反应器-3气液相反应器的选择

合集下载

3气液固三相流化床反应器

3气液固三相流化床反应器
主要内容
三相流化床简介、结构及工作原理 三相流化床流体力学的研究 三相流化床传质的研究 三相流化床传热的研究 三相流化床新领域的开发应用

三相流化床简介
气-液-固三相反应工程是化学反应工程领域中 最令人感兴趣的领域之一。与传统的气-固相催化 反应器相比,在气-液-固三相反应器中,由于有 液相作为热载体和对固体催化剂的悬浮作用,使 反应和传递性能有很大的改进。三相流化床具有 高效传质的特点,适用于化学吸收、除尘等多种 场合。在流化床反应器中,液体自下而上运动, 会同气体的悬浮作用,使固体颗粒在反应器内呈 均匀流动状态。

三相流化床的结构及工作原理
流化床气液固三相反 应典型流程
2.恒温糟 3.供气系 统 4.碳酸钙粉末 添加装置 5.多孔 挡板 6. 补料槽 7. 蠕动泵 8.出气并 出料口
图1 三相流化床生物反应器

三相流化床的结构及工作原理

操作条件对压降的影响
2.uL对压降的影响
图3显示了在几种气速下不同 的uL对的影响。从图中可以看出, 在其它条件不变的情况下,△p随 着uL的增加而略有下降。由于液体 与气体并流,所以液体对固体颗粒 的流化起到了促进作用,uL值越大, 促进作用越强,相对来说气体对流 化作用就有所减弱,而床层流化程 度的上升必定造成△p的下降。同 时流化程度的增加,使得气泡聚并 的机会减少,则气含率就会有所增 加,引起床层混合平均密度下降, 也造成床层压降的降低。
实验流程
反应装置如右图1所示。反应 器为一直径0.07m,高1.0m的透明 有机玻璃塔,在0.49m处设有45o锥 角,高度0.05m的锥体;0.54m以 上为直径0.14m的扩大段。冷态实 验中气相为空气,液相为水,因相 为100~180目的砂子。实验时按事 先所确定的因含率加入适量的砂子。 气体则由一台小型风机经缓冲计量 后由反应器底部侧面进入,并通过 气体分布板进入反应器,在反应器 上端扩大段(使气液两相易于分离) 气液分离后放空。液体经流量计计 量后,由反应器底部经分布器进入 反应器并与气体并流,在反应器上 端扩大段,经溢流口过滤后排出。

气液固三相反应器

气液固三相反应器
1.颗粒悬浮的临界转速; 2.允许的极限气速。
鼓泡淤浆床三相反应器
鼓泡淤浆床反应器(Bubble Column Slurry Reactor, 简 称 BCSR )的基础是气 - 液鼓 泡反应器,即在其中加入固 体,往往文献中将鼓泡淤浆 床反应器与气 - 液鼓泡反应 器同时进行综述。
鼓泡淤浆床三相反应器
某些极限情况下: 不存在气膜传质阻力,kAG→∞时
Se 1 1 1 1 K GL kT a k AL k AS k w sw
不存在气-液界面处液膜传质阻力,kAL→∞时
1 1 Se 1 1 K GL k kT a k AG k w sw AS
cAig KGLcAiL

rA
dN A d VR
kT S e c Ag

1 S K 1 Se 1 1 e GL K GL kT a k AG a k AL k k w sw As
上述颗粒宏观反应动力学模型是以气-固相宏 观反应动力学为基础,再计入双膜论的气-液 传质过程组合而成的。
式中:
C *
A
L
为气相平衡的液体中组分A的浓度kmol/m3
数学模型 对A物料衡算(忽略气膜阻力)
u0,G
dcAG dz
cAG kL aL ( cAL ) HA
(1)
由于液相中为全混流,液相中组分A的浓度应不变,对(1)式积分:
cAG (cAG )0 e
, LR
(1 e
(5)
(6)
由公式(1)~(6)为机械搅拌釜淤浆反应器的设计方程,将这些方 程联立求解,可求出反应器的有效容积

反应器型式和操作方式的选择

反应器型式和操作方式的选择
在考虑生产效率、产品质量、设备投资等因素的基 础上,进行综合经济效益评估,选择最为经济合理 的操作方式。
03
各类反应器适用场景及特点
釜式反应器
适用场景
适用于液-液、液-固相反应及反应过 程中有固体生成的场合,如酯化、硝 化、磺化等反应。
特点
结构简单,操作方便,传热面积大, 传热效果好,适用于间歇操作。
反应器分类
根据反应的特点和需求,反应器可分为釜式反应器、管式反应器 、塔式反应器、固定床反应器和流化床反应器等。
Байду номын сангаас
常见反应器型式介绍
釜式反应器
管式反应器
塔式反应器
固定床反应器
流化床反应器
适用于液相或气液相反应 ,具有结构简单、操作方 便、传热效果好等优点。
适用于气固相或气液相连 续反应,具有结构紧凑、 传热效率高、反应时间短 等特点。
适用于气固相或气液相逆 流接触反应,具有处理能 力大、传质效率高、操作 弹性大等优势。
适用于气固相或液固相反 应,具有催化剂不易磨损 、反应温度均匀、易于控 制等优点。
适用于气固相或液固相反 应,具有传热传质效果好 、催化剂活性高、操作灵 活等特点。
选型原则及影响因素
选型原则
在选择反应器型式时,应遵循满足工艺要求、保证产品质量、提高经济效益等 原则。
影响因素
反应器选型受到反应物性质、反应条件、催化剂性质、传热传质要求等多种因 素的影响。因此,在选型时需综合考虑这些因素,选择最适合的反应器型式。
02
操作方式选择依据
连续操作与间歇操作比较
连续操作
物料连续进入和离开反应器,反 应过程中各参数保持恒定,生产 效率高,产品质量稳定。
间歇操作

第九章气液固三相反应工程

第九章气液固三相反应工程

相关的文献:
所著“气-液-固流态化工程”第四章对淤浆鼓泡反应器的
有关问题作了深入的讨论。当固体为细颗粒,淤浆的性 能可作为拟均相(即拟液体)处理时,可采用气-液鼓泡 反应器的有关理论;
等对气-液-固三相反应器的有关研究工作作了综述; 及的专著对鼓泡淤浆床反应器的流体力学、传热、传质
及工业应用作了详细的综述及讨论;

液化,石油馏分加氢脱硫,煤制合成气催化

成燃料油的费-托()合成过程
液相为惰性相的气-液-固催化反应,液相作为热
载体,例如,一氧化碳催化加氢生成烃类、醇类、 醛类、酮类和酸类的混合物。
工业上采用的气-液-固反应器按床层的性
质主要分成两种类型,即固体处于固定床和悬浮
床。
(一)固定床气-液-固三相反应器 滴流床或称涓流床反应器是固定床三相反应
利用机械搅拌的方法使催化剂或固体颗粒保 持悬浮状态,它有较高的传质和传热系数,对于 三相催化反应和含高粘度的非牛顿型流体的反应 系统尤为合适。
通过剧烈搅拌,催化剂悬浮在液相中,气体 和颗粒催化剂充分接触,并使用细颗粒催化剂, 可提高总体速率。
该类反应器操作方便且运转费用低,工业上 常用于油脂加氢、有机物的氧化等过程,采用半 间歇操作方式,气相连续通入反应器,被加工的 液相达到一定的转化率后,停止反应并卸料。
对于机械搅拌悬浮反应器,要注意: 颗粒悬浮的临界转速; 允许的极限气速。
2. 鼓泡淤浆床三相反应器的特征
鼓泡淤浆床反应器( ,简称)的基础是气液鼓泡反应器,即在其中加入固体,往往文献中 将鼓泡淤浆床反应器与气-液鼓泡反应器同时进行 综述。
作为催化反应器时, 鼓泡淤浆床反应器有下列优点:
使用细颗粒催化剂,充分消除了大颗粒催化剂粒内传质

气液固三相反应器课件

气液固三相反应器课件

实验研究与模拟的局限性及未来发展
局限性分析
分析实验研究和模拟技术的局限性,如实验 条件的不一致性、模型简化和误差传递等, 以及如何减小这些局限性的影响。
未来发展趋势
探讨三相反应器实验研究和模拟技术的未来 发展趋势,如新技术应用、模型优化和多尺 度模拟等,以及这些趋势对工业应用和科学 研究的影响。
05
优化产品生产
三相反应器可用于优化产品生产过 程,提高产品质量和产量,降低生 产成本。
三相反应器的历史与发展
历史
三相反应器的概念最早由科学家们提出,经过近百年的发展,现已广泛应用于各个领域。
发展
随着科技的不断进步,三相反应器在材料、结构、能效等方面不断优化,未来还将应用于更多领域。
02
CATALOGUE
应用先进的智能化控制技术,实现对三相反应器的精准控制,提高 生产效率和产品质量。
三相反应器面临的挑战与解决方案
01
反应器稳定性问题
三相反应器的操作条件较为复杂,容易出现稳定性问题。为解决这一问
题,需深入研究反应机理,优化反应条件,提高设备的稳定性。
02 03
能耗与环保问题
三相反应器运行过程中需要消耗大量的能源,且可能产生环境污染。针 对这一问题,应研发低能耗、环保型的三相反应器,如采用高效分离技 术、循环利用技术等。
特点
三相反应器具有高效率、高选择 性、高稳定性等优点,可用于处 理复杂的多相化学反应过程。
三相反应器的重要性
实现多相化学反应
三相反应器能够模拟和实现多相 化学反应过程,为科学研究、工 业生产和环保等领域提供有效的
手段。
提高能源利用率
三相反应器的特殊结构有助于提高 能源的利用率,降低能源消耗,对 于节能减排具有重要意义。

化学反应过程与设备

化学反应过程与设备
气液相反应与化学吸收的特点: 气液相反应与化学吸收,既有相同点,又有不同之处
化学反应过 程与设备
一、气液相反应器种类和工业应用
(一)气液相反应的特点与应用
气液相反应工业应用: 气液相反应广泛地应用于加氢、磺化、卤化、氧化等化学加工 过程。
化学反应过 程与设备
一、气液相反应器种类和工业应用
(二)气液相反应的基本类型与特点
气液相反应器的特点: 鼓泡塔反应器: 广泛应用于液体相也参与反应的中速、慢速反应和放热量 大的反应。 优点: 缺点:
化学反应过 程与设备
一、气液相反应器种类和工业应用
(二)气液相反应 的基本类型与特点
化学反应过 程与设备
一、气液相反应器种类和工业应用
(二)气液相反应的基本类型与特点
气液相反应器的特点: 填料塔反应器: 广泛应用于气体吸收的设备,也可用作气液相反应器。 反应方式: 适用于: 优点: 缺点:
二、鼓泡塔反应器结构
(二)鼓泡塔反应器的结构
组成: (1)塔底部的气体分布器分布 作用: (2)塔筒体部分 作用: (3)塔顶部的气液分离器 作用:
化学反应过 程与设备
三、填料塔反ቤተ መጻሕፍቲ ባይዱ器结构
(一)填料塔反应器的结构
定义:填料塔是以塔内装有大量的 填料为相间接触构件的气液传质设备。 结构:填料塔的塔身是一直立式圆筒, 底部装有填料支承板,填料以乱堆或 整砌的方式放置在支承板上。
化学反应过 程与设备
三、填料塔反应器结构
(一)填料塔反应器的结构 5、塔内件 (5)液体分布装置
化学反应过 程与设备
三、填料塔反应器结构
(一)填料塔反应器的结构 5、塔内件 (6)液体收集及再分布装置
化学反应过 程与设备

气液固三相反应-文档资料

气液固三相反应-文档资料

固体固定型三相反应器
固体悬浮型反应器
2.1 滴流床反应器
通常采用气液并流向下的操作方式
– 液体润湿固体催化剂表面形成液膜,气相反应物溶解于液相 后再向催化剂外表面和内部扩散,在催化剂的活性中心上进 行反应
– 广泛应用于石油、化工和环境保护过程
石油馏分的加氢精制和加氢裂化,有机化合物的加氢、氧化以 及废水处理
四个步骤的串联过程 在定态条件下,各步骤的速率相等
催化剂表面的反应按照一级反应处理时,
三相反应中气相反应物浓度分布
1)组分A从气相主体 传递到气液界面 2)组分A从气液界面 传递到液相主体 3)组分A从液相传递 到催化剂外表面 4)组分A向催化剂内 部传递并在内表面上 进行反应
滴流床反应器 淤浆床反应器
– 如果过程的控制步骤为催化剂颗粒内的传质,应选用细颗粒催化 剂的反应器,淤浆床反应器
– 过程控制步骤的判断
如果知道速率方程中的各项传递参数,通过计算可以获得速率 控制步骤
固定床反应器的通病
解决的方法
采用多床层,在层间加入冷氢进行急冷,控制每段床 层的温升
采用液相循环操作,在反应器外对液相进行冷却
气液逆流操作滴流床反应器
– 气相反应物浓度过低时,可以采用气液逆流操作的滴流床反应器, 有利于增大过程的推动力
– 当气液两相流速较大时,可能出现液泛
气液并流向上操作滴流床反应器---填料鼓泡塔
– 结构类似于气固相反应的固定床反应器
与固定床反应器的区别?
优点
气液流型接近于平推流,返混小 持液量小 催化剂表面液膜很薄 采用并流向下进行反应时,不会有液泛的发生,气相
的流动阻力小
缺点
传热能力差 液流流速低时,可能由于液流分布不均匀,导致部分催化剂不能

催化反应工程华东理工大学第十九课气—液—固三相反应器 24页PPT文档

催化反应工程华东理工大学第十九课气—液—固三相反应器 24页PPT文档
1 细颗粒催化剂 2 液体持液量大,液体全混 3 温度易于控制 要求: 1 惰性液体的要求 2 催化剂耐磨损 3 气相存在范混,但模拟计算时假设活塞流。
催化反应工程
(一) 颗粒完全悬浮临界气速uc 1 uc∝ut, ut 固体颗粒沉降速度 2 uc∝Cs 3 颗粒特性 4 液体特性 5 床层直径 6 分布器,有无导流筒
Nu=0.023Re0.8Pr0.3~0.4
A gB l C
催化反应工程
A组分
rA ,g kAS g LC A gC Ai g kAS L LC A iC LAL
kAS S eC A L C AS keS eC AC S BS
r B ,g k B S e S C B C L B S k e S e C A C B SS
rA ,grB,gkTSeC AC gBL
催化反应工程
k1TS SL ek1 Ag S SL eK kA GL LKGLk1 AS keC 1BS
rB,g kBSSe
CBLCBS
rB,g
keSeCAS
CBS
krBB,S gSekeSreB C ,gASCBL, kTS rB e,C gAgCBL
催化反应工程
催化反应工程
§三相催化反应器
一 涓流床三相反应器

气、液并流向下通过固定床的流体力学
三 (一)流体状态

与流速有关

在一定UOG下,小→大,气相连续→分散
六 (二)持液量

内持液量——颗粒孔隙内的持液量,

孔隙率↑,内持液量↑

静持液量——液体不流动时,润湿颗粒间的持液
量,

化学工程中的反应器选择原则

化学工程中的反应器选择原则

化学工程中的反应器选择原则在化学工程中,反应器的选择是非常重要的,它直接影响到反应的效率、产品的质量以及生产成本。

合理选择反应器有助于提高生产效率、降低能耗和减少环境污染。

本文将介绍化学工程中的反应器选择原则。

1. 反应物种类及反应条件反应物的种类和反应条件是选择反应器的基本依据。

不同的反应物需要不同的反应器来提供适当的反应环境。

例如,液相反应常用的反应器有批式反应器、连续流动反应器和搅拌槽式反应器,而气相反应常用的反应器有固定床反应器、流化床反应器和往复式压缩机反应器。

2. 反应速率反应速率的快慢也是选择反应器的重要因素之一。

对于快速反应,通常选择能提供大的接触面积和较快传质速率的反应器,如搅拌槽式反应器。

而对于慢速反应,则需要选择具有较大的体积和低的传质速率的反应器,如固定床反应器。

3. 反应热效应某些反应会伴随着放热或吸热效应。

选择合适的反应器可以更好地控制反应温度,避免温度过高或过低对反应产生负面影响。

例如,选择具有良好换热能力的反应器,如管壳式反应器或卧式反应器,可以更好地控制反应温度。

4. 反应器的可操作性反应器的可操作性也是选择的重要考虑因素之一。

反应器的操作应方便、易于控制,并能够满足工艺上的要求。

例如,在高温高压反应中,选择能够承受高温高压的反应器,如高压搅拌槽式反应器或自动控制压力的容器等。

5. 产品纯度要求根据对产品纯度的要求,选择适当的反应器也非常重要。

某些反应会伴随着副反应或副产物的生成,这些副产物可能会降低产品的纯度或者对设备造成腐蚀。

因此,在选择反应器时需要考虑对副产物或副反应的控制,避免对产品质量造成负面影响。

6. 经济因素在选择反应器时,经济因素也是必须考虑的因素。

反应器的选择不仅要满足技术上的要求,还要考虑到生产成本、设备投资以及维护费用等经济因素。

在满足技术要求的前提下,选择经济性较好的反应器,可以降低生产成本,提高工艺经济效益。

综上所述,化学工程中的反应器选择应综合考虑反应物种类及反应条件、反应速率、反应热效应、反应器的可操作性、产品纯度要求和经济因素等多个因素。

反应器-3气液相反应器的选择

反应器-3气液相反应器的选择

金属丝网波纹填料
精选可编辑ppt
金属孔板波纹填料
48
❖ 波纹填料因波纹薄片的材料与形状不同分成板波纹 填料和网波纹填料。
❖ 板波纹填料可由陶瓷、塑料、金属、玻璃钢等材料 制成。填料的空隙率大,阻力小,流体通量大、效 率高,而且制造方便、价格低,正向通用化、大型 化方向发展。
精选可编辑ppt
49
填料塔的内件
现象。 ❖ 液体再分布器:避免壁流现象发生。 ❖ 支撑板:支撑填料层,使气体均匀分布。
❖ 除沫器:防止塔顶气体出口处夹带液体。
精选可编辑ppt
28
❖ 壁流:
❖ 当液体沿填料层向下流动时,有逐渐向塔壁集中 的趋势,使得塔壁附近的液流量逐渐增大,这种 现象称为壁流。
❖ 壁流效应的后果:
❖ 造成气液两相在填料层中分布不均,从而使传质 效率下降。
精选可编辑ppt
20
鼓泡塔反应器的基本结构
简单鼓泡塔 1-塔体;2-夹套;3-气体分布器;4-塔体;精5选-挡可编板辑;pp6t-塔外换热器;7-液体捕集器;8-扩21大段
❖ 1、塔体:
❖ 2、气体分布器:使气体分布均匀,强化传热、传 质。是气液相鼓泡塔的关键设备之一。

型式:多孔板

喷嘴

多孔管等
精选可编辑ppt
34
❖ 按材质分:
▪ 金属填料 ▪ 塑料填料 ▪ 陶瓷填料 ▪ 石墨填料
精选可编填料
❖①拉西环(Rasching ring) :拉 西环是工业上最早使用的一种 填料,为外径与高度相等的圆 环,通常由陶瓷或金属材料制 成。
拉西环
精选可编辑ppt

36
❖ 解决办法:
❖ 当填料层较高时,需要进行分段,中间设置再分 布装置。

气液相反应器

气液相反应器

③Ha<0.02在液相整体中进行的极慢反应,为图
中h 。
项目五 气液相反应器
(4) 五种反应类型分析
① 极快反应 此时化学反应能力远远大于扩散能力,化学反 应瞬间完成,液相中A、B不能同时存在,化学 反应仅在液膜内某个反应面上发生,与界面大 小有关,和液体体积无关,此时,宏观速度取 决于扩散速度,称扩散控制过程。 令
7-冷却水箱
项目五 气液相反应器
(3)鼓泡塔反应器优点: ①气体以小的气泡形式均匀分布,连续不断地通过气液 反应层,保证了充足的气液接触面,使气液充分混合反应良 好。 ②结构简单,容易清理,操作稳定,投资和维修费用低。 ③鼓泡塔反应器具有极高的储液量和相际接触面积,传 质和传热效率高,适用于缓慢化学反应和高度放热的情况。 ④在塔的内、外都可以安装换热装置。 ⑤与填料塔比较,鼓泡塔能处理悬浮液体。 缺点: ①为了保证气体沿截面的均匀分布,鼓泡塔的直径不宜 过大,一般在2-3m以内。 ②鼓泡反应器液相轴向返混很严重,在不太大的高径比 情况下可认为液相处于理想混合状态,因此较难在单一连续 反应器中达到较高的液相转化率。 ③鼓泡反应器在鼓泡时所耗压降较大。
项目五 气液相反应器
(1)鼓泡塔的各种类型
(a) 并流式鼓泡塔
(b) 升液式鼓泡塔
(c) 安置水平多孔隔板的鼓泡塔 (d)填料鼓泡塔 1-筛板;2-填料
项目五 气液相反应器
(2)鼓泡塔的各种热交换形式
(a) 夹套换热器
(b) 塔外换热器
(c) 蛇管换热器
1,4-挡板;2-夹套;3-气体分布器;5-塔体;6-塔外换热器;
项目五 气液相反应器
任务二
气液相反应器的生产原理
项目五 气液相反应器
一、双膜理论

化学反应工程 第六章 气-液反应及反应器

化学反应工程 第六章 气-液反应及反应器
KG ( pG p*) KL (C *CL )
电流过程与双膜传质过程的类似
Ci Hpi
U1
U2
G
L
I U1 U2 U2 U3
R1
R2
U1 U2 U1 U2
R1 R2
R0
R0 R1 R2
U3
pG
Ci
pi
CL
GL
N pG pi Ci CL pG pi Ci CL
G / DG L / DL 1/ kG
M H(a或φ)准数数值大小的含义:
Ci pG
δg
δL
pi
GL
G
L
M (H或a φ)准数 数值大小的含义:
M或φ数值越大,反 应越快于传质,浓 CL 度分布越显著。
M H(a或φ)准数数值大小的含义:
Ci pG
δg
δL
pi
GL
G
L
M (H或a φ)准数 数值大小的含义:
M或φ数值越大,反 应越快于传质,浓 CL 度分布越显著。
三、M准数的判据
M准数:液膜中化学反应与传递之间相对速率的大小
条 件 反应类别 反应进行情况
M 0 反应可忽略 液膜液相的反应均可忽略
M 1 慢反应
反应在液相主体中进行
M 1 中速反应 反应在液膜和液相中进行
M 1 快反应
反应在液膜中进行完毕
M 瞬间反应 反应在膜内某处进行完毕






假设:扩散组分在气-液界面处达到气液相平衡。
双膜理论
Ci pG
δg
δL
pi
GL
G
L
CL
JG
DG

各种反应器特点优缺点及应用

各种反应器特点优缺点及应用

优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。
缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与 的反应,如:液液、液固、气液、气液固反应等。
典型反应:在等温间歇反应器中进行乙酸乙酯皂化反应:
CH3COOC2H5
CH3COONa+ C2H5OH
二.管式反应器
特点 : (1)由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓 度和化学反应速度都不随时间而变化,只随管长变化。 (2)管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大 的反应。 (3)由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。 (4)管式反应器适用于大型化和连续化的化工生产。 (5)和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理 想流体。 (6)管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。
缺点:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温 度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁 再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。
适用范围:主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类 蒸汽转化炉等。
2.板式塔
特点:适于快速和中速反应过程。具有逐板操作的特点,各板上维持相当的液量、以 进行气液相反应。
优点:由于采用多板,可将轴向返混降到最低,并可采用最小的液流速率进行操作, 从而获得极高的液相转化率。气液剧烈接触,气液相界面传质和传热系数大,是强化传质 过程的塔型,因此适用于传质过程控制的化学反应过程。板间可设置传热构件,以移出和 移入热量。

化学反应工程-第八章 气-液-固三相反应及反应器要点

化学反应工程-第八章 气-液-固三相反应及反应器要点

41
气—液—固三相床反应器实例
气—液—固三相床甲醇合成由于惰性液相热载体的作用, 床层易于控制在等温操作,减少可逆反应平衡的影响,并且
使用细颗粒惟化剂,减少了内扩散过程对减低反应速率的影 响,特别适用于高浓度一氧化碳合成甲醇。
42
43
加压气—液—固三相鼓泡淤浆床环氧乙烷合成
44
(2)固体作为催化剂的气-液-固反应:煤的催化液化,石油馏 分加氢脱硫,乙炔铜为催化剂合成丁炔二醇,苯乙炔和苯乙烯 的催化加氢等。 (3)二个反应相,第三个是惰性相:液相为惰性相的气—固催 化反应,液相作为传热介质,如一氧化碳催化加氢生成烃类、 醇类、醛类、酮类和酸类的混合物;气体为惰性相的液—固反 应,气体起搅拌作用,例如硫酸分解硫铁矿槽式反应釜内用空 气搅拌。
15
涓流床三相反应器
1、气、液并流向下通过固定床的流 体力学 (1)气,液稳定流动区——当气速较 低时,液体在颗粒表面形成滞流液膜, 气相为连续相, “涓流状”。气速 增加称为“喷射流”;
(2)过渡流动区——继续提高气体流 速,床层上部是喷射流,下部出现脉 冲现象。 (3)脉冲流动区——气速进一步增大
损。
按照气体的分散方式,机械搅拌悬浮三相反应器分为压 力布气式和自吸式两种。
25
26
机械搅拌鼓泡反应器中固体的悬浮
泛速——搅拌鼓泡悬浮反应器如果超过了极限气速,搅拌器 将失去分散气体的作用,气流将从容器中间冲破垂直向上, 此时容器底部的扰动较少,固体格会沉积在那里。
27
28
淤浆床鼓泡反应器
或称为鼓泡淤浆反应器(Bubble Column Slurry Reactor, BCSR)。 优点: (1)使用细颗粒催化剂,充分消除了大颗粒催化剂粒传质及传 热过程对反应转化率、反应收率及选择率的影响。 (2)反应器内液体滞留量大,热容量大,具有全混性质,容易 移走反应热,温度易控制,床层可处于等温状态, (3)可以在不停止操作的情况下更换催化剂。

第六章 气液固三相反应器和反应器分析

第六章  气液固三相反应器和反应器分析

(5)均相副反应量越大。
2.气-液-固悬浮三相反应器 固体在气液混合物中呈悬浮状态,这样操作状态的反应器为气-液-固 悬浮反应器。气-液-固悬浮反应器可以按有无机械搅拌、流体流向、颗粒
运动状态等进行分类。大体可以分为:
(1)机械搅拌的气-液-固悬浮反应器; (2)不带机械搅拌的鼓泡三相淤浆反应器; (3)不带机械搅拌的两流体并流向上的流化床反应器;
效率因子低下; (4)当催化剂由于积炭,中毒而失活时,更换催化剂不方便。
图7.1(b)适应于当气相反应物浓度较低,而又要求气相组分达到
较高转化率时的情况,逆流操作有利于增大过程的推动力。但同时
会增加气相流动阻力,当气液两相的流速较大时,还可能出现液泛。
图7.1(c)为气液并流向上的填料鼓泡塔反应器,持液量大,液相 和气相在反应器中混合好,液固间的传热性能好,适用于反应热效
7.2 气-液-固反应的宏观动力学
7.2.1 过程分析 气液固催化反应过程是传质与反应诸过程共同作用,互相影响的三 相反应过程,由多个步骤组成的过程。对于组分通过气液相的传递过程, 本节采用双膜模型,设气相反应组分A与液相反应组分B,在固体催化剂 作用下,反应如下:
A( g ) bB 产物
7.1.3 气-液-固反应过程研究所涉及的模型和参数
气液固反应过程,同样涉及到化学动力学,各相的流动
与混合状况,相间的质量、热量、动量传递等。由于相的增
加,物料流动与混合、质量、热量、力量传递过程要比两相 复杂,它涉及更多的参数。
1.流动模型及相关参数 (1)反应器的流动模型决定了三相间的传递特性,决定
1
(7.10)
1 1 RQ (cQs cQLi ) k a k a Qs p QL K LSQ (cQs cQLi ) qk p (1 f ) cAs
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 1、液相也是反应物 ❖ 2、液相是催化剂 ❖ 3、液相中既有反应物又有催化剂
实用文档
气液相反应的工业应用
实用文档
气液相反应器的基本类型
气液相反应器按气液相接触形态可分为: ❖ 气体以气泡形态分散在液相中(鼓泡塔反应器、
搅拌鼓泡釜式反应器和板式反应器) ❖ 液体以液滴状分散在气相中(喷雾、喷射和文氏
LOGO
气液相反应器的选择
实用文档
概述
气液相反应的基本类型 在反应过程中至少有一种反应物在气相,另一
些物质在液相,气相中的反应物必须传递到液相 中,然后在液相中发生化学反应,这种类型的反 应称气液相反应。
❖ 应用: ❖ 气体的净化和分离 ❖ 生产化工产品
实用文档
气液相反应的特殊性
❖ 在气液相反应体系中,气相往往是反应物,而液 相则可能有几种情况:
相返混较为严重的缺点。 ❖ 应用: ❖ 适用于瞬间、界面和快速反应,也适用于生成固
体的反应。
实用文档
搅拌釜式反应器
实用文档
搅拌鼓泡釜式反应器
❖ 特点: ❖ a.反应器内气体能较好地分散成细小的气泡,增
大气液接触面积。 ❖ b.反应器内液体流动接近全混流,同时能耗较高。 ❖ 应用: ❖ 搅拌釜式反应器适用于慢反应。
实用文档
❖ 用于化学吸收时可选用填料塔和喷雾塔,这种场 合气体浓度比较低,对处理后尾气要求不严格;
❖ 当用于生产化学品时,反应若极快(瞬时反应), 由传质控制,可选用填料塔和喷雾塔,它们的相 界面积大、持液量低;
❖对快反应和中速反应可选用板式塔和鼓泡塔,这 两种反应器的持液量都比较大;
实用文档
鼓泡塔反应器的基本结构
率较低。 ❖ 应用: ❖ 这类反应器适用于液体相也参与反应的中速、慢速
反应和放热量大的反应。
实用文档
实用文档
实用文档
填料塔反应器
❖ 特点: ❖ a.液体沿填料表面下流,在填料表面形成液膜而
与气相接触进行反应,故液相主体量较少。 ❖ b.填料塔反应器气体压降很小,液体返混极小,
是一种比较好的气液相反应器。 ❖ 应用: ❖ 适用于瞬间、界面和快速反应。
实用文档
实用文档
板式塔反应器
❖ 特点: ❖ a.板式塔反应器中的液体是连续相而气体是分散相,借助
于气相通过塔板分散成小气泡而与板上液体相接触进行化 学反应; ❖ b.能在单塔中直接获得极高的液相转化率; ❖ c.板式塔反应器的气液传质系数较大,可以在板上安置冷 却或加热元件,以适应维持所需温度的要求; ❖ d.但是板式塔反应器具有气相流动压降较大和传质表面较 小等缺点。 ❖ 应用: ❖ 板式塔反应器适用于快速及中速反应。
❖ 应用:降膜反应器可用于瞬间、界面和快速反应,它 特别适用于较大热效应的气液反应过程;不适用于慢反应; 也不适用于处理含固体物质或能析出固体物质及粘性很大 的液体。
实用文档
实用文档
喷雾塔反应器
❖ 特点: ❖ a.液体以细小液滴的方式分散于气体中,气体为
连续相,液体为分散相, ❖ b.具有相接触面积大和气相压降小等优点。 ❖ c.具有持液量小和液侧传质数过小,气相和液
反应器) ❖ 液体以膜状运动与气相进行接触(填料塔反应器
和降膜反应器)
实用文档
实用文档
鼓泡塔反应器
❖ 特点: ❖ a.气相既与液相接触进行反应同时搅动液体以增加
传质速率; ❖ b.鼓泡塔反应器结构简单、造价低、易控制、易维
修、防腐问题易解决,用于高压时也无困难。 ❖ c.鼓泡塔内液体返混严重,气泡易产生聚并,故效
简单鼓泡塔 塔体;2-夹套;3-气体分布器;4-塔体;5实-挡用文板档;6-塔外换热器;7-液体捕集器;8-扩大段
❖ 1、塔体:
❖ 2、气体分布器:使气体分布均匀,强化传热、传 质。是气液相鼓泡塔的关键设备之一。

型式:多孔板

喷嘴

多孔管等
实用文档
❖ 3、换热装置: ❖ 夹套式:热效应不大时。 ❖ 蛇管式:热效应较大时。 ❖ 外循环换热式:热效应较大时。 ❖ 4、水平多孔隔板: ❖ 提高气体分散度,减少液体纵向循环。
实用文档
膜式反应器
实用文档
❖ 膜反应器
❖ 特点:
❖ a.通常借助管内的流动液膜进行气液反应,管外使用载热 流体导入或导出反应热。
❖ b.降膜反应器还具有压降小和无轴向返混的优点。
❖ c.由于降膜反应器中液体停留时间很短,
❖ d.降膜管的安装垂直度要求较高,液体成膜和均匀分布是 降膜反应器的关键,工程使用时必须注意。
实用文档
气体升液式鼓泡塔 1-筒体;2-气升管;3-气体分布器
实用文档
❖ 塔内装有气升管,引起液体形成有规则的循环流 动,可以强化反应器传质效果,并有利于固体催 化剂的悬浮。
❖ 特点:在这种鼓泡塔中气流的搅动比简单鼓 泡塔激烈得多。
实用文档
实用文档
填料塔
❖ 填料塔的结构与特点 ❖ 填料的类型 ❖ 填料塔的内件
实用文档
填料塔的结构与特点
❖ 1. 填料塔的结构 ❖ 填料层:提供气液接触的场所。 ❖ 液体分布器:均匀分布液体,以避免发生沟流
现象。 ❖ 液体再分布器:避免壁流现象发生。 ❖ 支撑板:支撑填料层,使气体均匀分布。
❖ 除沫器:防止塔顶气体出口处夹带液体。
实用文档
❖ 壁流: ❖ 当液体沿填料层向下流动时,有逐渐向塔壁集中
实用文档
气液相反应器的选型
❖ 若是传质控制应选择气液接触面积大、持液量较 小的反应器;
❖ 若是化学反应控制则应选择持液量大的反应器;
❖ 反应极快热效应又很大,对传热的要求高时刻选 择膜式塔;
❖ 当液体的处理量大、反应较慢、换热要求较高时 刻选用鼓泡塔 ;
❖ 当有悬浮固体催化剂颗粒时可选用搅拌釜式反应 器,此时为气液固三相,称做於浆反应器
的趋势,使得塔壁附近的液流量逐渐增大,这种 现象称为壁流。 ❖ 壁流效应的后果: ❖ 造成气液两相在填料层中分布不均,从而使传质 效率下降。 ❖ 解决办法: ❖ 当填料层较高时,需要进行分段,中间设置再分 布装置。
实用文档
实用文档
填料塔结构图
实用文档
❖ 气体从塔底送入,经气体分布装置(小直径塔一 般不设气体分布装置)分布后,与液体呈逆流连 续通过填料层的空隙,在填料表面上,气液两相 密切接触进行传质。填料塔属于连续接触式气液 传质设备,两相组成沿塔高连续变化,在正常操 作状态下,气相为连续相,液相为分散相。
相关文档
最新文档