导数综合讲义(学生版和教师版)

合集下载

2024高考数学课件 导数的综合运用讲解册

2024高考数学课件 导数的综合运用讲解册

题型清单目 录题型1 与导数有关的构造函数题型2 利用导数证明不等式题型3 利用导数研究不等式恒(能)成立问题题型4 利用导数研究函数零点问题2024高考数学课件 导数的综合运用讲解册题型1 与导数有关的构造函数抽象函数构造的常见类型已知的不等式中所含结构构造函数的方向xf '(x)-f(x)F(x)= ,F'(x)= xf '(x)+f(x)F(x)=xf(x),F'(x)=f(x)+xf '(x)f(x)+f '(x)F(x)=e x f(x),F'(x)=e x [f(x)+f '(x)]f(x)-f '(x)F(x)= ,F'(x)= xf '(x)+2f(x)F(x)=x 2f(x),F'(x)=x 2f '(x)+2xf(x)xf '(x)-2f(x)F(x)= ,F'(x)= f (x)x 2xf '(x)f (x)x -x f (x)e x f '(x)f (x)e -2f (x)x 3xf '(x)2f (x)x-例1 (2023湖南长沙校考测试,5)已知函数f(x)的导数为f '(x),且(x+1)f(x)+xf '(x)>0对x∈R恒成立,则下列函数在实数集内一定是增函数的为 ( )A.y=f(x)B.y=xf(x)C.y=e x f(x)D.y=x e x f(x) 解析设F(x)=x e x f(x),则F'(x)=(x+1)e x f(x)+x e x f '(x)=e x[(x+1)f(x)+xf '(x)].∵(x+1)f(x)+xf '(x)>0对x∈R恒成立,且e x>0,∴F'(x)>0,∴F(x)在R上递增,故选D. 答案D解题技巧可根据题意,对选项逐一验证,易得A,B,C不合题意.即练即清1.(2023江苏扬州校考测试,6)定义在 上的函数f (x ), f '(x )是它的导函数,且恒有f (x )<f '(x )tan x 成立,则 ( ) A. f > f B.f (1)<2f sin 1 C. f >f D. f <f 0,2π⎛⎫ ⎪⎝⎭34π⎛⎫ ⎪⎝⎭23π⎛⎫ ⎪⎝⎭6π⎛⎫ ⎪⎝⎭26π⎛⎫ ⎪⎝⎭4π⎛⎫ ⎪⎝⎭36π⎛⎫ ⎪⎝⎭3π⎛⎫ ⎪⎝⎭D题型2 利用导数证明不等式1.常见不等式(大题使用需要证明)(1)e x ≥x +1,e x -1≥x ,e x ≥e x ,e -x≥1-x .(2)ln x ≤x -1(x >0),ln(x +1)≤x (x >-1),ln ≤ -1(x >0),ln x ≥1- (x >0).(3)e x ≥1+x + x 2(x ≥0),e x ≤1+x + x 2(x ≤0),ln x ≤ x (x >0).1x 1x 1x 12121e2.常用方法:作差(商)比较法,放缩法,凸凹反转法,指数找朋友法等.知识拓展1.凸凹反转法:首先对原不等式进行等价变形,然后根据变形后的不等式构造M(x)> N(x),转化为证M(x)min>N(x)max.2.指数找朋友法:在证明或处理含指数函数的不等式时,通常要将指数型的函数“结合”起来,即让指数型的部分乘或除以一个多项式,这样再对变形的函数求导后,无需考虑指数型部分的值,使得后续解方程或求值的范围更加简单.这种变形过程,我们称为“指数找朋友”.例2 (2023广东佛山二模,22改编)证明:e x -3x +2sin x -1≥0. 证明 指数找朋友法.欲证e x -3x +2sin x -1≥0,即证 -1≤0,令F (x )= -1,则F '(x )= ,(多项式除以指数型的形式,只考虑分子部分即可)令q (x )=2-3x +2sin x -2cos x ,则q '(x )=-3+2cos x +2sin x =2 sin -3<0,所以函数q (x )单调递减,且q (0)=0,所以当x <0时,F '(x )>0,当x >0时,F '(x )<0,所以函数F (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,32sin 1e x x x -+32sin 1e x x x -+232sin 2cos ex x x x -+-24x π⎛⎫+ ⎪⎝⎭故F (x )≤F (0)=0,即 -1≤0,从而原不等式得证.32sin 1e x x x -+即练即清2.(2018课标Ⅲ文,21,12分)已知函数f (x )= .(1)求曲线y =f (x )在点(0,-1)处的切线方程;(2)证明:当a ≥1时, f (x )+e ≥0.21e x ax x +-解析 (1)f '(x )= ,则f '(0)=2.因此曲线y =f (x )在点(0,-1)处的切线方程是2x -y -1=0.(2)证明:f (x )+e= ,所以证明f (x )+e ≥0即证ax 2+x -1+e x +1≥0,因为e x ≥x +1,所以e x +1≥x +2,所以ax 2+x -1+e x +1≥ax 2+2x +1,即证ax 2+2x +1≥0,因为a ≥1,所以ax 2+2x +1≥x 2+2x +1=(x +1)2≥0.2(21)2ex ax a x -+-+211e ex x ax x ++-+故a ≥1时, f (x )+e ≥0.题型3 利用导数研究不等式恒(能)成立问题1.转化策略一般有:(1)参数讨论法;(2)分离参数法;(3)先特殊、后一般法等.2.常用的转化方法:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min;(3)a≥f(x)能成立⇔a≥f(x)min;(4)a≤f(x)能成立⇔a≤f(x)max.3.双变量恒(能)成立问题的转化方法:(1)∀x1∈M,∃x2∈N, f(x1)>g(x2)⇔f(x)min>g(x)min;(2)∀x1∈M,∀x2∈N, f(x1)>g(x2)⇔f(x)min>g(x)max;(3)∃x1∈M,∃x2∈N, f(x1)>g(x2)⇔f(x)max>g(x)min;(4)∃x1∈M,∀x2∈N, f(x1)>g(x2)⇔f(x)max>g(x)max.例3 (2024届江苏南京师大附中入学测试,8)已知函数f (x )=x +x ln x ,g (x )=kx -k ,若k ∈Z,且f (x )>g (x )对任意x >e 2恒成立,则k 的最大值为( )A.2 B.3 C.4 D.5 解析 f (x )>g (x ),即x +x ln x >kx -k 对任意x ∈(e 2,+∞)恒成立,所以k < ,即k < .令u (x )= ,x ∈(e 2,+∞),则u '(x )= .令h (x )=x -ln x -2,x ∈(e 2,+∞),h '(x )=1- = >0,ln 1x x x x +-min ln 1x x x x +⎛⎫ ⎪-⎝⎭ln 1x x x x +-2ln 2(1)x x x ---1x 1x x-所以h (x )在(e 2,+∞)上单调递增,所以h (x )>h (e 2)=e 2-4>0,可得u '(x )>0,所以u (x )在(e 2,+∞)上单调递增.所以u (x )>u (e 2)= =3+ ∈(3,4).又k ∈Z,所以k max =3.故选B.223e e 1-23e 1- 答案 B即练即清3.已知函数f (x )=ln x -a (x -1),a ∈R,x ∈[1,+∞),且f (x )≤ 恒成立,求a 的取值范围.ln 1x x +解析 参数讨论法.f (x )- = ,构造函数g (x )=x ln x -a (x 2-1)(x ≥1),g '(x )=ln x +1-2ax ,令F (x )=g '(x )=ln x +1-2ax ,F '(x )= .①若a ≤0,则F '(x )>0,g '(x )在[1,+∞)上单调递增,g '(x )≥g '(1)=1-2a >0,∴g (x )在[1,+∞)上单调递增,g (x )≥g (1)=0,ln 1x x +2ln (1)1x x a x x --+12ax x-从而f (x )- ≥0,不符合题意.②若0<a < ,当x ∈ 时,F '(x )>0,ln 1x x +1211,2a ⎡⎫⎪⎢⎣⎭∴g '(x )在 上单调递增,从而g '(x )≥g '(1)=1-2a >0,∴g (x )在 上单调递增,g (x )≥g (1)=0,从而f (x )- ≥0,不符合题意.③若a ≥ ,则F '(x )≤0在[1,+∞)上恒成立,∴g '(x )在[1,+∞)上单调递减,g '(x )≤g '(1)=1-2a ≤0.11,2a ⎡⎫⎪⎢⎣⎭11,2a ⎡⎫⎪⎢⎣⎭ln 1x x +12∴g (x )在[1,+∞)上单调递减,从而g (x )≤g (1)=0, f (x )- ≤0.ln 1x x +综上,a 的取值范围是 .1,2⎡⎫+∞⎪⎢⎣⎭题型4 利用导数研究函数零点问题1.函数零点问题的常见类型:(1)判断或证明零点个数.常用的方法有:①直接根据函数零点存在定理判断;②将f(x)整理变形成f(x)=g(x)-h(x)的形式,通过y=g(x)的图象与y=h(x)的图象的交点个数确定函数的零点个数;③结合导数,求函数的单调性,从而判断函数零点个数.(2)已知零点个数求参数范围.(3)讨论或者证明零点所满足的分布特征.2.求函数的零点个数时,常用的转化方法:参数讨论法,分离参数法,数形结合法等.例4 (2022全国乙文,20,12分)已知函数f (x )=ax - -(a +1)ln x .(1)当a =0时,求f (x )的最大值;(2)若f (x )恰有一个零点,求a 的取值范围.1x 解析 (1)当a =0时, f (x )=- -ln x (x >0),∴f '(x )= - (x >0),令 f '(x )=0,得x =1,x ∈(0,1)时, f '(x )>0,x ∈(1,+∞)时, f '(x )<0,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1.(2)f '(x )=a + - = .(i)当a ≤0时,ax -1≤0恒成立,∴0<x <1时, f '(x )>0, f (x )单调递增,x >1时, f '(x )<0, f (x )单调递减,1x 21x 1x 21x 1a x +2(1)(1)ax x x--∴f (x )max =f (1)=a -1<0.此时f (x )无零点,不合题意.(ii)当a >0时,令f '(x )=0,解得x =1或x = ,①当0<a <1时,1< ,∴1<x < 时, f '(x )<0, f (x )单调递减,0<x <1或x > 时, f '(x )>0, f (x )单调递增,∴f (x )在(0,1), 上单调递增,在 上单调递减, f (x )的极大值为f (1)=a -1<0,x →+∞时, f (x )>0,∴f (x )恰有1个零点.1a 1a 1a 1a1,a ⎛⎫+∞ ⎪⎝⎭11,a ⎛⎫ ⎪⎝⎭②当a =1时,1= , f (x )在(0,+∞)上单调递增, f (1)=0,符合题意.③当a >1时, <1, f (x )在 ,(1,+∞)上单调递增,在 上单调递减,f (x )的极小值为f (1)=a -1>0,x →0时, f (x )→-∞,∴f (x )恰有1个零点.综上所述,a >0.1a1a 10,a ⎛⎫ ⎪⎝⎭1,1a ⎛⎫ ⎪⎝⎭即练即清4.(2023全国乙文,8,5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是 ( )B A.(-∞,-2) B.(-∞,-3)C.(-4,-1)D.(-3,0)5.(2021新高考Ⅱ,22,12分)已知函数f (x )=(x -1)e x -ax 2+b .(1)讨论函数f (x )的单调性;(2)从下面两个条件中选一个,证明: f (x )有一个零点.① <a ≤ ,b >2a ;②0<a < ,b ≤2a .122e 212解析 (1)∵f (x )=(x -1)e x -ax 2+b ,∴f '(x )=x e x -2ax =x (e x-2a ).①当a ≤0时,e x-2a >0对任意x ∈R 恒成立,当x ∈(-∞,0)时, f '(x )<0,当x ∈(0,+∞)时, f '(x )>0.因此y =f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.②当a >0 时,令e x-2a =0⇒x =ln(2a ).(i)当0<a < 时,ln(2a )<0.y =f '(x )的大致图象如图1所示.12因此当x ∈(-∞,ln(2a ))∪(0,+∞)时, f '(x )>0,当x ∈(ln(2a ),0)时, f '(x )<0,所以f (x )在(-∞,ln(2a ))和(0,+∞)上单调递增,在(ln(2a ),0)上单调递减.(ii)当a = 时,ln(2a )=0,此时f '(x )≥0对任意x ∈R 恒成立,故f (x )在R 上单调递增.(iii)当a > 时,ln(2a )>0,y =f '(x )的大致图象如图2所示.1212因此,当x ∈(-∞,0)∪(ln(2a ),+∞)时, f '(x )>0,当x ∈(0,ln(2a ))时, f '(x )<0,所以f (x )在(-∞,0)和(ln(2a ),+∞)上单调递增,在(0,ln(2a ))上单调递减.(2)选①.证明:由(1)知, f (x )在(-∞,0)上单调递增,在(0,ln(2a ))上单调递减,在(ln(2a ),+∞)上单调递增,又f (0)=b -1>0,f = <0,所以f (x )在(-∞,0]上有唯一零点.b a ⎛⎫- ⎪⎝⎭1b a ⎛⎫-- ⎪⎝⎭e ba -当x ∈(0,+∞)时,f (x )≥f (ln(2a ))=[ln(2a )-1]·2a -a [ln(2a )]2+b =a ln(2a )[2-ln(2a )]+b -2a >a ln(2a )[2-ln(2a )].因为 <a ≤ ,所以0<ln(2a )≤2,所以f (x )>0对任意x >0恒成立.综上, f (x )在R 上有唯一零点.选②.证明:由(1)知f (x )在(-∞,ln(2a ))上单调递增,在(ln(2a ),0)上单调递减,在(0,+∞)上单调递增,122e 2f(0)=b-1<0,当x→+∞时, f(x)→+∞,所以一定存在x0∈(0,+∞),使得f(x0)=0.结合单调性知f(x)在[0,+∞)上有唯一零点.当x∈(-∞,0)时, f(x)≤f(ln(2a))=a ln(2a)·[2-ln(2a)]+b-2a<0,即f(x)<0对任意x<0恒成立.综上, f(x)在R上有唯一零点.。

导数的综合应用个性化辅导讲义

导数的综合应用个性化辅导讲义

(1)若a =0,求f (x )的单调区间;
(2)若当x ≥0时,f (x )≥0,求a 的取值范围.
巩固作业
一、选择题
1.f (x )=5x 2-2x 的单调增区间是( )
A .(15
,+∞) B .(-∞,15) C .(-15
,+∞) D .(-∞,-15) 2.函数f (x )=x 3+3x 2+4x -a 的极值点的个数是( )
A .2
B .1
C .0
D .由a 确定 3.已知函数f (x )的导数为f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得
极大值-5时,x 的值应为( )
A .-1
B .0
C .1
D .±1 4.若函数g (x )=x 3-ax 2+1在区间[1,2]上单调递减,则实数a 的取值范围是( )
A .a ≥3
B .a >3 C.32
<a <3 D.32≤a ≤3 5.设函数f (x )=ax 3+bx 2+cx +d ,f ′(x )为其导函数,如右图是函数y =x ·f ′(x )的图象的
一部分,则f (x )的极大值与极小值分别为( )
A .f (1)与f (-1)
B .f (-1)与f (1)
C .f (2)与f (-2)
D .f (-2)与f (2)
6.(2011·郑州第一次调研)设f (x )是定义在R 上的奇函数,g (x )是定义在R 上恒大于零的函数,且当
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

高中数学全套讲义 选修1-1 导数概念中挡 学生版

高中数学全套讲义 选修1-1 导数概念中挡 学生版

目录目录 (1)考点一导数的概念 (2)题型1 变化的快慢和变化率 (2)题型2 导数的概念 (4)考点二导数的几何意义 (4)题型3 有关斜率的判断与计算 (4)课后综合巩固练习 (5)考点一 导数的概念1.平均变化率:已知函数()y f x =在点0x x =及其附近有定义,令0x x x ∆=-,0000()()()()y y y f x f x f x x f x ∆=-=-=+∆-,则当0x ∆≠时,比值00()()f x x f x yx x+∆-∆=∆∆叫做函数()y f x =在0x 到0x x +∆之间的平均变化率.2.瞬时变化率:如果当x ∆趋近于0时,平均变化率00()()f x x f x x+∆-∆趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率.可用符号记为:当0x ∆→时,00()()f x x f x l x+∆-→∆.还可以说:当0x ∆→时,函数平均变化率的极限等于函数在0x 的瞬时变化率l ,记作:000()()lim x f x x f x l x∆→+∆-=∆.3.导数:函数在0x 的瞬时变化率,通常就定义为()f x 在0x x =处的导数.并记作()0f x '0|x x y ='可以写为:0000()()lim()x f x x f x f x x∆→+∆-'=∆.4.导函数:如果()f x 在开区间()a b ,内每一点x 导数都存在,则称()f x 在区间()a b ,可导,这样,对于开区间()a b ,内的每个值x ,都对应一个确定的导数()f x ',于是在区间()a b ,内构成一个新的函数,我们把这个函数称为函数()y f x =的导函数,记为()f x '.导函数通常简称为导数,今后,如不特别指明求某一点的导数,求导数指的就是求导函数.题型1 变化的快慢和变化率1.(2018春•菏泽期中)已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数()y f x =的描述正确的是( )A .在(,0)-∞上为减函数B .在0x =处取得最大值C .在(4,)+∞上为减函数D .在2x =处取得最小值2.(2019春•韩城市期末)设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x ='的图象可能为( )A .B .C .D .3.(2018春•思明区校级月考)已知函数()f x 的图象如图所示,()f x '是函数()f x 的导函数,则下列数值排序正确的是( )A .2f '(2)f <(4)f -(2)2f <'(4)B .2f '(4)2f <'(2)f <(4)f -(2)C .2f '(2)2f <'(4)f <(4)f -(2)D .f (4)f -(2)2f <'(4)2f <'(2)4.(2017春•东坡区校级月考)函数()f x 的图象如图所示,则下列关系正确的是( )A .0f '<(2)f '<(3)f <(3)f -(2)B .0f '<(2)f <(3)f -(2)f '<(3)C .0f '<(3)f <(3)f -(2)f '<(2)D .0f <(3)f -(2)f '<(2)f '-(3) 5.函数1y x=在区间0[x ,0x +△0](0x x ≠,0x +△0)x ≠内的平均变化率为 .题型2 导数的概念6.(2017春•邢台月考)设函数()1sin 2f x x =+,则等于0()(0)lim (x f x f x→- ) A .2-B .0C .3D .27.(2019•濮阳一模)已知21()(0)2f x alnx x a =+>,若对任意两个不等的正实数1x ,2x ,都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是( )A .(0,1]B .(1,)+∞C .(0,1)D .[1,)+∞8.(2018春•商丘期中)已知函数3()(2)x f x x x e =-,则0(1)(1)lim x f x f x→+-的值为( )A .e -B .1C .eD .09.(2016春•邯郸期中)已知f '(2)2=,则0(22)(2)lim 4x f x f x→--= .考点二 导数的几何意义导数的几何意义:曲线()y f x =在点()00()x f x ,的切线的斜率等于()0f x '.题型3 有关斜率的判断与计算10.(2018•海南三模)已知函数42()2(1)f x x ax a x =-++-为偶函数,则()f x 的导函数()f x '的图象大致为( )A .B .C .D .11.(2016春•海淀区期中)若小球自由落体的运动方程为21()(2s t gt g =为常数),该小球在1t =到3t =的平均速度为v ,在2t =的瞬时速度为2v ,则v 和2v 关系为( )A .2v v >B .2v v <C .2v v =D .不能确定12.(2018秋•中山市期末)已知曲线y lnx =的切线过原点,则此切线的斜率为( ) A .eB .e -C .1eD .1e-13.(2016秋•福州期末)一质点做直线运动,由始点经过t 秒后的距离为322s t t t =-+,则2t =秒时的瞬时速度为( )A .8/m sB .10/m sC .16/m sD .18/m s14.(2018•邯郸二模)若过点(1,)P m -可以作三条直线与曲线:x C y xe =相切,则m 的取值范围是( ) A .23(e -,)+∞ B .1(,0)e-C .(0,)+∞D .231(,)e e-- 15.(2018秋•龙岩期末)已知P 为函数y lnx =图象上任意一点,点Q 为圆222(1)1x y e +--=上任意一点,则线段PQ 长度的最小值为 .16.(2019春•襄阳期末)正弦曲线sin y x =上一点P ,正弦曲线的以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 .17.(2017秋•海陵区校级期中)已知点P 在曲线sin y x =上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 .课后综合巩固练习1.(2017•红桥区模拟)已知函数321()3f x x x =--,则曲线()y f x =在点(1,f (1))处的切线斜率为 .2.(2017春•昌平区校级月考)曲线3123y x =-在点7(1,)3--处的切线的倾斜角为 .3.(2015秋•徐州期末)若函数()x f x e ax =-在(1,)+∞上单调增,则实数a 的最大值为 . 4.(2018春•江岸区校级月考)已知一个物体的运动方程为21s t t =-+,其中s 的单位是m ,t 的单位是s ,那么物体在3s 时的瞬时速度为( )A .5 /m sB .6 /m sC .7 /m sD .8 /m s5.(2018•咸阳三模)已知三次函数32()f x ax bx cx d =+++的图象如图所示,则(0)(1)f f '=' .6.(2018春•昌吉市期末)如图函数()f x 的图象在点P 处的切线为:25y x =-+,则f (2)f +'(2)= .7.(2019春•让胡路区校级月考)已知函数()()y f x x R =∈上任一点0(x ,0())f x 处的切线斜率200(3)(1)k x x =-+,则该函数的单调递增区间为 .8.(2017春•昌平区校级月考)曲线3123y x =-在点7(1,)3--处的切线的倾斜角为 .9.(2016春•鹤壁期末)已知点P 在曲线41x y e =+上,a 为曲线在点P 处的切线的倾斜角,则a 的取值范围是 .10.(2016春•安徽校级月考)现有一倒放圆锥形容器,该容器深24m ,底面直径为6m ,水以35/m s π的速度流入,则当水流入时间为1s 时,水面上升的速度为 .。

导数的概念及运算【题集】-讲义(教师版)

导数的概念及运算【题集】-讲义(教师版)

导数的概念及运算【题集】1. 函数的平均变化率A. B. C. D.1.如图,函数在,两点间的平均变化率是( ).【答案】B 【解析】由图可知,,所以,所以函数在,两点间的平均变化率是.故选B .【标注】【知识点】求平均变化率(1)(2)2.求下列函数在区间和上的平均变化率...【答案】(1)(2)在区间和上的平均变化率均为.在区间上的平均变化率,在区间上的平均变化率.【解析】(1)(2)在区间上的平均变化率为,在区间上的平均变化率为.在区间上的平均变化率为,在区间上的平均变化率为.【标注】【知识点】函数的平均变化率、瞬时速度与瞬时变化率【素养】数学运算A.B.C.D.3.在函数的图象上取一点及邻近一点,则等于().【答案】C【解析】,.【标注】【知识点】求平均变化率A. B. C. D.4.函数的图象如图,则函数在下列区间上平均变化率最大的是().【答案】C【解析】函数在区间上的平均变化率为,由函数图象可得,在区间上,,即函数在区间上的平均变化率小于;在区间、、上时,且相同,由图象可知函数在区间上的最大,所以函数在区间上的平均变化率最大.故选:.【标注】【知识点】求平均变化率2. 瞬时变化率与导数(1)(2)5.利用导数的定义求下列函数的导数...【答案】(1)(2)..【解析】(1)(2).从而,当时,,∴.∵∴,∴当时,,∴.【标注】【知识点】导数的定义A.B.C.D.6.若,则( ).【答案】D 【解析】.故选:.【标注】【知识点】导数的定义A. B. C. D.7.设是可导函数,且,则().【答案】C【解析】,故选 C.【标注】【知识点】导数的定义;导数的几何意义的实际应用;函数的极限A. B.C. D.8.若函数在区间内可导,且,则的值为().【答案】C【解析】因为在可导,所以,.【标注】【知识点】导数的定义;函数的平均变化率、瞬时速度与瞬时变化率3. 基本初等函数的导数A.B.C.D.9.下列求导数运算正确的是().【答案】C【解析】根据导数的四则运算以及基本初等函数运算法则,故有选项,故错误.选项,故错误.选项,故正确.选项,故错误.故选.【标注】【素养】数学运算【知识点】利用公式和四则运算法则求导A.B.C.D.10.下列导数运算错误的是( ).【答案】C 【解析】选项:.故选.【标注】【知识点】利用公式和四则运算法则求导11.如果函数,那么 .【答案】【解析】由题意可知,∴,,∴.故答案为:.【标注】【知识点】利用公式和四则运算法则求导;计算任意角的三角函数值A. B.C.D.12.已知,则的值为( ).【答案】A 【解析】,【标注】【知识点】复合函数的求导法则4.导数的四则运算13.函数的导数是 .【答案】【解析】,.【标注】【知识点】利用公式和四则运算法则求导A.B.C.D.14.函数在处的导数等于( ).【答案】A 【解析】∵,∴.【标注】【知识点】利用公式和四则运算法则求导15.的导数 .【答案】【标注】【知识点】利用公式和四则运算法则求导(1)16.求下列函数的导数:.(2)(3)(4)(5)(6)(7)......【答案】(1)(2)(3)(4)(5)(6)(7)......【解析】(1)(2)(3)(4)(5)(6)(7)....先使用三角公式进行化简.∴.【标注】【素养】数学运算A. B. C. D.17.已知函数的导数为,且满足,则().【答案】C【解析】由函数,∴,∴当时,则有,解得.故选:.【标注】【知识点】利用公式和四则运算法则求导A. B. C. D.18.已知,则().【答案】B【解析】∵,∴,∴,∴,∴.故选.【标注】【知识点】利用公式和四则运算法则求导A. B.C. D.19.已知函数的导函数为且满足,则().【答案】B【解析】,.故选.【标注】【知识点】利用公式和四则运算法则求导A. B. C. D.20.已知函数的导函数为,且满足,则().【答案】B 【解析】,令,即,解得.【标注】【知识点】利用公式和四则运算法则求导5. 复合函数求导法则(1)(2)(3)(4)(5)(6)21.求下列函数的导数.......【答案】(1)(2)(3)(4)(5)(6)......【标注】【知识点】复合函数的求导法则;利用公式和四则运算法则求导(1)(2)(3)(4)(5)(6)(7)(8)22.求下列函数的导数.........(9)(10)..【答案】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)..........【解析】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)略.略.略.略.略.略.略.略.略.略.【标注】【知识点】复合函数的求导法则;利用公式和四则运算法则求导23.已知函数,且,则的值为.【答案】【解析】,.【标注】【知识点】复合函数的求导法则A.B.C. D.24.已知函数,是函数的导函数,则函数的部分图象是( ).【答案】D 【解析】因为,所以,可知为奇函数,故排除,;又因为,,排除选,故选.【标注】【知识点】函数图象的识别问题;根据奇偶性确定图象;利用公式和四则运算法则求导6. 导数的几何意义A. B.C.D.25.曲线在点处的切线的斜率为( ).【答案】B【解析】∵,∴,∴.故选.【标注】【知识点】导数的几何意义A.B.C.D.26.设曲线在点处的切线斜率为,则点的坐标为( ).【答案】B【标注】【知识点】导数的几何意义;导数的几何意义的实际应用(1)(2)(3)27.导数等于切线斜率.如图,直线是曲线在处的切线,则.如图,曲线在点处的切线方程是, .设是偶函数.若曲线在点处的切线的斜率为,则该曲线在点处的切线的斜率为 .【答案】(1)(2)(3)【解析】(1)(2)(3)直线的斜率为,所以.时,,∵的斜率为,故,∴.由偶函数的图象关于轴对称知,在对称点处的切线也关于轴对称,故所求切线的斜率为.也可由特殊函数得到此题答案.【标注】【知识点】导数的几何意义的实际应用;已知切线方程求参数;导数的几何意义;斜率计算28.若曲线上点处的切线平行于直线,则点的坐标是.【答案】【解析】函数的定义域为,函数的导数为,直线的斜率,∵曲线上点处的切线平行与直线,∴,即,解得,此时,故点的坐标是,故答案为:.【标注】【知识点】求在某点处的切线方程;导数的几何意义29.曲线在点处的切线方程为.【答案】【解析】因为,所以,所以该切线方程为,即.故答案为:.【标注】【知识点】导数的几何意义A.B. C. D.30.曲线在点处的切线方程是().【答案】A【解析】,故,所以曲线在处的切线斜率为,切线方程为,化简整理得,故选.【标注】【知识点】求在某点处的切线方程31.已知函数,求过点的切线方程.【答案】和.【解析】,因为点在曲线上.①若点为切点,则此时切线斜率为,则切线方程为,即;②若点不是切点,则设切点为,有,切线方程满足,(*)整理得,因为点满足方程(*),则是方程的一个根,即,即,所以或(舍,因为切点不为),即,,则此时切线的方程为,即,综上所述,过点的切线方程为和.【标注】【知识点】求过某点的切线方程;求在某点处的切线方程;导数的几何意义A. B.C.或D.或32.过点的切线方程是( ).【答案】C【解析】设切点坐标为,,切线斜率,则,解得或,∴所求切线方程为或.【标注】【知识点】求过某点的切线方程;导数的几何意义(1)(2)33.已知曲线.求曲线在点处的切线方程.求曲线过点的切线方程.【答案】(1)(2)或【解析】方法一:方法二:(1)(2)∵,∴在点处的切线的斜率,∴曲线在点处的切线方程为,即.∵点在曲线上,且,∴在点处的切线的斜率为,∴曲线在点处的切线方程为,即.设曲线与过点的切线相切于点,则切线的斜率为,∴切线方程为,即,∵点在切线上,∴,即,∴,即,∴,解得或,故所求的切线方程为或.【标注】【知识点】求在某点处的切线方程;导数的几何意义;求过某点的切线方程34.若直线是曲线的切线,也是曲线的切线,则.【答案】【解析】方法一:方法二:设直线与曲线和曲线的切点分别为和.由导数的几何意义可得,即,由切点也在各自的曲线上,可得,解得,从而,则.由,得,由,得.设直线与曲线相切于点,则①,②,设直线与曲线相切于点,则③,④,由①得,代入②得,即⑤,由③得,代入④得,即⑥,⑤⑥得,,代入⑤得,故答案为.【标注】【知识点】求过某点的切线方程;导数的几何意义的实际应用;导数的几何意义35.若直线是曲线的切线,也是曲线的切线,则.【答案】【解析】设与曲线的切线,曲线的切点分别为,,∵,曲线,∴,,∴,①切线方程分别为,即为,或,即为,解得,②由①②解得,,可得:,则有,.故答案为:.【标注】【知识点】求过某点的切线方程;导数的几何意义。

《导数的综合应用》说课稿(附教学设计)

《导数的综合应用》说课稿(附教学设计)

《导数的综合应用》说课稿一、教材分析“导数的综合应用”是高中数学人教B版教材选修2-2第一章的内容,是中学数学新增内容,是高等数学的基础内容,它在中学数学教材中的出现,使中学数学与大学数学之间又多了一个无可争辩的衔接点。

导数的应用是高考考查的重点和难点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题,这要求我们复习时要掌握基本题型的解法,树立利用导数处理问题的意识.二、学情分析根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

三、教学目标1、知识与技能:(1)利用导数的几何意义。

(2)利用导数求函数的单调区间;(3)利用导数求函数的极值以及函数在闭区间上的最值;(4)解决根分布及恒成立问题2、过程与方法:(1)能够利用函数性质作图像,反过来利用函数的图像研究函数的性质如交点情况,能合理利用数形结合解题。

(2)学会利用熟悉的问答过渡到陌生的问题。

3、情感、态度与价值观:这是一堂复习课,教学难度有所增加,培养学生思考问题的习惯,以及克服困难的信心。

四、教学重点、难点重点是应用导数求单调性,极值,最值难点是方程根及恒成立问题五、学法与教法学法与教学用具学法:(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题(如问题3的处理)。

(2)自主学习:引导学生从简单问题出发,发散到已学过的知识中去。

(如问题1、2的处理)。

(3)探究学习:引导学生发挥主观能动性,主动探索新知(如问题1、2的发散和直击高考的处理)。

教学用具:多媒体。

教法:变式教学———这样可以让学生从题海中解脱出来,形成知识网络,增强知识的系统性与连贯性,从而使学生能够抓住问题的本质,加深对问题的理解,从“变”的现象中发现“不变”的本质,从“不变”的本质中探索“变”的规律;七、评价分析上复习课的传统模式是教师先对知识点进行复习总结,然后讲解典型例题,从而达到复习的目的,但是缺点是不容易调动学生的积极性。

导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。

同步讲义4导数公式及导数的运算法则(文)

同步讲义4导数公式及导数的运算法则(文)

3.2.2 基本初等函数的导数公式及导数的运算法则(二) 学习目标 1. 理解函数的和、差、积、商的求导法则. 2. 理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点一 和、差的导数已知f (x )=x ,g (x )=1x. 思考1 f (x ),g (x )的导数分别是什么?答案 f ′(x )=1,g ′(x )=-1x 2. 思考2 试求Q (x )=x +1x ,H (x )=x -1x的导数. 答案 ∵Δy =(x +Δx )+1x +Δx -(x +1x )=Δx +-Δx x (x +Δx ),∴Δy Δx =1-1x (x +Δx ). ∴Q ′(x )=lim Δx →0 Δy Δx =lim Δx →0[1-1x (x +Δx )]=1-1x 2. 同理,H ′(x )=1+1x 2. 思考3 Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系?答案 Q (x )的导数等于f (x ),g (x )导数的和.H (x )的导数等于f (x ),g (x )导数的差.梳理 和、差的导数: [f (x )±g (x )]′=f ′(x )±g ′(x ).知识点二 积、商的导数已知f (x )=x 2,g (x )=sin x ,φ(x )=3.思考1 试求f ′(x ),g ′(x ),φ′(x ).答案 f ′(x )=2x ,g ′(x )=cos x ,φ′(x )=0.思考2 求H (x )=x 2sin x ,M (x )=sin x x 2,Q (x )=3sin x 的导数. 答案 H ′(x )=2x sin x +x 2cos x ,M ′(x )=(sin x )′x 2-sin x (x 2)′(x 2)2=x 2cos x -2x sin x x 4=x cos x -2sin x x 3, Q ′(x )=3cos x .梳理 (1)积的导数: ①[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ). ②[cf (x )]′=cf ′(x ).(2)商的导数: [f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). (3)注意[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )g (x )]′≠f ′(x )g ′(x ).类型一 导数运算法则的应用例1 求下列函数的导数. (1)f (x )=13ax 3+bx 2+c ;(2)f (x )=x ln x +2x ;(3)f (x )=x -1x +1;(4)f (x )=x 2·e x .反思与感悟 (1)解答此类问题时常因导数的四则运算法则不熟而失分.(2)对一个函数求导时,要紧扣导数运算法则,联系基本初等函数的导数公式,当不易直接应用导数公式时,应先对函数进行化简(恒等变换),然后求导.这样可以减少运算量,优化解题过程.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数. (1)y =2x 3-3x +x +1x x;(2)y =x 2+1x 2+3;(3)y =(x +1)(x +3)(x +5); (4)y =x sin x -2cos x.类型二 导数运算法则的综合应用命题角度1 利用导数求函数解析式例2 (1)已知函数f (x )=ln x x+2xf ′(1),试比较f (e)与f (1)的大小关系.(2)设f (x )=(ax +b )sin x +(cx +d )cos x ,试确定常数a ,b ,c ,d ,使得f ′(x )=x cos x .反思与感悟 (1)中确定函数f (x )的解析式,需要求出f ′(1),注意f ′(1)是常数.(2)中利用待定系数法可确定a ,b ,c ,d 的值.完成(1)(2)问的前提是熟练应用导数的运算法则.跟踪训练2 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2e x f ′(1)+3ln x ,则f ′(1)等于( )A.-3B.2eC.21-2eD.31-2e命题角度2 与切线有关的问题例3 已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.反思与感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.跟踪训练3 (1)设曲线y =2-cos x sin x 在点(π2,2)处的切线与直线x +ay +1=0垂直,则a =________. (2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________.1. 设y =-2e x sin x ,则y ′等于( )A.-2e x cos xB.-2e x sin xC.2e x sin xD.-2e x (sin x +cos x )2. 对于函数f (x )=e x x 2+ln x -2k x,若f ′(1)=1,则k 等于( ) A.e 2 B.e 3 C.-e 2 D.-e 33. 设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A.2 B.12 C.-12D.-2 4. 在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.5. 曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.40分钟课时作业一、选择题1. 下列求导运算正确的是( )A.(x +3x )′=1+3x 2B.(log 2x )′=1x ln 2C.(3x )′=3x log 3eD.(x 2cos x )′=-2x sin x 2. 函数y =x 2+a 2x(a >0)在x =x 0处的导数为0,那么x 0等于( ) A.a B.±a C.-a D.a 23. 若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( ) A.-2 B.-1 C.1 D.24. 若函数f (x )=e x x在x =x 0处的导数值与函数值互为相反数,则x 0的值等于( ) A.0 B.1 C.12D.不存在 5.若函数f (x )在R 上可导,且f (x )=x 2+2f ′(2)x +m ,则( )A.f (0)<f (5)B.f (0)=f (5)C.f (0)>f (5)D.f (0)≥f (5)6. 在下面的四个图象中,其中一个图象是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ≠0)的导函数y =f ′(x )的图象,则f (-1)等于( )A.13B.-13C.73D.-13或53二、填空题7. 设f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,若h (x )=f (x )+2g (x ),则h ′(5)=________.8. 等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________.9. 已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 10. 若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.11. 设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.三、解答题12. 已知函数f (x )=ax 3+bx 2+cx 过点(1,5),其导函数y =f ′(x )的图象如图所示,求f (x )的解析式.13. 设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.。

高中数学全套讲义 选修1-1 导数应用中档 学生版

高中数学全套讲义 选修1-1 导数应用中档 学生版

目录目录 (1)考点一函数单调性的判断 (2)考点二函数的极值 (3)考点三函数的最值 (4)课后综合巩固练习 (6)考点一 函数单调性的判断设函数()f x 在区间()a b ,内可导, ⑴若在()a b ,内,有()0f x '>,则函数()f x 在此区间单调递增; ⑵若在()a b ,内,有()0f x '<,则函数()f x 在此区间单调递减.上面的条件只是函数单调性的充分条件,不是必要条件.即若知道可导函数单调递增(减),不一定能得到()0f x '>(0)<,在该区间上可能存在导数为零的点.1.(2019春•攀枝花期末)函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1aC .2a >D .2a2.(2019春•宁德期末)函数3()128f x x x =-+的单调增区间是( ) A .(,2)-∞-,(2,)+∞ B .(2,2)- C .(,2)-∞-D .(2,)+∞3.(2019春•屯溪区校级期中)函数()(1)x f x a xlna a =->的单调递减区间为( ) A .(1,)+∞B .(0,)+∞C .(,1)-∞D .(,0)-∞4.(2019春•绍兴期末)若函数32()231f x mx x x =+--存在单调递增区间,则实数m 的值可以为( )A .23-B .C .D .5.(2019春•碑林区校级月考)已知函数()f x 与其导函数()f x '的图象如图所示,则函数()()xf xg x e =的单调递减区间为( )A .(0,1)和(4,)+∞B .(0,2)C .(,0)-∞和(1,4)D .(0,3)6.(2019春•顺德区期末)若函数2()f x lnx x x=++在区间[t ,2]t +上是单调函数,则t 的取值范围是( ) A .[1,2]B .[1,)+∞C .[2,)+∞D .(1,)+∞7.(2019春•九江期末)已知函数()y f x =的导函数为()f x ',满足x R ∀∈,()()f x f x '>且f (1)e =,则不等式()f lnx x >的解集为( )A .(,)e +∞B .(1,)+∞C .(0,)eD .(0,1)考点二 函数的极值1.极值的概念已知函数()f x 及其定义域内一点0x ,若存在一个包含0x 的开区间,对于该开区间内除0x 外的所有点x ,如果都有0()()f x f x <,则称函数()f x 在点0x 处取极大值,记作0()y f x =极大值,并把0x 称为函数()f x 的一个极大值点;如果都有0()()f x f x >,则称函数()f x 在点0x 处取极小值,记作0()y f x =极小值,并把0x 称为函数()f x 的一个极小值点.极大值与极小值统称为极值.极大值点与极小值点统称为极值点. 2.可导函数极值的分析方法在0x x =处,0()0f x '=,若在0x 左侧()00f x '>,在0x 右侧()00f x '<.则0x 是()f x 的极大值点;若在0x 左侧()00f x '<,在0x 右侧()00f x '>,则0x 是()f x 的极小值点. ()00f x '=只是0x 为极值点的必要条件,不是充分条件.如果在0x 的两侧导数符号不变,则()0f x '不是极值,当然0x 也就不是极值点.如3()f x x =,在0x =处. 3.求可导函数的极值的步骤:(1)找函数的定义域; (2)求导数()f x ';(3)求方程()0f x '=的所有实数根;(4)对每个实数根进行检验,判断在每个根的左右两侧,导函数()f x '的符号如何变化8.(2019春•襄阳期末)设三次函数()f x 的导函数为()f x ',函数()y x f x ='的图象的一部分如图所示,则正确的是( )A .()f x 的极大值为f ,极小值为(fB .()f x 的极大值为(f ,极小值为fC .()f x 的极大值为(3)f -,极小值为f (3)D .()f x 的极大值为f (3),极小值为(3)f -9.(2018•柳州一模)设a R ∈,若函数y x alnx =+在区间1(e,)e 有极值点,则a 取值范围为( )A .1(e,)eB .1(,)e e--C .(-∞,1)(e e⋃,)+∞D .(-∞,1)(e e--⋃,)+∞10.(2017秋•嘉峪关校级期末)已知三次函数32()f x ax bx cx d =+++的图象如图所示,则(3)((1)f f '-=' )A .1-B .2C .5-D .3-考点三 函数的最值1.最值的概念函数的最大(小)值是函数在指定区间的最大(小)值. 2.求指定区间上函数的最值的步骤:(1)求函数在该区间上的极值;(2)把极值与端点的函数值作比较,最大的为最大值,最小的为最小值.11.(2019春•九江期末)已知函数1()(1)1()f x ax a lnx a R x=--++∈在(0,1]上的最大值为3,则(a = ) A .2B .eC .3D .2e12.(2019春•香坊区校级期中)函数2()lnxf x x =的最大值为( ) A .1eB .12eC .eD .013.(2019春•九江期末)函数()(1)x f x x e =-有( ) A .最大值为1B .最小值为1C .最大值为eD .最小值为e14.(2019春•河南期末)若函数()f x ax lnx =-在区间(0,]e 上的最小值为3,则实数a 的值为( ) A .2eB .2eC .2eD .1e15.(2019春•瀍河区校级月考)已知函数()f x x xlnx =+,且对于任意2x >,总有函数()f x 的图象在函数(2)y k x =-图象的上方,则当k N ∈时,k 的最大值为( ) A .3B .4C .2D .516.(2019春•静宁县校级期末)函数321()3f x x x =-在[1,3]上的最小值为( )A .2-B .0C .23-D .43-17.(2019•雨花区校级模拟)已知函数1()()()x f x e a ax e=-+.若()0()f x x R ∈恒成立,则满足条件的a 的个数为( ) A .0B .1C .2D .318.(2018•厦门二模)设函数()x f x x e -=-,直线y mx n =+是曲线()y f x =的切线,则m n +的最小值是( )A .1e-B .1C .11e-D .311e+课后综合巩固练习1.(2019春•南山区期末)已知1x e=是函数()(1)f x x lnax =+的极值点,则实数a 的值为( ) A .21e B .1eC .1D .e2.(2019春•屯溪区校级期中)函数()(1)x f x a xlna a =->的单调递减区间为( ) A .(1,)+∞B .(0,)+∞C .(,1)-∞D .(,0)-∞3.(2019春•诸暨市校级期中)已知()lnxf x x=,则下列结论中错误的是( ) A .()f x 在(0,)e 上单调递增 B .f (2)f =(4)C .当01a b <<<时,b a a b <D .20192020log 20202019>4.(2019•齐齐哈尔三模)设12x =-是函数22()(2)3f x ln x ax a x =+--的极小值点,则()f x 的极大值为( ) A .2B .1C .34D .235.(2019•珠海二模)若函数321()(3)3x f x e x kx kx =--+只有一个极值点,则k 的取值范围为( ) A .(,)e -∞B .(0,]eC .(,2)-∞D .(0,2]6.(2018•江苏)若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1-,1]上的最大值与最小值的和为 .7.(2018•新课标Ⅰ)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是 . 8.(2007•广东)函数()(0)f x xlnx x =>的单调递增区间是 .9.(2016•新课标Ⅱ)若直线y kx b =+是曲线2y lnx =+的切线,也是曲线(1)y ln x =+的切线,则b = .10.(2019•全国)已知函数2())f x x ax =-. (1)当1a =时,求()f x 的单调区间; (2)若()f x 在区间[0,2]的最小值为23-,求a . 11.(2018春•皇姑区校级期中)如图在边长为4的正方形铁皮的四角切去相等的正方形,在把它的边沿虚线折起,做成一个无盖的方底盒子.(1)问切去的小正方形边长为多少时,盒子容积最大?最大容积1V 是多少?(2)上述做法,材料有所浪费,如果可以对材料进行切割、焊接,请你重新设计一个方案,使材料浪费更少,且所得无盖的盒子的容积21V V >12.(2017秋•泰州期末)某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:1000(28)5p x x =+.为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为5万元,工厂一次性补贴职工交通费21(25)2x +万元.设()f x 为建造宿舍、修路费用与给职工的补贴之和. (1)求()f x 的表达式;(2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.。

高考数学讲义导数的综合与微积分.参考教案.教师版

高考数学讲义导数的综合与微积分.参考教案.教师版

要求层次重难点导数的应用与微积分 导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式函数不超过三次)C利用导数解决某些实际问题 B定积分与微积分基本定理定积分的概念 A 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 了解微积分基本定理的含义.微积分基本定理A板块四:导数与其它知识综合知识内容1.导数与函数的性质、基本初等函数的结合,这是导数的最主要的考查内容; 常常涉及到函数与方程的知识,有时需要结合函数图象求解; 2.导数与数列的结合,要注意数列作为函数的特殊性;3.导数与三角函数的结合;4.导数在不等式的证明中的运用,经常需要构造函数,利用导数去求单调性,证明不等式.典例分析: 导数与函数综合【题1】 若方程3320x ax -+=有三个不同实根,则实数a 的取值范围为( )A .0a >B .1a >C .13a <<D .01a <<【考点】导数与函数综合 【难度】3星 【题型】选择【关键词】【解析】 令3()32f x x ax =-+,22()333()f x x a x a '=-=-,要方程有三个不同实根,必须0a >(否则()0f x '≥,()f x 单调增长,最多只有一根). 例题精讲高考要求导数的综合与微积分此时()f x在(,-∞上单调增加,在(,上单调减少,在,)+∞上单调增加. 要()0f x =有三个零点,当且仅法(0f >,且0f <. 解得1a >.【答案】B【题2】 设函数()32()f x x bx cx x =++∈R ,已知()()()g x f x f x '=-是奇函数.⑴求b 、c 的值.⑵求()g x 的单调区间与极值.⑶若()g x m =有三个不同的实根,求m 的取值范围.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】2006,安徽,高考【解析】 ⑴∵()32f x x bx cx =++,∴()232f x x bx c '=++.从而322()()()(32)g x f x f x x bx cx x bx c '=-=++-++32(3)(2)x b x c b x c =+-+--是一个奇函数,故30300b b c c -==⎧⎧⇒⎨⎨-==⎩⎩;⑵由⑴知3()6g x x x =-,从而2()36g x x '=-,由此可知,(-∞,和)+∞是函数()g x的单调递增区间;(是函数()g x 的单调递减区间;()g x在x =极大值为()g x在x =时取得极小值,极小值为- ⑶当x →-∞时,()g x →-∞;当x →+∞时,()g x →+∞,故当(m ∈-时,()g x m =有三个不同的实根. 【答案】⑴3,0b c ==;⑵(-∞-,和)+∞是函数()g x的单调递增区间;(是函数()g x 的单调递减区间;()g x在x =()g x在x =-⑶(m ∈-.【题3】 已知函数32()4f x ax bx x =++的极小值为8-,其导函数()y f x '=的图象经过点(20)-,,如图所示.⑴ 求()f x 的解析式;⑵ 若函数()y f x k =-在区间[32]-,上有两个不同的零点,求实数k 的取值范围.【难度】3星 【题型】解答【关键词】2009-2010,海淀,高三,第一学期,期中测试【解析】 ⑴ 2()324f x ax bx '=++,且()y f x '=的图象过点(20)-,,所以2-为23240ax bx ++=的根,代入得:310a b -+= ……① 由图象可知,()f x 在2x =-时取得极小值, 即(2)8f -=-,得2b a =……………………②由①②解得12a b =-=-,. ∴32()24f x x x x =--+.⑵ 由题意,方程()f x k =在区间[32]-,上有两个不等实根, 即方程3224x x x k --+=在区间[32]-,上有两个不等实根.2()344f x x x '=--+,令()0f x '=,解得2x =-或23x =.可列表:由表可知,当8k =-或327k -<<时,方程3224x x x k --+=在区间[32]-,上有两个不等实根,即函数()y f x k =-在区间[32]-,上有两个不同的零点. 【答案】⑴32()24f x x x x =--+;⑵8k =-或40327k -<<.【题4】 已知函数()f x 3213x ax b =-+在2x =-处有极值.⑴ 求函数()f x 的单调区间;⑵ 若函数()f x 在区间[]3,3-上有且仅有一个零点,求b 的取值范围.【考点】导数与函数综合【难度】3星 【题型】解答【关键词】2010,丰台,二模,题19【解析】 ⑴ ()22f x x ax '=-由题意知: (2)440f a '-=+=,得1a =-,∴()22f x x x '=+, 令()0f x '>,得2x <-或0x >;令()0f x '<,得20x -<<,∴()f x 的单调递增区间是(),2-∞-和()0,+∞,单调递减区间是()2,0-.⑵ 由⑴ 知,()3213f x x x b =++,()423f b -=+为函数()f x 极大值,()0f b =为极小值.∵函数()f x 在区间[]3,3-上有且仅有一个零点,∴()()3000f f ⎧-⎪⎨>⎪⎩≤或()()3020f f ⎧⎪⎨-<⎪⎩≥或()()3030f f ⎧->⎪⎨<⎪⎩或()()2030f f ⎧-=⎪⎨<⎪⎩或()()3000f f ⎧->⎪⎨=⎪⎩,即180403b b +⎧⎪⎨+<⎪⎩≥,∴4183b -<-≤,即b 的取值范围是418,3⎡⎫--⎪⎢⎣⎭.【答案】⑴()f x 的单调递增区间是(),2-∞-和()0,+∞,单调递减区间是()2,0-.⑵418,3⎡⎫--⎪⎢⎣⎭.【题5】 已知函数()()32f x x ax b a b =-++∈R ,.⑴若1a =,函数()f x 的图象能否总在直线y b =的下方?说明理由? ⑵若函数()f x 在()02,上是增函数,求a 的取值范围.⑶设123x x x ,,为方程()0f x =的三个根,且()110x ∈-,,()201x ∈,,()()311x ∈-∞-+∞U ,,,求证:1a >.【考点】导数与函数综合 【难度】4星 【题型】解答【关键词】2009,西城,一模,题20【解析】 ⑴当1a =时,()32f x x x b =-++,因为()12f b b -=+>,所以,函数()f x 的图象不能总在直线y b =的下方. ⑵由题意,得()232f x x ax '=-+,令()0f x '=,解得0x =或23x a =,当0a <时,由()0f x '>,解得203a x <<,所以()f x 只在203a ⎛⎫ ⎪⎝⎭,上是增函数,与题意不符,舍去; 当0a =时,由()230f x x '=-≤,与题意不符,舍去;当0a >时,由()0f x '>,解得203x a <<,所以()f x 在203a ⎛⎫ ⎪⎝⎭,上是增函数,又()f x 在()02,上是增函数,所以223a ≥,解得3a ≥,综上,a 的取值范围为[)3+∞,.⑶因为方程()320f x x ax b =-++=最多只有3个根, 由题意,得在区间()10-,内仅有一根, 所以()()()1010f f b a b -⋅=++<, ① 同理()()()0110f f b a b ⋅=-++<, ② 当0b >时,由①得10a b ++<,即1a b <--, 由②得10a b -++<,即1a b <-+,因为11b b --<-+,所以11a b <--<-,即1a <-; 当0b <时,由①得10a b ++>,即1a b >--, 由②得10a b -++>,即1a b >-+,因为11b b --<-+,所以11a b >-+>,即1a >.当0b =时,因为()00f =,所以()0f x =有一根0,这与题意不符. 综上,1a >.注:在第⑶问中,得到①、②后,可以在坐标平面aOb 内,用线性规划方法解.【答案】⑴略;⑵[)3a ∈+∞,;⑶略.【题6】 已知函数32()f x x x ax b =+++.⑴ 当1a =-时,求函数()f x 的单调区间;⑵ 若函数()f x 的图象与直线y ax =只有一个公共点,求实数b 的取值范围.【考点】导数与函数综合【难度】3星【题型】解答【关键词】2009-2010,海淀,高三,第一学期,期中测试【解析】 ⑴ 2()321(31)(1)f x x x x x '=+-=-+令()0f x '>,解得13x >或1x <-;令()0f x '<,解得113x -<<.所以()f x 的单调递增区间为1(1)()3-∞-+∞,,,,()f x 的单调递减区间为1(1)3-,.⑵ 因为函数()f x 的图象与直线y ax =只有一个公共点,所以方程320x x ax b ax +++-=只有一个解,即320x x b ++=只有一个解. 令32()g x x x b =++,则其图象和x 轴只有一个交点,2()32g x x x '=+,令2()320g x x x '=+=,所以12203x x ==-,,所以,()g x 在10x =处取得极小值b ,在23x =-取得极大值27b +,要使32()g x x x b =++的其图象和x 轴只有一个交点,只要04027b b >⎧⎪⎨+>⎪⎩或04027b b <⎧⎪⎨+<⎪⎩,解得0b >或427b <-.【答案】⑴()f x 的单调递增区间为1(1)()3-∞-+∞,,,,单调递减区间为1(1)3-,.⑵0b >或427b <-.【题7】 32()3(1)3(2)1f x mx m x m x =-++++,其中m ∈R .⑴若0m <,求()f x 的单调区间;⑵在⑴的条件下,当[]11x ∈-,时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围;⑶设32()(32)34ln 1g x mx m x mx x m =-+++++,问是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】【解析】 ⑴2()36(1)36f x mx m x m '=-+++23(1)1m x x m ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦,当0m <时,有211m>+,当x 变化时,()f x 与()f x '的变化如下表:故有上表知,当0m <时,()f x 在1m ⎛⎫-∞+ ⎪⎝⎭,单调递减,在11m ⎛⎫+ ⎪⎝⎭,单调递增,在(1)+∞,上单调递减.⑵由已知得()3f x m '>,即22(1)20mx m x -++>,又0m <,所以222(1)0x m x m m -++<([]11x ∈-,) ① 设212()21h x x x m m⎛⎫=-++ ⎪⎝⎭,其函数开口向上,由题意知①式恒成立, ∴22(1)0120(1)010h m mh ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩, 解之得43m >-,又0m <,所以m 的取值范围为403⎛⎫- ⎪⎝⎭,;⑶令()()()x g x f x ϕ=-,则2()64ln x x x x m ϕ=-++因为0x >,要使函数()f x 与函数()g x 有且仅有2个不同的交点,则函数2()64ln x x x x m ϕ=-++的图象与x 轴的正半轴有且只有两个不同的交点∴242642(1)(2)()26(0)x x x x x x x x x xϕ-+--'=-+==>当(0,1)x ∈时,()0x ϕ'>,()x ϕ是增函数; 当(1,2)x ∈时,()0x ϕ'<,()x ϕ是减函数; 当(2,)x ∈+∞时,()0x ϕ'>,()x ϕ是增函数;∴()x ϕ有极大值(1)5m ϕ=-;()x ϕ有极小值(2)4ln 28m ϕ=+-. 又因为当x 充分接近0时,()0x ϕ<;当x 充分大时,()0x ϕ>所以要使()0x ϕ=有且仅有两个不同的正根,必须且只须(1)0ϕ=或(2)0ϕ=, 即50m -=或4ln280m +-=,∴5m =或84ln2m =-.∴当5m =或84ln2m =-时,函数()f x 与()g x 的图象有且只有两个不同交点.【答案】⑴()f x 在21m ⎛⎫-∞+ ⎪⎝⎭,单调递减,在211m ⎛⎫+ ⎪⎝⎭,单调递增,在(1)+∞,上单调递减. ⑵403⎛⎫- ⎪⎝⎭,; ⑶存在,5m =或84ln2m =-.【题8】 已知函数2()8()6ln f x x x g x x m =-+=+,. ⑴求()f x 在区间[]1t t +,上的最大值()h t ; ⑵是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】2006,福建,高考【解析】 ⑴22()8(4)16f x x x x =-+=--+.当14t +<,即3t <时,()f x 在[]1t t +,上单调递增, 22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++;当41t t +≤≤,即34t ≤≤时,()(4)16h t f ==;当4t >时,()f x 在[]1t t +,上单调递减,2()()8h t f t t t ==-+. 综上,22673()163484t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩ ≤≤ ; ⑵函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()x g x f x φ=- 的图象与x 轴的正半轴有且只有三个不同的交点.∵2()86ln x x x x m φ=-++,∴262862(1)(3)()28(0)x x x x x x x x x xφ-+--'=-+==>,当(01)x ∈,时,()0x φ'>,()x φ是增函数;当(13)x ∈,时,()0x φ'<,()x φ是减函数; 当(3)x ∈+∞,时,()0x φ'>,()x φ是增函数;当1x =或3x =时,()0x φ'=.∴()(1)7()(3)6ln315x m x m φφφφ==-==+-极大值极小值,. ∵当x 充分接近0时,()0x φ<;当x 充分大时,()0x φ>. ∴要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须()70()6ln 3150x m x m φφ=->⎧⎪⎨=+-<⎪⎩最大值最小值,即7156ln3m <<-.所以存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7156ln3)-,.【答案】⑴22673()163484t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩ ≤≤ ;⑵存在,m 的取值范围为(7156ln3)-,.【题9】 已知二次函数()y g x =的图象经过原点(00)O ,、点1(0)P m ,和点2(11)P m m ++,(0m ≠,且1m ≠-). ⑴求函数()y g x =的解析式;⑵设()()()f x x n g x =-(0m n >>),若()()0f a f b ''==,b a <,求证:b n a m <<<. ⑶在例题⑵的条件下,若m n +=()y f x =相切的两条直线能否互相垂直?若能,请给出证明;若不能,请说明理由.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】【解析】 ⑴设2()(0)g x px qx r p =++≠,依题意得2200(1)(1)1r pm qm r p m q m r m =⎧⎪++=⎨⎪++++=+⎩,解得10p q m r =⎧⎪=-⎨⎪=⎩.∴2()g x x mx =-.⑵()()()f x x x n x m =--32()x m n x mnx =-++,∴2()32()f x x m n x mn '=-++, 依题意得a b ,是方程()0f x '=的两个实数根,又(0)0f mn '=>,()()0f n n m n '=-<,()()0f m m m n '=->,故两根a b ,分布在区间(0)n ,、()n m ,内,又b a <,∴b n a m <<<成立; ⑶设()f x 的过原点的切线对应切点的横坐标为0x ,则切线方程为20000()[32()]()y f x x m n x mn x x -=-++-, 若此切线过原点,则有2000000()()[32()]()x x m x n x m n x mn x ---=-++-, 解得00x =或02m nx +=.故()f x 有两条过原点的切线,设对应的切点的横坐标分别为12x x ,,且12x x <,则1202m nx x +==,, 从而两切线的斜率分别为2121()4k mn k m n mn ==-++,,若两切线互相垂直,则121k k =-,∴1m n mn ⎧+=⎪⎨=⎪⎩11m n ⎧=⎪⎨⎪⎩,∴存在过原点且与曲线相切的两条互相垂直的直线.【答案】⑴2()g x x mx =-;⑵略;⑶能,证明略.导数与不等式综合【题10】 当0x ≠时,有不等式( )A .e 1x x <+B .当0x >时,e 1x x <+;当0x <时,e 1x x >+C .e 1x x >+D .当0x <时,e 1x x <+;当0x >时,e 1x x >+【考点】函数与不等式综合 【难度】2星 【题型】选择【关键词】【解析】 令()e 1x f x x =--,则(0)0f =,()e 1x f x '=-,在0x >时,()0f x '>,故()f x 在(0)+∞,上单调递增,从而()(0)0f x f >=,即e 1x x >+;在0x <时,()0f x '<,故()f x 在(0)-∞,上单调递减,从而()(0)0f x f >=,即e 1x x >+.本题也可用特殊值法得出答案.【答案】C【题11】 已知函数(1)()ln 1a x f x x x -=-+. ⑴若函数()f x 在(0,)+∞上为单调增函数,求a 的取值范围;⑵设,m n +∈R ,且m n ≠,求证:ln ln 2m n m nm n -+<-. 【考点】函数与不等式综合 【难度】4星 【题型】解答【关键词】2010,东城,二模,题20【解析】 ⑴222221(1)(1)(1)2(22)1()(1)(1)(1)a x a x x ax x a x f x x x x x x x +--+-+-+'=-==+++.因为()f x 在(0,)+∞上为单调增函数,所以()0f x '≥在(0,)+∞上恒成立. 即2(22)10x a x +-+≥在(0,)+∞上恒成立,当(0,)x ∈+∞时,由2(22)10x a x +-+≥,得122a x x-+≤,设1(),(0,)g x x x x=+∈+∞,1()2g x x x =+=≥所以当且仅当1x x=即1x =时,()g x 有最小值2.故222a -≤,2a ≤. 所以a 的取值范围是(,2]-∞.⑵不妨设0m n >>,则1mn>.要证ln ln 2m n m n m n -+<-,只需证112ln m m n n m n-+<, 即证2(1)ln 1m m n m n n ->+,只需证2(1)ln 01m mn m n n -->+.设2(1)()ln 1x h x x x -=-+,由⑴知()h x 在(1,)+∞上是单调增函数,又1m n >,所以(1)0m h h n ⎛⎫>= ⎪⎝⎭,即2(1)ln 01m m n m n n -->+成立.所以ln ln 2m n m n m n -+<-. 【答案】⑴a 的取值范围是(,2]-∞.⑵略.【题12】 已知函数()(0)bf x ax c a x=++>的图象在点(1(1))f ,处的切线方程为1y x =-. ⑴用a 表示出b ,c ;⑵若()ln f x x >在[]1∞,上恒成立,求a 的取值范围; ⑶证明:11111ln(1)()232(1)n n n n n ++++>+++L ≥. 【考点】函数与不等式综合 【难度】4星 【题型】解答【关键词】2010,湖北,高考21【解析】 ⑴2()bf x a x '=-,则有(1)0(1)1f a b c f a b =++=⎧⎨'=-=⎩,,解得112b a c a =-⎧⎨=-⎩; ⑵由⑴知,1()12a f x ax a x -=++-,令1()()ln 12ln a g x f x x ax a x x-=-=++--,[)1x ∈+∞,,则(1)0g =,22221(1)11(1)()a a x x a ax x a a g x a x x x x -⎛⎫-- ⎪----⎝⎭'=--==, ①当102a <<时,11aa ->.若11ax a-<<,则()0g x '<,()g x 是减函数,所以()(1)0g x g <=,即()ln f x x <,故ln ()x f x ≥在[)1+∞,上不恒成立.②当12a ≥时,11aa-≤,若1x >,则()0g x '>,()g x 是增函数,所以()(1)0g x g >=, 即()ln f x x >,故当1x ≥时,ln ()x f x ≥,综上所述,所求a 的取值范围为12⎡⎫+∞⎪⎢⎣⎭,. ⑶解法一:取12a =,有()111122a f x ax a x x x -⎛⎫=++-=- ⎪⎝⎭,由⑵有当1x ≥时,()ln f x x ≥,即11ln 2x x x ⎛⎫- ⎪⎝⎭≥,也即12ln x x x->, 取11x k =+,则1111112ln11k k x x k k k k k+-=+-=+>++, 当1n =时,取1k =有112ln 22+>,也即11ln 24>+,命题成立;当2n ≥时,分别取1,2,,k n =L ,累加有()111122ln 121n n n ⎛⎫++++>+ ⎪+⎝⎭L整理即得1111ln(1)232(1)nn n n ++++>+++L综上,原命题成立. 解法二:当1n =时,左边1=,右边()()11ln 11ln 212114=++=+<+,命题成立;假设当n k =时,命题成立,则当1n k =+时,左边11111231k k =++++++L ()()1ln 1211k k k k >+++++()()2ln 121k k k +=+++ 右边()()1ln 222k k k +=+++现在只需要证明()()212ln21221k k k k k k +++->+++ 取12a =,21k x k +=+,由⑵有1212ln 2121k k k k k k +++⎛⎫-> ⎪+++⎝⎭,命题得证. 【答案】⑴112b a c a=-⎧⎨=-⎩;⑵a 的取值范围为12⎡⎫+∞⎪⎢⎣⎭,.⑶略.【题13】 已知函数1()ln f x a x x=-,a ∈R . ⑴若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值;⑵求函数()f x 的单调区间;⑶当1a =,且2x ≥时,证明:(1)25f x x --≤.【考点】函数与不等式综合【难度】3星【题型】解答【关键词】2010,东城,一模,题18【解析】 ⑴函数()f x 的定义域为{}|0x x >,21()a f x x x '=+. 又曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直, 所以(1)12f a '=+=,即1a =.⑵由于21()ax f x x+'=.当0a ≥时,对于(0,)x ∈+∞,有()0f x '>在定义域上恒成立, 即()f x 在(0,)+∞上是增函数.当0a <时,由()0f x '=,得1(0,)x a=-∈+∞.当1(0,)x a ∈-时,()0f x '>,()f x 单调递增;当1(,)x a∈-+∞时,()0f x '<,()f x 单调递减.⑶当1a =时,1(1)ln(1)1f x x x -=---,[)2,x ∈+∞.令1()ln(1)251g x x x x =---+-.2211(21)(2)()21(1)(1)x x g x x x x --'=+-=----. 当2x >时,()0g x '<,()g x 在(2,)+∞单调递减. 又(2)0g =,所以()g x 在(2,)+∞恒为负. 所以当[2,)x ∈+∞时,()0g x ≤.即1ln(1)2501x x x ---+-≤.故当1a =,且2x ≥时,(1)25f x x --≤成立.【答案】⑴1a =;⑵当0a ≥时,()f x 在(0,)+∞上是增函数;当0a <时,()f x 在10,a⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;⑶略.【题14】 设()321252f x x x x =--+,当[]12x ∈-,时,()f x m <恒成立,则实数m 的取值范围为 .【考点】函数与不等式综合 【难度】3星 【题型】填空【关键词】2008-2009,北京,12中,高二,第二学期,期中测试【解析】 要使得()f x m <恒成立,先要求()f x 在[1,2]-上的最大值.2()32(1)(32)f x x x x x '=--=-+,故()f x 在21,3⎛⎫-- ⎪⎝⎭上单调递增,在2,13⎛⎫- ⎪⎝⎭上单调递减,在(1,2)上单调递增.最大值可能在23-或2处取到.(2)7f =,22257327f ⎛⎫-=+< ⎪⎝⎭,故()f x 的最大值为7.故7m >. 【答案】(7,)+∞【题15】 已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极值.⑴求,a b 的值及函数()f x 的单调区间;⑵若对[2,3]x ∈-,不等式23()2f x c c +<恒成立,求c 的取值范围.【考点】函数与不等式综合 【难度】3星 【题型】解答 【关键词】2010,崇文,二模,题18【解析】 ⑴2()32f x x ax b '=++,由题意:(1)0(2)0f f '-=⎧⎨'=⎩,即3201240a b a b -+=⎧⎨++=⎩,解得326a b ⎧=-⎪⎨⎪=-⎩∴323()62f x x x x c =--+,2()336f x x x '=--.令()0f x '<,解得12x -<<;令()0f x '>,解得1x <-或2x >,∴()f x 的单调减区间为(1,2)-;单调增区间为(,1),(2,)-∞-+∞. ⑵由⑴知,()f x 在(,1)-∞-上单调递增; 在(1,2)-上单调递减;在(2,)+∞上单调递增.∴[2,3]x ∈-时,()f x 的最大值即为(1)f -与(3)f 中的较大者.7(1)2f c -=+,9(3)2f c =-+,∴当1x =-时,()f x 取得最大值.要使23()2f x c c +<,只需23(1)2c f c >-+,即:2275c c >+解得:1c <-或72c >.∴c 的取值范围为7(,1),2⎛⎫-∞-+∞ ⎪⎝⎭U .【答案】⑴326a b ⎧=-⎪⎨⎪=-⎩,()f x 的单调减区间为(1,2)-;单调增区间为(,1),(2,)-∞-+∞.⑵c 的取值范围为7(,1),2⎛⎫-∞-+∞ ⎪⎝⎭U .【题16】 设函数22()21(0)f x tx t x t x t =++-∈>R ,.⑴求()f x 的最小值()h t ; ⑵若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 【考点】函数与不等式综合 【难度】3星 【题型】解答【关键词】2007,福建,高考【解析】 ⑴法一:∵23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即3()1h t t t =-+-. 法二:2()222()f x tx t t x t '=+=+,于是()f x 在()t -∞-,上单调递减,在()t -+∞,上单调递增. 故()f x 在x t =-时取到最小值3()1()f t t t h t -=-+-=. ⑵令3()()(2)31g t h t t m t t m =--+=-+--,由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时g '∴()g t 在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<,所以m 的取值范围为1m >.【答案】⑴3()1h t t t =-+-;⑵(1,)+∞.【题17】 设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.⑴令()()F x xf x '=,讨论()F x 在(0)+∞,内的单调性并求极值;⑵求证:当1x >时,恒有2ln 2ln 1x x a x >-+.【考点】函数与不等式综合【难度】3星【题型】解答【关键词】2007,安徽,高考,题18【解析】 ⑴根据求导法则有2ln 2()10x af x x x x'=-+>,,故()()2ln 20F x xf x x x a x '==-+>,,于是22()10x F x x x x-'=-=>,, 列表如下:)故知()F x 在(02),(2)+,∞2x =处取得极小值(2)22ln 22F a =-+.⑵证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>. 于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>. 故当1x >时,恒有2ln 2ln 1x x a x >-+.【答案】⑴()F x 在(02),内是减函数,在(2)+,∞内是增函数,在2x =处取得极小值(2)22ln 22F a =-+.⑵略.【题18】 已知函数()2ln pf x px x x=--. ⑴若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;⑵若函数()f x 在其定义域内为增函数,求正实数p 的取值范围;⑶设函数2()eg x x=,若在[]1,e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.【考点】函数与不等式综合【难度】4星【题型】解答【关键词】2010,石景山,一模,题20【解析】 ⑴当2p =时,函数2()22ln f x x x x=--,(1)222ln10f =--=.222()2f x x x'=+-,曲线()f x 在点(1,(1))f 处的切线的斜率为(1)2222f '=+-=.从而曲线()f x 在点(1,(1))f 处的切线方程为02(1)y x -=-,即22y x =-.⑵22222()p px x pf x p x x x -+'=+-=.令2()2h x px x p =-+,要使()f x 在定义域(0,)+∞内是增函数, 只需()0h x ≥在(0,)+∞内恒成立.由题意0p >,2()2h x px x p =-+的图象为开口向上的抛物线,对称轴方程为1(0,)x p=∈+∞,∴min 1()h x p p =-,只需10p p-≥,即1p ≥时,()0,()0h x f x '≥≥ ∴()f x 在(0,)+∞内为增函数,正实数p 的取值范围是[1,)+∞.⑶∵2()eg x x=在[]1,e 上是减函数,∴x e =时,min ()2g x =;1x =时,max ()2g x e =,即[]()2,2g x e ∈, ①当0p <时,2()2h x px x p =-+,其图象为开口向下的抛物线,对称轴1x p=在y 轴的左侧,且(0)0h <,所以()f x 在x ∈[]1,e 内是减函数.当0p =时,()2h x x =-,因为x ∈[]1,e ,所以()0h x <,22()0xf x x '=-<, 此时,()f x 在x ∈[]1,e 内是减函数.故当0p ≤时,()f x 在[]1,e 上单调递减max ()(1)02f x f ⇒==<,不合题意;②当01p <<时,由[]11,0x e x x∈⇒-≥,所以11()2ln 2ln f x p x x x x x x ⎛⎫=---- ⎪⎝⎭≤.又由⑵知当1p =时,()f x 在[]1,e 上是增函数,∴1112ln 2ln 22x x e e e x e e----=--<≤,不合题意;③当1p ≥时,由⑵知()f x 在[]1,e 上是增函数,(1)02f =<, 又()g x 在[]1,e 上是减函数,故只需max min ()()f x g x >,[]1,x e ∈, 而max 1()()2ln f x f e p e e e⎛⎫==-- ⎪⎝⎭,min ()2g x =,即12ln 2p e e e⎛⎫--> ⎪⎝⎭,解得241ep e >-, 所以实数p 的取值范围是24,1e e ⎛⎫+∞⎪-⎝⎭. 【答案】⑴22y x =-;⑵p 的取值范围是[1,)+∞;⑶p 的取值范围是24,1e e ⎛⎫+∞⎪-⎝⎭.导数与三角函数综合【题19】 设函数()32sin tan 3f x x θθ=+,其中5π012θ⎡⎤∈⎢⎥⎣⎦,, 则导数()1f '的取值范围是( )A .[]22-,B .C .2⎤⎦D .2⎤⎦【考点】导数与三角函数综合 【难度】2星【题型】选择【关键词】2009,安徽,高考,题9【解析】 2()sin f x x x θθ'=+,π(1)sin 2sin 3f θθθ⎛⎫'==+ ⎪⎝⎭.5π012θ⎡⎤∈⎢⎥⎣⎦,时,ππ3π334θ⎡⎤+∈⎢⎥⎣⎦,,πsin 13θ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦.从而(1)2]f '∈. 【答案】D【题20】 设函数223()cos 4sin3()2x f x x t t t x =++-∈R ,其中||1t ≤,将()f x 的最小值记为()g t ,则函数()g t 在下面哪个区间上单调递增( )A .1(,)(1,)3-∞-+∞UB .1[1,]3--C .1(,)3+∞D .1[,1]3【考点】导数与三角函数综合 【难度】3星 【题型】选择【关键词】【解析】 23231cos ()cos 43cos 2cos 2x f x x t t t x t x t t -=+⋅+-=-+-232(cos )x t t t t =-+--, ∵1t ≤,∴当cos x t =时,()f x 有最小值,故32()g t t t t =--,2()321(1)(31)g t t t t t '=--=-+, 令()0g t '>,解得函数()g t 的单调递增区间为1,3⎛⎫-∞- ⎪⎝⎭与(1,)+∞.但函数()g t 不在这两个区间的并集上单调递增,故选B .【答案】B【题21】 已知函数2cos ()3sin a x f x x -=在π02⎛⎫⎪⎝⎭,内是增函数,求a 的取值范围.【考点】导数与三角函数综合 【难度】3星 【题型】解答【关键词】【解析】 22212sin (2cos )cos 2cos ()3sin 3sin x a x x a xf x x x--⋅-'=⋅=. 因为()f x 在区间π02⎛⎫ ⎪⎝⎭,内是增函数,所以当π02x ⎛⎫∈ ⎪⎝⎭,时,22cos ()03sin a xf x x-'=≥, 即2cos 0a x -≥恒成立.π02x ⎛⎫∈ ⎪⎝⎭,时,0cos 1x <<,要使2cos 0a x -≥在π02x ⎛⎫∈ ⎪⎝⎭,恒成立,只要2cos a x ≤在π02x ⎛⎫∈ ⎪⎝⎭,恒成立. 故只要2a ≤即可,故a 的取值范围为(2]-∞,.【答案】(2]-∞,【题22】 已知:在函数3()f x mx x =-的图象上,以(1,)N n 为切点的切线的倾斜角为π4. ⑴求m ,n 的值;⑵是否存在最小的正整数k ,使得不等式()1994f x k -≤对于[1,3]x ∈-恒成立?如果存在,请求出最小的正整数k ;如果不存在,请说明理由.⑶求证:1|(sin )(cos )|22f x f x f t t ⎛⎫++ ⎪⎝⎭≤(x ∈R ,0t >).【考点】导数与三角函数综合 【难度】4星 【题型】解答【关键词】【解析】 ⑴2()31f x mx '=-,依题意,得π(1)tan4f '=,即311m -=,解得23m =. ∵(1)f n =,∴13n =-.⑵32()3f x x x =-,令2()210f x x '=-=,得x =.当12x -<<时,2()210f x x '=->;当22x <<时,2()210f x x '=-<;当3x <<时,2()210f x x '=->.从而()f x 在x =处取到极大值.又1(1)3f -=,f ⎛= ⎝⎭,(3)15f =. 因此,当[1,3]x ∈-时,()f x 的最大值为15.要使得不等式()1994f x k -≤对于[1,3]x ∈-恒成立,则1519942009k +=≥.所以,存在最小的正整数2008k =,使得不等式()1993f x k -≤对于[1,3]x ∈-恒成立. ⑶|(sin )(cos )|f x f x +3322sin sin cos cos 33x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭332(sin cos )(sin cos )3x x x x =+-+222(sin cos )(sin sin cos cos )13x x x x x x ⎡⎤=+⋅-+-⎢⎥⎣⎦21|sin cos |sin cos 33x x x x =+⋅+31|sin cos |3x x =+3π4x ⎛⎫=+ ⎪⎝⎭.又∵0t >,∴12t t+,()f x 在)+∞上单调递增,f =.∴1222f t f t ⎛⎫+=⎪⎝⎭≥ 综上可得,1|(sin )(cos )|22f x f x f t t ⎛⎫++⎪⎝⎭≤(x ∈R ,0t >). 【答案】⑴23m =,13n =-;⑵存在,2008k =;⑶略.【题23】 设函数()sin ()f x x x x =∈R .⑴证明(2π)()2πsin f x k f x k x +-=,其中为k 为整数;⑵设0x 为()f x 的一个极值点,证明420020[()]1x f x x =+;⑶设()f x 在(0)+∞,内的全部极值点按从小到大的顺序排列12n a a a L L ,,,,, 证明:1ππ (12)2n n a a n +<-<=L ,, 【考点】导数与三角函数综合 【难度】5星 【题型】解答【关键词】2005,天津,高考【解析】 ⑴由函数()f x 的定义,对任意整数k ,有(2π)()(2π)sin(2π)sin (2π)sin sin 2πsin f x k f x x k x k x x x k x x x k x +-=++-=+-=.⑵函数()f x 在定义域R 上可导,()sin cos f x x x x '=+ ①令()0f x '=,得sin cos 0x x x +=.显然,对于满足上述方程的x 有cos 0x ≠,上述方程化简为tan x x =-,结合图象知此方程一定有解(tan y x =-与y x =的图象略).()f x 的极值点0x 一定满足00tan x x =-.由222222sin tan sin sin cos 1tan x x x x x x==++,得220020tan sin 1tan x x x =+. 因此,4222000020[()]sin 1x f x x x x ==+.⑶设00x >是()0f x '=的任意正实数根,即00tan x x =-,则存在一个非负整数k ,使0ππππ2x k k ⎛⎫∈++ ⎪⎝⎭,,即0x 在第二或第四象限内. 由①式,()cos (tan )f x x x x '=+在第二或第四象限中的符号可列表如下:()0f x =0x 都为()f x 的极值点.由题设条件,1a ,2a ,…,n a ,…为方程tan x x =-的全部正实数根且满足12n a a a <<<<L L , 那么对于12n =L ,,,1111(tan tan )(1tan tan )tan()n n n n n n n n a a a a a a a a ++++-=--=-+⋅-. ② 由于π(1)ππ(1)π2n n a n +-<<+-,1ππππ2n n a n ++<<+,则1π3π22n n a a +<-<, 由于1tan tan 0n n a a +⋅>,由②式知1tan()0n n a a +-<.由此可知1n n a a +-必在第二象限, 即1πn n a a +-<. 综上,1ππ2n n a a +<-<. 【答案】略.导数与数列综合【题24】 已知函数()sin f x x x =-,数列{}n a 满足:101a <<,1()n n a f a +=,123n =L ,,,.证明:⑴101n n a a +<<<; ⑵3116n n a a +<.【考点】导数与数列综合 【难度】3星 【题型】解答【关键词】2006,湖南,高考【解析】 ⑴先用数学归纳法证明01n a <<,123n =L ,,,①当1n =时,由已知显然结论成立. ②假设当n k =时结论成立,即01k a <<.∵01x <<时,()1cos 0f x x '=->,∴()f x 在(01),上是增函数. (0)()(1)k f f a f <<(()f x 在[01],上连续),即101sin11k a +<<-<. 故1n k =+时,结论成立.由①、②可知,01n a <<对一切正整数都成立.又因为01n a <<时,1sin sin 0n n n n n n a a a a a a +-=--=-<, 所以1n n a a +<,综上所述101n n a a +<<<.⑵设函数31()sin 6g x x x x =-+,01x <<.由⑴知,当01x <<时,sin x x <,从而22222()cos 12sin 2022222x x x x x g x x ⎛⎫'=-+=-+>-+= ⎪⎝⎭,所以()g x 在(01),上是增函数. 又(0)0g =(()g x 在[01],上连续),所以当01x <<时,()0g x >成立. 于是()0n g a >,即31sin 06n n n a a a -+>.故3116n na a +<. 【答案】略【题25】 已知数列{}n a 满足:3123n n n a a a +=-+,n +∈N ,且1(01)a ∈,,求证:01n a <<. 【考点】导数与数列综合 【难度】3星 【题型】解答【关键词】【解析】 构造辅助函数313()22f x x x =-+,则3()(1)(1)2f x x x '=--+.当(01)x ∈,时,()0f x '>,所以()f x 在(01),上是增函数.①因为1(01)a ∈,,即101a <<,故1n =时原不等式成立. ②设n k =时原不等式成立,即01k a <<,因为()f x 在(01),上是增函数,所以(0)()(1)k f f a f <<.又(0)0(1)1f f ==,,所以0()1k f a <<,即101k a +<<. 即1n k =+时,原不等式成立, 由①②知,n +∈N 时,01n a <<.【答案】略【题26】 已知a 是给定的实常数,设函数2()()()x f x x a x b e =-+,b ∈R ,x a =是()f x 的一个极大值点.⑴求b 的取值范围;⑵设1x ,2x ,3x 是()f x 的3个极值点,问是否存在实数b ,可找到4x ∈R ,使得1x ,2x ,3x ,4x 的某种排列1i x ,2i x ,3i x ,4i x (其中1234{}{1234}i i i i =,,,,,,)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.【考点】导数与函数综合 【难度】5星 【题型】解答【关键词】2010,浙江,高考22⑴2()()[(3)2]x f x e x a x a b x b ab a '=-+-++--, 令2()(3)2g x x a b x b ab a =+-++--,则22(3)4(2)(1)80.a b b ab a a b =-+---=+-+>△于是可设1x ,2x 是()0g x =的两实根,且1x <2x ,①当1x 或2x a =时,则x a =不是()f x 的极值点,此时不合题意;②当1x a ≠且2x a ≠时,由于x a =是()f x 的极大值点,故12x a x <<,即()0g a <. 即2(3)20a a b a b ab a +-++--<,所以b a <-,所以b 的取值范围是()a -∞-,; ⑵由⑴可知,假设存在b 及b x 满足题意,则: ①当21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--,即3b a =--.此时4223x x a a b a a =-=--=+或4123x x a a b a a =-=--=- ②当21x a a x -≠-时,则212()x a a x -=-或122()a x x a -=-,ⅰ)若212()x a a x -=-,则24a x x +=,于是1232a x x =+=3(3)a b -++于是1a b +-=,此时242(3)3(3)324a x a a b a b x b a ++---++===--=+. ⅱ)若122()a x x a -=-,则14a x x +=,于是2132a x x =+=3(3)a b =++.于是1a b +-此时142(3)3(3)324a x a a b a b x b a ++---++===--=. 综上所述,存在b 满足题意: 当3b a =--时,4x a =±;当b a =-时,4x a =b a =-时,4x a =. 【答案】⑴b 的取值范围是()a -∞-,;⑵存在b ,当3b a =--时,4x a =±;当b a =-时,4x a =b a =-时,4x a =.导数与其它知识综合【题27】 设函数321()(2)232af x x x b x =-+--有两个极值点,其中一个在区间(0,1)内,另一个在区间(1,2)内,则54b a --的取值范围是 . 【考点】导数与其它知识综合 【难度】3星 【题型】填空【关键词】【解析】 2()(2)f x x ax b '=-+-,由题意知()0f x '=的两根分别在区间(0,1)与(1,2)上,又()f x '的图象是开口向上的抛物线,故有(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩,即2030620b a b a b ->⎧⎪--<⎨⎪-->⎩,从而有2326b a b a b <⎧⎪+>⎨⎪+<⎩,它们表示的平面区域为下图的阴影部分所示(不包括边界):4a -(,)ab 与点(4,5)的连线的斜率,如图所求,当(,)a b 为(3,0)时,斜率取到最大值5,这个最大值取不到;当(,)a b 为(1,2)时,斜率取到最小值1,这个最小值也取不到,但中间的值都能取到,从而54b a --的取值范围为(1,5).【答案】(1,5)【题28】 已知a ≥0,函数2()f x x ax =+.设1,2a x ⎛⎫∈-∞- ⎪⎝⎭,记曲线()y f x =在点()11,()M x f x 处的切线为l ,l 与x 轴的交点是()2,0N x ,O 为坐标原点.⑴ 证明:21212x x x a=+;⑵ 若对于任意的1,2a x ⎛⎫∈-∞- ⎪⎝⎭,都有916a OM ON ⋅>u u u u r u u u r 成立,求a 的取值范围.【考点】导数与其它知识综合 【难度】3星 【题型】解答【关键词】2010,西城,二模,题18【解析】 ⑴ 对()f x 求导数,得()2f x x a '=+,故切线l 的斜率为12x a +,由此得切线l 的方程为21111()(2)()y x ax x a x x -+=+-.令0y =,得22111211122x ax x x x x a x a+=-+=++.⑵ 由()2111,M x x ax +,211,02x N x a ⎛⎫ ⎪+⎝⎭,得3112x OM ON x a ⋅=+u u u u r u u u r . 所以0a =符合题意,当0a >时,记3111()2x g x x a =+,1,2a x ⎛⎫∈-∞- ⎪⎝⎭.对1()g x 求导数,得()()()211121432x x a g x x a +'=+, 令1()0g x '=,得13,42a a x ⎛⎫=-∈-∞- ⎪⎝⎭. 当1,2a x ⎛⎫∈-∞- ⎪⎝⎭时,1()g x '的变化情况如下表:所以,函数1()g x 在3,4a ⎛⎫-∞-⎪⎝⎭上单调递减,在3,42aa ⎛⎫-- ⎪⎝⎭上单调递增, 从而函数1()g x 的最小值为2327432a g a ⎛⎫-= ⎪⎝⎭.依题意22793216a a >,解得23a >,即a 的取值范围是2,3⎛⎫+∞ ⎪⎝⎭. 综上,a 的取值范围是2{0},3⎛⎫+∞ ⎪⎝⎭U .【答案】⑴略;⑵a 的取值范围是2{0},3⎛⎫+∞⎪⎝⎭U .【题29】 已知函数322()(1)52f x x k k x x =--++-,22()1g x k x kx =++,其中k ∈R .⑴设函数()()()p x f x g x =+.若()p x 在区间(03),上不单调...,求k 的取值范围; ⑵设函数(),0()(),0g x x q x f x x ⎧=⎨<⎩≥,是否存在k ,对任意给定的非零实数1x ,存在惟一的非零实数221()x x x ≠,使得21()()q x q x ''=成立?若存在,求k 的值;若不存在,请说明理由.【考点】导数与其它知识综合 【难度】5星 【题型】解答【关键词】2009,浙江,高考,题22【解析】 ⑴32()()()(1)(5)1p x f x g x x k x k x =+=+-++-,()232(1)(5)p x x k x k '=+-++.因为()p x 在区间(03),上不单调,所以()0p x '=在(03),上有实数解,且无重根. 由()0p x '=,得2(21)(325)k x x x +=--+,即()2(325)391021214213x x k x x x -+⎡⎤=-=-++-⎢⎥++⎣⎦, 令21t x =+,有()17t ∈,,记9()h t t t=+,则()h t 在(]13,上单调递减,在[)37,上单调递增.所以,()[)610h t ∈,. 于是()[)92161021x x ++∈+,,得(]52k ∈--,. 而当2k =-时,有()0p x '=在()03,上有两个相等的实根1x =,故舍去. 所以()52k ∈--,; ⑵由题意,得当0x <时,()()2232(1)5q x f x x k k x ''==--++; 当0x >时,()()22q x g x k x k ''==+. 因为当0k =时不合题意,所以0k ≠, 下面讨论0k ≠的情形.记{}()|0A g x x '=>,{}()|0B f x x '=<, 则()A k =+∞,,(5)B =+∞,.(ⅰ)当10x >时,()q x '在(0)+∞,上单调递增, 所以要使21()()q x q x ''=成立,只能20x <,且A B ⊆, 因此5k ≥;(ⅱ)当10x <时,()q x '在(0)-∞,上单调递减,所以要使21()()q x q x ''=成立,只能20x >,且B A ⊆,因此5k ≤. 综合(ⅰ)(ⅱ),得5k =. 当5k =时,有A B =. 则10x ∀<,()q x B A '∈=,即20x ∃>,使得21()()q x q x ''=成立. 因为()q x '在(0)+∞,上单调递增, 所以2x 是惟一的.同理.10x ∀>,存在惟一的非零实数221()x x x ≠,使得22()()q x q x ''=成立. 所以5k =满足题意.【答案】⑴()52k ∈--,;⑵存在,5k =.板块五:微积分与定积分的应用知识内容1.函数定积分:设函数()y f x =定义在区间[,]a b 上.用分点0121n n a x x x x x b -=<<<<<=L ,把区间[,]a b 分为n 个小区间,其长度依次为10121i i i x x x i n +∆=-=-L ,,,,,.记λ为这些小区间长度的最大值,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点i ξ,作和式10()n n i i i I f x ξ-==∆∑.n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作()b af x dx ⎰,即10()lim ()n bi i ai f x dx f x λξ-→==∆∑⎰.其中()f x 叫做被积函数,a 叫积分下限,b 叫积分上限.()f x dx 叫做被积式.此时称函数()f x 在。

高中数学全套讲义 选修1-1 导数应用中档 教师版

高中数学全套讲义 选修1-1 导数应用中档 教师版

目录目录 (1)考点一函数单调性的判断 (2)考点二函数的极值 (6)考点三函数的最值 (9)课后综合巩固练习 (13)考点一 函数单调性的判断设函数()f x 在区间()a b ,内可导,⑴若在()a b ,内,有()0f x '>,则函数()f x 在此区间单调递增; ⑵若在()a b ,内,有()0f x '<,则函数()f x 在此区间单调递减.上面的条件只是函数单调性的充分条件,不是必要条件.即若知道可导函数单调递增(减),不一定能得到()0f x '>(0)<,在该区间上可能存在导数为零的点.1.(2019春•攀枝花期末)函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( )A .1a >B .1aC .2a >D .2a调递增即导函数()f x '在[1,2]上恒有()0f x ';转化求解即可. 【解答】解:对()f x 求导:2()2f x ax x '=-;)0x ;故()f x '在[1,2]上为单调递增函数;(1)011a ,解得:2a ;或(2)012a⎧⎪⎨⎪⎩无解,故选:D .【点评】本题主要考查了对函数的求导运算,以及导函数与函数单调性的关系,属中等题. 2.(2019春•宁德期末)函数3()128f x x x =-+的单调增区间是( )A .(,2)-∞-,(2,)+∞B .(2,2)-C .(,2)-∞-D .(2,)+∞2.【分析】先求导函数,研究出导函数的符号,然后判断函数的单调区间即可. 【解答】解:函数3()128f x x x =-+2()312f x x ∴'=-令()0f x '>,解得2x >或2x <-; 令()0f x '<,解得22x -<<故函数在[2-,2]上是减函数,在(,2)-∞-,(2,)+∞上是增函数, 故选:A .【点评】本题重点考查导数知识的运用,研究出函数的单调性,考查转化思想以及计算能力. 3.(2019春•屯溪区校级期中)函数()(1)x f x a xlna a =->的单调递减区间为( )A .(1,)+∞B .(0,)+∞C .(,1)-∞D .(,0)-∞3.【分析】先求函数的导函数()f x ,并将其因式分解,便于解不等()0f x '>,得函数的单调增区间,由()0f x '<,得函数的单调减区间. 【解答】解:函数()(1)x f x a xlna a =->()(1)x x f x a lna Ina a Ina '=-=-;令()0f x '=,得:0x =当1a >时,0lna >,若0x <,则(1)0x a -<,所以有()0f x '< 若0x >,则(1)0x a ->,所以有()0f x '> 综上可知,函数()f x 的单调递减区间为(,0)-∞, 故选:D .【点评】本题考查了利用导数求函数的单调区间的方法,体现了分类讨论的数学思想,属于中档题.4.(2019春•绍兴期末)若函数32()231f x mx x x =+--存在单调递增区间,则实数m 的值可以为( )A .23-B .C .3D .4.【分析】若函数()f x 在R 上存在单调递增区间⇔存在区间I ,使得x I ∈时,()0f x '>,求解即可.【解答】解:函数32()231f x mx x x =+--,所以2()343f x mx x '=+-,当0m <时导函数是开口向下的抛物线,当0m 时,导函数存在满足()0f x '>的x 的区间,故选:D .【点评】本题主要考查了函数存在极值的性质:函数在0x x =处取得极值,则0()0f x '=,但0()0f x '=,函数在处不一定是极值点;函数()f x 在R 存在单调递增区间与函数()f x 在R调递增是两个完全不同的概念,要注意区分. 5.(2019春•碑林区校级月考)已知函数()f x 与其导函数()f x '的图象如图所示,则函数()()x f x g x e=的单调递减区间为( )A .(0,1)和(4,)+∞B .(0,2)C .(,0)-∞和(1,4)D .(0,3)5.【分析】结合函数图象,求出()()0f x f x '-<成立的x 的范围即可. 【解答】解:结合图象:(0,1)x ∈和(4,)x ∈+∞时,()()0f x f x '-<,故()g x 在(0,1),(4,)+∞递减, 故选:A .【点评】本题考查了函数和导函数关系和图象相关知识,中档题. 6.(2019春•顺德区期末)若函数2()f x lnx x x=++在区间[t ,2]t +上是单调函数,则t 的取值范围是( )A .[1,2]B .[1,)+∞C .[2,)+∞D .(1,)+∞得2()2g x x x =+-在[t ,2]t +上恒大于等于0或恒小于等于0.转化为关于t 的不等式组求解.得2()2g x x x =+-在[t ,2]t +上恒大于等于0或恒小于等于0. 则2020t t t >⎧⎨+-⎩,①或22020(2)220t t t t t >⎧⎪+-⎨⎪+++-⎩,②解①得1t ;解②得t ∈∅. 综上,t 的取值范围是[1,)+∞. 故选:B .【点评】本题考查利用导数研究函数的单调性,考查恒成立问题的求解方法,考查数学转化思想方法,是中档题.7.(2019春•九江期末)已知函数()y f x =的导函数为()f x ',满足x R ∀∈,()()f x f x '>且f (1)e =,则不等式()f lnx x >的解集为( )A .(,)e +∞B .(1,)+∞C .(0,)eD .(0,1)导可得函数单调性,从而可解:1lnxx e >⇔>, 【解答】解:令t lnx =,则()()t f lnx x f t e >⇔>,因为:满足x R ∀∈,()()f x f x '> ()g x ∴在R 上单调递增,故选:A .【点评】本题主要考查导数法研究函数的单调性,考查了导数的综合应用,属于中档题.考点二 函数的极值1.极值的概念已知函数()f x 及其定义域内一点0x ,若存在一个包含0x 的开区间,对于该开区间内除0x 外的所有点x ,如果都有0()()f x f x <,则称函数()f x 在点0x 处取极大值,记作0()y f x =极大值,并把0x 称为函数()f x 的一个极大值点;如果都有0()()f x f x >,则称函数()f x 在点0x 处取极小值,记作0()y f x =极小值,并把0x 称为函数()f x 的一个极小值点.极大值与极小值统称为极值.极大值点与极小值点统称为极值点. 2.可导函数极值的分析方法在0x x =处,0()0f x '=,若在0x 左侧()00f x '>,在0x 右侧()00f x '<.则0x 是()f x 的极大值点;若在0x 左侧()00f x '<,在0x 右侧()00f x '>,则0x 是()f x 的极小值点.()00f x '=只是0x 为极值点的必要条件,不是充分条件.如果在0x 的两侧导数符号不变,则()0f x '不是极值,当然0x 也就不是极值点.如3()f x x =,在0x =处. 3.求可导函数的极值的步骤:(1)找函数的定义域; (2)求导数()f x ';(3)求方程()0f x '=的所有实数根;(4)对每个实数根进行检验,判断在每个根的左右两侧,导函数()f x '的符号如何变化8.(2019春•襄阳期末)设三次函数()f x 的导函数为()f x ',函数()y x f x ='的图象的一部分如图所示,则正确的是()A .()f x 的极大值为f ,极小值为(fB .()f x 的极大值为(f ,极小值为fC .()f x 的极大值为(3)f -,极小值为f (3)D .()f x 的极大值为f (3),极小值为(3)f -8.【分析】观察图象知,3x <-时,()0f x '<.30x -<<时,()0f x '>.由此知极小值为(3)f -.03x <<时,()0yf x '>.3x >时,()0f x '<.由此知极大值为f (3). 【解答】解:观察图象知,3x <-时,()0y x f x ='>, ()0f x ∴'<.30x -<<时,()0y x f x ='<,()0f x ∴'>.由此知极小值为(3)f -.03x <<时,()0y x f x ='>,()0f x ∴'>.3x >时,()0y x f x ='<,()0f x ∴'<.由此知极大值为f (3). 故选:D .【点评】本题考查极值的性质和应用,解题时要仔细图象,注意数形结合思想的合理运用. 9.(2018•柳州一模)设a R ∈,若函数y x alnx =+在区间1(e,)e 有极值点,则a 取值范围为()A .1(e ,)eB .1(,)e e--C .(-∞,1)(e ⋃,)+∞D .(-∞,1)(e --⋃,)+∞)()0f e '<,解出即可.)()0f e '<,故选:B .【点评】本题考查了利用导数研究函数的极值点转化为函数的零点的判断方法,考查了推理能力和计算能力,属于中档题.10.(2017秋•嘉峪关校级期末)已知三次函数32()f x ax bx cx d =+++的图象如图所示,则(3)((1)f f '-=' )A .1-B .2C .5-D .3-10.【分析】根据函数导数和极值之间的关系,求出对应a ,b ,c 的关系,即可得到结论. 【解答】解:由三次函数的图象可知,2x =函数的极大值,1x =-是极小值, 即2,1-是()0f x '=的两个根,32()f x ax bx cx d =+++, 2()32f x ax bx c ∴'=++,由2()320f x ax bx c '=++=,即6c a =-,23b a =-,即22()323363(2)(1)f x ax bx c ax ax a a x x '=++=--=-+,故选:C .【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.。

导数(一)讲义(学霸版)

导数(一)讲义(学霸版)

导数(一)讲义(学霸版)PPT(第1页):终于来到了高中数学的最后一大关,也是最难的一关,导数。

这里比圆锥曲线还要加大一点难度,会有很多同学干脆就放弃了导数。

不过你能来到这里,已经很勇敢,也很有实力了。

相信CB 两类模块你已经掌握得不错了,圆锥曲线也练出一点点多步骤、长线思维的能力。

来到这里几乎是地狱之模块了,难度要再大一点点,如果说圆锥曲线的难是横向的难,就是说跟以往知识点有很多很多结合,好像一道题在考你整个的高中数学一样,那么导数就是纵向的难。

就是从这一个点,不断往深挖,挖出井为止的那种。

所以很多同学只会做第一问,只会四则运算,这是正常的。

另外,我们在总论里就提过,学导数有很多人有一种错误的思维,非常非常错误,导致刚上场就倒下了。

很恐怖。

我们会在这几节课中慢慢把正确的思维导入脑中,丢掉原来错误的。

刚开始可能你会有一点不适应,但是一定要下决心,不然导数永远只是第一问,还不一定能拿全分数。

还是先介绍一下导数的整体安排。

今天是第一节,我们先纠正做题思路,讲点意识流的东西,然后梳理一下导数自己的知识点。

今天主要解决一些小题,导数的小题不像圆锥曲线有明显的简单题和难题,导数这里,不好意思,几乎没有简单题。

第二节开始,我们按照类型来攻克一下大题。

导数属于我们CBA方法的A类模块——Analyzing。

题目是大题小题都有,小题一般就在11,12题。

大题我想你很熟悉了,就是21题,非常恐怖的。

A类模块的知识点梳理是相对简单的,看起来好像没什么东西,因为有点抽象。

重点在于与题目结合起来的讲解,因此A模块里面的例题视频务必好好看,精华的讲解很多都在视频里面。

嘱咐就这么多,让我们开始今天的学习吧。

PPT(第2页):让我们看看导数到底是怎么难的。

先从它的知识点特点说起。

有以下2个特点。

1、自身知识点难度不大。

其实导数和圆锥曲线有相似的地方就在这里,自身的知识点没什么太大难度。

你学会了导数的定义、几何意义和四则运算以后,可以说就算是掌握了导数自身的知识了,这里我想你应该是滚瓜烂熟的,如果加减乘除还没搞定,那根本进行不下去,先停下好好背熟,练熟才行。

2.7导数的应用(讲义+典型例题+小练)(原卷版)

2.7导数的应用(讲义+典型例题+小练)(原卷版)

2.7导数的应用(讲义+典型例题+小练)1. 基本方法:(1)函数的导数与函数的单调性的关系:设函数y =f (x )在某个区间内有导数,如果在这个区间内/y >0,那么函数y =f (x )为这个区间内的增函数;如果在这个区间内/y <0,那么函数y =f (x )为这个区间内的减函数.(2)用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间.(3)判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.(4)求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x ). ②求方程f '(x )=0的根. ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格. 检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f (x )在这个根处无极值.2、基本思想:学习的目的,就是要会实际应用,本讲主要是培养学生运用导数知识解决实际问题的意识,思想方法以及能力.解决实际应用问题关键在于建立数学模型和目标函数. 把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化,形式化,抽象成数学问题,再化为常规问题,选择合适的数学方法求解.根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变化区间,构造相应的函数关系,是这部分的主要技巧.知识当回归于生活,在现实生活中,有很多时候我们需要用到最大、最小。

【新高考】高三数学一轮基础复习讲义:第三章 3.1导数的概念-(学生版+教师版)

【新高考】高三数学一轮基础复习讲义:第三章 3.1导数的概念-(学生版+教师版)

导数的概念第一课时判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( )题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xe x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0题型二 导数的几何意义 命题点1 求切线方程例2 (1)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0 D .x -y +1=0 命题点2 求参数的值例3 函数y =e x 的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )(1)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12(2)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2阶段重难点梳理1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k =f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[1f(x)]′=-f′(x)[f(x)]2(f(x)≠0).(3)[af(x)+bg(x)]′=af′(x)+bg′(x).(4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.典例若存在过点O(0,0)的直线l与曲线y=x3-3x2+2x和y=x2+a都相切,求a的值.1.若f(x)=x·e x,则f′(1)等于()A.0 B.e C.2e D.e22.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是() 重点题型训练3.设函数f (x )的导数为f ′(x ),且f (x )=f′(π2)sin x +cos x ,则f ′(π4)=________.4.曲线y =-5e x +3在点(0,-2)处的切线方程是________________.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-42.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0)D .(1,5)3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或1344.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )作业布置A .-1B .0C .2D .46.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12C .1D .4 7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.那么f (x )的解析式为________.8.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.*10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 11.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.*13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.导数的概念第一课时判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )阶段训练题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xe x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x )′=1x -1x 2. (3)y ′=(cos xe x )′=(cos x )′·e x -cos x (e x )′(e x )2=-sin x +cos x e x.(4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2∴y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u , 则y ′=(ln u )′·u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0答案 (1)2x +y +1=0 (2)B解析 (1)设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1,即2x +y +1=0. (2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点2 求参数的值例3 函数y =e x 的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 (1)e (2)D解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x ,得y ′|x =x 0=0x e ,从而切线方程为y -0x e =0x e (x -x 0),又切线过定点(0,0),从而-0x e =0x e (-x 0), 解得x 0=1,则m =e. (2)∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12(2)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2答案 (1)A (2)A解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3. (2)∵y ′=-1-cos xsin 2x,∴2'x y π==-1.由条件知1a =-1,∴a =-1.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. 第3课时阶段重难点梳理(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k =f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. (2)[1f (x )]′=-f ′(x )[f (x )]2(f (x )≠0). (3)[af (x )+bg (x )]′=af ′(x )+bg ′(x ).(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上.重点题型训练(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0'x x y ==3x 20-6x 0+2, ①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案 C解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x +3在点(0,-2)处的切线方程是________________. 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)答案 C作业布置解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1, 所以f ′(x 0)=4x 30-1=3,即x 0=1. 把x 0=1代入函数f (x )=x 4-x ,得y 0=0, 所以点P 的坐标为(1,0).3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12 C .1 D .4 答案 A解析 由题意可知f ′(x )=1212x ,g ′(x )=a x ,由f ′(14)=g ′(14),得12×121()4=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.那么f (x )的解析式为________.答案 f (x )=e x -x +12x 2解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x , 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2.8.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2,∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.*10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =n n +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 =log 2 016(x 1x 2…x 2 015)=-1. 11.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0'x x y =x 0=x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0), 即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0. 12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解 (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).*13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=203(1)x +(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.导数的概念第一课时判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )阶段训练题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xex ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x )′=1x -1x 2. (3)y ′=(cos xe x )′=(cos x )′·e x -cos x (e x )′(e x )2=-sin x +cos x e x.(4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2∴y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u , 则y ′=(ln u )′·u ′=12x -5·2=22x -5, 即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0 答案 (1)2x +y +1=0 (2)B解析 (1)设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1,即2x +y +1=0. (2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点2 求参数的值例3 函数y =e x 的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 (1)e (2)D解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x , 得y ′|x =x 0=0x e ,从而切线方程为y -0x e =0x e (x -x 0),又切线过定点(0,0),从而-0x e =0x e (-x 0), 解得x 0=1,则m =e.(2)∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12(2)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2答案 (1)A (2)A解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3. (2)∵y ′=-1-cos xsin 2x,∴2'x y π==-1.由条件知1a =-1,∴a =-1.阶段重难点梳理1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数)f ′(x )=0第3课时4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. (2)[1f (x )]′=-f ′(x )[f (x )]2(f (x )≠0). (3)[af (x )+bg (x )]′=af ′(x )+bg ′(x ).(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,重点题型训练k =0'x x y ==3x 20-6x 0+2, ①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案 C解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x +3在点(0,-2)处的切线方程是________________. 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)答案 C解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1, 所以f ′(x 0)=4x 30-1=3,即x 0=1. 把x 0=1代入函数f (x )=x 4-x ,得y 0=0, 所以点P 的坐标为(1,0).3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134作业布置答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12 C .1 D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x ,由f ′(14)=g ′(14),得12×121()4-=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.那么f (x )的解析式为________.答案 f (x )=e x -x +12x 2解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x ,所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2.8.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2,∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.*10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =nn +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 =log 2 016(x 1x 2…x 2 015)=-1. 11.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0'x x y =x 0=x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0), 即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0, ∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0. 12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解 (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).*13.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=203(1)x +(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.。

导数综合讲义(教师版)

导数综合讲义(教师版)

导数综合讲义第 1 讲导数的计算与几何意义 (3)第 2 讲函数图像 (4)第 3 讲三次函数 (7)第 4 讲导数与单调性 (8)第 5 讲导数与极最值 (9)第 6 讲导数与零点 (10)第 7 讲导数中的恒成立与存在性问题 (11)第 8 讲原函数导函数混合还原(构造函数解不等式) (13)第 9 讲导数中的距离问题 (17)第 10 讲导数解答题 (18)10.1 导数基础练习题 (21)10.2 分离参数类 (24)10.3 构造新函数类 (26)10.4 导数中的函数不等式放缩 (29)10.5 导数中的卡根思想 (30)10.6 洛必达法则应用 (32)10.7 先构造,再赋值,证明和式或积式不等式 (33)10.8 极值点偏移问题 (35)10.9 多元变量消元思想 (37)10.10 导数解决含有ln x 与e x 的证明题(凹凸反转) (39)10.11 导数解决含三角函数式的证明 (40)10.12 隐零点问题 (42)10.13 端点效应 (44)10.14 其它省市高考导数真题研究 (45)导数【高考命题规律】2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的 最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用; 2015 年文理试卷分 别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题; 2016 文科考查了导数的 几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移; 2017 年高 考考查了导数判断函数的单调性, 含参零点的分类讨论。

近四年的高考试题基本形成了一个 模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方 程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单; 第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。

2.4导数的四则运算法则(讲义+典型例题+小练)(解析版)

2.4导数的四则运算法则(讲义+典型例题+小练)(解析版)

2.4导数的四则运算法则(讲义+典型例题+小练)一.和与差的导数法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差). 例1:1.若函数()12ln f x x x=-,()03f x '=,则0x =( )A .1B .2C .13-或1D .4【答案】A 【解析】 【分析】先求导,令导函数值为3,解方程即可. 【详解】函数定义域为()0+∞,,()221f x x x'=+,则()0200213f x x x '=+=,解得01x =或13-(舍去).故选:A.2.曲线31y x =+在点(1,)a -处的切线方程为( ) A .33y x =+ B .31yx C .31y x =-- D .33y x =--【答案】A 【解析】 【分析】求出导函数,进而利用导数的几何意义得到切线的斜率,再求出a 的值,利用点斜式求出切线方程. 【详解】()23f x x '=,所以()13f '-=,又当1x =-时,31110a x =+=-+=,所以31y x =+在点(1,)a -处的切线方程为:()31y x =+,即33y x =+ 故选:A3.已知函数()()3sin 4,f x a x bx a R b R =++∈∈,()f x '为()f x 的导函数,则()()()()2014201420152015f f f f ''+-+--的值为__________.【解析】 【分析】求出()f x ',分析函数()f x '的奇偶性,计算出()()20142014f f +-的值,即可得解. 【详解】因为()3sin 4a x f x bx +=+,则()2cos 3f x a x bx '=+,所以,()()()()22cos 3cos 3f x a x b x a x bx f x ''-=-+-=+=,故函数()f x '为偶函数,()()()()()33sin 4sin 4f x f x a x bx a x b x ⎡⎤+-=+++-+-+⎣⎦()()33sin 4sin 48a x bx a x bx =+++--+=,所以,()()()()20142014201520158f f f f ''+-+--=. 故答案为:8.4.已知点M 是曲线3212313y x x x =-++上任意一点,求曲线在点M 处的斜率最小的切线方程.【答案】33110x y +-=. 【解析】 【分析】求导函数,结合导数的几何意义、导数的四则运算法则以及直线方程知识即可求解. 【详解】∵()224321y x x x '=-+=--, ∵当2x =时,min1y '=-,此时53y =, ∵斜率最小的切线过点2,3⎛⎫⎪⎝⎭5,且斜率1k =-,∵所求切线方程为33110x y +-=. 举一反三1.已知函数()sin cos 3f x x π=+,则6f π⎛⎫'= ⎪⎝⎭( ) A 3B 3C 31+ D 31- 【答案】B【分析】求出()f x ',代值计算可得6f π⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos 3f x x π=+,则()cos f x x '=,故3cos 662f ππ⎛⎫'==⎪⎝⎭. 故选:B.2.已知函数()()22323ln f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( )A .21B .20C .16D .11【答案】B 【解析】 【分析】根据已知求出(3)11f '=,即得解. 【详解】解:由题得()()3()234,(3)23121,(3)11f x f x f f f x'''''=-+∴=-+∴=,所以()22223ln (1)22220f x x x x f =-+∴=-=,. 故选:B3.已知函数()314,031ln ,01x x x f x x x x⎧-<⎪⎪=⎨⎪--<<⎪⎩,若()12f a '=,则实数a 的值为___________.【答案】14或4-【解析】 【分析】根据解析式,求得导数,根据自变量范围及()12f a '=,列出方程,即可得答案. 【详解】由题意得:()224,011,01x x f x x x x ⎧-<⎪=⎨-<<'⎪⎩. 因为()12f a '=,所以2011112a a a <<⎧⎪⎨-=⎪⎩或20412a a <⎧⎨-=⎩,解得14a =或4-.故答案为:14或4-4.求下列函数的导数.(1)33cos 243ln xy x x x =+-+ (2)n 1l y x x=+; 【详解】(1)233sin 6(2ln 2)4xy x x x'=-+-⋅+; (2)211y x x '=-;二.乘法的导数法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号)例2:1.已知()f x '是函数()sin f x x x =的导函数,则2f π⎛⎫'= ⎪⎝⎭( )A .0B .1C .2π D .π【答案】B 【解析】 【分析】求出()f x ',代值计算可得2f π⎛⎫' ⎪⎝⎭的值.【详解】因为()sin f x x x =,则()sin cos f x x x x '=+,因此,12f π⎛⎫'= ⎪⎝⎭.故选:B.2.函数()ln f x x x =的导函数是___________. 【答案】()ln 1f x x '=+ 【解析】 【分析】根据乘积的导数公式直接求导可得. 【详解】()ln (ln )ln 1f x x x x x x '''=+=+故答案为:()ln 1f x x '=+ 3.求下列函数的导数: (1)()3sin 6100S t t t =-+;(2)()532xf x x =+-; (3)()4cos g x x x =.【答案】(1)()3cos 6S t t '=-(2)()l 2n 23xf x '=- (3)()344cos sin g x x x x x '=-【解析】 【分析】(1)利用导数的四则运算规则可求导数. (2)利用导数的四则运算规则可求导数. (3)利用导数的四则运算规则可求导数. (1)()3cos 6S t t '=-(2)()l 2n 23xf x '=- (3)()344cos sin g x x x x x '=-举一反三1.下列图象中,有一个是函数()()3221113f x x ax a x =++-+(a ∈R ,且0a ≠)的导函数的图象,则()1f -=( )A .13B .13-C .73D .13-或53【答案】B 【解析】 【分析】求出导函数,据导函数的二次项系数为正得到图象开口向上;利用函数解析式中有2ax ,故函数不是偶函数,得到函数的图象. 【详解】()()2221f x x ax a '=++-,∴导函数()f x '的图象开口向上.又0a ≠,()f x '∴不是偶函数,其图象不关于y 轴对称,其图象必为∵, 由图象特征知()00f '=, 且对称轴0x a =->,1a ∴=-.故()1111133f -=--+=-.故选:B .2.已知函数()(21)e x f x x =+,()'f x 为()f x 的导函数,则(0)f '的值为( ) A .1 B .3- C .1- D .3【答案】D 【解析】 【分析】先求得()'f x ,再去求(0)f '即可解决. 【详解】()()(21)e (21)e 2e (21)e (23)e x x x x x f x x x x x '''=+++=++=+则()0(0)203e 3f '=⨯+=故选:D3.求下列函数的导数: (1)2sin y x x =;(2)3ln x y x =; (3)2e x x y =.【答案】(1)22sin cos x x x x + (2)ln 313ln x x x +⎛⎫⋅ ⎪⎝⎭(3)()2e ln 2e x⋅ 【解析】 【分析】根据导数乘法的运算法则结合初等函数的导数公式即可得到答案. (1)解:22sin cos y x x x x '=+.(2)解:313ln 3ln 3ln 3ln x xx y x x x x ⎛⎫⋅⋅⋅ ⎪⎝=+=+⎭'.(3)解:()2ln 2e 2e 2e ln 2e xx x x x y =⋅⋅+⋅=⋅'.三.除法的导数 法则3:2()'()()()'()[]'(()0)()[()]f x f x g x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) 例3:1.已知函数ln ()xf x x=,则()f x '=( ) A .21ln xx - B .21ln xx + C .ln 1x x+D .ln 1x x-【解析】 【分析】根据导数的运算法则,即可求出结果. 【详解】因为ln ()x f x x=,所以2211ln 1ln ()=x xx x f x x x ⋅-⋅-'=,即21ln ()=x f x x -'. 故选:A. 2.曲线211x y x -=+在11,2⎛⎫⎪⎝⎭处的切线斜率为( ) A .14B .34C .1D .54【答案】B 【解析】 【分析】利用导数的几何意义来解决,先求导,把切点的横坐标代入导函数,求出函数值即为函数211x y x -=+在这一点的切线的斜率 【详解】()()()()()223212111x x f x x x +--'==++,则()314f '=,故211x y x -=+在11,2⎛⎫ ⎪⎝⎭处的切线斜率为34 故选:B 3.求1cos xy x=-的导数.【答案】()21cos sin 1cos x x xy x --'=-【解析】 【分析】利用函数商的导数公式可求给定函数的导数. 【详解】 ()()221cos sin 1cos sin 1cos 1cos x x xx x xy x x --⨯--'==--1.已知()sin xf x x=,那么函数在x =π处的瞬时变化率为( ) A .1π-B .0C .21π-D .1π【答案】A 【解析】 【分析】利用导数运算法则求出()2cos sin x x xf x x -'=,根据导数的定义即可得到结论.【详解】 由题设,()2cos sin x x xf x x -'=,所以()2cos sin 1f ππππππ-'==-,函数在x =π处的瞬时变化率为1π-,故选:A .2.已知()xe f x x=,若()()000f x f x '+=,则0x 的值为________.【答案】12 【解析】 【分析】求出()f x ',然后解方程()()000f x f x '+=可求得0x 的值. 【详解】()xe f x x =,则()()21x e x f x x -'=,其中0x ≠, 由()()()0000210x x x e e f x f x x x -'+=+=,可得00110x x -+=,解得012x =. 故答案为:12.2.设()55f =,()53f '=,()54g =,()51g '=,若()()2()f x h xg x +=,则()5h '=________. 【答案】516【解析】根据导数的四则运算对函数()()2()f x h xg x +=进行求导,再代入5x =,即可求出()5h '的值. 【详解】解:由题意知()55f =,()53f '=,()54g =,()51g '=,()()2()f x h xg x +=, ()()()()()()22f x g x f x g x h x g x ''⋅-+⋅⎡⎤⎣⎦'∴=⎡⎤⎣⎦,()()()()()()25552555f g f g h g ''⋅-+⋅⎡⎤⎣⎦'∴=⎡⎤⎣⎦,()()23452155416h ⨯-+⨯'∴==. 故答案为:516.4.求下列函数的导数: (1)()1sin g x x=;(2)()tan xf x x=; (3)()2ln u W u u =.【答案】(1)()2cos sin x xxg '=-(2)()22tan tan tan x x x xf x x --'= (3)()22ln ln u u uW u u -'=【解析】 【分析】(1)根据函数的商的导数公式可求对应的导数. (2)根据函数的商的导数公式可求对应的导数. (3)根据函数的商的导数公式可求对应的导数. (1)()22sin 0cos co s n s i g x x xx x'=--=.(2)()2222222sin sin cos tan tan tan tan cos cos tan tan tan x x x x x x x x x x x x x f x x x x'⎛⎫+--⨯ ⎪--⎝⎭'===. (3)()22212ln 2ln ln ln u u u u u u u W u uu-⨯-'==.巩固提升一、单选题1.下列导数运算正确的是( ) A .()22343x x '+=+B .ππsin cos 66'⎛⎫= ⎪⎝⎭ C .2ln 1ln x x x x '+⎛⎫=⎪⎝⎭D .(2sin 3cos )2cos 3sin x x x x -=+'【答案】D 【解析】 【分析】利用基本初等函数求导公式及导数的四则运算法则进行计算. 【详解】()2234xx '+=,A 错误;π1sin 062''⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,B 错误;2ln 1ln x x x x '-⎛⎫=⎪⎝⎭,C 错误, (2sin 3cos )2cos 3sin x x x x -=+',D 正确.故选:D2.已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '=( ) A .1eB .1-C .1e-D .e -【答案】C 【解析】 【分析】求导,代入e x =即可求解. 【详解】∵()()2e ln f x xf x +'=,∵()()12e f x f x ''=+,∵()()1e 2e e f f ''=+,解得:()1e ef '=-. 故选:C.3.已知一质点的运动方程为ln 3s t t =+,其中s 的单位为米,t 的单位为秒,则第1秒末的瞬时速度为( ) A .1m /s B .2m /sC .4m /sD .7m /s 2【答案】C 【解析】 【分析】求出13s t'=+即得解.【详解】解:由题意得13s t'=+,故质点在第1秒末的瞬时速度为1+3=14m /s .故选:C 4.已知21()sin()42f x x x π=++,()'f x 为f (x )的导函数,则()'f x 的图象是( ) A . B .C .D .【答案】B 【解析】 【分析】求出函数的导函数,令()()g x f x '=,根据导函数的奇偶性可排除AD ,再根据6g π⎛⎫⎪⎝⎭的符号可排除C ,即可得解. 【详解】解:2211()sin()cos 424f x x x x x π=++=+,则()1sin 2f x x x '=-, 令()()1sin 2g x f x x x '==-, ()()1sin 2g x x x g x -=-+=-,所以函数()g x 为奇函数,故排除AD ,又106122g ππ⎛⎫=-< ⎪⎝⎭,故排除C.故选:B.5.曲线ln 1y x =+在(1,1)处的切线也为e x y a =+的切线,则=a ( ) A .0 B .1 C .1- D .2【答案】C 【解析】 【分析】根据给定条件求出切线方程,设出切线与曲线e x y a =+相切的切点坐标,再借助导数几何意义即可得解. 【详解】由ln 1y x =+求导得:1y x'=,则曲线ln 1y x =+在(1,1)处的切线斜率为1,切线方程为:y =x ,设直线y =x 与曲线e x y a =+相切的切点为(,e )t t a +,由e x y a =+求导得e x y '=,于是得e 1e t t a t ⎧=⎨+=⎩,解得01t a =⎧⎨=-⎩,所以1a =-, 故选:C6.函数()()()125y x x x x =⋅-⋅-⋅⋅⋅⋅-在0x =处的导数为( ) A .120 B .120- C .60 D .60-【答案】B 【解析】 【分析】设()()()()()()12345g x x x x x x =-----,可得出()()()y xg x g x xg x '''==+⎡⎤⎣⎦,进而可求得结果.【详解】设()()()()()()12345g x x x x x x =-----,则()()()y xg x g x xg x '''==+⎡⎤⎣⎦), 所以()()()()()()0012345120x y g ===-⨯-⨯-⨯-⨯-=-'. 故选:B. 二、多选题 7.设函数()()1sin cos 2x x f x =-的导函数为()f x ',则( ) A .()()sin f x f x x '+= B .()()cos f x f x x '+= C .()()sin f x f x x '-= D .()()cos f x f x x '-=【答案】AD 【解析】 【分析】求导,可得()'f x 解析式,分析选项,即可得答案. 【详解】 易得()()1cos sin 2x f x x =+', 所以()()sin f x f x x '+=,()()cos f x f x x '-=, 故选:AD.8.[多选]若函数()y f x =的图象上存在两点,使得函数图象在这两点处的切线互相垂直,则称函数()y f x =具有“T 性质”.则下列函数中具有“T 性质”的是( ) A .e x x y = B .cos 1y x =+ C .31y x =D .2ln 2log y x =【答案】AB 【解析】 【分析】由题意可知存在两点使得函数在这两点处的导数值的乘积为-1,然后结合选项求导逐项分析即可. 【详解】由题意,可知若函数()y f x =具有“T 性质”,则存在两点, 使得函数在这两点处的导数值的乘积为-1. 对于A ,1e e x x x x'-⎛⎫= ⎪⎝⎭,满足条件;对于B ,(cos 1)sin x x '+=-,满足条件;对于C ,34130x x '⎛⎫=-< ⎪⎝⎭恒成立,负数乘以负数不可能得到-1,不满足条件; 对于D ,()211ln 2log ln 20ln 2x x x'=⋅=>恒成立,正数乘以正数不可能得到-1,不满足条件. 故选:AB. 三、填空题9.已知函数()tan f x x x =+,则3f π⎛⎫⎪⎝⎭'的值是______.【答案】5 【解析】 【分析】求出()f x ',代值计算可得3f π⎛⎫⎪⎝⎭'的值.【详解】因为()sin tan cos xf x x x x x =+=+,则()()()22sin cos sin cos 111cos cos x x x x f x x x''-⋅'=+=+, 因此,21153cos 3f ππ'⎛⎫=+= ⎪⎝⎭. 故答案为:5. 10.曲线2y x=在点()2,1处的切线与直线1y ax =+垂直,则实数=a __________. 【答案】2 【解析】 【分析】 对函数2y x=求导,再利用导数的几何意义结合垂直的条件求解作答. 【详解】由函数2y x =求导得:22y x '=-,则曲线2y x =在点()2,1处的切线斜率21|2x k y ='==-, 依题意,1()12a ⋅-=-,解得2a =,所以实数2a =. 故答案为:2 四、解答题11.求下列函数的导数: (1)()32f x x =-;(2)()2265H t t t =-+-;(3)()3134g x x x=-; (4)()F u u u =;(5)()3e 2tan xu x x =+;(6)()2log tan f x x x =+;(7)()455e x G x x =+-.【答案】(1)()2f x '=- (2)()46H t t '=-+ (3)()22194g x x x '=+(4)()12F u u'=(5)()223e cos x u x x'=+ (6)()211ln 2cos f x x x'=+ (7)()345ln5xG x x '=+【解析】 【分析】(1)利用导数的运算法则可求得原函数的导数; (2)利用导数的运算法则可求得原函数的导数;(3)利用导数的运算法则可求得原函数的导数; (4)利用导数的运算法则可求得原函数的导数; (5)利用导数的运算法则可求得原函数的导数; (6)利用导数的运算法则可求得原函数的导数; (7)利用导数的运算法则可求得原函数的导数. (1)解:由已知可得()()322f x x ''=-=-. (2)解:由已知可得()()226546H t t t t ''=-+-=-+. (3)解:由已知可得()'312222111399444g x x x x x x x --⎛⎫=-=+='+ ⎪⎝⎭.(4)解:由已知可得()112211122F u u u u u -'⎛⎫'=-=-= ⎪⎝⎭(5)解:由已知可得()22222sin 2cos 2sin 23e 3e 3e cos cos cos x x xx x x u x x x x '+⎛⎫'=+=+=+ ⎪⎝⎭. (6)解:由已知可得()22222sin 1cos sin 11log cos ln 2cos ln 2cos x x x f x x x x x x x '+⎛⎫'=+=+=+ ⎪⎝⎭. (7)解:由已知可得()()4535e 45ln 5x x G x x x ''=+-=+.12.已知函数()f x 的导函数为()'f x ,且满足()2(e)ln f x xf x +'=. (1)求(e)f '及(e)f 的值;(2)求()f x 在点2e x =处的切线方程. 【答案】(1)1(e)ef '=-;(e)1f =-;(2)()222e 1e e 0x y -+-=.【解析】 【分析】(1)由题可得1()2(e)f x f x ''=+,进而可得1(e)e f '=-,然后可得2()ln exf x x =-+,即得;(2)由题可求2(e )f ,2(e )f ',再利用点斜式即得. (1)∵()2(e)ln f x xf x +'=,∵1()2(e)f x f x ''=+,1(e)2(e)e f f ''=+,∵1(e)e f '=-,2()ln exf x x =-+,∵2e(e)ln e=1ef =-+-. (2) ∵2()ln e x f x x =-+,21()e f x x'=-+, ∵2222e (e )ln e 22e ef =-+=-,2221(e )e e f '=-+,∵()f x 在点2e x =处的切线方程为()()222122e e e e y x ⎛⎫--=-+- ⎪⎝⎭,即()222e 1e e 0x y -+-=.。

高中数学《导数》讲义(全)

高中数学《导数》讲义(全)

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。

完整版)导数讲义(学生新版)

完整版)导数讲义(学生新版)

完整版)导数讲义(学生新版)导数一、导数的概念函数y=f(x),如果自变量x在x处有增量Δx,那么函数y 相应地有增量Δy=f(x+Δx)−f(x),比值化率,即Δy/Δx叫做函数y=f(x)在x到x+Δx之间的平均变化率。

如果当Δx→0时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|x=x。

例如,若lim(Δy/Δx)=k,则lim(Δy/f(x+2Δx)−f(x)/Δx)=lim(2k)等于()=k,因此f’(x)=lim(Δy/Δx)。

变式训练:设函数f(x)在点x处可导,试求下列各极限的值:1.lim(f(x−Δx)−f(x))/Δx;2.lim(f(x+h)−f(x−h))/2h;3.若f’(x)=2,则lim(f(x−k)−f(x))/k=?二、导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。

也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。

切线方程为y−f(x)=(f’(x))(x−x)。

三、导数的运算1.基本函数的导数公式:①C’=0;(C为常数)②x^n’=nx^(n−1);③(sin x)’=cos x;④(cos x)’=−sin x;⑤(e^x)’=e^x;⑥(ax)’=axln a;⑦(ln x)’=1/x;⑧(log_a x)’=log_a e/x。

题:求下列函数的导数:(8分钟独立完成)1)f(x)=π;(2)f(x)=x^4;(3)f(x)=x;(4)f(x)=sin x;(5)f(x)=−cos x;(6)f(x)=3x;(7)f(x)=e^x;(8)f(x)=log_2 x;(9)f(x)=ln x;(10)f(x)=1/(1+x);(11)y=x^4+cos x;(12)y=x/(4+x^2);(13)y=log x−e^x;(14)y=x^3 cos x。

【新高考】高三数学一轮基础复习讲义:第十二章 12.1导数应用问题-(学生版+教师版)

【新高考】高三数学一轮基础复习讲义:第十二章 12.1导数应用问题-(学生版+教师版)

导数应用问题 第一课时1.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)2.已知函数f (x )=x 3-ax 2+4,若f (x )的图象与x 轴正半轴有两个不同的交点,则实数a 的取值范围为( )A .(1,+∞)B .(32,+∞)C .(2,+∞)D .(3,+∞)3.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 4.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k的取值范围是________.阶段训练题型一 利用导数研究函数性质 例1 已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.题型二 利用导数研究方程的根或函数的零点问题 例2 设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.题型三 利用导数研究不等式问题 例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是____________.阶段重难点梳理1.已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x.(1)求a的值;(2)求函数f(x)的单调区间.2.已知函数f(x)=x ln x,g(x)=(-x2+ax-3)e x(a为实数).(1)当a=5时,求函数y=g(x)在x=1处的切线方程;(2)求f(x)在区间[t,t+2](t>0)上的最小值.3.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围.4.设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).5.已知函数f (x )=a ln(x +1)+12x 2-x ,其中a 为非零实数.(1)讨论函数f (x )的单调性;(2)若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 2)x 1<12.导数应用问题 第一课时1.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).2.已知函数f (x )=x 3-ax 2+4,若f (x )的图象与x 轴正半轴有两个不同的交点,则实数a 的取值范围为( )A .(1,+∞)B .(32,+∞)C .(2,+∞)D .(3,+∞)答案 D解析 由题意知f ′(x )=3x 2-2ax =x (3x -2a ), 当a ≤0时,不符合题意.当a >0时,f (x )在(0,2a3)上单调递减,在(2a3,+∞)上单调递增,所以由题意知f (2a3)<0,解得a >3,故选D.3.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.4.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k的取值范围是________. 答案 [1,+∞)解析 因为对任意x 1,x 2∈(0,+∞), 不等式g (x 1)k ≤f (x 2)k +1恒成立,所以k k +1≥g (x 1)maxf (x 2)min .因为g (x )=e 2xe x ,所以g ′(x )=e 2-x (1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e. 又f (x )=e 2x +1x≥2e(x >0).当且仅当e 2x =1x ,即x =1e 时取等号,故f (x )min =2e.所以g (x 1)max f (x 2)min =e 2e =12,应有k k +1≥12,又k >0,所以k ≥1.作业检查无题型一 利用导数研究函数性质 例1 已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.阶段训练第2课时因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图象的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x , 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0, 所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. 因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为a ≥32.题型二 利用导数研究方程的根或函数的零点问题 例2 设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:↘ ↗所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e]上单调递减且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a =-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增, g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 题型三 利用导数研究不等式问题 例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对任意x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增, 所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a ≤h (x )min =4. (2)证明 问题等价于证明 x ln x >x e x -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e ,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是____________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )单调递减,∴g (x )max =g (2)=12,g (x )min =g (4)=-234;对于f (x ),f ′(x )=3x 2-4x +1, 令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:x -1 (-1,13)13 (13,1) 1 (1,2) 2f ′(x ) +0 -0 +f (x ) a -4 ↗ 427+a ↘ a ↗ a +2∴f (x )max =a +2,f (x )min =a -4,∴⎩⎨⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,第3课时阶段重难点梳理由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[t ,t +2](t >0)上的最小值. 解 (1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e. 又g ′(x )=(-x 2+3x +2)e x , 故切线的斜率为g ′(1)=4e. 所以切线方程为y -e =4e(x -1), 即4e x -y -3e =0.(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥1e 时,在区间[t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间[t ,1e )上f (x )为减函数,在区间(1e ,t +2]上f (x )为增函数,所以f (x )min =f (1e )=-1e.3.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切, 所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:↘↗所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点; 当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b , f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ), 使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点, 那么b 的取值范围是(1,+∞). 4.设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)内单调递增. 又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎡⎭⎫12,+∞. 5.已知函数f (x )=a ln(x +1)+12x 2-x ,其中a 为非零实数.(1)讨论函数f (x )的单调性;(2)若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 2)x 1<12.(1)解 f ′(x )=ax +1+x -1=x 2+(a -1)x +1,x >-1,当a -1≥0,即a ≥1时,f ′(x )≥0, ∴f (x )在(-1,+∞)上单调递增, 当0<a <1时,由f ′(x )=0,得 x 1=-1-a >-1,x 2=1-a ,∴f (x )在区间(-1,-1-a )上单调递增,在(-1-a ,1-a )上单调递减,在(1-a ,+∞)上单调递增.当a <0时,∵x 1<-1,∴f (x )在(-1,1-a )上单调递减,在(1-a ,+∞)上单调递增. (2)证明 ∵0<a <1且x 1=-1-a ,x 2=1-a , ∴x 1+x 2=0,x 1x 2=a -1且x 2∈(0,1), f (x 2)x 1<12⇔f (x 2)-x 2<12⇔f (x 2)+12x 2>0 ⇔a ln(x 2+1)+12x 22-12x 2>0 ⇔(1-x 22)ln(x 2+1)+12x 22-12x 2>0 ⇔-(x 2-1)(1+x 2)ln(x 2+1)+12x 2(x 2-1)>0⇔(1+x 2)ln(x 2+1)-12x 2>0,令g (x )=(1+x )ln(x +1)-12x ,x ∈(0,1),∵g ′(x )=ln(x +1)+12>0,∴g (x )在(0,1)上单调递增,∴g (x )>g (0)=0. 故原命题得证.1.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).2.已知函数f (x )=x 3-ax 2+4,若f (x )的图象与x 轴正半轴有两个不同的交点,则实数a 的取值范围为( )A .(1,+∞)B .(32,+∞)进门测C .(2,+∞)D .(3,+∞)答案 D解析 由题意知f ′(x )=3x 2-2ax =x (3x -2a ), 当a ≤0时,不符合题意.当a >0时,f (x )在(0,2a3)上单调递减,在(2a3,+∞)上单调递增,所以由题意知f (2a3)<0,解得a >3,故选D.3.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.4.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k的取值范围是________. 答案 [1,+∞)解析 因为对任意x 1,x 2∈(0,+∞), 不等式g (x 1)k ≤f (x 2)k +1恒成立,所以k k +1≥g (x 1)maxf (x 2)min .因为g (x )=e 2xe x ,所以g ′(x )=e 2-x (1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e. 又f (x )=e 2x +1x≥2e(x >0).当且仅当e 2x =1x ,即x =1e 时取等号,故f (x )min =2e.所以g (x 1)max f (x 2)min =e 2e =12,应有k k +1≥12,又k >0,所以k ≥1.无题型一 利用导数研究函数性质 例1 已知函数f (x )=ln x +a (1-x ).作业检查阶段训练第2课时(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图象的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0, 所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. 因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为a ≥32.题型二 利用导数研究方程的根或函数的零点问题例2 设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:↘ ↗所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e]上单调递减且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a =-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增, g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 题型三 利用导数研究不等式问题 例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对任意x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增, 所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明 x ln x >x e x -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e ,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是____________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )单调递减,∴g (x )max =g (2)=12,g (x )min =g (4)=-234;对于f (x ),f ′(x )=3x 2-4x +1, 令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:↗ ↘ ↗ ∴f (x )max =a +2,f (x )min =a -4,∴⎩⎨⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.第3课时阶段重难点梳理当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[t ,t +2](t >0)上的最小值. 解 (1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e. 又g ′(x )=(-x 2+3x +2)e x , 故切线的斜率为g ′(1)=4e. 所以切线方程为y -e =4e(x -1), 即4e x -y -3e =0.(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥1e 时,在区间[t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间[t ,1e )上f (x )为减函数,在区间(1e ,t +2]上f (x )为增函数,所以f (x )min =f (1e )=-1e.3.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切, 所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:↘↗所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b , f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ), 使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点, 那么b 的取值范围是(1,+∞). 4.设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增. 又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎡⎭⎫12,+∞.5.已知函数f (x )=a ln(x +1)+12x 2-x ,其中a 为非零实数.(1)讨论函数f (x )的单调性;(2)若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 2)x 1<12.(1)解 f ′(x )=ax +1+x -1=x 2+(a -1)x +1,x >-1,当a -1≥0,即a ≥1时,f ′(x )≥0, ∴f (x )在(-1,+∞)上单调递增,当0<a <1时,由f ′(x )=0,得 x 1=-1-a >-1,x 2=1-a ,∴f (x )在区间(-1,-1-a )上单调递增,在(-1-a ,1-a )上单调递减,在(1-a ,+∞)上单调递增.当a <0时,∵x 1<-1,∴f (x )在(-1,1-a )上单调递减,在(1-a ,+∞)上单调递增. (2)证明 ∵0<a <1且x 1=-1-a ,x 2=1-a , ∴x 1+x 2=0,x 1x 2=a -1且x 2∈(0,1), f (x 2)x 1<12⇔f (x 2)-x 2<12⇔f (x 2)+12x 2>0 ⇔a ln(x 2+1)+12x 22-12x 2>0 ⇔(1-x 22)ln(x 2+1)+12x 22-12x 2>0 ⇔-(x 2-1)(1+x 2)ln(x 2+1)+12x 2(x 2-1)>0⇔(1+x 2)ln(x 2+1)-12x 2>0,令g (x )=(1+x )ln(x +1)-12x ,x ∈(0,1),∵g ′(x )=ln(x +1)+12>0,∴g (x )在(0,1)上单调递增,∴g (x )>g (0)=0. 故原命题得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数综合讲义
第1讲 第2讲 第3讲 第4讲 第5讲 第6讲 第7讲 第8讲 第9讲 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.12 10.13 10.14 导数的计算与几何意义 函数图像 三次函数 导数与单调性 导数与极最值 导数与零点 导数中的恒成立与存在性问题 原函数导函数混合还原(构造函数解不等式) 导数中的距离问题 导数基础练习题 分离参数类 构造新函数类 导数中的函数不等式放缩 导数中的卡根思想 洛必达法则应用 先构造,再赋值,证明和式或积式不等式 极值点偏移问题 多元变量消元思想 导数解决含有 ln x 与 e 的证明题(凹凸反转)
'
u v
'
u 'v v 'u v2
x
( g ( x )) f ' (u ) g ' ( x )
Hale Waihona Puke ' '6、导函数与单调性:求增区间,解 f ( x ) 0 ;求减区间,解 f ( x ) 0 若函数在 f ( x ) 在区间 ( a, b) 上是增函数 f ( x ) 0 在 ( a, b) 上恒成立; 若函数在 f ( x ) 在区间 ( a, b) 上是减函数 f ( x ) 0 在 ( a, b) 上恒成立; 若函数在 f ( x ) 在区间 ( a, b) 上存在增区间 f ( x ) 0 在 ( a, b) 上恒成立; 若函数在 f ( x ) 在区间 ( a, b) 上存在减区间 f ( x ) 0 在 ( a, b) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法
2、过 f ( x ) x 3 x 2 x 5 图像上一个动点作函数的切线, 则切线倾斜角的范围是_____ 3、若一直线与曲线 y ln x 和曲线 x ay (a 0) 相切于同一点 P ,则 a _____ 4、两曲线 y x 1 和 y a ln x 1 存在公切线,则正实数 a 的取值范围是____________ 5、已知 a, b 为正实数, 直线 y x a 与曲线 y ln( x b ) 相切, 则 (A) (0, ) 6、若曲线 y ( ) (B) (B) (0,1) (C) (0, )
' n ' n 1
; (sin x) cos x ; (cos x) sin x ;
'
'
(ln x) '
'
1 1 ' x ' x x ' x ; (log a x) ; (e ) e ; ( a ) a ln a x x ln a
' ' ' ' '
4、导数的四则运算: (u v) u v ;; (u v) u v v u ; ( ) 5、复合函数的单调性: f
3ax 2 ax (a R ) ,若 f ( x) 在 x 0 处取得极值, ex
确定 a 的值,并求此时曲线 y f ( x ) 在点 (1, f (1)) 处的切线方程
1、函数 f ( x ) cos x 在点 (
3 2
2
1 , ) 处的切线方程为________________________ 4 2
' x 0 '
f ( x0 x) f ( x0 ) f ( x x) f ( x) ' , f ( x ) lim x 0 x x
2、导数的几何意义:导数值 f ( x0 ) 是曲线 y f ( x ) 上点 ( x0 , f ( x0 )) 处切线的斜率 3、常见函数的导数: C 0 ; ( x ) nx
3
1 ,当 a 为何值时, x 轴为曲线 4
y f ( x ) 的切线
(2015 安徽卷理 18(1))设 n N , xn 是曲线 y x 点的横坐标,求数列 {xn } 的通项公式. (2015 重庆卷理 20(1))设函数 f ( x )
* 2n2
1 在点 (1, 2) 处的切线与 x 轴交
第 10 讲 导数解答题
10.11 导数解决含三角函数式的证明 隐零点问题 端点效应 其它省市高考导数真题研究
1
导数
【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的 最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分 别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的 几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高 考考查了导数判断函数的单调性, 含参零点的分类讨论。 近四年的高考试题基本形成了一个 模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方 程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单; 第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两 个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应 引起考生注意。 【基础知识整合】 1、导数的定义: f ( x0 ) lim
' ' ' '
2
第1讲
导数的计算与几何意义
(2016 全国卷 1 理 16) 若直线 y kx b 是曲线 y ln x 2 的切线, 也是曲线 y ln( x 1) 的切线,则 b __________ ( 2015 全国卷 1 理 21( 1 ))已知函数 f ( x ) x ax
x
..........3 ..........4 ..........7 ..........8 ..........9 .........10 .........11 .........13 .........17 .........18 ..........21 ..........24 ..........26 ..........29 ..........30 ..........32 ..........33 ..........35 ..........37 .........39 ..........40 ..........42 ..........44 ..........45
相关文档
最新文档