最新初三九年级数学上册上册数学压轴题测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初三九年级数学上册上册数学压轴题测试卷附答案

一、压轴题 1.问题提出

(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.

问题探究

(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且

2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.

问题解决

(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.

2.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作

BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.

(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立

的理由.

(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?

3.已知:在ABC 中,,90AC BC ACB ︒

=∠=,点F 在射线CA 上,延长BC 至点

D ,使CD CF =,点

E 是射线B

F 与射线DA 的交点.

(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;

②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.

4.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()

5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;

()1求点C 的坐标;

()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;

()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一

时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.

5.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;

(2)在整个运动过程中,点O 的运动路径长_____;

(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.

6.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.

(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .

(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若

成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.

(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.

7.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米

2

4.56

5.84

6

5.84

4.56

2

(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()

2

56y a x k =-+

①用含a 的代数式表示k ;

②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.

8.抛物线G :2

y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .

(1)直接写出抛物线G 的解析式: ;

(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;

(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.

9.如图1(注:与图2完全相同)所示,抛物线2

12

y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.

(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)

(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)

10.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.

相关文档
最新文档