倍长中线构造全等三角形
专题14 倍长中线法与截长补短法构造全等三角形(原卷版)
专题14倍长中线法与截长补短法构造全等三形模型一:倍长中线法构造全等三角形模型二:截长补短法构造全等三角形【典例分析】【模型一:倍长中线法构造全等三角形】△ABC 中,AD 是BC 边中线方式1到E ,使DE=AD ,连接BE方式2:间接倍长(1)作CF ⊥AD 于F,作BE⊥AD 的延长线于E(2)延长MD 到N,使DN=MD,连接CN【典例1】(2021春•吉安县期末)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小N延长边上(不一定是底边)的中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角一般用“SAS ”证明对应边之间的关系。
(在一定范围中)明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL (2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.【变式1-1】(2021秋•肥西县期末)一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是()A.x>5B.x<7C.4<x<14D.2<x<7【变式1-2】如图,AE是△ABD的中线AB=CD=BD.求证:AB+AD>2AE;【变式1-3】(2021秋•齐河县期末)(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E 是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【模型二:截长补短法构造全等三角形】∙截长:1.过某一点作长边的垂线;2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
八年级上册数学倍长中线典型题
八年级上册数学倍长中线典型题一、倍长中线法概述倍长中线是一种在三角形中常用的辅助线添加方法。
当遇到三角形中有中线(连接三角形一个顶点和它对边中点的线段)时,可以将中线延长一倍,构造出全等三角形,从而利用全等三角形的性质来解决问题。
二、典型例题及解析1. 已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:AF = EF。
题目分析:本题有中线AD,考虑倍长中线AD来构造全等三角形。
证明:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD(已证)∠BDG=∠CDA(对顶角相等)DG = DA(所作辅助线)所以△BDG≌△CDA(SAS)。
则BG = AC,∠G = ∠CAD。
又因为BE = AC,所以BG = BE。
所以∠G = ∠BEG。
因为∠BEG = ∠AEF(对顶角相等),∠G = ∠CAD。
所以∠AEF = ∠CAD,即AF = EF。
2. 如图,在△ABC中,AB = 5,AC = 3,则中线AD的取值范围是多少?题目分析:本题给出了三角形两边的长度,要求中线的取值范围,可通过倍长中线构造全等三角形,将已知边和中线转化到一个三角形中,利用三角形三边关系求解。
解:延长AD到E,使DE = AD,连接BE。
因为AD是中线,所以BD = CD。
在△BDE和△CDA中,BD = CD∠BDE = ∠CDADE = DA所以△BDE≌△CDA(SAS)。
则BE = AC = 3。
在△ABE中,AB BE<AE<AB + BE。
因为AB = 5,BE = 3,AE = 2AD。
所以5 3<2AD<5 + 3。
即1<AD<4。
全等三角形问题中常见的8种辅助线的作法(有答案)
全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.截长补短:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂D C BAED F CB A线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
倍长中线法构造全等三角形例题
倍长中线法构造全等三角形例题《倍长中线法构造全等三角形》一、引言在数学中,全等三角形是非常重要的概念,它们具有相同的三边和三角角度,但形状和位置可能有所不同。
而倍长中线法是构造全等三角形的一种重要方法。
本文将深入探讨倍长中线法的原理和应用,通过具体的例题来演示构造全等三角形的过程。
二、倍长中线法的原理1. 什么是倍长中线法?倍长中线法是指通过将三角形中的两条边分别延长相等的长度,然后连接延长后的两条边的中点,得到一个边长为原来中线的两倍的新三角形的方法。
2. 倍长中线法的原理当我们通过倍长中线法构造全等三角形时,我们实际上是借助了中线的性质。
在三角形中,连接一个顶点和对边中点的线段就是该对边的中线,中线的定义是连接三角形的一个顶点和边对面中点的线段。
对于一个三角形ABC来说,若D为AB的中点,那么有AD = BD,这就是中线的性质之一。
而倍长中线法利用了中线的这一性质,通过延长两条边相等的长度,再连接延长后的两条边的中点,可以构造出一条新的中线,新中线的长度是原中线的两倍。
这样就得到了一个边长为原三角形中线长度两倍的全等三角形。
三、倍长中线法构造全等三角形的例题现在,让我们通过具体的例题来演示倍长中线法对全等三角形的构造过程。
例题1:已知△ABC中,AB = 6cm, AC = 4cm,以AC为底边做三角形ACD,且AD = 6cm,BD = 4cm,连接BC并延长到E,使得CE = AB。
连接DE并延长到F,使得DF = AB。
证明△ADF≌△ABC。
解题步骤:1. 延长BC和DE我们根据题目要求,延长BC和DE,使得CE = AB,DF = AB。
2. 连接CD接下来,连接CD,得到三角形ACD。
3. 寻找AD和DB的中点我们在AD和DB上分别寻找其中点,分别记为G和H。
4. 连接GH连接GH,得到新的中线GH。
5. 观察三角形ADF和三角形ABC我们可以观察到,三角形ADF和三角形ABC中,AD = AB,DG = BH。
全等三角形倍长中线知识点
全等三角形倍长中线知识点全等三角形倍长中线是一个重要的几何概念,它涉及到三角形的一条特殊线段。
在本文中,我们将介绍什么是全等三角形倍长中线以及它的性质和应用。
全等三角形指的是具有相同边长和角度的两个三角形。
当两个三角形全等时,它们的对应边和对应角都相等。
倍长中线是指通过三角形的两个顶点和中点构造的线段。
具体来说,对于三角形ABC,倍长中线是通过顶点A和边BC的中点D构造的线段AD。
我们来看倍长中线的性质。
根据全等三角形的定义,我们可以得出以下结论:1. 在全等三角形中,倍长中线的长度相等。
也就是说,如果三角形ABC和三角形A'B'C'全等,那么线段AD的长度等于线段A'D'的长度。
2. 倍长中线将三角形分成两个面积相等的三角形。
具体来说,三角形ABC可以分成三角形ABD和三角形ACD,而且它们的面积相等。
接下来,我们来探讨倍长中线的应用。
倍长中线在解决几何问题时有着广泛的应用,特别是在证明全等三角形的过程中往往会用到倍长中线的性质。
以下是一些常见的应用场景:1. 证明两个三角形全等。
当我们需要证明两个三角形全等时,可以利用倍长中线的性质来进行推导。
通过比较倍长中线的长度和其他边长或角度的关系,可以判断出两个三角形是否全等。
2. 求解三角形的面积。
由于倍长中线将三角形分成两个面积相等的三角形,我们可以利用这个性质来求解三角形的面积。
通过计算倍长中线的长度和底边的长度,再利用面积公式,可以得到三角形的面积。
3. 寻找三角形的重心。
重心是三角形的一个重要特征点,它是三条三角形的中线的交点。
在全等三角形中,倍长中线和其他两条中线交于同一点,即重心。
因此,通过倍长中线可以确定三角形的重心。
总结起来,全等三角形倍长中线是一个重要的几何概念,它在解决几何问题时有着广泛的应用。
通过研究倍长中线的性质,我们可以判断两个三角形是否全等,求解三角形的面积,以及确定三角形的重心。
北师大版数学七升八暑假作业专题复习提升专题六 倍长中线构造全等三角形(含答案)
北师大版数学七升八暑假作业专题复习提升-专题六倍长中线构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造.类型倍长中线构造全等三角形1. 在△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是.2. 在△ABC中,AB=10,AC=6,则BC边上的中线AD的取值范围是.3.如图,在△ABC中,∠ABC=45∘,AD,BE分别为BC,AC边上的高,AD,BE相交于点F.下列结论:①∠FCD=45∘;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC的周长等于AB的长.正确结论的序号是.4.如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB−AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5. 如图,已知AD是△ABC的中线,过点B作BE⊥AD,垂足为E.若BE=6,求点C到AD的距离.6.某校数学课外兴趣小组活动时,老师提出如下问题:【探究】如图1,在△ABC中,若AB=8,AC=6,点D是BC的中点,试探究BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE.请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB.证明:∵延长AD到点E,使DE=AD,连接BE.在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(), CD=BD(中点定义),∴△ADC≌△EDB().(2)探究得出AD的取值范围是.【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证:∠BFD=∠CAD.7. 【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A. SSSB. SASC. AAS(2)求得AD的取值范围是.A. 6<AD<8B. 6≤AD≤8C. 1<AD<7D. 1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.试说明AC=BF.(1)【方法学习】数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法(如图2).①延长AD到点M,使得DM=AD;②连接BM,通过三角形全等把AB,AC,2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB−BM<AM<AB+BM,从而得到AD的取值范围是.【方法总结】上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以说明.(3)【深入思考】如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE =∠CAF=90∘,试判断线段AD与EF的数量关系,并加以说明.答案专题六倍长中线构造全等三角形类型倍长中线构造全等三角形1.2<AD<52.2<AD<83.①③④4.(1)证明:如图,延长AD至点E,使AD=DE,连接BE.在△ACD 和△EBD 中,{DC =BD ,∠ADC =∠BDE ,AD =DE ,∴△ACD≌△EBD (SAS),∴AC =BE (全等三角形的对应边相等).在△ABE 中,由三角形的三边关系可得AB−BE <AE <AB +BE ,即AB−AC <2AD <AB +AC .(2) 解:∵AB =8cm ,AC =5cm ,∴8−5<2AD <8+5,∴32<AD <132.5.解:如图,过点C 作CF ⊥AD ,交AD 的延长线于点F .∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD .∵AD 是△ABC 的中线,∴BD =CD .在△BED 和△CFD 中,{∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED≌△CFD (AAS),∴BE =CF .∵BE =6,∴CF =6,∴ 点C 到AD 的距离为6.(1) 对顶角相等; SAS(2) 1<AD <7(3) 证明:如图,延长AD 到点H ,使DH =AD ,连接BH .由(1)得△ADC≌△HDB,∴BH=AC,∠BHD=∠CAD.∵AC=BF,∴BH=BF,∴∠BFD=∠BHD,∴∠BFD=∠CAD.(1)B(2)C(3)解:如图,延长AD到点M,使AD=DM,连接BM.∵AD是△ABC的中线,∴CD=BD.∵在△ADC和△MDB中,{DC=DB,∠ADC=∠MDB,DA=DM,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M.∵AE=EF,∴∠CAD=∠AFE.∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM=AC,即AC=BF.(1)1<AD<7(2)解:AC//BM,且AC=BM.理由:由(1)知,△MDB≌△ADC,∴∠M=∠CAD,AC=BM,∴AC//BM.(3)EF=2AD.理由:如图,延长AD到点M,使得DM=AD,连接BM.由(1)知,△BDM≌△CDA(SAS),∴BM=AC.∵AC=AF,∴BM=AF.由(2)知:AC//BM,∴∠BAC+∠ABM=180∘.∵∠BAE=∠FAC=90∘,∴∠BAC+∠EAF=180∘,∴∠ABM=∠EAF.在△ABM和△EAF中,{AB=EA,∠ABM=∠EAF,BM=AF,∴△ABM≌△EAF(SAS),∴AM=EF.∵AD=DM,∴AM=2AD.∵AM=EF,∴EF=2AD.。
初中数学模型1-倍长中线模型构造全等三角形
• ∴△EFD≌ △HFD(AAS) • ∴EF=FH • 在△BDE和△CDH中,
• DE=DH • ∠1=∠2
• BD=DC • ∴△BDE≌△CDH(SAS) • ∴BE=CH • 在△CFH中,由三角形三边关系定理得:CF+CH>
FH • ∵CH=BE,FH=EH • ∴BED
• 解析: • 延长AM到D,使MD=AM,连CD • ∵AM是BC边上的中线, • ∴BM=CM • 又AM=DM,∠AMB=∠CMD • ∴△ABM≌△DCM,∴AB=CD • 在△ACD中,则AD< AC+CD • 即2AM<AC+AB • 即结论成立。
例3
• 如图,在△AB C中,AD交BC于点D,点E是BC 的中点,EF∥AD交CA的延长线于点F,交EF于 点G,若BG=CF,求证:AD为△ABC的角平分线.
倍长中线模型构造全等三角形
专题说明
• 倍长中线是指加倍延长中线,使所延长部分与中 线相等,然后往往需要连接相应的顶点,则对应 角对应边都对应相等。常用于 构造全 等三角形。 中线倍长法多用于构造全等三角形和证明边之间 的关系(通常用“SAS”证明)(注:一般都是原 题已经有中线时用,不太会有自己画中线的时 候)。
知识总结
• 题干中出现三角形一边的中线(与中点有关的线 段),或中点,通常考虑倍长中线或 类中线,构 造全等三角形.把该中线延长一倍,证明三角形全 等,从而运用全等三角形的有关知识来解决问题 的方法.
主要思路:倍长中线(线段)造全等
A
A
B
C
D
B
C
D
E
在△ABC中 AD是BC边中线; 延长AD到E, 使DE=AD,连接BE;
• BD=DE, • ∠ADB=∠CDE
全等三角形中“倍长中线”模型
第13讲 全等三角形中“倍长中线”模型((核心考点讲与练)【基础知识】三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC 中 AD 是BC 边中线延长AD 到E , 使DE=AD ,连接BE作CF ⊥AD 于F , 作BE ⊥AD 的延长线于E连接BE延长MD 到N , 使DN=MD ,连接CD【考点剖析】1、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .2、如图1,已知ABC D 中,AD 是BC 边上的中线.求证:2AB AC AD +>.3.如图,在△ABC 中,AD 为BC 边上的中线.CD B A(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE .(2)求证:△ACD ≌△EBD .(3)求证:AB +AC >2AD .(4)若AB =5,AC =3,求AD 的取值范围.4.如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .5.如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .6.如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F .求证:∠AEF =∠EAF .D CB AD CB AE D CB A7.如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交AB 于点G ,BG =CF .求证:AD 为△ABC 的角平分线.【过关检测】一.选择题(共6小题)1.(2020秋•沈丘县期中)已知△ABC 中AD 为中线,且AB =5、AC =7,则AD 的取值范围为( )FED CB AGFE D CB AA.2<AD<12B.5<AD<7C.1<AD<6D.2<AD<102.(2021秋•新城区校级期中)已知AD是△ABC的边BC上的中线,AB=12,AC=8,则中线AD的取值范围是( )A.2<AD<10B.4<AD<20C.1<AD<4D.以上都不对3.(2020秋•广州校级月考)如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,则AD的取值范围是( )A.3<AD<13B.1.5<AD<6.5C.2.5<AD<7.5D.10<AD<164.(2020秋•江岸区校级月考)在△ABC中,AB=4,AC=6,则BC边上的中线AD的取值范围是( )A.1<AD<5B.4<AD<6C.2<AD<10D.3<AD<65.(2021秋•肥西县期末)一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是( )A.x>5B.x<7C.4<x<14D.2<x<76.(2020秋•平舆县期中)如图,已知AD是△ABC中BC边上的中线,AB=5,AC=3,则AD的取值范围是( )A.2<AD<8B.1<AD<4C.2<AD<5D.4≤AD≤8二.填空题(共5小题)7.(2021秋•九台区期末)如图,△ABC中,AB=6,AC=4,D是BC的中点,AD的取值范围为 .8.(2021秋•东莞市期中)在△ABC中,已知AB=3,AC=5,AD是BC边上的中线,则AD取值范围是 .9.(2020秋•荣昌区校级期中)在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是 .10.(2021秋•木兰县期末)如图,在△ABC中,∠ABC=45°,AM⊥BC于点M,点D在AM上,且DM =CM,F是BC的中点,连接FD并延长,在FD的延长线上有一点E,连接CE,且CE=CA,∠BDF=36°,则∠E= .11.(2021秋•淅川县期中)AD是△ABC的边BC上的中线,AB=6,AC=4,则中线AD的取值范围是 .三.解答题(共5小题)12.(2021秋•南充期末)如图,AD是△ABC的中线,F为AD上一点,E为AD延长线上一点,且DF=DE.求证:BE∥CF.13.(2020秋•津南区期末)(1)如图1,在△ABC中,∠B=60°,∠C=80°,AD平分∠BAC.求证:AD=AC;(2)如图2,在△ABC中,点E在BC边上,中线BD与AE相交于点P,AP=BC.求证:PE=BE.14.(2020秋•田家庵区期末)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,使得AB、AC、2AD集中在△ACE中,利用三角形三边关系可得AD 的取值范围是 ;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF.求证:BE+CF >EF.15.(2020秋•饶平县校级期中)(1)如图,AD是△ABC的中线,AB=8,AC=6则AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7(2)在(1)问的启发下,解决下列问题:如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.16.(2020秋•岫岩县期中)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.。
倍长中线模型,构造全等证明线段或角之间的关系
倍长中线模型,全等三角形搭桥,难题分析讲解三角形是初中数学里最基本的几何图形,而其边上,又是很常见的条件。
当涉及三角形问题时,常采用延长中线一倍的办法,即倍长中线法,实现角和线段的转化,以此来作辅助线解题。
好处是通过此法构造全等三角形继而得到平行,也可以证明三角形全等,可将分散的条件集中在一个三角形内解题,常常出奇制胜,化腐朽为神奇。
且看模型,和模型产生的基本结论.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(其中有对顶角相等)例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围。
分析:延长AD 至E ,使ED=AD ,连接BE ,见模型1,可证△ABD 与△ECD 全等,把AB 边转移到EC 上了,再看△AEC ,用第三边大于两边之差小于两边之和可解。
【归纳总结】1. 三角形的三边关系是求线段范围的常用方法.2. 出现中线时,常考虑倍长中线构造全等三角形,实现线段的转化.例 2:已知在△ABC 中,AD 是 BC 边上的中线, E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF延长ED 至G ,使GD=ED ,利用SAS 可证△BED与△CGD 全等,把BE 转移到GC 上,∠G=∠1,由已知BE=AC ,得到GC=AC ,由等腰三角形性质可知∠G=∠3,通过∠G 传递,得到∠2=∠3,得证AF=EF例3:已知:如图,在△ABC 中,AB ≠AC ,D 、E 在BC 上,且DE=EC ,过D 作DF//BA 交AE 于点F ,DE=AC ,求证:AE 平分∠BAC证明:如图,延长FE 到G ,使EG=EF ,连接CG .在△DEF 和△CEG 中,∵ ,∴△DEF ≌△CEG . ∴DF=GC ,∠DFE=∠G .∵DF ∥AB ,∴∠DFE=∠BAE .∵DF=AC ,∴GC=AC .∴∠G=∠CAE .∴∠BAE=∠CAE .即AE 平分∠BAC⎪⎩⎪⎨⎧==FG FE CEG =∠DEF ∠EC ED例4:如图;在△ABC中,AB=AC,延长AB到D,使得BD=AB,取AB的中点E,连结CD和CE,求证:CD=2CE证明:延长CE至F,使EF=CE,则CF=2CE易证△ACE≌△BFE,∴AC=BF=AB=BD,∠ABF=∠BAC∴∠DBC=∠ACB+∠BAC=∠ABC+∠ABF=∠FBC∴△BCF≌△BCD(SAS)∴CD=CF=2CE【融会贯通】1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。
八年级数学全等三角形--倍长中线法经典例题
八年级数学全等三角形--倍长中线法经典例题中线是三角形中的重要线段之一。
为了解决几何问题,常常采用“倍长中线法”添加辅助线。
倍长中线法的过程是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题。
倍长中线最重要的一点是延长中线一倍,完成SAS全等三角形模型的构造。
常用的辅助线添加方法有两种:一是将中线延长到某一点,使其等于另一条边,然后连接这两个点构造全等三角形;二是通过作垂线和延长线来间接倍长中线。
例1:在△ABC中,已知AB=5,AC=3,求中线AD的取值范围。
例2:在△ABC中,已知AB=AC,D在AB上,E在AC 的延长线上,DE交BC于F,且DF=EF,求证BD=CE。
例3:在△ABC中,已知AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证AF=EF。
例4:在△ABC中,已知AB≠AC,D、E在BC上,且DE=EC。
过D作DF//BA交AE于点F,DF=AC。
求证AE平分∠BAC。
例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证∠C=∠BAE。
自检自测:1、在△ABC中,已知BD=DC=AC,E是DC的中点,求证AD平分∠BAE。
2、在四边形ABCD中,已知AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
3、在△ABC中,已知AD为中线,DE平分∠BDA交AB于E,DF平分∠ADC交AC于F。
求证BE+CF>EF。
4、在直角△ABC中,已知CM⊥XXX于M,AT平分∠BAC交CM于D,交BC于T,XXX于E。
求证CT=BE。
秒解全等三角形(利用倍长中线构造全等)(沪教版五四制七年级数学下册14
秒解全等三角形回顾知识点:判定三角形全等的方法SSS: 三条边对应相等的两个三角形全等;SAS: 两条边对应相等,且夹角也相等的两个三角形全等;ASA:两角对应相等,且夹边也相等的两个三角形全等;AAS:两角对应相等,且其中一角的对边也相等的两个三角形全等;HL:一条直角边和斜边分别对应相等的两个直角三角形全等。
(直角三角形)寻找全等三角形常用的方法:一:题目中出现的问题或者结论线段相等角相等度数线段或者线段的和、差、倍、分关系然后根据题目中出现的三角形,进行猜测验证,寻找两个三角形相关的边以及角之间的关系,利用相关的判定定理进行证明即可。
二、已知条件入手审题的时候,对题目中出现的图形已知条件进行标注,注意不同的区分,如果理想思维不强,可以利用不同颜色的笔进行标注。
然后根据标注的条件对比判定定理,进行未知条件的推理。
经典题型:题目中出现角平分线例题:如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD.技巧:图中有角平分线,可向两边作垂线。
也可将图对折看。
借助角平分线构造全等证明:在AC上取点F,使AF=AE,连接OF∵AD是∠A的平分线,∴∠EAO=∠FAO,∵AO=AO,∴△AEO≌△AFO,∴EO=FO,∠AOE=∠AOF借助中间量,找目标等量∵CE是∠C的角平分线,∴∠DCO=∠FCO,∵∠B=60°∴∠BAC+∠ACB=120°(∠BAC+∠ACB)=60°∴∠COD=∠CAO+∠OCA=12∵∠AOE=∠AOF,∠AOE=∠COD即∠AOF=∠COD=60°∴∠COF=180°-∠COD-∠AOF=60°∴∠COF=∠COD根据全等性质转化得到答案∵OC=OC∴△OCD≌△OCF∴OD=OF∴OE=OD题目中出现中点或中线(中位线)例题:如图,△ABC中,BD=DC=AC,E是DC的中点,求证AD平分∠BAE.技巧:图中有中点或中线,中线延长二倍位置得全等。
三角形全等证明常用辅助线作法(倍长中线、截长补短)
倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
倍长中线构造三角形全等
【教学目标】1.理解并记忆全等三角形的判定及性质。
2. 能利用倍长中线法证明三角形全等。
【教学重点】1.记忆全等三角形的判定及性质。
2. 利用倍长中线法证明三角形全等。
【教学难点】1.记忆全等三角形的判定及性质。
2. 利用倍长中线法证明三角形全等。
【教学内容】一、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上例题讲解:倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE过手练习:1.已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF2.已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠课堂检测:1.已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAEB第 1 题图ABFDEC2、如图,△ ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.课后作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
初二《全等三角形——倍长中线法》讲课初稿
教学设计目的啊,就是构造一对对顶的全等三角形。
具体操作如下:,△ABC中,延长中线AD到E,使得AD=DE,连接BE,则得到一个新的△BED,那这个△BED与哪个三角形全等呢?为什么呢?同学们都答出来了,△BED与△CAD全等。
如何证明呢?那也很简单的。
因为AD=ED,D为BC中点,BD=CD,而∠ADC=∠EDB,根据SAS(边角边)就可以得出,△BED≌△CAD。
而△BED与△CAD全等了,又可以得出∠DAC=∠DEB,所以AC∥EB。
那么,老师再请同学们思考一下,在上图中,AB,AC与中线AD线段长度又有什么关系呢?我看有同学思考出来了,它们的关系是AB+AC>2AD。
如何证明呢?这个也很简单。
刚刚已经得出△BED≌△CAD,可以得出BE=CA。
在△ABE中,根据任意两边之和大于第三边,AB+BE>AE。
又因为AE=2AD,BE=CA所以可以得出AB+AC>2AD。
因此,关于倍长中线法我们能总结以下3点:第一、看到中点,要想到用倍长中线法。
第二、倍长中线法可以构造出一对对顶的全等三角形。
第三、倍长中线法可以得出一对平行线。
三、倍长线法的一些基础应用。
接下来,我们就做一些比较基础,比较简单的倍长中线法的应用。
例1:已知△ABC中,AD平分∠BAC,且BD=DC,求证:AB=AC分析:1.看到BD=DC(D 为BC中点)就要想到用倍长中线法2.倍长中线法,可得△BED≌△CAD可得AC=BE且∠2=∠13.要求证AB=AC则只需求AB=BE即∠3=∠2证明:延长AD至E, 令AD=DE,连接BE。
∵BD=DC,AD=DE,且∠ADC=∠EDB ∴△BED≌△CAD(SAS)∴BE=CA,∠2=∠1∵AD平分∠BAC∴∠3=∠1∴∠3=∠2∴BA=BE∵BE=CA∴AB=AC上面这道题是开胃菜,下面老师就稍微增加点难度。
例2:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F. 求证:AF=EF.这道题老师请同学们先自己思考一下,咱们依旧用用倍长中线法,那么倍长哪条中线呢?然后再四人一组再讨论一下各自的证明过程。
初中数学经典几何模型02-倍长中线模型构造全等三角形(含答案)
初中数学经典几何模型专题02 倍长中线模型构造全等三角形【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
常用于构造全等三角形。
中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS ”证明)(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【知识总结】题干中出现三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC 中 AD 是BC 边中线延长AD 到E , 使DE =AD ,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD1、如图,已知在△ABC中,D为AC中点,连接BD.若AB=10cm,BC=6cm,求中线BD的取值范围。
(AB+AC)2、已知,如图△ABC中,AM是BC边上的中线,求证:AM<123、如图,在△AB C中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF于点G,若BG=CF,求证:AD为△ABC的角平分线.4、如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F,求证:BE+CF>EF.5、在Rt△ABC中,∠A=90°,点D为BC的中点,点E,F分别为AB,AC上的点,且ED⊥FD,以线段BE,EF,FC 为边能否构成一个三角形?若能,请判断三角形的形状?【基础训练】1、如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AF=EF,求证:AC=BE.2、如图所示,已知△AB C中,AD平分∠BAC,E,F分别在BD,AD上,DE=CD,EF=AC.求证EF∥AB.3、已知△ABC中,AB=AC,CF是AB边上的中线,延长AB到D,使BD=AB,求证:CD=2CE.4、如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?5、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,求证:AB =AC .G FEAD BC CDBA【巩固提升】1、如图,在△ABC中,AD为BC边上的中线.(1)按要求作图:延长AD到点E,使DE=AD;连接BE.(2)求证:△ACD≌△EBD.(3)求证:AB+AC >2AD.(4)若AB=5,AC=3,求AD的取值范围.AD2、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC .DCBA3、如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC . 求证:①CE =2CD ;②CB 平分∠DCE .D CB A3、 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F ,求证:∠AEF =∠EAF .F ED CBA4、 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交AB于点G ,BG =CF ,求证:AD 为△ABC 的角平分线.GFE DCBA5、 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.FEDC BA6、如图,在正方形ABCD中,CD=BC,∠DC B=90°,点E在CB的延长线上,过点E作EF⊥BE,且EF=BE.连接BF,FD,取FD的中点G,连接EG,CG.求证:EG=CG且EG⊥CG.G FE D CB A初中数学经典几何模型专题02 倍长中线模型构造全等三角形 答案【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
倍长中线法构造全等三角形
倍长中线法构造全等三角形
倍长中线法是一种构造全等三角形的方法。
下面通过具体步骤来描述该方法:
1. 给定一个三角形ABC,我们要构造一个与之全等的三角形。
2. 首先,通过点A和BC的中点D,画一条直线DE,使DE的长度等于BC的两倍。
3. 然后,以E为中心,以DE的长度为半径,画一个圆。
将圆与线段AB交于点F和点G。
4. 接着,以点F为中心,以AF的长度为半径,画一个圆。
将圆与线段AB交于点H。
5. 再以点G为中心,以AG的长度为半径,画一个圆。
将圆与线段AB交于点I。
6. 最后,连接点H、A、I,得到一条新的线段HAI。
这条线段就是与原三角形ABC全等的三角形。
通过倍长中线法,我们可以利用已知三角形的中线构造全等的三角形。
这种方法简单易行,可以帮助我们解决一些几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧添辅助线——倍长中线
【夯实基础】
例:ABC ∆中,AD 就是BAC ∠的平分线,且BD=CD,求证AB=AC
方法1:作D E ⊥AB 于E,作D F ⊥AC 于F,证明二次全等
方法2:辅助线同上,利用面积 方法3:倍长中线AD
【方法精讲】常用辅助线添加方法——倍长中线
△ABC 中
方式1: 延长AD 到E,
AD 就是BC 边中线
使DE=AD,
连接BE
方式2:间接倍长
作CF ⊥AD 于延长MD 到N,
作BE ⊥AD 的延长线于使DN=MD, 连接BE 连接CD
【经典例题】
例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围
提示:画出图形,倍长中线AD,利用三角形两边之与大于第三边
例2:已知在△ABC 中,AB=AC,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F,且DF=EF,求证:BD=CE
方法1:过D 作DG ∥AE 交BC 于G,证明ΔDGF ≌ΔCEF
方法2:过E 作EG ∥AB 交BC 的延长线于G,证明ΔEFG ≌ΔDFB 方法3:过D 作DG ⊥BC 于G,过E 作EH ⊥BC 的延长线于H
证明ΔBDG ≌ΔECH
例3:已知在△ABC 中,AD 就是BC 边上的中线,E 就是AD 上一点,且BE=AC,延长BE 交AC 于F,求
证:AF=EF 提示:倍长AD 至G ,连接BG,证明ΔBDG ≌ΔCDA 三角形BEG 就是等腰三角形
例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC,过D 作BA DF //交AE 于点F,DF=AC 、 求证:AE 平分BAC ∠
提示:
方法1:倍长AE 至G,连结DG 方法2:倍长FE 至H,连结CH
例5:已知CD=AB,∠BDA=∠BAD,AE 就是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F,连结DF 证明ΔABE ≌ΔFDE(SAS)
进而证明ΔADF ≌ΔADC(SAS)
【融会贯通】
1、在四边形ABCD 中,AB ∥DC,E 为BC 边的中点,∠BAE=∠EAF,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明您的结论
提示:延长AE 、DF 交于G
证明AB=GC 、AF=GF 所以AB=AF+FC
B 第 1 题图 A B F D E
C
2、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E,DF 平分ADC ∠交AC 于F 、 求证:EF CF BE >+
提示:
方法1:在DA 上截取DG=BD,连结EG 、FG 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG
利用三角形两边之与大于第三边 方法2:倍长ED 至H,连结CH 、FH 证明FH=EF 、CH=BE
利用三角形两边之与大于第三边
3、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M,AT 平分∠BAC 交CM 于D,交BC 于T,过D 作DE//AB 交BC 于E,求证:CT=BE 、
提示:过T 作TN ⊥AB 于N 证明ΔBTN ≌ΔECD
第 14 题图
D
F C
B
E
A
D
A
B
C
M
T
E。