以及相似存在型问题,其中求HQ的极值是难点,需要构造中位线的2倍关系,是一道很好的考查线段极值的压轴题.。

2020年浙江省丽水市中考数学一模试卷 (含解析)

2020年浙江省丽水市中考数学一模试卷 (含解析)

2020年浙江省丽水市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.实数4的相反数是()A. −14B. −4 C. 14D. 42.若分式x+2x−3的值为零,则()A. x=3B. x=−3C. x=2D. x=−23.将多项式(2a+1)2−a2分解因式正确的是()A. (2a−1)2B. (3a−1)(a+1)C. (3a+1)(a+1)D. (3a+1)(3a−1) 4.下列图形是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 六边形5.有6张分别写有数字1,1,1,3,3,4的不透明卡片,它们的背面相同,现将它们背面朝上,从中任意抽取一张,卡片上写有数字3的概率是()A. 16B. 13C. 12D. 236.如果a//b,b//c,那么a//c,这个推理的依据是()A. 等量代换B. 两直线平行,同位角相等C. 平行公理D. 平行于同一直线的两条直线平行7.已知点(−2,y1),(−1,y2),(4,y3)在函数y=8x的图象上,则()A. y2<y1<y3B. y1<y2<y3C. y3<y1<y2D. y3<y2<y18.如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=55°,则∠A的度数是()A. 35°B. 55°C. 70°D. 125°9.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A. 3x−20=24x+25B. 3x+20=4x−25C. 3x−20=4x−25D. 3x+20=4x+2510.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A. 2B. 4C. 6D. 8二、填空题(本大题共6小题,共24.0分)11.若点A(a+1,b−2)在第二象限,则点B(−a,1−b)在第______象限.12.数据5、7、5、8、6、13、5的中位数是______ .13.由大小相同(棱长为1分米)的小立方块搭成的几何体如下图.(1)请在右图的方格中画出该几何体的俯视图和左视图;(2)图中有_____块小正方体,它的表面积(含下底面)为_________;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.14.已知平行四边形ABCD中,∠B=4∠A,则∠C=°.15.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为______.16.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的序号为_____.三、解答题(本大题共8小题,共66.0分))−3+|√3−2|+tan60°−(−2019)017.(1218.解不等式:3(1+x)>2x−1.19.全民健身运动已成为一种时尚,为了了解甲市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动。

安徽省阜阳市2020年中考数学试卷(I)卷

安徽省阜阳市2020年中考数学试卷(I)卷

安徽省阜阳市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019七上·泰州月考) 下列计算:① ;② ;③;④ .其中正确的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)如图,直线a,b被直线c所截,当a∥b时,下列说法正确的是()A . 一定有∠1=∠2B . 一定有∠1+∠2=90°C . 一定有∠1+∠2=100°D . 一定有∠1+∠2=180°3. (2分)下列说法中不正确的是()A . 近似数1.8与1.80表示的意义不一样B . 5.0万精确到万位C . 0.200精确到千分位D . 0.345×105用科学记数法表示为3.45×1044. (2分)(2019·融安模拟) 有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A .B .C .D .5. (2分)(2019·合肥模拟) 下列运算正确的是()A . a2·a3=a6B . (a2)3=a5C . 2a3+3a3=5a6D . (a+2b)(a-2b)=a2-4b26. (2分)若方程2x2+kx-6=0的一个根是-3,则另一个根是()A . 1B . -2C . 3D . -37. (2分) (2016九上·南岗期中) 如图,是半圆,连接AB,点O为AB的中点,点C,D在上,连接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是()A . 26°B . 28°C . 30°D . 32°8. (2分) (2019八下·康巴什新期中) 如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分) (2019八上·黑龙江期末) 若分式有意义,则x的取值范围是________.10. (1分)因式分解:9a3b-ab________.11. (1分) (2020七上·溧水期末) 在-4,0,π,1.010010001,-,这6个数中,无理数有________个.12. (1分) (2018九上·白云期中) 一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁从点P出发,在每个岔路口都会随机地选择一条路径,树枝上点A和点B处都有食物,则它获得食物的概率是________.13. (1分)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为________ m(精确到0.1m).(参考数据:≈1.41,, 1.73)14. (1分) (2015八下·淮安期中) 如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是________.15. (1分) (2020七上·临颍期末) 已知,,且,则的值等于________.16. (1分) (2018八上·三河期末) 如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2 ,连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为________.三、解答题 (共8题;共98分)17. (15分) (2018七下·深圳期中) 计算:(1)(2)(3)18. (10分) (2019九上·温州月考) 如图,线段AB的两个端点都在正方形格点上,按要求作图:①仅用一把无刻度直尺;②保留能够体现你画法的作图痕迹。

2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)

2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)

2020年中考数学一模试卷一、选择题.1.﹣2的绝对值是()A.﹣2B.2C.﹣D.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.3.如图所示的几何体的左视图为()A.B.C.D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2 5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5 6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346858.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=.12.函数y=中,自变量x的取值范围是.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.解:|﹣2|=2.故选:B.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.3.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:=0.00002=2×10﹣5.故选:D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.8.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.9.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.解:2x2﹣8=2(x+2)(x﹣2).12.函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=6+2.【分析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.解:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG ⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为40°或100°或70°.【分析】如图1,连接AP,根据直角三角形的判定和性质得到∠APB=90°,当BC=BP时,得到∠BCP=∠BPC,推出AB垂直平分PC,求得∠ABP=∠ABC=25°,于是得到θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,根据线段垂直平分线的性质得到CH垂直平分PB,求得∠CHB=90°,根据等腰三角形的性质得到θ=2×50°=100°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,推出PG垂直平分BC,得到∠BGO=90°,根据三角形的内角和得到θ=∠BOG =70°.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=20°,∴θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=20°,∴∠CBH=70°,∴∠OBH=50°,∴θ=2×50°=100°;当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=20°,∴θ=∠BOG=70°,综上所述:当△BCP恰为轴对称图形时,θ的值为40°或100°或70°,故答案为:40°或100°或70°.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=4×+1﹣3+1=﹣+2.16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为(﹣2,﹣2)或(﹣6,0).【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P 点坐标即可或作C1B2和B1C2的垂直平分线,它们的交点旋转中心.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).线段B2C2可以看成是线段C1B1绕着点(﹣6,0)顺时针旋转90°得到,此时P点的坐标为(﹣6,0).故答案为(﹣2,﹣2)或(﹣6,0).四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.【分析】(1)联立两直线解析式得到关于x、y的方程组,解之即可得;(2)求得直线l2:y2=x+3与x轴的交点,然后根据图象即可求得;(3)根据题意表示出E、F的坐标,得到关于m的方程,解之可得答案.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】作DE⊥AB于点E,作CF⊥DE于点F,由tan37°=≈0.75求得AE=40.2,由AB=57知BE=17.3,再根据四边形BCFE是矩形知CF=BE=17.由∠CDF=∠DCF =45°知DF=CF=17.4,从而得BC=EF=30﹣17=13.5.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40.2∵AB=57,∴BE=17.3∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17.4∴BC=EF=30﹣17=13.5答:教学楼BC高约13米.五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.【分析】(1)连接OP,构造全等三角形(△POA≌△POC),由该全等三角形的性质证得结论;(2)设∠A=∠C=x°,利用圆周角定理和三角形内角和定理列出方程,由方程思想解答.【解答】(1)证明:如图,连接OP.∵=,∴PA=PC.在△POA与△POC中,.∴△POA≌△POC(SSS).∴∠A=∠C;(2)设∠A=∠C=x°,则∠POB=2∠A=2x°.∵OD=DC,∴∠DOC=∠C=x°.在△POC中,x+3x+x=180°x=36.∴∠A=36°.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)【分析】(1)直接利用前n个数和公式可得结论;(2)分别计算每一列的所有数字之和,再相加可得结论;(3)通过计算发现:前n个数的立方和等于前n个数的和的平方,根据(1)中的结论可解答.解:(1)1+2+3+…+n=;故答案为:;(2)第1列所有数字之和=1+2+3+…+n=,第2列所有数字之和=2+4+6+…+2n=2(1+2+3+…+n)=,…第n列所有数字之和=n(1+2+3+…+n)=,∴格中所有数字之和为:++…+===;故答案为:;(3)∵13=12,13+23=9=(1+2)2,13+23+33=36=(1+2+3)2,…∴13+23+33+ (1003)=(1+2+3+…+100)2,=50502,=25502500.七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)根据购进两种型号的汽车数量相同列出分式方程即可求解;(2)根据销售利润等于每台汽车的利润乘以销售量列出二次函数关系即可求解.解:(1)设B型汽车的进货单价为x万元,根据题意,得=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价为:10万元、8万元.(2)设两种汽车的总利润为w万元,根据题意,得w=(x+2﹣10)[﹣(x+2)+18]+(x﹣8)(﹣x+14)=﹣2x2+48x﹣256=﹣2(x﹣12)2+32∵﹣2<0,当x=12时,w有最大值为32.答:A、B两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

2020年江苏省苏州市中考数学一模试卷及解析

2020年江苏省苏州市中考数学一模试卷及解析

2020年江苏省苏州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分)1.下列四个实数中,最大的实数是()A. |−2|B. −1C. 0D. √22.下列四个图案中,不是中心对称图案的是()A. B. C. D.3.下列运算正确的是()A. a3+a2=a5B. a3÷a2=aC. a3⋅a2=a6D. (a3)2=a94.关于x的一元二次方程x2−(m+2)x+m=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定5.在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A. 10B. 15C. 20D. 246.如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A. 40°B. 50°C. 60°D. 70°7.若在实数范围内有意义,则x的取值范围是()√x+1A. x>−1B. x<−1C. x≥−1D. x≥−1且x≠08.如图,四边形ABCD内接于⊙O,连接OA,OC.若OA//BC,∠BCO=70°.则∠ABC的度数为()A. 110°B. 120°C. 125°D. 135°9.如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A. 40√3海里B. (20√3+20)海里C. 80海里D. (20√3+20√2)海里10.小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A. ①④B. ②③C. ②③④D. ②④二、填空题(本大题共8小题,共24分)11.53的倒数是______.12.DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为______.13.已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是______.14.因式分解:2x2−8=______.15.已知点P(a,b)是一次函数y=x−1的图象与反比例函数y=2x的图象的一个交点,则a2+b2的值为______.16.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为______.17.如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE//AB,则DF的长为______.18.如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3√5,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为______.三、计算题(本大题共1小题,共6分)19.先化简,再求值:2x−1x2−2x+1÷(x2x−1−x+1),其中x=√2+1.四、解答题(本大题共9小题,共70分)20.计算:2019°−3tan30°+|−√3|−(√22)2.21.解不等式组:{5(x+1)>2x−113x−1≥12(x−3),并把它的解集在数轴上表示出来.22.如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.23.今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).24.为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?25.如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB=8,(x>0)的图象经过点E,分BC=6.对角线AC,BD相交于点E,反比例函数y=kx别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.26.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求AD⏜的长(结果保留π);②当sinB=√6时,求线段AF的长.427.如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.28.如图1,二次函数y=ax2−3ax−4a的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,−3).(1)求二次函数的表达式及点A、点B的坐标;S△ABC,求点D的横坐标;(2)若点D在二次函数图象上,且S△DBC=45(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME//y轴,与直线BC交于点E,过N作NF//y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.答案和解析1.【答案】A【解析】解:∵|−2|>√2>0>−1,∴所给的四个实数中,最大的实数是|−2|.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】C【解析】解:A、B、D是中心对称图形,C不是中心对称图形,故选:C.根据中心对称图形的概念求解.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】B【解析】【分析】本题考查了同底数幂的乘除法、幂的乘方、合并同类项,熟记法则并根据法则计算是解题关键.根据同底数幂的乘法,底数不变指数相加;同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘,可得答案.【解答】解:A.a3与a2不是同类项,不能合并,故A不符合题意;B.同底数幂的除法底数不变指数相减,故B符合题意;C.同底数幂的乘法底数不变指数相加,故C不符合题意;D.幂的乘方底数不变指数相乘,故D不符合题意.故选B.4.【答案】A【解析】【分析】此题考查了根的判别式,弄清根的判别式与方程根的关系是解本题的关键.先计算根的判别式,再判断判别式的正负即可确定出方程根的情况.【解答】解:由关于x的一元二次方程x2−(m+2)x+m=0,得到a=1,b=−(m+2),c=m,△=(m+2)2−4m=m2+4m+4−4m=m2+4>0,则方程有两个不相等的实数根,故选:A.5.【答案】D【解析】【分析】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【解答】=0.25,解:根据题意得6a解得:a=24,经检验:a=24是分式方程的解,故选:D.6.【答案】D【解析】解:∵DF//EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.7.【答案】A在实数范围内有意义,【解析】解:若√x+1则x+1>0,解得:x>−1.故选A.直接利用二次根式有意义的条件分析即可.此题主要考查了二次根式有意义的条件,正确把握二次根式有意义的条件是解题关键.8.【答案】C【解析】【分析】根据平行线的性质求出∠AOC,根据圆周角定理求出∠D,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.【解答】解:∵OA//BC,∴∠AOC=180°−∠BCO=110°,∠AOC=55°,由圆周角定理得,∠D=12∵四边形ABCD 内接于⊙O ,∴∠ABC =180°−∠D =125°,故选:C .9.【答案】B【解析】【分析】本题考查了解直角三角形的应用−方位角问题,正确的作出辅助线是解题的关键.过A 作AD ⊥BC 于D ,解直角三角形即可得到结论.【解答】解:过A 作AD ⊥BC 于D ,在Rt △ABD 中,∠ABD =30°,AB =40,∴AD =12AB =20,BD =√32AB =20√3, 在Rt △ACD 中,∵∠C =45°,∴CD =AD =20,∴BC =BD +CD =(20√3+20)海里,故选:B .10.【答案】C【解析】解:①小明上学途中下坡路的长为1800−600=1200(米).②小明上学途中上坡速度为:600÷4=150(米/分),下坡速度为:1200÷6=200(米/分).③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,小明返回时经过这段路所用时间为:600÷200+1200÷150=11(分钟),所以小明返回时经过这段路比上学时多用1分钟;④设上坡速度为x(米/分),根据题意得,1200x +6001.5x =10,解得x =120,经检验,x =160是原方程的解.所以返回时上坡速度是160米/分.综上所述,正确的有②③④.故选:C .①根据题意和函数图象可以得到下坡路的长度;②利用路程除以时间求得上坡速度和下坡的速度;③根据“路程除以速度=时间”求解即可;④设上坡速度为x(米/分),根据题意列方程即可求解.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决. 11.【答案】35【解析】解:53的倒数是35.根据倒数的定义可知.主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 12.【答案】2×10−7【解析】解:0.0000002=2×10−7.故答案为:2×10−7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】4【解析】【分析】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.先根据众数定义求出x ,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5,x ,3,6,4的众数是4,∴x =4,则数据重新排列为3,4,4,5,6,所以中位数是4,故答案为:4.14.【答案】2(x +2)(x −2)【解析】【分析】观察原式,找到公因式2,提出后再对括号内运用平方差公式分解即可得出答案. 本题考查提公因式法和公式法分解因式,是基础题.【解答】解:2x 2−8=2(x 2−4)=2(x +2)(x −2).15.【答案】5【解析】解:根据题意得:{y =x −1y =2x, 解得:{x =−1y =−2或{x =2y =1, 即{a =−1b =−2或{a =2b =1, 则a 2+b 2=(−1)2+(−2)2=5或a 2+b 2=22+12=5,即a 2+b 2的值为5,故答案为:5.一次函数y =x −1与反比例函数y =2x 联立,求出a 和b 的值,代入a 2+b 2,计算求值即可.本题考查了反比例函数与一次函数的交点问题,正确掌握实数的运算法则是解题的关键.16.【答案】120°【解析】【分析】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,利用扇形面积公式得到12⋅2πr⋅l=3⋅πr2,所以l=3r,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得2πr=n⋅π⋅3r180,再解关于n的方程即可.【解答】解:设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,所以12⋅2πr⋅l=3⋅πr2,则l=3r,因为2πr=n⋅π⋅3r180,所以n=120°.故答案为120°.17.【答案】158【解析】解:AB=AC=5,∴∠B=∠C,∵DE//AB,∴∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,∴∠B=∠BAF=∠E=∠EDF,∴AF=BF,EF=DF,∴BD=AF=AC=5,∴ED=CD=BC−BD=3,∵DE//AB,∴△EDF∽△ABF,∴DFBF =EDAB,即DF5−DF=35,解得:DF=158;故答案为:158.由等腰三角形的性质和平行线的性质得出∠B=∠C,∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,得出∠B=∠BAF=∠E=∠EDF,证出AF=BF,EF=DF,得出BD=AF=AC=5ED=CD=BC−BD=3,由平行线得出△EDF∽△ABF,得出比例式,即可得出结果.本题考查了翻折变换的性质、相似三角形的判定与性质、等腰三角形的判定与性质;熟练掌握翻折变换和等腰三角形的性质,证明三角形相似是解题的关键.18.【答案】3√2【解析】【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、相似三角形的判定与性质;熟练掌握正方形的性质和勾股定理,证明三角形相似是解题的关键.连接CE,由等腰直角三角形的性质得出AC=√2BC=3√10,∠ACB=45°,由勾股定理得出AD=√AC2−CD2=9,由正方形的性质得出DE=CD=3,∠DCF=90°,∠ECF=45°,CE=√2CF,求出AE=AD−DE=6,证明△BCF∽△ACE,得出BFAE =BCAC=1√2,即可得出结果.【解答】解:连接CE,如图所示:∵∠ABC=90°,AB=BC=3√5,∴AC=√2BC=3√10,∠ACB=45°,∵∠D=90°,CD=3,∴AD=√AC2−CD2=√(3√10)2−32=9,∵四边形CDEF是正方形,∴DE=CD=3,∠DCF=90°,∠ECF=45°,CE=√2CF,∴AE=AD−DE=6,∴∠ACB=∠ECF=45°,∴∠BCF=∠ACE,∵ACBC =CECF=√2,∴△BCF∽△ACE,∴BFAE =BCAC=√2,∴BF=√2=√2=3√2;故答案为:3√2.19.【答案】解:2x−1x2−2x+1÷(x2x−1−x+1)=2x−1(x−1)2÷x2−(x−1)(x−1)x−1=2x−1(x−1)2⋅x−1x2−x2+2x−1=2x−1x−1⋅12x−1=1x−1,当x =√2+1时,原式=2+1−1=2=√22.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】解:原式=1−3×√33+√3−12=1−√3+√3−12=12.【解析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:{5(x +1)>2x −1①13x −1≥12(x −3)②, 解①得:x >−2,解②得:x ≤3,故不等式组的解集是:−2<x ≤3, 表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可. 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 22.【答案】(1)证明:∵四边形ABCD 是平行四边形, ∴AD//BC ,AD =BC , ∴∠ADB =∠CBD ,∵O 是对角线BD 的中点, ∴OB =OD ,在△BOF 和△DOE 中,{∠CBD =∠ADBOB =OD∠BOF =∠DOE ,∴△BOF≌△DOE(ASA), ∴DE =BF ,∴DE =AD =BF −BC , ∴AE =CF ;(2)解:OC//DF ,且OC =12DF ,理由如下: ∵AE =BC ,AE =CF , ∴CF =BC , ∵OB =OD ,∴OC 是△BDF 的中位线,∴OC//DF ,且OC =12DF .【解析】(1)由平行四边形的性质得出AD//BC ,AD =BC ,得出∠ADB =∠CBD ,证明△BOF≌△DOE ,得出DE =BF ,即可得出结论;(2)证出CF =BC ,得出OC 是△BDF 的中位线,由三角形中位线定理即可得出结论. 本题考查了平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键. 23.【答案】解:(1)本次竞赛获奖的总人数为4÷20%=20(人), 补全图形如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数360°×620=108°; (3)画树形图得:则P(抽取的两人恰好是甲和乙)=16.【解析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)由一等奖人数及其所占百分比可得总人数,再求出二等奖人数即可补全图形; (2)用360°乘以对应的百分比即可得; (3)利用列举法即可求解.24.【答案】解:(1)设每个甲种型号排球的价格是x 元,每个乙种型号排球的价格是y 元,依题意,得:{x +y =1406x +5y =780,解得:{x =80y =60.答:每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元. (2)设购买甲种型号排球m 个,则购买乙种型号排球(26−m)个, 依题意,得:{m >26−m80m +60(26−m)≤1900,解得:13<m ≤17. 又∵m 为整数,∴m 的值为14,15,16,17.答:该学校共有4种购买方案.【解析】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,根据“一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;购买6个甲种型号排球和5个乙种型号排球,一共需花费780元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种型号排球m个,则购买乙种型号排球(26−m)个,根据甲种型号排球的个数多于乙种型号排球且学校购买甲、乙两种型号排球的预算资金不超过1900元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出购买方案的个数.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.【答案】解:(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=kx得k=5×4=20;(2)∵AC=√62+82=10,∴BE=EC=5,∵BF−BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=28x,当x=10时,y=2810=145,∴G(10,145),∴△CEG的面积=12×3×145=215.【解析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入y=kx可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG 的面积.本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.26.【答案】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD//AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EFA,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴AD⏜的长=72⋅π×4180=8π5;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵sinB=√64,∴AD8=√64,∴AD=2√6,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴AHAD =ADAC,∴AH2√6=2√68,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∵OD//AC ,∴∠EAF =∠FOD ,∠E =∠FDO , ∴△AEF∽△ODF , ∴AFOF =AEOD , ∴AF4−AF =24, ∴AF =43.【解析】本题考查了等腰三角形的性质和判定、切线的性质和判定、三角形相似的性质和判定、圆周角定理,弧长的计算,锐角三角函数函数的定义,正确的作出辅助线是解题的关键.(1)根据同圆的半径相等和等边对等角证明:∠ODB =∠OBD =∠ACB ,则DH ⊥OD ,DH 是圆O 的切线;(2)①根据等腰三角形的性质的∠EAF =∠EFA ,设∠B =∠C =α,得到∠EAF =∠EFA =2α,根据三角形的内角和得到∠B =36°,求得∠AOD =72°,根据弧长公式即可得到结论;②连接AD ,根据圆周角定理得到∠ADB =∠ADC =90°,解直角三角形得到AD =2√6,根据相似三角形的性质得到AH =3,于是得到结论.27.【答案】解:(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4, 代入得:{k +b =2b =4,{k =−2b =4,∴y =−2x +4(0<x <2);(2)方法一:∵BE =x ,BC =2 ∴CE =2−x , ∴CE AF =2−x 4−2x =12,CD AD =12, ∴CE AF=CD AD,∵四边形ABCD 是矩形,∴∠C =∠DAF =90°, ∴△CDE∽△ADF , ∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°, ∴DE ⊥DF ;方法二:∵四边形ABCD 是矩形, ∴∠C =∠DAF =∠B =90°, ∴根据勾股定理得:在Rt △CDE 中,DE 2=CD 2+CE 2=1+(2−x)2=x 2−4x +5,在Rt △ADF 中,DF 2=AD 2+AF 2=4+(4−2x)2=4x 2−16x +20, 在Rt △BEF 中,EF 2=BE 2+BF 2=x 2+(5−2x)2=5x 2−20x +25, ∴DE 2+DF 2=EF 2,∴△DEF 是直角三角形,且∠EDF =90°,(3)假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD//BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,{∠FDE=∠B∠DEF=∠BEF EF=EF,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2−x,∴在Rt△CDE中,由勾股定理得:1+(2−x)2=x2,x=54;②若DE=EG,如图①,作EH//CD,交AD于H,∵AD//BC,EH//CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2−x,EH⊥DG,∴HG=DH=2−x,∴AG=2x−2,∵EH//CD,DC//AB,∴EH//AF,∴△EHG∽△FAG,∴EHAF =HGAG,∴14−2x =2−x2x−2,x1=5−√52,x2=5+√52(舍),③若DG=EG,则∠GDE=∠GED,方法一:∵AD//BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴CECD =DEDF,∵△CDE∽△ADF,∴DE DF =CD AD =12, ∴CECD =12, ∴2−x =12,x =32,方法二:∵∠EDF =90°,∴∠FDG +∠GDE =∠DFG +∠DEG =90°, ∴∠FDG =∠DFG , ∴FG =DG , ∴FG =EG , ∵AD//BC ,∴∠FGA =∠FEB ,∠FAG =∠B , ∴△FAG∽△FBE , ∴FA FB=FG FE=12, ∴4−2x5−2x =12,x =32, 综上,x =54或5−√52或32.【解析】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键. (1)利用待定系数法可得y 与x 的函数表达式;(2)方法一:证明△CDE∽△ADF ,得∠ADF =∠CDE ,可得结论;方法二:分别表示△DEF 三边的长,计算三边的平方,根据勾股定理的逆定理得:△DEF 是直角三角形,从而得:DE ⊥DF ; (3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH//CD ,交AD 于H , ③若DG =EG ,则∠GDE =∠GED , 分别列方程计算可得结论. 28.【答案】解:(1)y =ax 2−3ax −4a 与y 轴交于点C(0,−3), ∴a =34,∴y =34x 2−94x −3,与x 轴交点A(−1,0),B(4,0); (2)设直线BC 的解析式为y =kx +b , ∴{4k +b =0b =−3,∴{k =−34b =−3, ∴y =34x −3;过点D作DH//y轴,与直线BC交于点H,设H(x,34x−3),D(x,34x2−94x−3),∴DH=|34x2−3x|,∵S△ABC=12×5×3=153,∴S△DBC=45×152=6,∴S△DBC=2×|34x2−3x|=6,∴x=2+2√2,x=2−2√2,x=2;∴D点的横坐标为2+2√2,2−2√2,2;(3)过点M作MG//x轴,交FN的延长线于点G,设M(m,34m2−94m−3),N(n,34n2−94n−3),则E(m,34m−3),F(n,34n−3),∴ME=−34m2+3m,NF=−34n2+3n,∵EF//MN,ME//NF,∴四边形MNFE是平行四边形,∴ME=NF,∴−34m2+3m=−34n2+3n,∴m+n=4,∴MG=n−m=4−2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=MGMN =OBBC,∵B(4,0),C(0,−3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=54(n−m)=54(4−2m)=5−52m,∴ME+MN=−34m2+3m+5−52m=−34(m−13)2+6112,∵−34<0,∴当m=13时,ME+MN有最大值,∴M(1,−11)【解析】(1)求出a,即可求解;(2)求出直线BC的解析式,过点D作DH//y轴,与直线BC交于点H,根据三角形面积的关系求解;(3)过点M作MG//x轴,交FN的延长线于点G,设M(m,34m2−94m−3),N(n,34n2−94n−3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=−34m2+3m+5−52m=−34(m−13)2+6112,即可求M;本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题;。

浙江省台州市温岭市2020届中考数学一模试卷(含解析)

浙江省台州市温岭市2020届中考数学一模试卷(含解析)

浙江省台州市温岭市2020届中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.一11的相反数是()2.D -苴卜-列环保标志中,既是中心对称图形又是轴对称图形的是()A. 11B. -11A. B.C.C.三3.不等式组的解集在数轴上表示正确的是()I 》—ZX A L 十 LXB.zb4.选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x及其方差S2如表所示:乙丙T耳2〃3310〃2610 "2615"29S 2\ 1.11.11.31.6如果选拔一名实力强,成绩又相对稳定的学生去参赛,应派()去・A.甲B.乙C.丙D.5.把一块等腰直角三角尺和直尺如图放置,如果匕1 = 30。

,则匕2的度数为()A. 45°B. 30°C. 20°D.15°如图,AB 是。

的直径.若LBAC = 35%则£ADC =()A. 35°B. 55°C. 70°D. 110。

7.关于A-的一元二次方程(a - 1)*2 + X + / 一 1 =。

的一个根是0,则"的值为B.-1C.1 或-1如图.在平行四边形A8CD中.添加下列条件不能判定平行四边形A8CD是菱形的是()C.BD平分44BCA.AB=BCB.AC1BD D.AC=BD己知圆锥的侧面积是3m母线是3,则圆锥的高为()B.2^210.如图中实线所示,函数y-i|的图象经过原点,小明同学研究得出下面结论:①q=1;②若函数y随工的增大而减小,\/则x的取值范围一定是xvo:③若方程|a(x-l)2_i|=k有两 \/个实数解,则上的取值范围是fc>l:④若N(m2,n).-------0^/2—‘工P(m3,n),Q(m4l n)(n>0)是上述函数图象的四个不同点,且皿Vm2<m3 <m4.则有皿+m3-m1=皿.其中正确的结论有()・A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,共30.0分)11.因式分解:a2-ab=.12.七一中学武汉天地校区与华源校区相距1345000s用科学计数法表示其近似数(精确到千位)表不为________13.如图,Zk/IBC中,Z.BAC=90°•AC=8cm.。

2020年浙江省温州市中考数学一模测试试卷 (解析版)

2020年浙江省温州市中考数学一模测试试卷 (解析版)

2020年中考数学一模试卷一、选择题(共10小题).1.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.2.“浮云游子意,明月故乡情”,4月疫情期间温州支援意大利口罩达2700000只,其中2700000用科学记数法表示为()A.2.7×106B.27×105C.2.7×105D.0.27×1073.小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为()A.B.C.D.4.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x35.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁(环)8998 S2(环2)1 1.21 1.2 A.甲B.乙C.丙D.丁6.不等式﹣2x≤﹣x+2的解在数轴上的表示正确的是()A.B.C.D.7.一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流I(单位:A)与电阻R(单位:Ω)之间的函数关系如图所示,则当电阻R为4Ω时,电流I为()A.6A B.A C.1A D.A8.为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵100元,乙种花木每棵80元,若甲种花木的数量是乙种花木的3倍,且两种花木共花费19000元.设购买甲种花木x棵,乙种花木y棵,根据题意,可列方程组()A.B.C.D.9.在△ABC中,BC=5,AC=12,∠C=90°,以点B为圆心,BC为半径作圆弧,与AB 交于D,再分别以A,D为圆心,大于AD的长为半径作圆弧交于点M,N,作直线MN,交AC于E,则AE的长度为()A.4B.4C.D.510.已知函数y1=ax2﹣2ax+c(a>0),y2=﹣ax2+2ax+c,当0≤x≤2时,2≤y1≤3,则当0≤x≤2时,y2的最大值是()A.﹣3B.2C.3D.4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:m2﹣25=.12.在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是.13.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为°.14.如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=.15.如图,已知点A(5,0),在直线y=x+上取点B,过点B作x轴的平行线,交直线y=﹣x+b于点C.若四边形OACB为菱形,则b=.16.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在CD 上移动或固定.已知BC=CE=8cm.如图甲,将面板AB竖直固定时(AB⊥BD),点F恰为CD的中点.如图乙,当CF=17cm时,EF⊥AB,则支撑架CD的长度为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:2sin30°+(﹣1)0+;(2)解方程:(x﹣1)2=2x+1.18.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连结AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE.(2)若BD=2,CD=5,求AE的长.19.某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题,(1)本次调查共抽取名学生.(2)抽查结果中,B组有人.(3)在抽查得到的数据中,中位数位于组(填组别).(4)若这所学校共有学生1200人,则估计平均每日锻炼超过20分钟有多少人?组别平均每日体育锻炼时间(分)人数A0≤x≤1018B10<x≤20C20<x≤3042D x>302420.如图,在5×5的方格纸中,点A,B均在格点上,请按要求画图.(1)在图1中画个面积为2的格点△ABC.(2)在图2中画一个格点Rt△ADE,使AB是△ADE的中线.21.在平面直角坐标系中,抛物线的表达式为y=ax2+2bx+2b﹣a(a≠0).(1)当x=﹣1时,求y的值.(2)将抛物线向左平移2个单位后,恰经过点(﹣1,0),求b的值.22.如图,四边形ABCD中,∠B=90°,以AD为直径的⊙O交AB于点E,与BC相切于点C,连结CE.(1)求证:CD=CE.(2)若AE=3,tan∠D=,求⊙O的半径.23.某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:甲乙每瓶进价(元)a a+20每瓶利润(元)2030已知进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等.(1)求a的值.(2)若该商店准备拿出12000元全部用来进货,由于仓库存放限制,总数量不多于300瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?(3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润7350元,求商店共预留了多少瓶?24.如图,在正方形ABCD中,E,F分别是AD,CD上的点,且AE=CF,M,N分别是EF,EB的中点,延长AN交BF于点K.(1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.∠FBC10°20°40°∠EBF70°∠BNK20°②写出∠EBF与∠BNK的数量关系,并给出证明.(2)当四边形MNKF中有一条边是NK的2倍时,求cos∠EBF的值.(3)直线MN分别交AB,CD于点P,Q,延长EF交射线BC于点G,当点G关于直线BF的对称点落在直线MN上时,直接写出的值.参考答案一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.【分析】根据正数和负数表示相反意义的量,可得答案.解:在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,算筹表示负数的是选项B:故选:B.2.“浮云游子意,明月故乡情”,4月疫情期间温州支援意大利口罩达2700000只,其中2700000用科学记数法表示为()A.2.7×106B.27×105C.2.7×105D.0.27×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:2700000=2.7×106.故选:A.3.小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.解:根据主视图的概念可知,从物体的正面看得到的视图是选项C.故选:C.4.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x3【分析】根据合并同类项法则计算即可得出正确选项.解:x3+x3=2x3.故选:D.5.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁(环)8998 S2(环2)1 1.21 1.2 A.甲B.乙C.丙D.丁【分析】先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答.解:由图可知,乙、丙的平均成绩好,由于S2乙>S2丙,故乙的方差大,波动大.故选:C.6.不等式﹣2x≤﹣x+2的解在数轴上的表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.解:∵﹣2x≤﹣x+2,∴﹣2x+x≤2,则﹣x≤2,∴x≥﹣2,将不等式解集表示在数轴上如下:故选:B.7.一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流I(单位:A)与电阻R(单位:Ω)之间的函数关系如图所示,则当电阻R为4Ω时,电流I为()A.6A B.A C.1A D.A【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(2,3)代入可得k的值,进而可得函数解析式,然后代入R=4Ω求得电流I即可.解:设用电阻R表示电流I的函数解析式为I=,∵反比例函数图象过(2,3),∴k=3×2=6,∴I=,当R=4Ω时,I==,故选:B.8.为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵100元,乙种花木每棵80元,若甲种花木的数量是乙种花木的3倍,且两种花木共花费19000元.设购买甲种花木x棵,乙种花木y棵,根据题意,可列方程组()A.B.C.D.【分析】根据题意,可以列出相应的二元一次方程组,从而可以解答本题.解:由题意可得,,故选:A.9.在△ABC中,BC=5,AC=12,∠C=90°,以点B为圆心,BC为半径作圆弧,与AB 交于D,再分别以A,D为圆心,大于AD的长为半径作圆弧交于点M,N,作直线MN,交AC于E,则AE的长度为()A.4B.4C.D.5【分析】由作图可得,BD=BC=5,AD=13﹣5=8,MN垂直平分AD,依据勾股定理即可得到AB的长,再根据相似三角形的性质,即可得到AE的长.解:由作图可得,BD=BC=5,AD=13﹣5=8,MN垂直平分AD,∴AF=AD=4,∵BC=5,AC=12,∠C=90°,∴AB=13,∵∠AFE=∠ACB=90°,∠A=∠A,∴△AFE∽△ACB,∴=,即=,解得AE=,故选:C.10.已知函数y1=ax2﹣2ax+c(a>0),y2=﹣ax2+2ax+c,当0≤x≤2时,2≤y1≤3,则当0≤x≤2时,y2的最大值是()A.﹣3B.2C.3D.4【分析】由0≤x≤2时,2≤y1≤3,求出a、c的值,即可求解.解:由题意得:当0≤x≤2时,函数y1在对称轴x=1时取得最小值,即y1=a﹣2a+c=2①,函数y1在x=2时,取得最大值,即y1=4a﹣4a+c=3②,联立①②并解得:,故y2=﹣ax2+2ax+c=﹣x2+2x+3,当0≤x≤2时,y2在对称轴处取得最大值,∴当x=1时,y=4,故最大值是4,故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:m2﹣25=(m+5)(m﹣5).【分析】原式利用平方差公式分解即可.解:原式=(m+5)(m﹣5),故答案为:(m+5)(m﹣5)12.在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是.【分析】用白球的个数除以球的总个数即可得.解:从中随机摸出一个球共有5种等可能结果,其中摸出一个球为白球的有2种结果,所以摸出一个球为白球的概率为,故答案为:.13.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为60°.【分析】根据圆周角定理得到∠AOC=2∠D,根据题意得到∠B=2∠D,根据圆内接四边形的对角互补列式计算,得到答案.解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.14.如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=.【分析】由折叠的性质可得AB=AF,∠B=∠AFE=90°,FG=CG=3,∠C=∠EFG =90°,可证点A,点F,点G三点共线,由勾股定理可求AB的长,即可求解.解:∵将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,∴AB=AF,∠B=∠AFE=90°,FG=CG=3,∠C=∠EFG=90°,∴∠AFE+∠GFE=180°,∴点A,点F,点G三点共线,∵AD2+DG2=AG2,∴64+(AB﹣3)2=(AB+3)2,∴AB=,∴AG=AF+FG=,故答案为:.15.如图,已知点A(5,0),在直线y=x+上取点B,过点B作x轴的平行线,交直线y=﹣x+b于点C.若四边形OACB为菱形,则b=12.【分析】由题意设B(a,a+),根据勾股定理得出a2+(a+)2=52,解方程求得a=3,即可求得C的坐标,根据图象上点的坐标特征,代入y=﹣x+b中,即可求得b的值.解:∵点A(5,0),∴OA=5,∵四边形OACB为菱形,∴OB=OA=5,根据题意设B(a,a+),∴a2+(a+)2=52,整理得a2+2a﹣15=0,解得a=3或a=﹣5(不合题意,舍去),∴B(3,4),∴C(8,4),∵直线y=﹣x+b经过点C,∴4=﹣8+b,解得b=12,故答案为12.16.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在CD 上移动或固定.已知BC=CE=8cm.如图甲,将面板AB竖直固定时(AB⊥BD),点F恰为CD的中点.如图乙,当CF=17cm时,EF⊥AB,则支撑架CD的长度为2 cm.【分析】根据勾股定理得出EF的长,进而利用勾股定理得出CF,进而得出CD的长即可.解:∵EF⊥AB,CF=17cm,BC=CE=8cm,∴EF=cm,过F作FG⊥AB,∵AB⊥BD,∴FG∥BD,∵点F恰为CD的中点,∴CG=BC=4cm,∴EG=8+4=12cm,∵EF=15cm,∴CG=cm,∴BD=2CG=18cm,∴CD=,故答案为:2.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:2sin30°+(﹣1)0+;(2)解方程:(x﹣1)2=2x+1.【分析】(1)根据零指数幂和特殊角的三角函数值计算;(2)先把方程变形为一般式,然后利用因式分解法解方程.解:(1)原式=2×+1+3=1+1+3=5;(2)x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.18.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连结AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE.(2)若BD=2,CD=5,求AE的长.【分析】(1)根据AAS可证明△ABD≌△DCE;(2)得出AB=DC=5,CE=BD=2,求出AC=5,则AE可求出.【解答】(1)证明:∵AB=AC,∴∠B=∠C,又∠1=∠2,AD=DE,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=2,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣2=3.19.某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题,(1)本次调查共抽取120名学生.(2)抽查结果中,B组有36人.(3)在抽查得到的数据中,中位数位于C组(填组别).(4)若这所学校共有学生1200人,则估计平均每日锻炼超过20分钟有多少人?组别平均每日体育锻炼时间(分)人数A0≤x≤1018B10<x≤2036C20<x≤3042D x>3024【分析】(1)用D组的人数除以其所占百分比可得;(2)总人数减去其他类别人数即可求得B组的人数;(3)根据中位数的多余即可求解;(4)用总人数乘样本中平均每日锻炼超过20分钟的人数所占比例即可求解.解:(1)24÷20=120(名).故本次调查共抽取120名学生.(2)120﹣18﹣42﹣24=36(人).故B组有36人.(3)在抽查得到的数据中,第60个和第61个数据都在C组,故中位数位于C组.(4)1200×=660(人).答:这所学校平均每日锻炼超过20分钟大约有660人.故答案为:120;36;C;36.20.如图,在5×5的方格纸中,点A,B均在格点上,请按要求画图.(1)在图1中画个面积为2的格点△ABC.(2)在图2中画一个格点Rt△ADE,使AB是△ADE的中线.【分析】(1)利用数形结合的思想解决问题即可.(2)根据三角形的中线的定义画出图形即可.解:(1)如图1中,△ABC即为所求(答案不唯一).(2)如图2中,△ADE即为所求(答案不唯一).21.在平面直角坐标系中,抛物线的表达式为y=ax2+2bx+2b﹣a(a≠0).(1)当x=﹣1时,求y的值.(2)将抛物线向左平移2个单位后,恰经过点(﹣1,0),求b的值.【分析】(1)把x=﹣1代入y=ax2+2bx+2b﹣a,即可求得;(2)根据题意原抛物线经过(1,0),代入解析式解方程即可求得.解:(1)当x=﹣1时,y=a﹣2b+2b﹣a=0;(2)∵将抛物线向左平移2个单位后,恰经过点(﹣1,0)∴原抛物线经过(1,0),把(1,0)代入解析式可得:0=a+2b+2b﹣a,∴b=0.22.如图,四边形ABCD中,∠B=90°,以AD为直径的⊙O交AB于点E,与BC相切于点C,连结CE.(1)求证:CD=CE.(2)若AE=3,tan∠D=,求⊙O的半径.【分析】(1)如图,连结DE,OC交于点F,若证明CD=CE,则可转化为证明=即可;(2)连结AC,设BE=3x,则BC=4x,CE=5x,由圆周角定理和圆的内接四边形定理可得tan∠ACB=tan∠CBE=tan∠ADC,再利用勾股定理可求出AD的长,进而可求出⊙O的半径.解:(1)证明:如图,连结DE,OC交于点F.∵BC切⊙O于点C,∴∠OCB=90°,∵∠B=90°,∴OC∥AB,∵AD是圆的直径,∴∠DEA=∠FEB=90°,∴OC⊥DE,∴=,∴CD=CE;(2)如图,连结AC,∵四边形ABCD内接于圆,∴∠CEB=∠ADC,∵=,∴∠DAC=∠CAB,∴∠ADC=∠ACB∴tan∠ACB=tan∠CBE=tan∠ADC,设BE=3x,则BC=4x,CE=5x,∴=,解得:x=,∴CD=,∴AD==,∴OA=.23.某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:甲乙每瓶进价(元)a a+20每瓶利润(元)2030已知进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等.(1)求a的值.(2)若该商店准备拿出12000元全部用来进货,由于仓库存放限制,总数量不多于300瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?(3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润7350元,求商店共预留了多少瓶?【分析】(1)根据表格提供的有效信息和题干中的条件:进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等,可建立关于a的分式方程,解方程求出a的值即可;(2)设甲种买了x瓶,则乙种买了瓶,由题意可求出x的取值范围,再设设利润为y,可得y与x的一次函数关系式,利用一次函数的增减性即可求出最大利润;(3)设甲种保留了a瓶,乙种保留了b瓶,则20a+30b=150,求出二元一次方程的所有正整数解即可得到该商店共预留了多少瓶.解:(1)由题可得:=,解得a=30,经检验a=30是方程的解,所以a的值为30;(2)设甲种买了x瓶,则乙种买了瓶,由题意可得:x+≤300,解得x≤150,设利润为y,可得y=20x+30×,即y=2x+7200,∵k=2>0,∴y随x增大而增大.当x=150 y有最大值为7500,答:最大利润为7500元;(3)7500﹣7350=150(元)设甲种保留了a瓶,乙种保留了b瓶,20a+30b=150,该方程的正整数解为或,答:商家共预留了6瓶或7瓶.24.如图,在正方形ABCD中,E,F分别是AD,CD上的点,且AE=CF,M,N分别是EF,EB的中点,延长AN交BF于点K.(1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.∠FBC10°20°40°∠EBF70°50°10°∠BNK20°40°80°②写出∠EBF与∠BNK的数量关系,并给出证明.(2)当四边形MNKF中有一条边是NK的2倍时,求cos∠EBF的值.(3)直线MN分别交AB,CD于点P,Q,延长EF交射线BC于点G,当点G关于直线BF的对称点落在直线MN上时,直接写出的值.【分析】(1)①利用直角三角形斜边中线的性质,全等三角形的性质解决问题即可.②证明△ABE≌△BCF(SAS)可得结论.(2)分三种情形:①当MN=2NK时.②当KF=2NK时.③当MF=2NK时,分别求解即可解决问题.(3)如图2中,连接BG′,GG′,延长GE交BA的延长线于H,过点E作EJ∥PQ 交AB于J.利用三角形的中位线定理证明EJ=2PN,再利用全等三角形的性质证明EJ =MQ即可解决问题.解:(1)①根据∠CBF=∠ABE,直角三角形斜边中线的性质可知:当∠FBC=20°时,∠EBF=50°,∠BNK=40°,当∠FBC=40°时,∠EBF=10°,∠BNK=80°,故答案为50°,10°,40°,80°.②结论:∠EBF+∠BNK=90°.理由:在正方形ABCD中,AB=BC,∠BAD=∠C=90°,∵AE=CF,∴△ABE≌△BCF(SAS),∴∠CBF=∠ABE,BE=BF,∴∠EBF=90°﹣2∠ABN,∵N是BE的中点,∴AN=BN,∴∠BNK=2∠ABN,∴∠EBF+∠BNK=90°.(2)①当MN=2NK时,∵MN=BF=BE=BN,∴BN=2NK,∴∠EBF=30°,∴cos∠EBF=.②当KF=2NK时,∵BN=BE=(BK+KF),NK=KF,∵BN2=BK2+NK2,∴3BK=2KF=4NK,设BK=4m,则NK=3m,BN=5m,∴cos∠EBF==.③当MF=2NK时,过点M作MG⊥BF于点G(如图1中).∵MN∥BF,∴∠MGK=∠GMN=∠NKG=90°,∴四边形MNKG是矩形,∴MG=NK,∴MF=2MG,∴∠MFB=∠BEF=30°,∴∠EBF=120°>90°,∴此情况不存在.(3)如图2中,连接BG′,GG′,延长GE交BA的延长线于H,过点E作EJ∥PQ 交AB于J.∵BN=NE,PN∥EJ,∴BP=PJ,∴EJ=2PN,∵G,G′关于BP对称,∴BF垂直平分线段GG′,∵BF∥PG′,∴FG=FM,∵BE=BF,∴∠BEF=∠BFE,∴∠BEH=∠BFG,∵BE=BF,∠HBE=∠GBF,∴△HBE≌△GBF(AAS),∴EH=FG,BH=BG,∴EH=FM,∵∠H=∠G=45°,∵∠FCG=90°,∴∠CFG=∠MFQ=45°,∵EJ∥PM,∴∠EEJ=∠HMP=∠FMQ,∴△HEJ≌△FMQ(ASA),∴EJ=MQ,∵EJ=2PN,∴MQ=2PN.。

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .42.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .15 B .14C .15 D .4173.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .255.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分 B .85分C .90分D .80分和90分6.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm10.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10B.12C.16D.18二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】的大小,即可得到结果. 【详解】46 6.25<<Q ,2 2.5∴<<,的点距离最近的整数点所表示的数是2, 故选:B . 【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.A解析:A 【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB , 故选A3.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.B解析:B 【解析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D . 【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.6.B解析:B 【解析】 【分析】 由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果. 【详解】 解:A=11111x x ++-=111xx x +-g =21x x -故选B. 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.8.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.9.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,x=(负值已舍),故选A解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠Q,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.17.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=218.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩ 【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩ 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩,∴y1=﹣23x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=13,∴y2=13(x﹣6)2+1=13x2﹣4x+13.∴y1﹣y2=﹣23x+7﹣(13x2﹣4x+13)=﹣13x2+103x﹣6=﹣13(x﹣5)2+73.∵﹣13<0,∴当x=5时,y1﹣y2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣13x2+103x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)10π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C29010π⋅⋅10π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.。

2020年山东省济南市章丘区中考数学一模试卷 (解析版)

2020年山东省济南市章丘区中考数学一模试卷 (解析版)

2020年山东省济南市章丘区中考数学一模试卷一、选择题1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×10113.下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.(a3)2=a6D.a6÷a3=a24.下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.5.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.6.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则k的值可以是()A.3B.2C.1D.07.在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)8.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°9.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,510.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.811.如图,菱形ABCD边长为2,∠C=60°.当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A.B.C.2D.1+12.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣二.填空题(本大题共6小题,每小题3分,共24分)13.因式分解:x3﹣4x=.14.下表是我市某一天在不同时段测得的气温情况0:004:008:0012:0016:0020:0011℃14℃16℃23℃20℃17℃则这一天气温的极差是℃.15.如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.16.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围.17.某人预计步行从家去火车站,从家步行走到6分钟时,以同样的速度回家取忘带的物品,然后从家乘出租赶往火车站,结果到火车站的时间比预计步行的时间提前了3分钟,该人离家的路程s(米)与时间t(分钟)之间的函数图象如图所示,那么从家到火车站的路程是.18.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD =2AP,则AP的长为.三.解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣2﹣2+cos45°﹣|1﹣|+(3.14﹣π)0.20.解不等式组,并求出它的所有整数解的和.21.在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.22.某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利润不低于30000元,则最少购进B品牌羽绒服多少件?23.如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC 相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:BC=BH;(2)若AB=5,AC=4,求CE的长.24.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90整理数据:成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据:统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据:(1)填空:a=,b=,c=,d=;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,准备从成绩在60到70分之间的两个小区中随机抽取2人进行再测试,请求出抽取的两人恰好一个是甲小区、一个是乙小区的概率.25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上,直线y=x﹣1.交边AB、OA于点D、M,反比例函数y=(x>0)的图象经过点D,与BC的交点为N.(1)求BN的长.(2)点P是直线DM上的动点(点P不与点D、点M重合),连接PB、PC、MN,当△BCP的面积等于四边形ABNM的面积时,求点P的坐标.(3)在(2)的条件下,连接CP,以CP为边作矩形CPEF,使矩形的对角线的交点G 落在直线DM上,请直接写出点G的坐标.26.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD 方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m 的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.27.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y =﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.参考答案一.选择题(本大题共12小题,每小题3分,共48分.在每个小题给出四个选项中,只有一项符合题目要求)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:103亿=103 0000 0000=1.03×1010,故选:C.3.下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.(a3)2=a6D.a6÷a3=a2【分析】直接利用整式的乘除运算法则、幂的乘方运算法则分别判断得出答案.解:A、a3•a2=a5,故此选项错误;B、a3+a2,无法计算,故此选项错误;C、(a3)2=a6,正确;D、a6÷a3=a3,故此选项错误;故选:C.4.下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.5.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.6.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则k的值可以是()A.3B.2C.1D.0【分析】根据一次函数的性质,可得答案.解:由题意,得k﹣2>0,解得k>2,观察选项,只有选项A符合题意.故选:A.7.在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.8.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°【分析】由题意∠1=2∠2,设∠2=x,易证∠AEF=∠1=∠FEA′=2x,构建方程即可解决问题.解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.9.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,5【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.解:在这一组数据中5是出现次数最多的,故众数是5次;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6次.平均数是:(3+15+12+14+18)÷10=6.2(次),所以答案为:5、6、6.2,故选:A.10.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.8【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设C(x,2).则D(x,2),由勾股定理得出AB2+BC2=AC2,列出方程22+12+(x﹣1)2+22=x2,求出x,得到D点坐标,代入y=,利用待定系数法求出k.解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.11.如图,菱形ABCD边长为2,∠C=60°.当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A.B.C.2D.1+【分析】取AD的中点E,连接BD、EB、EO.证△ABD是等边三角形,得出BE⊥AD,AE=AD=1,BE=AE=,在Rt△AOD中,求出OE=AD=1,当O、E、B 共线时OB最大,即可得出答案.解:取AD的中点E,连接BD、EB、EO.如图所示:∵四边形ABCD是菱形,∴AD=AB=2,∠BAD=∠C=60°,∴△ABD是等边三角形,∵E是AD的中点,∴BE⊥AD,AE=AD=1,∴BE=AE=,在Rt△AOD中,OE为斜边AD上的中线,∴OE=AD=1,可知OE为定值,当O、E、B共线时OB最大,其值为OE+BE=+1;故选:D.12.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选:D.二.填空题(本大题共6小题,每小题3分,共24分)13.因式分解:x3﹣4x=x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).14.下表是我市某一天在不同时段测得的气温情况0:004:008:0012:0016:0020:0011℃14℃16℃23℃20℃17℃则这一天气温的极差是12℃.【分析】直接利用极差的定义得出答案.解:这一天气温的极差是:23﹣11=12(℃).故答案为:12.15.如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.16.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围k <1且k≠0.【分析】因为关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,所以k≠0且△=b2﹣4ac>0,建立关于k的不等式组,解得k的取值范围即可.解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴k≠0,且△=b2﹣4ac=36﹣36k>0,解得k<1且k≠0.故答案为k<1且k≠0.17.某人预计步行从家去火车站,从家步行走到6分钟时,以同样的速度回家取忘带的物品,然后从家乘出租赶往火车站,结果到火车站的时间比预计步行的时间提前了3分钟,该人离家的路程s(米)与时间t(分钟)之间的函数图象如图所示,那么从家到火车站的路程是1600m.【分析】设步行到达的时间为t,根据早到3分钟列出方程求出t,然后求解即可.解:步行的速度为:480÷6=80米/分钟,∵t=16时,s=80×16=1280,∴相遇时的点的坐标为(16,1280),设s=kt+b,则,解得,所以s=320t﹣3840;设步行到达的时间为t,则实际到达是时间为t﹣3,由题意得,80t=320(t﹣3)﹣3840,解得t=20.所以家到火车站的距离为80×20=1600m.故答案为:1600m.18.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD =2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB =90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有6种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;④当P在BC上,设BP=x,∵DP=2AP,∴2=,即x2+4x+24=0,△=42﹣4×1×24<0,此方程无解,即当点P在BC上时,不能使DP=2AP;⑤P在DC上,∵∠ADC=90°,∴AP>DP,不能DP=2AP,即当P在DC上时,不能具备DP=2AP;⑥P在BD上时,过P作PN⊥AD于N,过P作PM⊥AB于M,∵四边形ABCD是正方形,∴∠DAB=∠ANP=∠AMP=90°,∴四边形ANPM是矩形,∴AM=PN,AN=PM,∵四边形ABCD是正方形,∴∠ABD=45°,∵∠PMB=90°,∴∠MBP=∠MPB=45°,∴BM=PM=AN,同理DN=PN=AM,设PM=BM=AN=x,则PN=DN=AM=6﹣x,都不能DP=2AP,∵DP=2AP,∴由勾股定理得:2=,即x2﹣4x+12=0,△=(﹣4)2﹣4×1×12<0,此方程无解,即当P在BD上时,不能DP=2AP,故答案为:2或2或﹣.三.解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣2﹣2+cos45°﹣|1﹣|+(3.14﹣π)0.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式=﹣+2×﹣(﹣1)+1=﹣+2﹣+2=﹣.20.解不等式组,并求出它的所有整数解的和.【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集,然后确定解集中的整数解然后求和.解:解①得:x≥﹣2,解②得:x<4,则不等式组的解集是:﹣2≤x<4,则整数解是:﹣2,﹣1,0,1,2,3.它们的和为3.21.在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.【分析】根据平行四边形的性质和已知条件易证△EBC是等腰三角形,由等腰三角形的性质:三线合一即可证明CH=EH.【解答】证明:∵在▱ABCD中,BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).22.某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利润不低于30000元,则最少购进B品牌羽绒服多少件?【分析】(1)求A、B两种品牌的羽绒服每件进价分别为多少元,可设A种品牌的羽绒服每件进价为x元,根据题意列出方程解方程.(2)先设B种品牌得羽绒服购进m件,根据全部出售后所获利润不低于30000元列出不等式求解即可.解:(1)设A种羽绒服每件的进价为x元,根据题意的解得x=500经检验x=500是原方程的解x+200=700(元)答:A种羽绒服每件的进价为500元,B种羽绒服每件的进价为700元.(2)设购进B品牌的羽绒服m件,根据题意的(800﹣500)(80﹣m)+(1200﹣700)m≥30000解得m≥30∵m为整数∴m的最小值为30.答:最少购进B品牌的羽绒服30件.23.如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC 相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:BC=BH;(2)若AB=5,AC=4,求CE的长.【分析】(1)连接OE,如图,根据切线的性质得到OE⊥AC,则可证明∠1=∠3,加上∠2=∠3,从而得到∠1=∠2,然后证明Rt△BEH≌Rt△BEC得到结论;(2)利用勾股定理计算出BC=3,设OE=r,则OA=5﹣r,证明△AOE∽△ABC,利用相似比计算出r=,则AO=,然后利用勾股定理计算出AE,从而得到CE的长.【解答】(1)证明:连接OE,如图,∵AC为切线,∴OE⊥AC,∴∠AEO=90°,∵∠C=90°,∴OE∥BC,∴∠1=∠3,∵OB=OE,∴∠2=∠3,∴∠1=∠2,∵EH=EC,在Rt△BEH和Rt△BEC中∴Rt△BEH≌Rt△BEC(HL),∴BC=BH;(2)在Rt△ABC中,BC==3,设OE=r,则OA=5﹣r,∵OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=,∴AO=5﹣r=,在Rt△AOE中,AE==,∴CE=AC﹣AE=4﹣=.24.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90整理数据:成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据:统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据:(1)填空:a=8,b=5,c=90,d=82.5;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,准备从成绩在60到70分之间的两个小区中随机抽取2人进行再测试,请求出抽取的两人恰好一个是甲小区、一个是乙小区的概率.【分析】(1)根据样本数据可得a、b的值,利用众数和中位数的概念可得c、d的值;(2)用总人数乘以样本中甲小区成绩大于90分的人数所占比例即可得;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.解:(1)由样本数据知80<x≤90的数据有8个,即a=8,90<x≤100的数据有5个,即b=5,甲小区的数据中90出现次数最多,因此众数是90,即c=90;将乙小区数据重新排列为:60,65,70,75,75,80,80,80,80,80,85,85,90,90,90,95,95,95,100,100.则中位数d==82.5,故答案为:8、5、90、82.5;(2)估计甲小区成绩大于90分的人数为800×=200(人);(3)列表如下:甲1甲2乙1乙2乙3甲1(甲2,甲1)(乙1,甲1)(乙2,甲1)(乙3,甲1)甲2(甲1,甲2)(乙1,甲2)(乙2,甲2)(乙3,甲2)乙1(甲1,乙1)(甲2,乙1)(乙2,乙1)(乙3,乙1)乙2(甲1,乙2)(甲2,乙2)(乙1,乙2)(乙3,乙2)乙3(甲1,乙3)(甲2,乙3)(乙1,乙3)(乙2,乙3)由表格可知,共有20种等可能结果,其中抽取的两人恰好一个是甲小区、一个是乙小区的有12种情况,∴抽取的两人恰好一个是甲小区、一个是乙小区的概率为=.25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上,直线y=x﹣1.交边AB、OA于点D、M,反比例函数y=(x>0)的图象经过点D,与BC的交点为N.(1)求BN的长.(2)点P是直线DM上的动点(点P不与点D、点M重合),连接PB、PC、MN,当△BCP的面积等于四边形ABNM的面积时,求点P的坐标.(3)在(2)的条件下,连接CP,以CP为边作矩形CPEF,使矩形的对角线的交点G 落在直线DM上,请直接写出点G的坐标.【分析】(1)由正方形的性质可得出点A,B的坐标,利用一次函数图象上点的坐标特征可得出点D的坐标,由点D的坐标,利用待定系数法可求出反比例函数解析式,再利用反比例函数图象上点的坐标特征可得出点N的坐标,结合点B的坐标可求出BN的长;(2)利用一次函数图象上点的坐标特征可得出点M的坐标,利用梯形的面积公式可求出S梯形ABNM的值,设点P的坐标为(x,x﹣1)(x≠1,x≠3),利用三角形的面积公式结合△BCP的面积等于梯形ABNM的面积,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)过点C作CF⊥CP,交DM于点F,设点F的坐标为(n,n﹣1),结合点C,P 的坐标,利用两点间的距离公式可求出PF2,PC2,CF2的值,利用勾股定理可得出关于n的一元一次方程,解之即可得出点F的坐标,再结合点G为线段PF的中点,即可求出点G的坐标.解:(1)依题意,得:点A的坐标为(3,0),点B的坐标为(3,3).当x=3时,y=x﹣1=2,∴点D的坐标为(3,2).将D(3,2)代入y=,得:2=,解得:m=6,∴反比例函数解析式为y=.当y=3时,=3,解得:x=2,∴点N的坐标为(2,3),∴BN=3﹣2=1.(2)当y=0时,x﹣1=0,解得:x=1,∴点M的坐标为(1,0),∴AM=2,∴S梯形ABNM=(BD+AM)•AB=.设点P的坐标为(x,x﹣1)(x≠1,x≠3),∴S△BCP=BC•|3﹣y P|=|4﹣x|=,解得:x1=1(舍去),x2=7,∴点P的坐标为(7,6).(3)过点C作CF⊥CP,交DM于点F,如图2所示.设点F的坐标为(n,n﹣1).∵点C的坐标为(0,3),点P的坐标为(7,6),∴PC2=(0﹣7)2+(3﹣6)2=58,CF2=(n﹣0)2+(n﹣1﹣3)2=2n2﹣8n+16,PF2=(n﹣7)2+(n﹣1﹣6)2=2n2﹣28n+98.∵∠PCF=90°,∴PF2=PC2+CF2,即2n2﹣28n+98=58+2n2﹣8n+16,解得:n=,∴点F的坐标为(,).又∵点G为线段PF的中点,∴点G的坐标为(,).26.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD 方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m 的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:假设存在,在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.27.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y =﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF =BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.【分析】(1)先由直线解析式求出点A、C坐标,再将所求坐标代入二次函数解析式,求解可得;(2)先求出B(1,0),设E(t,﹣2t2﹣4t+6),作EH⊥x轴、FG⊥x轴,知EH∥FG,由EF=BF知===,结合BH=1﹣t可得BG=BH=﹣t,据此知F(+t,+t),从而得出方程﹣2t2﹣4t+6=(+t),解之得t1=﹣2,t2=﹣1,据此得出点E坐标,再进一步求解可得;(3)分EB为平行四边形的边和EB为平行四边形的对角线两种情况,其中EB为平行四边形的边时再分点M在对称轴右侧和左侧两种情况分别求解可得.解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=﹣3,∴C(0,6)、A(﹣3,0),∵抛物线y=﹣2x2+bx+c的图象经过A、C两点,∴,解得,∴抛物线的解析式为y=﹣2x2﹣4x+6;(2)令﹣2x2﹣4x+6=0,解得x1=﹣3,x2=1,∴B(1,0),∵点E的横坐标为t,∴E(t,﹣2t2﹣4t+6),如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,∵EF=BF,∴===,∵BH=1﹣t,∴BG=BH=﹣t,∴点F的横坐标为+t,∴F(+t,+t),∴﹣2t2﹣4t+6=(+t),∴t2+3t+2=0,解得t1=﹣2,t2=﹣1,当t=﹣2时,﹣2t2﹣4t+6=6,当t=﹣1时,﹣2t2﹣4t+6=8,∴E1(﹣2,6),E2(﹣1,8),当点E的坐标为(﹣2,6)时,在Rt△EBH中,EH=6,BH=3,∴BE===3,∴sin∠EBA===;同理,当点E的坐标为(﹣1,8)时,sin∠EBA==,∴sin∠EBA的值为或;(3)∵点N在对称轴上,∴x N==﹣1,①当EB为平行四边形的边时,分两种情况:(Ⅰ)点M在对称轴右侧时,BN为对角线,∵E(﹣2,6),x N=﹣1,﹣1﹣(﹣2)=1,B(1,0),∴x M=1+1=2,当x=2时,y=﹣2×22﹣4×2+6=﹣10,∴M(2,﹣10);(Ⅱ)点M在对称轴左侧时,BM为对角线,∵x N=﹣1,B(1,0),1﹣(﹣1)=2,E(﹣2,6),∴x M=﹣2﹣2=﹣4,当x=﹣4时,y=﹣2×(﹣4)2﹣4×(﹣4)+6=﹣10,∴M(﹣4,﹣10);②当EB为平行四边形的对角线时,∵B(1,0),E(﹣2,6),x N=﹣1,∴1+(﹣2)=﹣1+x M,∴x M=0,当x=0时,y=6,∴M(0,6);综上所述,M的坐标为(2,﹣10)或(﹣4,﹣10)或(0,6).。

2020年上海市虹口区中考数学一模试卷-解析版

2020年上海市虹口区中考数学一模试卷-解析版

2020年上海市虹⼝区中考数学⼀模试卷-解析版2020年上海市虹⼝区中考数学⼀模试卷⼀、选择题(本⼤题共6⼩题,共24.0分)1.若cosα=1,则锐⾓α的度数是()2A. 30°B. 45°C. 60°D. 90°2.在Rt△ABC中,∠C=90°,如果BC=2,tanB=2,那么AC=()A. 1B. 4C. √5D. 2√53.抛物线y=3(x+1)2+1的顶点所在象限是()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限4.已知抛物线y=x2经过A(?2,y1)、B(1,y2)两点,在下列关系式中,正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>05.已知a?、b? 和c?都是⾮零向量,在下列选项中,不能判定a?//b? 的是()A. |a?|=|b? |B. a?//c?,b? //c?C. a?+b? =0D. a?+b? =2c?,a??b? =3c?6.如图,点D是△ABC的边BC上⼀点,∠BAD=∠C,AC=2AD,如果△ACD的⾯积为15,那么△ABD的⾯积为()A. 15B. 10C. 7.5D. 5⼆、填空题(本⼤题共12⼩题,共48.0分)7.如果a:b=2:3,且a+b=10,那么a=______.8.如果向量a?、b? 、x? 满⾜关系式2b? ?3(a?+x? )=0,那么⽤向量a?、b? 表⽰向量x? =______.9.如果抛物线y=(1?a)x2+1的开⼝向下,那么a的取值范围是______.10.沿着x轴正⽅向看,抛物线y=?(x?1)2在对称轴______侧的部分是下降的(填“左”、“右”).11.如果函数y=(m+1)x m2?m+2是⼆次函数,那么m=______.12.如图,抛物线的对称轴为直线x=1,点P、Q是抛物线与x轴的两个交点,点P在点Q的右侧,如果点P的坐标为(4,0),那么点Q的坐标为______..那13.如图,点A(2,m)在第⼀象限,OA与x轴所夹的锐⾓为α,如果tanα=32么m=______.14.已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,AC=12、A1C1=8,△ABC的⾼AD为6,那么△A1B1C1的⾼A1D1长为______.15.如图,在梯形AEFB中,AB//EF,AB=6,EF=10,点C、D分别在边AE、BF上且CD//AB,如果AC=3CE,那么CD=______.16.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直⾓三⾓形与中间的⼩正⽅形拼成的⼀个⼤正⽅形,如果⼩正⽅形⾯积是49,直⾓三⾓形中较⼩锐⾓θ的正切为5,那么⼤正⽅形的⾯积是______.1217.如图,在Rt△ABC中,∠C=90°,AC=1,BC=2,点D为边AB上⼀动点,正⽅形DEFG的顶点E、F都在边BC上,联结BG,tan∠DGB=______.18.如图,在等腰梯形ABCD中,AD//BC,sinC=4,AB=9,AD=6,点E、F分5别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对⾓线BD于点P,当B′F⊥AB时,AP的长为______.三、计算题(本⼤题共1⼩题,共10.0分)tan260°19.计算:4sin30°cot30°?tan45°20. 在平⾯直⾓坐标系中,将抛物线C 1:y =x 2?2x 向左平移2个单位,向下平移3个单位得到新抛物线C 2. (1)求新抛物线C 2的表达式;(2)如图,将△OAB 沿x 轴向左平移得到△O′A′B′,点A(0,5)的对应点A′落在平移后的新抛物线C 2上,求点B 与其对应点B′的距离.21. 如图,在Rt △ABC 中,∠ABC =90°,点G 是Rt △ABC 的重⼼,联结BG 并延长交AC 于点D ,过点G作GE ⊥BC 交边BC 于点E . (1)如果AC =a ? ,AB =b ? ,⽤a ? 、b ? 表⽰向量BG ; (2)当AB =12时,求GE 的长.22. 某次台风来袭时,⼀棵笔直⼤树树⼲AB(假定树⼲AB 垂直于⽔平地⾯)被刮倾斜7°(即∠BAB′=7°)后折断倒在地上,树的顶部恰好接触到地⾯D 处,测得∠CDA =37°,AD =5⽶,求这棵⼤树AB 的⾼度.(结果保留根号)(参考数据:sin37≈0.6,cos37=0.8,tan37≈0.75)23.如图,在Rt△ABC中,∠ACB=90°,点D是边BC的中点,连结AD.过点C作CE⊥AD于点E,连结BE.(1)求证:BD2=DE?AD;(2)如果∠ABC=∠DCE,求证:BD?CE=BE?DE.24.在平⾯直⾓坐标系中,抛物线y=?x2+bx+c与x轴交于A(?1,0)、B两点,与y轴交于点C(0,3),点P在该抛物线的对称轴上,且纵坐标为2√3.(1)求抛物线的表达式以及点P的坐标;(2)当三⾓形中⼀个内⾓α是另⼀个内⾓β的两倍时,我们称α为此三⾓形的“特征⾓”.①当D在射线AP上,如果∠DAB为△ABD的特征⾓,求点D的坐标;②点E为第⼀象限内抛物线上⼀点,点F在x轴上,CE⊥EF,如果∠CEF为△ECF的特征⾓,求点E的坐标.25.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=3,点D为射线BC上⼀点,联结AD,5过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG//BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S△DAF=y,求y关于x的函数关系式(不需要写函数的定义域);(3)如果AG=8,求DE的长.答案和解析1.【答案】C【解析】【分析】本题考查了特殊⾓的三⾓函数值,解答本题的关键是掌握⼏个特殊⾓的三⾓函数值.根据cosα=1,求出锐⾓α的度数即可.2【解答】,解:∵cosα=12∴α=60°.故选C.2.【答案】B【解析】本题考查解直⾓三⾓形,解题的关键是熟练掌握基本知识,属于中考常考题型.根据正切函数的定义求解即可.【解答】解:如图,在Rt∠ACB中,∵∠C=90°,=2,∴tanB=ACBC∴AC=2,2∴AC=4.故选:B.3.【答案】B【解析】【分析】本题考查⼆次函数的性质,解答本题的关键是明确题意,利⽤⼆次函数的性质解答.根据抛物线y=3(x+1)2+1,可以写出该抛物线的顶点坐标,从⽽可以得到顶点在第⼏象限.【解答】解:∵抛物线y=3(x+1)2+1,∴该抛物线的顶点是(?1,1),在第⼆象限,故选:B.4.【答案】C【分析】本题主要考查的是⼆次函数的性质,熟练掌握⼆次函数的对称性和增减性是解题的关键.依据抛物线的对称性可知:(2,y1)在抛物线上,然后依据⼆次函数的性质解答即可.【解答】解:∵抛物线y=x2,∴抛物线开⼝向上,对称轴为y轴,∴A(?2,y1)关于y轴对称点的坐标为(2,y1).⼜∵0<1<2,∴y1>y2>0,故选:C.【解析】【分析】本题考查了平⾯向量,是基础题,熟记平⾏向量的定义是解题的关键.根据⽅向相同或相反的⾮零向量叫做平⾏向量,对各选项分析判断后利⽤排除法求解.【解答】解:A.该等式只能表⽰两a?、b? 的模相等,但不⼀定平⾏,故本选项符合题意;B.由a?//c?,b? //c?可以判定a?//b? ,故本选项不符合题意.C.由a?+b? =0可以判定a?、b? 的⽅向相反,可以判定a?//b? ,故本选项不符合题意.D.由a?+b? =2c?,a??b? =3c?得到a?=52c?,b? =?12c?,则a?、b? 的⽅向相反,可以判定a?//b? ,故本选项不符合题意.故选:A.6.【答案】D【解析】【分析】本题考查了相似三⾓形的判定和性质;熟记相似三⾓形的⾯积⽐等于相似⽐的平⽅,是中考常见题型,解题关键是熟练掌握相似三⾓形的判定和性质.⾸先证明△BAD∽△BCA,由相似三⾓形的性质可得:△BAD的⾯积:△BCA的⾯积为1:4,得出△BAD的⾯积:△ACD的⾯积=1:3,即可求出△ABD的⾯积.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,,,∵△ACD的⾯积为15,∴△ABD的⾯积=13×15=5,故选:D.7.【答案】4此题考查了⽐例的性质,熟练掌握⽐例的性质是解题的关键,即两内项之积等于两外项之积.根据已知条件设a=2k,b=3k,再根据a+b=10求出k的值,从⽽得出a的值.【解答】解:设a=2k,b=3k,∵a+b=10,解得:k=2,∴a=2k=2×2=4;故答案为:4.b? ?a?8.【答案】23【解析】【分析】此题考查了平⾯向量的知识.此题难度不⼤,注意掌握此向量⽅程的解法与⼀元⼀次⽅程的解法⼀样.利⽤⼀元⼀次⽅程的求解⽅法,去括号、移项、系数化1,即可求得答案.【解答】解:∵2b? ?3(a?+x? )=0,∴2b? ?3a??3x? =0,∴3x? =2b? ?3a?b? ?a?.∴x? =23b? ?a?.故答案是:239.【答案】a>1【解析】【分析】考查⼆次函数的图象和性质,明确a、b、c的值确定抛物线的位置是关键.根据抛物线y=ax2+bx+c的开⼝向下,则a<0,利⽤不等式求解即可.【解答】解:∵抛物线y=(1?a)x2+1的开⼝向下,∴1?a<0,解得,a>1,故答案为:a>1.10.【答案】右【解析】【分析】本题考查⼆次函数的性质,解答本题的关键是明确题意,利⽤⼆次函数的性质解答.根据抛物线y=?(x?1)2可以得到该抛物线的对称轴和在对称轴两侧,y随x的增⼤如何变化,从⽽可以解答本题.【解答】解:∵抛物线y=?(x?1)2,∴该抛物线的对称轴为x=1,当x<1时,y随x的增⼤⽽增⼤,当x>1时,y随x的增∴在对称轴右侧的部分是下降的,故答案为:右.11.【答案】2【解析】【分析】此题主要考查了⼆次函数的定义,正确得出m的⽅程是解题关键.直接利⽤⼆次函数的定义得出m的值.【解答】解:∵函数y=(m+1)x m2?m+2是⼆次函数,∴m2?m=2,(m?2)(m+1)=0,解得:m1=2,m2=?1,∵m+1≠0,∴m≠?1,故m=2.故答案为:2.12.【答案】(?2,0)【解析】【分析】本题考查了抛物线与x轴的交点以及⼆次函数的性质,牢记抛物线的对称性是解题的关键.根据抛物线的对称轴结合点P的横坐标,即可求出点Q的横坐标,此题得解.【解答】解:∵抛物线的对称轴为直线x=1,点P的坐标为(4,0),∴点Q的横坐标为1×2?4=?2,∴点Q的坐标为(?2,0).故答案为:(?2,0).13.【答案】3【解析】【分析】本题考查解直⾓三⾓形,坐标由图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,作AE⊥x轴于E.根据正切函数的定义构建关系式即可解决问题.【解答】解:如图,作AE⊥x轴于E.∵A(2,m),∴OE=2,AE=m,AE3∴m2=32,∴m=3,故答案为3.14.【答案】4【解析】【分析】此题主要考查了相似三⾓形的性质,正确掌握相关性质是解题关键.直接利⽤相似三⾓形的性质得出相似⽐等于对应⾼的⽐进⽽得出答案.【解答】解:∵△ABC∽△A1B1C1,AC=12、A1C1=8,∴相似⽐为:128=32,∵△ABC的⾼AD为6,∴△A1B1C1的⾼A1D1长为:6×23=4.故答案为:4.15.【答案】9【解析】【分析】本题考查了平⾏线分线段成⽐例定理,相似三⾓形的判定与性质等,解题关键是能够熟练运⽤平⾏线分线段成⽐例定理等.连接BE交CD于点M,由平⾏线分线段成⽐例定理先证CEAE =14,BDBF=34,再证△ECM∽△EAB,△BMD∽△BEF,由相似三⾓形的性质可分别求出CM,DM的长,可进⼀步求出CD的长.【解答】解:如图,连接BE交CD于点M,∵AC=3CE,∴CEAC =13,∵AB//EF,CD//AB,∴AB//CD//EF,∴DFBD =CEAC=13,∴CEAE =14,BDBF=34,∴△ECM∽△EAB,∴CMAB =CEAE,6=14,∴CM=32,∵MD//EF,∴△BMD∽△BEF,∴MDEF =BDBF,即MD10=34,∴MD=152,∴CD=CM+MD=32+152=9,故答案为:9.16.【答案】169【解析】【分析】此题考查了勾股定理的证明,解直⾓三⾓形等知识点,⾸先要求学⽣正确理解题意,然后会利⽤勾股定理和锐⾓三⾓函数的概念解题.由题意知⼩正⽅形的边长为7.设直⾓三⾓形中较⼩边长为a,较长的边为b,运⽤正切函数定义求解.【解答】解:由题意知,⼩正⽅形的边长为7,设直⾓三⾓形中较⼩边长为a,较长的边为b,则tanθ=短边:长边=a:b=5:12.所以b=12⼜因为b=a+7,②联⽴①②,得a=5,b=12.所以⼤正⽅形的⾯积是:a2+b2=25+144=169.故答案是:169.17.【答案】13【解析】【分析】本题主要考查了正⽅形的性质、相似三⾓形的判定与性质以及锐⾓三⾓函数,熟练掌握相似三⾓形的判定与性质是解答本题的关键.设DE与BG交于点O,根据题意可得△BDE∽△ABC,可得DEBE =ACBC=12,由正⽅形的性质可得GF=DE=EF,进⽽得出GFBF =13,再证明△DOG∽△EOB∽△FGB,可得DODG=EOEB=GF BF =13.【解答】解:如图,DE与BG交于点O,∵正⽅形DEFG,∴∠DEB=∠EDG=∠GFB=90°,GF=DE=EF,∴△BDE∽△ABC,∴DEBE =ACBC=1∴GFBF =13,∵∠DOG=∠EOB,∴△DOG∽△EOB∽△FGB,∴DODG =EOEB=GFBF=13,∴tan∠DGB=13.故答案为:1318.【答案】247【解析】【分析】本题考查相似三⾓形的判定和性质,解直⾓三⾓形等知识,解题的关键是理解题意,灵活运⽤所学知识解决问题.解直⾓三⾓形求出BF,AF,再利⽤相似三⾓形的性质求解即可.【解答】解:如图,∵FB′⊥AB,∴∠BAF=90°,∵四边形ABCD是等腰梯形,∴∠ABC=∠C,AF4设AF =4k ,BF =5k ,则AB =9=3k ,∴k =3,∴AF =12,BF =15,∵AD//BF ,∴△APD∽△FPB ,∴PA PF=AD BF=615=25,∴PA 12?PA =25∴PA =247,故答案为247.19.【答案】解:原式=4×12√3?1(√3)2=√3?2.【解析】把特殊的锐⾓三⾓函数值代⼊计算即可.考查特殊锐⾓的三⾓函数值,⼆次根式的化简,识记特殊锐⾓的三⾓函数值,掌握⼆次根式的化简⽅法是正确计算的关键.20.【答案】解:(1)由抛物线C 1:y =x 2?2x =(x ?1)2?1知,将其向左平移2个单位,向下平移3个单位得到新抛物线C 2的表达式是:y =(x ?1+2)2?1?3,即y =(x +1)2?4;(2)由平移的性质知,点A 与点A′的纵坐标相等,所以将y =5代⼊抛物线C 2,得(x +1)2?4=5,则x =?4或x =2(舍去) 所以AA′=4,根据平移的性质知:BB′=AA′=4,即点B 与其对应点B′的距离为4个单位.【解析】考查了⼆次函数图象与⼏何变换,⼆次函数图象上点的坐标特征以及待定系数法确定函数解析式,要求熟练掌握平移的规律:左加右减,上加下减.并⽤规律求函数解析式.(2)把y =5代⼊抛物线C 2求得相应的x 的值,即可求得点A′的坐标,根据平移的性质,线段AA′的长度即为所求.21.【答案】解:(1)∵BD =BA ????? +AD,∵点G 是Rt △ABC 的重⼼,∴AD =12AC ,∵AC =a ? ,AB =b ? ,∴AD =12a ? ,∴BD =?b ? +12a ? ,∴BG =23BD ? =23(?b ? +12a ? )=?23b ? +13a ? ; (2)过点D 作DF ⊥BC ,∵GE//DF , GE2∵DF//AB ,D 是AC 的中点,∴DF =12AB ,∵AB =12,∴DF =6,∴GE =4.【解析】(1)由已知可得 AD =12a ? ,有BD =BA ????? +AD ,可得BD =?b ? +12a ? ,剩余BG =23BD =23(?b ? +12a ? )=?23b ? +13a ? ;(2)过点D 作DF ⊥BC ,由GE//DF ,则GEDF =23,再由DF//AB ,D 是AC 的中点,可得DF =12AB ,即可求GE .本题考查三⾓形的重⼼、平⾯向量;熟练掌握三⾓形重⼼的性质,能够熟练运⽤向量的运算解题是关键.22.【答案】解:过点A 作AE ⊥CD 于点E ,则∠AEC =∠AED =90°.∵在Rt △AED 中,∠ADC =37°,∴cos37°=DE AD =DE 5=0.8,AE AD =AE 5=0.6,∴AE =3.在Rt △AEC 中,∵∠CAE =90°?∠ACE =90°?60°=30°,∴CE =√33AE =√3,∴AC =2CE =2√3,∴AB =AC +CE +ED =2√3+√3+4=3√3+4(⽶).答:这棵⼤树AB 原来的⾼度是(3√3+4)⽶.【解析】过点A作AE⊥CD于点E,解Rt△AED,求出DE及AE的长度,再解Rt△AEC,得出CE及AC的长,进⽽可得出结论.本题考查的是解直⾓三⾓形的应⽤,根据题意作出辅助线,构造出直⾓三⾓形是解答此题的关键.23.【答案】(1)证明:如图1中,∵CE⊥AD,∴∠CED=∠ACD=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC∴CDAD =DECD,∴CD2=DE?DA,∵DB=CD,∴BD2=DE?DA.(2)解:如图2中,∵BD2=DE?DA,BD DA∵∠BDE=∠ADB,∴△BDE∽△ADB,∴∠DEB=∠ABC,∵∠ABD=∠ECD,∴∠BED=∠BCE,∵∠EBD=∠CBE,∴△EBD∽△CBE,∴BECB =BDBE,∴BE2=BD?BC,∵CD=BD,∴BE2=2CD2,∵∠DCE+∠ACE=90°,∠CAD+∠ACE=90°,∴∠CAD=∠ECD=∠ABC,∵∠ACD=∠BCA,∴△ACD∽△BCA,∴ACBC =CDAC,∴AC2=CD?CB=2CD2,∴AC=BE,∵△ACE∽△CDE,∴ACCD =ECDE,∴BEBD =ECDE,∴BD?CE=BE?DE.【解析】(1)证明△CDE∽△ADC推出CDAD =DE,可得CD2=DE?DA即可解决问题.(2)利⽤相似三⾓形的性质⾸先证明AC=BE,再证明△ACE∽△CDE,可得ACCD =ECDE,可得BEBD =ECDE即可解决问题.本题属于相似形综合题,考查了相似三⾓形的判定和性质,解题的关键是正确寻找相似三⾓形解决问题,属于中考压轴题.24.【答案】解:(1)抛物线y=?x2+bx+c与y轴交于点C(0,3),则c=3,将点A的坐标代⼊抛物线表达式并解得:b=2,故抛物线的表达式为:y=?x2+2x+3;点P(1,2√3);(2)由点A、P的坐标知,∠PAB=60°,直线AP的表达式为:y=√3(x+1)…①,当α=60°,∠DBA=β=12α=30°时,△ABD为直⾓三⾓形,由⾯积公式得:y D×AB=AD?BD,即y D×4=2×2√3,解得:y D=√3,点D在AP上,故点D(0,√3);当∠ADB=β时,则∠ABD=90°,故点D(3,4√3);综上,点D的坐标为:(0,√3)或(3,4√3);(3)∠CEF为△ECF的特征⾓,则△CEF为等腰直⾓三⾓形,过点E分别作x轴、y轴的垂线交于点M、N,则△CNE≌△EMF(AAS),则EN=EM,即x=y,x=y=?x2+2x+3,解得:x=1+√132,故点E(1+√132,1+√132).【解析】(1)抛物线y=?x2+bx+c与y轴交于点C(0,3),则c=3,将点A的坐标代⼊抛物线表达式并解得:b=2,即可求解;(2)当α=60°,∠DBA=β=12α=30°时,△ABD为直⾓三⾓形,即可求解;当∠ADB=β时,则∠ABD=90°,即可求解;(3)∠CEF为△ECF的特征⾓,则△CEF为等腰直⾓三⾓形,则△CNE≌△EMF(AAS),即可求解.本题考查的是⼆次函数综合运⽤,涉及到⼀次函数的性质、三⾓形全等和相似、新定义等,其中(2),要注意分类求解,避免遗漏.25.【答案】解:(1)∵∠ACB=90°,BC=4,sin∠ABC=35,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC=DCAC =23;(2)∵AG//BD,∴tan∠AGF=tan∠CBF,∴AFAG =CFBC,AG BC =AFCF,∴x4=3?CFCF,∴CF=124+x.∴AF=3?CF=3?124+x =3x4+x.∵∠EAF=∠CBF,∴CDAC =CFBC,∴CD=94+x,∴S△DAF=12AF?CD=12×3x4+x×94+x=27x2(4+x)2;(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG//BD,∴AGBC =AFCF=21,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴tan∠AGE=tan∠CBF=CFBC =14,∴AEGE =14,设AE=x,GE=4x,∴x2+16x2=82,8即AE =817√17.同理tan∠DAC =tan∠CBF ,∴DCAC =14,∴DC =34,∴AD =√AC 2+DC 2=√32+(34)2=34√17.∴DE =AD ?AE =34√17?817√17=19√1768.②当点D 在BC 的边上时,如图2,∵AG//BD ,AG =8,BC =4,∴AGBC =AFCF =84=21.∴AF =6,∵∠EAF =∠CBF =∠ABC ,∴cos∠EAF =cos∠ABC ,∴6AE =54,∴AE =245,同理ACAD =BCAB ,∴3AD =45,∴AD =154.∴DE =AE ?AD =245154=2120.综合以上可得DE 的长为19√1768或2120.【解析】(1)求出AC =3,可得∠DAC =∠FBC ,则tan∠FBC =tan∠DAC =DC AC =23; (2)由条件可得∠AGF =∠CBF ,可得AFAG =CFBC ,可⽤x 表⽰CF 和AF 的长,求出CD ,则S△DAF=1AF?CD,可⽤x表⽰结果;2(3)分两种情况,①当点D在BC的延长线上时,则DE=AD?AE可求出.②当点D在BC的边上时,可求出AE长AD的长,则DE=AE? AD可求出.本题是三⾓形综合题,考查了勾股定理,平⾏线的性质,三⾓形的⾯积,锐⾓三⾓函数等知识,熟练掌握锐⾓三⾓函数的定义是解题的关键.。

山西省晋城市2020版中考数学一模试卷(I)卷

山西省晋城市2020版中考数学一模试卷(I)卷

山西省晋城市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若不等式| x-2 |+| x+6 |≥k永远成立,则()A . k≤4B . k<4C . k≤8D . k<82. (2分) (2016七上·昌平期中) 太阳的半径约为696000千米,将696000用科学记数法表示为()A . 0.696×106B . 6.96×106C . 69.6×104D . 6.96×1053. (2分)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A .B .C .D .4. (2分)下列运算正确的是().A . + =B . × =C . ( -1)2=3-1D . =5-35. (2分) (2016九上·高台期中) 如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A .B .C .D .6. (2分)(2020·台州) 在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A . 中位数B . 众数C . 平均数D . 方差7. (2分)关于x的方程kx2+2x-1=0有两个实数根,则k的取值范围是()A . k≥1B . k≥-1C . k≥1且k≠0D . k≥-1且k≠08. (2分)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A . AB=24mB . MN∥ABC . △CMN∽△CABD . CM:MA=1:29. (2分) (2017八下·蒙阴期中) 如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A . 2B . 4C . 4D . 810. (2分)如图,菱形ABCD中,AB = 5,∠BCD =120°,则对角线AC的长是()A . 20B . 15C . 10D . 5二、填空题 (共5题;共5分)11. (1分) (2019七上·姜堰期末) 若(x-1)x+1=1,则x=________.12. (1分)(2017·绿园模拟) 如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF 的面积为1,则▱ABCD的面积为________.13. (1分)(2013·河南) 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.14. (1分)(2016·日照) 如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=________15. (1分) (2017八下·下陆期中) 直角三角形ABCD中,∠BAC=90°,AB=AC=1,以AC为一边在△ABC外部作等腰直角三角形ACD,则线段BD的长为________.三、解答与证明 (共8题;共82分)16. (5分)(2016·海拉尔模拟) 先化简,再求值:,其中.17. (15分) (2019八下·长沙期中) 为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项),为了解学生喜爱哪种社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求其它类社团在扇形统计图中所占与圆心角的度数;(3)若该校有1500名学生,请估计喜欢文学类社团的学生有多少人?18. (10分)(2018·沈阳) 如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE 延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.19. (5分)(2016·福田模拟) 2016年2月18日韩国海军海警在朝鲜半岛东部海域实施联合演习,在返回济州岛军事基地途中,韩国海军UH﹣60直升机在距海平面垂直高度为300米的点C处测得济州一小岛的西端点A 的俯角为60°,然后沿着平行于AB的方向水平飞行了3500米,在点D测得这小岛的东端点B的俯角为45°,求这个济州小岛东西两端BA的距离(结果精确到1米,参考数据:≈1.732,≈1.414)20. (5分) (2016七下·下陆期中) 某天,一蔬菜经营户用120元钱按批发价从蔬菜批发市场买了西红柿和豆角共40kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:品名西红柿豆角批发价(单位:元/kg) 2.4 3.2零售价(单位:元/kg) 3.8 5.2如果西红柿和豆角全部以零售价售出,他当天卖这些西红柿和豆角赚了多少元钱?21. (12分) (2016七下·吴中期中) “a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x________)2+________;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.22. (15分)(2017·苏州模拟) 如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.23. (15分)(2017·广东) 如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答与证明 (共8题;共82分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学一模试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题(共30分) (共10题;共30分)
1. (3分)的倒数是()
A .
B . -2
C . 2
D .
2. (3分)下列运算错误的是()
A . (m ) = m
B . a ÷a =a
C . x ·x =x
D . a +a =a
3. (3分)观察下列图案,既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
4. (3分)反比例函数y=(k≠0)的图象过点(-1,1),则此函数的图象在直角坐
标系中的()
A . 第二、四象限
B . 第一、三象限
C . 第一、二象限
D . 第三、四象限
5. (3分)如图是某几何体从不同角度看到的图形,这个几何体是()
A . 圆锥
B . 圆柱
C . 正三棱柱
D . 三棱锥
6. (3分)若整数a使关于x的不等式组无解,且使关于x的分式方程
- =-1有非负整数解,那么所有满足条件的a的值之和是()
A . 4
B . 6
C . 8
D . 10
7. (3分)如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B,C的对应点分别为点F、
G.在点E从点C移动到点D的过程中,则点F运动的路径长为()
A . π
B . π
C . π
D . π
8. (3分)在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O 的位置关系是()
A . P在⊙O内
B . P在⊙O上
C . P在⊙O外
D . P与A或B重合
9. (3分)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()
A . y=2x2+1
B . y=2x2﹣3
C . y=2(x﹣8)2+1
D . y=2(x﹣8)2﹣3
10. (3分)如图·在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内放入边长为1的正方形纸片,每两张纸片都不重叠,则最多能放人的正方形纸片的张数是()
A . 15
B . 16
C . 17
D . 18
二、填空题(共30分) (共10题;共30分)
11. (3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为________.
12. (3分)计算:﹣3 =________.
13. (3分)若代数式在实数范围内有意义,则x的取值范围是________。

14. (3分)分解因式:2x3﹣8x=________.
15. (3分)不等式组的解集为________.
16. (3分)如图,,,,扇形的圆心角,以点为圆心画扇形,则阴影部分的面积是________.
17. (3分)一个不透明的袋中装有2个黄球,1个红球和1个白球,除色外都相同.
(1)搅匀后,从袋中随机出一个球,恰好是黄球的概是________?
(2)搅匀后,从中随机摸出两个球,求摸到一个红球和一个黄球的概率.
18. (3分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为________.
19. (3分)如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是________.
20. (3分)如图,在矩形ABCD中,对角线AC、BD交于点O ,∠AOD=120°,对角线AC=4,则BC的长为________.
三、解答題(共60分) (共7题;共60分)
21. (7分)当a=6,b 时,求下列代数式的值.
(1)2ab;
(2)a2+2ab+b2.
22. (7.0分)作图题:
如图在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.
(1)请在所给的网格内画出以线段、为边的菱形,并完成填空:点的坐标是________,线段的长是________;
(2)请计算菱形的面积.
23. (8.0分)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表睡眠时间分布情况
组别睡眠时间分组人数(频数)
17≤t<8m
28≤t<911
39≤t<10n
410≤t<114
请根据以上信息,解答下列问题:
(1)m =________, n =________, a =________, b =________;
(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在________组(填组别);
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.
24. (8分)已知四边形ABCD是矩形,O是对角线的交点.图中共有几对三角形全等?并选择一对加以证明.
(1)有________对.
(2)证明:
25. (10分)(本题满分13分)某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.
(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.
①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?
26. (10.0分)已知矩形 ABCD 内接于⊙O,AB=6 cm,AD=8 cm,以圆心 O 为旋转中心,把矩形 ABCD 顺时针旋转,得到矩形A′B′C′D′仍然内接于⊙O,记旋转角为α(0°<α≤90°).
(1)如图①,⊙O 的直径为________cm;
(2)如图②,当α=90°时,B′C′与 AD 交于点 E,A′D′与 AD 交于点 F,则四边形A′B′EF 的周长是________cm.
(3)如图③,B′C′与 AD 交于点 E,A′D′与 AD 交于点 F,比较四边形A′B′EF 的周长和⊙O的直径的大小关系;
(4)如图④,若A′B′与 AD 交于点 M,与 AB 交于点 P,A′D′与 AD 交于点 N,当旋转角α=________度时,△A′MN 是等腰三角形,并求出△A′MN 的周长.________
27. (10.0分)在平面直角坐标系xOy中,直线l1:y= x+b与x轴交于点A,与y轴交于点B,且点C的坐标为(4,﹣4).
(1)点A的坐标为________,点B的坐标为________;(用含b的式子表示)
(2)当b=4时,如图所示.连接AC,BC,判断△ABC的形状,并证明你的结论;
(3)过点C作平行于y轴的直线l2 ,点P在直线l2上.当﹣5<b<4时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.
参考答案一、选择题(共30分) (共10题;共30分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题(共30分) (共10题;共30分) 11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
17-2、
18-1、
19-1、
20-1、
三、解答題(共60分) (共7题;共60分) 21-1、
21-2、
22-1、
22-2、
23-1、
23-2、
23-3、24-1、
24-2、25-1、
25-2、26-1、26-2、
26-3、
26-4、27-1、
27-2、。

相关文档
最新文档