中考数学真题解析频率估计概率方法来求概率(含答案)

合集下载

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200;(2)补图见解析;(3).【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.试题解析:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁所有等可能的结果为12种,其中符合要求的只有2种,则P=.【考点】1.条形统计图;2.扇形统计图;3.列表法与树状图法.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)15,将折线统计图补充完整见解析;(2).【解析】(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整.(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种情况,∴所抽取的2家企业恰好都是餐饮企业的概率为:.【考点】1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.列表法或树状图法;5.概率.3.小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图学生及家长对“中学生不穿校服”的态度统计图家长对“中学生不穿校服”的态度统计图(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.【答案】(1)400;(2)252°;(3)75,78;(4).【解析】(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数;(2)根据反对人数和(1)中求出的家长总人数,算出“反对”家长的百分比,即可得到表示家长“反对”的圆心角的度数;(3)先把数据从小到大排列,第五与第六个数的平均数即为这组数据的中位数,众数就是出现次数最多的数;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,画出树状图即可.(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长人数是80÷20%=400人;(2)表示家长“反对”的圆心角的度数为×360=252°;(3)把数据从小到大排列为,57,58,60,65,72,78,78,80,88,91,中位数是,众数是78;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P(小明和小亮同时被选中)=.【考点】1.条形统计图;2.扇形统计图;3.中位数;4.众数;5.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。

如何用频率来估计概率

如何用频率来估计概率

如何用频率来估计概率在苏科版初中数学课本里所学习的概率计算问题有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验。

在八年级的数学学习中概率的计算,主要是第二类题型,我们知道频率是研究概率的基础,所以利用频率估计概率的试题频频出现在各地的中考试卷中,下面以中考题为例,来剖析这一类题型的解法。

一、填空题中的用频率估计概率例1.在课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为(精确到0.01).解:由公式种子的发芽率= 可求出种子的发芽率为0.939,因为精确到0.001故答案为0.94.点评:本题考察了百分率问题(1)种子的发芽率= ;(2)注意括号的中的要求为精确到0.01例2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.解:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.二、选择题中的用频率估计概率例3.“六?一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒解:由表中提供的信息可知,只有“转动转盘10次,一定有3次获得文具盒”的判断不一定正确,故应选D.点评:正确正解频率与概率之间的关系是求解此类问题的关键. 由表中提供的信息,我们可以知道,当n很大时,指针落在“铅笔”区域的频率趋于0.70,由此,由频率与概率之间的关系可知,假如你去转动转盘一次,获得铅笔的概率大约是0.70,如果转动转盘2000次,指针落在“文具盒”区域的次数大约有2000次×(1-0.7)=600次,而将转盘转动转盘10次,却不一定有3次获得文具盒.三、解答题中的用频率估计概率例4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解(1)因为= ,所以参加一次这种游戏活动得到福娃玩具的频率为.(2)因为试验次数很大,大数次试验时,频率接近于理论频率,所以估计从袋中任意摸出一个球,恰好是红球的概率是.设袋中白球有x个,则根据题意,得= ,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.点评:利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.例5.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.点评:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.。

初中数学25.3 利用频率估计概率(含答案)-

初中数学25.3 利用频率估计概率(含答案)-

25.3 利用频率估计概率◆回顾探索1.当试验的结果有很多种,且各种结果发生的可能性相等时,我们可以用P(A)•=_____的方式得到概率;当试验的结果不是有限个,或各种可能的结果发生的可能性不相同时,我们要通过统计_______来估计概率.2.模拟试验有两种形式,一是_______,二是_________.◆课堂测控测试点一用频率估计概率1.(1)在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图所示,这个图形中折线的变化特点是__________.(2)试举一个大致符合这个特点的实物实验的例子_________.(指出关注的结果)2.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是黄色的概率是25,可以怎样放球______(只写一种).3.(教材变式题)某水果公司以1.5元/千克的成本新进了20000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:(1)请你完成上表.(2)如果公司希望这些柑橘能够获得税前利润10000元以上,那么在出售柑橘(已去掉损坏的柑橘)时,大约每千克定价为多少元比较合适?测试点二模拟实验4.投骰子时,用计算器模拟实验.(1)若研究恰好出现6的机会,则要在______到_________范围中产生随机数,•若产生的随机数是_______,则代表“出现6”,否则就不是.(2)若研究出现3的倍数的机会,则要在____到________范围中产生随机数,若产生随机数是_______,则代表“是3的倍数”,否则就不是.5.在“抛一枚均匀硬币”的试验中,如果没有硬币,•下面各试验不能作为替代的是() A.2张扑克,“黑桃”代表“正面”,“红桃”代表“反面”B.掷1枚图钉C.2个形状大小完全相同,但1红1白的两个乒乓球D.人数均等的男生、女生,以抽签的方式随机抽取一人6.(阅读解答题)阅读下面的解题过程:妈妈给小明一串钥匙,共有4把,小明决定先试试哪把是防盗门的钥匙.如果不开门,你能说明他第一次试开就成功的概率有多大吗?写出用计算器或其他替代物模拟试验的方法.解:方法一:可以用一枚正四面体骰子,掷得4点为试开成功;方法二:可以用4张扑克,红桃,黑桃,方块,梅花各一张,摸到红桃为试开成功;方法三:可用计算器模拟,在1~4之间产生一个随机数,若产生的是1,•则表示试开成功.你认为上述解法对吗?为什么?◆课后测控1.某彩票的中奖机会是1%,下列说法正确的是()A.买一张一定不会中奖 B.买10000张一定会中奖C.买1000张一定有10张中奖 D.买1张有可能中奖2.在做“抛掷两枚硬币实验”时,有部分同学没有硬币,因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较合适的是()A.两张扑克牌,一张是红桃,另一张是黑桃;B.两个乒乓球,一个是黄色,另一个是白色;C.两个相同的矿泉水瓶盖;D.四张扑克牌,两张是红桃,另两张是黑桃.3.在一个不透明的口袋里装有若干个只有颜色不同的球,如果口袋里装有5个红球,从中任意摸取一个,且摸出红球的概率是13,那么袋中共有球()A.10个 B.15个 C.20个 D.6个4.(实践应用题)如图所示,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其中部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1m,•那么黑色石子区域的总面积约为多少.(精确到0.01m2)5.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则应设____个白球,_____个红球,_____个黄球.◆拓展创新6.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,•某学习小组做摸球实验,再把它放回袋中,不断重复,•下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近多少?(2)试估算口袋中黑、白两种颜色的球各有多少只?答案: 回顾探索1.mn,频率2.可替代物试验,用计算机产生随机数课堂测控1.(1)实验次数越多,频率就越稳定在50.00%附近(2)举例略2.2个黄球,3个红球(答案不唯一).3.解:(1)0.101,0.097,0.097,0.103,0.101,0.098,0.099,0.103.(2)由表可以看出,损坏的柑橘的频率稳定在0.1•附近,•即可知柑橘的损坏率为10%,则完好率为0.9,则可知20000千克柑橘中完好的质量为20000×0.9=18000千克.完好的柑橘实际成本为1.520000 1.5180000.9⨯==53=元/千克.设每千克柑橘的销价为x元,则应有(x-53)×18000=10000,解得x≈2.3,因此,出售柑橘时每千克大约定价为2.3•元可获税前利润10000元以上.4.(1)1,6,6(2)1,6,3或6 (骰子有6个数,故用计算器模拟试验,随机数范围是1~6,答案不唯一)5.B6.方法都正确.因为模拟实验没有改变实验结果.课后测控1.D 2.D 3.B 4.1.88 5.3,2,16.解:(1)0.6(当n≥500,频率值稳定在0.6左右,由此,当n很大时,摸到白球的频率将会接近0.6)(2)白球个数:20×0.6=12(只),黑球个数:20×0.4=8(只)或20-12=8(只).。

25.3用频率估计概率九年级数学人教版(上册)(解析版)

25.3用频率估计概率九年级数学人教版(上册)(解析版)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二十五章概率25.3用频率估计概率.在综合实践活动中,小明、小亮、小颖、小菁四位同学用投掷一枚图钉的方法估计顶尖朝上的概率,.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试.抛一枚硬币,出现正面朝上.掷一个正六面体的骰子,出现”的频率__________400某位顾客购进这种玉米种子个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:12000)转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动10。

2020年新疆维吾尔自治区中考数学试题及参考答案(word解析版)

2020年新疆维吾尔自治区中考数学试题及参考答案(word解析版)

新疆维吾尔自治区2020年初中学业水平考试数学试题卷(满分150分,考试时间120分)一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如图所示,该几何体的俯视图是()A.B.C.D.3.下列运算正确的是()A.x2•x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x34.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>05.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0 B.x2+2x+4=0 C.x2﹣x+2=0 D.x2﹣2x=06.不等式组的解集是()A.0<x≤2 B.0<x≤6 C.x>0 D.x≤27.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5C.4D.10二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=°.11.分解因式:am2﹣an2=.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200 500 800 2000 12000成活的棵数m 187 446 730 1790 10836成活的频率0.935 0.892 0.913 0.895 0.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.17.(7分)先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.20.(9分)如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)21.(11分)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.23.(13分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.答案与解析一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.【知识考点】正数和负数.【思路分析】利用正数与负数的定义判断即可.【解答过程】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.【总结归纳】此题考查了正数与负数,熟练掌握各自的定义是解本题的关键.2.如图所示,该几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图形是俯视图,可得俯视图.【解答过程】解:从上面看是四个正方形,符合题意的是C,故选:C.【总结归纳】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.下列运算正确的是()A.x2•x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘法、除法和积的乘方以及合并同类项进行判断即可.【解答过程】解:A、x2•x3=x5,选项错误.不符合题意;B、x6÷x3=x3,选项正确,符合题意;C、x3+x3=2x3,选项错误,不符合题意;D、(﹣2x)3=﹣8x3,选项错误,不符合题意;故选:B.【总结归纳】此题考查同底数幂的乘法、除法和积的乘方以及合并同类项,关键是根据法则解答.4.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>0【知识考点】绝对值;有理数的加法;实数与数轴.【思路分析】直接利用数轴上a,b的位置进而比较得出答案.【解答过程】解:如图所示:A、a<b,故此选项错误;B、|a|>|b|,正确;C、﹣a>b,故此选项错误;D、a+b<0,故此选项错误;故选:B.【总结归纳】此题主要考查了实数与数轴,正确数形结合是解题关键.5.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0 B.x2+2x+4=0 C.x2﹣x+2=0 D.x2﹣2x=0【知识考点】根的判别式.【思路分析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答过程】解:A.此方程判别式△=(﹣1)2﹣4×1×=0,方程有两个相等的实数根,不符合题意;B.此方程判别式△=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式△=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判别式△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,符合题意;故选:D.【总结归纳】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.不等式组的解集是()A.0<x≤2 B.0<x≤6 C.x>0 D.x≤2【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:,解不等式①,得:x≤2,解不等式②,得:x>0,则不等式组的解集为0<x≤2,故选:A.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.【知识考点】概率公式;列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是中心对称图形的情况,再利用概率公式求解即可求得答案.【解答过程】解:分别用A、B、C、D表示正方形、正五边形、正六边形和圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到卡片上印有的图案都是中心对称图形的概率为:=.故选:C.【总结归纳】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象;二次函数的图象.【思路分析】根据二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,进而对照四个选项中的图象即可得出结论.【解答过程】解:因为二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,所以一次函数y=ax+b经过一、三、四象限,反比例函数y=经过一、三象限,故选:D.【总结归纳】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据二次函数图象,找出a>0、b<0、c>0是解题的关键.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC 的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5 C.4D.10【知识考点】三角形的面积;三角形中位线定理.【思路分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=BC,求得DF=AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【解答过程】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.【总结归纳】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=°.【知识考点】平行线的性质.【思路分析】由AB∥CD,利用“两直线平行,同位角相等”可得出∠2的度数,再结合∠1,∠2互补,即可求出∠1的度数.【解答过程】解:如图,∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.【总结归纳】本题考查了平行线的性质以及邻补角,牢记“两直线平行,同位角相等”是解题的关键.11.分解因式:am2﹣an2=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解答过程】解:原式=a(m2﹣n2)=a(m+n)(m﹣n),故答案为:a(m+n)(m﹣n)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200 500 800 2000 12000成活的棵数m 187 446 730 1790 10836成活的频率0.935 0.892 0.913 0.895 0.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)【知识考点】利用频率估计概率.【思路分析】用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答过程】解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.【总结归纳】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB 长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【知识考点】坐标与图形性质.【思路分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x 轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.【解答过程】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.【总结归纳】本题考查了角平分线的作法及其性质在坐标与图形性质问题中的应用,明确题中的作图方法及角平分线的性质是解题的关键.、14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.【知识考点】弧长的计算.【思路分析】连接OA,作OD⊥AB于点D,利用三角函数以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.【解答过程】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=2,∠OAD=∠BAC=30°,则AD=OA•cos30°=.则AB=2AD=2,则扇形的弧长是:=π,设底面圆的半径是r,则2π×r=π,解得:r=.故答案为:.【总结归纳】本题考查了弧长的计算,圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC 的最小值为.【知识考点】轴对称﹣最短路线问题.【思路分析】作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,依据A与A'关于BC对称,可得AD=A'D,进而得出AD+DE=A'D+DE,当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,依据AD+DE的最小值为3,即可得到2AD+CD的最小值为6.【解答过程】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=,AA'=2,∠C=30°,∴Rt△CDE中,DE=CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'=×2=3,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.【总结归纳】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.【知识考点】绝对值;实数的运算;零指数幂.【思路分析】原式先计算乘方运算,再算加减运算即可得到结果.【解答过程】解:(﹣1)2+|﹣|+(π﹣3)0﹣=1++1﹣2=.【总结归纳】此题考查了实数的运算,绝对值、零指数幂、熟练掌握运算法则是解本题的关键.17.(7分)先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.【知识考点】整式的混合运算—化简求值.【思路分析】根据完全平方公式、单项式乘多项式和平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答过程】解:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1)=x2﹣4x+4﹣4x2+4x+4x2﹣1=x2+3,当x=﹣时,原式=(﹣)2+3=5.【总结归纳】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【知识考点】平行四边形的性质;菱形的判定与性质.【思路分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE =∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.【总结归纳】本题考查平行四边形的判定和性质、菱形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据百分比的和等于1求解即可.(2)利用加权平均数求解即可.(3)首先确定总人数,根据优秀人数=总人数×优秀率计算即可.【解答过程】解:(1)在抽取的学生中不及格人数所占的百分比=1﹣20%﹣25%﹣50%=5%,故答案为5%.(2)所抽取学生测试成绩的平均分==79.8(分).(3)由题意总人数=2÷5%=40(人),40×50%=20,20÷10%=200(人)答:该校九年级学生中优秀等级的人数约为200人.【总结归纳】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(9分)如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】在Rt△BDC中,根据三角函数的定义得到1.60=,求得BC=,在Rt△ACD中,根据三角函数的定义得到0.40=,求得AC=,列方程即可得到结论.【解答过程】解:在Rt△BDC中,∵tan∠DBC=,∴1.60=,∴BC=,在Rt△ACD中,∵tan∠DAC=,∴0.40=,∴AC=,∴AB=AC﹣BC=﹣=30,解得:CD=16(米),答:建筑物CD的高度为16米.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解,难度一般.21.(11分)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)根据题意可以列出相应的分式方程,从而可以求得A、B两款保温杯的销售单价,注意分式方程要检验;(2)根据题意可以得到利润与购买A款保温杯数量的函数关系,然后根据A款保温杯的数量不少于B款保温杯数量的两倍,可以求得A款保温杯数量的取值范围,再根据一次函数的性质,即可求得应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元.【解答过程】解:(1)设A款保温杯的单价是a元,则B款保温杯的单价是(a+10)元,,解得,a=30,经检验,a=30是原分式方程的解,则a+10=40,答:A、B两款保温杯的销售单价分别是30元、40元;(2)设购买A款保温杯x个,则购买B款保温杯(120﹣x)个,利润为w元,w=(30﹣20)x+[40×(1﹣10%)﹣20](120﹣x)=﹣6x+1920,∵A款保温杯的数量不少于B款保温杯数量的两倍,∴x≥2(120﹣x),解得,x≥80,∴当x=80时,w取得最大值,此时w=1440,120﹣x=40,答:当购买A款保温杯80个,B款保温杯40个时,能使这批保温杯的销售利润最大,最大利润是1440元.【总结归纳】本题考查分式方程的应用、一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答,注意分式方程要检验.22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC 的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.【知识考点】切线的判定;解直角三角形.【思路分析】(1)根据已知条件得到∠PAD=∠PAB,推出AD∥OP,根据平行线的性质得到PD ⊥OP,于是得到DP是⊙O的切线;(2)连接BC交OP于E,根据圆周角定理得到∠ACB=90°,推出四边形CDPE是矩形,得到CD=PE,PD=CE,解直角三角形即可得到结论.【解答过程】(1)证明:∵P是的中点,∴=,∴∠PAD=∠PAB,∵OA=OP,∴∠APO=∠PAO,∴∠DAP=∠APO,∴AD∥OP,∵PD⊥AD,∴PD⊥OP,∴DP是⊙O的切线;(2)解:连接BC交OP于E,∵AB为⊙O的直径,∴∠ACB=90°,∵P是的中点,∴OP⊥BC,CE=BE,∴四边形CDPE是矩形,∴CD=PE,PD=CE,∵∠APC=∠B,∴sin∠APC=sin∠ABC==,∵AC=5,∴AB=13,∴BC=12,∴PD=CE=BE=6,∵OE=AC=,OP=,∴CD=PE=﹣=4,∴AD=9,∴AP===3.【总结归纳】本题考查了切线的判定,垂径定理,解直角三角形,矩形的判定和性质,正确的作出辅助线构造直角三角形是解题的关键.23.(13分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)抛物线y=ax2+bx+c的顶点是A(1,3),可以假设抛物线的解析式为y=a(x ﹣1)2+3,求出点B的坐标,利用待定系数法即可解决问题.(2)①根据△A′MN在△OAB内部,构建不等式即可解决问题.②求出直线OA,AB的解析式,求出MN,利用面积关系构建方程即可解决问题.【解答过程】解:(1)∵抛物线y=ax2+bx+c的顶点是A(1,3),∴抛物线的解析式为y=a(x﹣1)2+3,∴OA绕点O顺时针旋转90°后得到OB,∴B(3,﹣1),把B(3,﹣1)代入y=a(x﹣1)2+3可得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+3,即y=﹣x2+2x+2,(2)①如图1中,∵B(3,﹣1),∴直线OB的解析式为y=﹣x,∵A(1,3),∴C(1,﹣),∵P(1,m),AP=PA′,∴A′(1,2m﹣3),由题意3>2m﹣3>﹣,∴3>m>.②∵直线OA的解析式为y=3x,直线AB的解析式为y=﹣2x+5,∵P(1,m),∴M(,m),N(,m),∴MN=﹣=,∵S△A′MN=S△OA′B,∴•(m﹣2m+3)•=××|2m﹣3+|×3,整理得m2﹣6m+9=|6m﹣8|解得m=6+(舍弃)或6﹣,当点P在x轴下方时,同法可得•(3﹣m)•(+3m)=××[﹣﹣(2m﹣3)]×3,整理得:m2﹣8m+5=0,解得m=4±2(舍弃),不存在满足条件的点P,∴满足条件的m的值为6﹣.【总结归纳】本题属于二次函数综合题,考查了待定系数法,一次函数的性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题,学会构建不等式或方程解决问题,属于中考压轴题.。

北师大版九年级数学3.2用频率估计概率1(含答案)

北师大版九年级数学3.2用频率估计概率1(含答案)

优异当先翱翔梦想3.2用频次预计概率一、填空题1.“抛出的蓝球会着落”,这个事件是事件.(填“确立”或“不确立” )2.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为的概率最大,抽到和大于8 的概率为.3.在体育测试中, 2 分钟跳 160 次为达标,小敏记录了她展望时 2 分钟跳的次数分别为145, 155, 140,162, 1 64,则她在该次展望中达标的概率是.4.两位同学进行投篮,甲同学投20 次,投中 15 次;乙同学投15 次,投中 9 次,命中率高的是,对某次投篮而言,二人同时投中的概率是.5.某口袋中有红色、黄色、蓝色玻璃共72 个,小明经过多次摸球试验后,发现摸到红球、黄球、蓝球的频次为 35%. 25%和 40%,预计口袋中黄色玻璃球有个.6.口袋里有红、绿、黄三种颜色的球,此中红球 4 个,绿球5 个,任意摸出一个绿球的概率是1,则摸3出一个黄球的概率是.7.一只不透明的布袋中有三种小球(除颜色之外没有任何差别),分别是 2 个红球, 3 个白球和 5 个黑球,每次只摸出一只小球,察看后均放回搅匀.在连续9 次摸出的都是黑球的状况下,第10 次摸出红球的概率是.8.甲、乙两同学手中各有分别标明1,2, 3 三个数字的纸牌,甲拟订了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你以为此规则公正吗?并说明原因. _________________________________ .9.一个口袋中有12 个白球和若干个黑球,在不一样意将球倒出来数的前提下,小亮为预计口袋中黑球的个数,采纳了以下的方法:每次先从口袋中摸出10 个球,求出此中白球数与10 的比值,再把球放回口袋中摇匀.不停重复上述过程 5 次,获取的白球数与10 的比值分别为:0.4,0.1,0.2,0.1,0.2.依据上述数据,小亮可预计口袋中大概有个黑球.10.如图,创新广场上铺设了一种新奇的石子图案,它由五个过同一点且半径不一样的圆构成,此中暗影部分铺黑色石子,其他部分铺白色石子.小鹏在规定地址任意愿图案内扔掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环( 暗影 ) 内的概率分别是0.04,0.2,0.36,假如最大圆的半径是 1 米 ,那么黑色石子地区的总面积约为米2(精准到0.01 米2).(第10 题)二、选择题11.以下模拟掷硬币的实验不正确的选项是()A .用计算器随机地取数,取奇数相当于下边向上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上 1 和 2,随机地摸,摸出 1 表示硬币正面向上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面向上D .将 1、 2、 3、 4、 5 分别写在 5 张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面向上12.把一个质地平均的骰子掷两次,起码有一次骰子的点数为 2 的概率是()11111A .B .C.D.253636优异当先翱翔梦想13.有 6 张反面同样的扑克牌,正面上的数字分别是4、 5、6、 7、 8、 9 ,若将这六张牌反面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是 3 的倍数的概率为()2111A .B.C.D.324314.如图,小明周末到公园走到十字路口处,记不清前方哪条路通往公园,那么他能一次选对路的概率是()111D . 0公园A .B.C.234小明家(第 14 题)15.如图,两个用来摇奖的转盘,此中说法正确的选项是()A .转盘( 1)中蓝色地区的面积比转盘(2)中的蓝色地区面积要大,因此摇转盘(1)比摇转盘( 2)时,蓝色地区得奖的可能性大B.两个转盘中指针指向蓝色地区的时机同样大1C.转盘( 1)中,指针指向红色地区的概率是3D .在转盘( 2)中只有红.黄.蓝三种颜色,指针指向每种颜色的概率都是13(第 15 题)16.把一个沙包丢在以下图的某个方格中(每个方格除颜色外完整同样),那么沙包落在黑色格中的概率是()1111A .B .C. D .2345(第 16 题)17.中央电视台“好运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则以下:在20 个商标中,有 5 个商标牌的反面注了然必定的奖金额,其他商标的反面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的时机,某观众前两次翻牌均得若干奖金,已经翻过的牌不可以再翻,那么这位获奖的概率是()1113A .B.C.D.46520优异当先翱翔梦想18.如图,高速公路上有A、 B、C 三个出口, A 、 B 之间行程为定在 A 、 C 之间的任意一处增设一个服务区,则此服务区设在a 千米, B、 C 之间的行程为 b 千米,决A 、 B 之间的概率是()b a a bA.B.C.D.a b a b a bA B C(第 18 题)三、解答题19.小明、小华用四张扑克牌玩游戏(方块2、黑桃 4、红桃 5、梅花 5),他俩将扑克牌洗匀后,反面向上搁置在桌面上,小明先抽,小华后抽,抽出的牌不放回.( 1)若小明恰巧抽到黑桃4.①请绘制这类状况的树状图;②求小华抽的牌的牌面数字比 4 大的概率.(2)小明、小华商定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字同样,则不分输赢,你以为这个游戏能否公正?说明你的原因.20.某商场建立了一个能够自由转动的转盘,并做以下规定:顾客购物80 元以上就获取一次转动转盘的时机,当转盘停止时,指针落在哪一地区就能够获取相应的奖品,下表是活动进行中的一组统计数据.(1)计算并达成表格;(2)请预计,当 n 很大时,频次将会靠近多少?(3)若是你去转动该盘一次,你获取洗衣粉的概率约是多少?(4)在该转盘中,表示“洗衣粉”地区的扇形的圆心角约是多少?(精准到1°)优异当先翱翔梦想21.某篮球队在平常训练中,运动员甲的 3 分球命中率是70%,运动员乙的 3 分球命中率是50%. 在一场竞赛中,甲投 3 分球 4 次,命中一次;乙投 3 分球 4 次,所有命中 . 全场竞赛马上结束,甲、乙两人所在球队还落伍对方球队 2 分,但只有最后一次攻击时机了,若你是这个球队的教练,问:(1)最后一个 3 分球由甲、乙中谁来投,获胜的时机更大?(2)请简要谈谈你的原因.22.王强与李刚两位同学在学习“概率”时.做抛骰子(平均正方体形状)实验,他们共抛了54 次,出现向上点数的次数以下表:向上点数123456出现次数69581610( 1)请计算出现向上点数为 3 的频次及出现向上点数为 5 的频次.( 2)王强说:“依据实验,一次试验中出现向上点数为 5 的概率最大.”李刚说:“假如抛540 次,那么出现向上点数为 6 的次数正好是100 次.”请判断王强和李刚说法的对错.( 3)假如王强与李刚各抛一枚骰子.求出现向上点数之和为 3 的倍数的概率.23.有一个“摆地摊”的赌主,他取出2 个白球和 2 个黑球,放在一个袋子里,让人摸球中奖,只需交1元钱,就能够从袋里摸 2 个球,假如摸到的 2 个球都是白球,能够获取 4 元的回报,请计算一下中奖的时机,假如全校一共2400 人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?优异当先翱翔梦想24.六个面上分别标有1、 1、 2、 3、 3、 5 六个数字的平均立方体的表面睁开图如图 6 所示,掷这个立方体一次,记向上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.依据这样的规定,每掷一次该小立方体,就获取平面内一个点的坐标.(1)掷这样的立方体可能获取的点有哪些?请把这些点在以下给定的平面直角坐标系中表示出来.(2)已知小明前两次掷得的两个点确立一条直线 l ,且这条直线经过点 P(4, 7),那么他第三次掷得的点也在直线 l 上的概率是多少?优异当先 翱翔梦想参照答案一、填空题3 29211.确立2. 6, 25 3. 54.甲, 20 5. 18 6. 57. 58.不公正9. 4810. 1.88二、选择题11.D 12. D 13. D 14. B 15. B 16. B 17. B 18. D三、解答题19.( 1)①图略,②2;( 2)这个游戏公正30.69 0.705 0.701;(2) 0.7;(3) 0.7;(4) 25220.( 1) 0. 68 0.740.6821.都能够.最后一个三分球由甲来投,因甲在平常训练中3 分球的命中率较高;最后一个 3 分球由乙来投,由于在本场竞赛中乙的命中率更高,投入最后一个球的可能性更大 22.( 1)出现向上点数为 3 的频率为 5 ,出现向上点数为 5 的频次为 8;( 2)都错;( 3) 123. 400 元54 27 3 24.( 1)(1, 1)、( 1, 1)、( 2,3)、( 3,2)、( 3,5)、(5, 3);(2)经过描点和计算能够发现,经过( 1,1),( 2, 3),( 3, 5)三点中的任意两点所确立的直线都经过点 P ( 4,7),因此小明第三次掷得的点也在直线 l 上的概率是 4=26 3。

2021年初三中考数学频率与概率(含答案)

2021年初三中考数学频率与概率(含答案)

第二节频率与概率【回顾与思考】【例题经典】能够理解用试验得到的频率当作概率用例1(2006年成都市)含有4种花色的36张扑克牌的牌面都朝下;•每次抽出一张记下花色后再原样放回;洗匀牌后再抽.不断重复上述过程;•记录抽到红心的频率为25%;那么其中扑克牌花色是红心的大约有________张.【点评】频率为25%;就作为概率即36×25%=9(即可)能够根据实际情况制作模拟试验例2你几月份过生日?和同学交流;看看6个同学中是否有2个人同月过生日;开展调查;看看6个月中2个人同月过生日的概率大约是多少?【点评】以12月份为号码编球或用计算器作模拟试验.能借助用频率估计理论概念的方法解决问题例3(2006年临安市)为了估计池塘里有多少条鱼;从池塘里捕捞了1000条鱼做上标记;然后放回池塘里;经过一段时间;等有标记的鱼完全混合鱼群中以后;再捕捞200条;若其中有标记的鱼有10条;则估计池塘里有鱼________条.【点评】这种方法本身就是一种估算;不能说它是一种准确值.【考点精练】一、基础训练A.400人B.150人C.60人D.15人2.(2006年河南省)有一个不透明的布袋中;红色、黑色、白色的玻璃共有40个;除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%;则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.243.(2006年常德市)右图是某中学七年级学生参加课外活动人数的扇形统计图;•若参加舞蹈类的学生有42人;则参加球迷活动的学生人数有()A.145 B.147 C.149 D.1514.甲、乙、丙、丁四名运动员参加4×100米接力赛;•甲必须为第一接力棒或第四接棒的运动员;那么这四名运动员在比赛过程的接棒顺序有()A.3种B.4种C.6种D.12种5.(2006年青岛市)一个口袋中有12个白球和若干个黑球;•在不允许将球倒出来数的前提下;小亮为估计口袋中黑球的个数;采用了如下方法:•每次先从口袋中摸出10个球;求出其中白球数与10的比值;再把球放回口袋中摇匀.不断重复上述过程5次;得到的白球数与10的比值分别为:0.4;0.1;0.2;0.1;0.2;根据上述数据;•小亮可估计口袋中大约有_______个黑球.6.(2006年温州市)右图是由8•块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形示意图;一只蚂蚁在上面自由爬动;并随机停留在某块瓷砖上;•蚂蚁留在黑色瓷砖上的概率是_______.7.在一个有10万人的小镇;随机调查了2000人;其中有250•人看中央电视台的早间新闻;在该镇随便问一个人;他看早间新闻的概率大约是________.8.某口袋中有红色、黄色、蓝色玻璃球共72个.小明通过多次摸球试验后;发现摸到红球、黄球、蓝球的概率依次是35%;25%和40%;•试估计口袋中三种玻璃球的数目依次是______.9.(2006年泉州市)在一个不透明的箱子里放有除颜色外;其余都相同的4个小球;其中红球有3个、白球1个.搅匀后;从中同时摸出2个小球;•请你写出这个实验中的一个可能事件:_________.二、能力提升10.(2006年河南省)一枚均匀的正方体骰子;六个面分别标有数字1;2;3;4;5;6;连续抛掷两次;朝上的数字分别是m;n.若把m;n作为点A的横、纵坐标;那么点A (•m;n)在函数y=2x的图象上的概率是多少?11.(2006年大连市)在围棋盒中有x颗黑色棋子和y颗白色棋子;从盒中随机地取出一个棋子;如果它是黑色棋子的概率是38.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子;则取得黑色棋子的概率变为12;求x和y的值.12.有2个信封;每个信封内各装有四张卡片;其中一个信封内的四张卡片上分别写有1;2;3;4四个数;另一个信封内的四张卡片上分别写出5;6;7;8四个数;甲、乙两人商定了一个游戏;规则是:从这两个信封中各随机抽取一张卡片;•然后把卡片上的两个数相乘;如果得到的积大于20;则甲获胜;否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?13.(2006年泉州市)在两个布袋中分别装有三个小球;这三个小球的颜色分别为红色、白色、绿色;其他没有区别;把两袋小球都搅匀后;再分别从两袋中各取出一个小球;试求取出两个相同颜色小球的频率(要求用树状图或列表方法求解).14.(2006年遂宁市)将分别标有数字2;3;5的三张质地;•大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张;求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回);再抽取一张作为十位上的数字;•能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.三、应用与探究15.(2006年扬州市)在一个不透明的口袋里装有只有颜色不同的黑、•白两种颜色的球共20只;某学习小组做摸球实验;将球搅匀后从中随机摸出一个球记下颜色;•再把它放回袋中;不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时;摸到白球的频率将会接近_______;• (2)假如你去摸一次;•你摸到白球的概率是________;•摸到黑球的概率是_______;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题;小明同学猛然顿悟;过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球;•在不允许将球倒出来数的情况下;如何估计白球的个数(可以借助其他工具及用品)?请你应用统计和概率的思想和方法解决这个问题;写出解决这个问题的主要步骤及估算方法.答案:例题经典例1:9张例2:略例3:20000条考点精练1.A 2.B 3.B 4.D 5.48 6.1 27.12500人8.25个18个•29个9.摸到两个红球10.解:根据题意;以(m;n)为坐标的点A共有36个;而只有(•1;2);(2;4);(3;6)三个点在函数y=2x图象上;所以;所求概率是336=112;即:点A在函数y=2x图象上的概率是11211.(1)y=53x (2)x=15;y=2512.(1)•利用列表法得出所有可能的结果;如右表:由表格可知;该游戏所有可能的结果共16种;其中两张卡片上的数字之积大于20的有5种;所以甲获胜的概率为P甲=5 16(2)这个游戏对双方不公平;因为甲获胜的概率P甲=5 16;乙获胜的概率P乙=1116;1116≠516;所以;游戏对双方是不公平的.13.1 314.(1)23(2)1615.(1)0.6 (2)0.6;0.4(3)黑球有8个;白球12个(4)略。

北师大版九年级数学3.2 用频率估计概率2(含答案)

北师大版九年级数学3.2  用频率估计概率2(含答案)

3.2 用频率估计概率1.下列说法正确的是()A.某事件发生的概率为12,就是说,在两次重复的试验中必有一次发生。

B.一个袋子中装有100个球,小美摸了8次,每次都只摸到黑球,没摸到白球,这说明袋子里面只有黑球C.将两枚一元硬币同时抛下,可能出现的情形有:①两枚为正,②两枚均为反,③一正一反,所以出现一正一反的概率是1 3D.全年级有400名同学,一定会有2人同一天过生日.2.袋子中装有8个白球和若干个黑球,(除颜色外其他都相同),小华从袋中任意摸出一球,记下颜色后又放回袋中,摇均后又摸出一球,再记下颜色,做了100次后,共有25次摸出白球,据此估计袋中黑球有( )A.24个B.20个C.16个D.30个3.估计6个人中有2个人的生肖相同的概率时,可用下列方法模拟试验:①用12个编有号码、大小相同的球代替试验. ②在12张纸条上写上数字1~12,进行抽签试验;③用6个编有号码、大小相同的球代替试验;④用6张写有数字1~6的纸条进行抽签试验.其中正确的是()A. ①②B.②③C. ③④D.①④4.下列模拟掷硬币的试验不正确的是()A.用计算器随机地取数,取奇数相当于正面朝上,去偶数相当于硬币正面朝下.B.在袋中装两个小球,分别标上1和2,随机地摸球,摸出1表示硬币正面朝上.C.早,额偶皮大小王的扑克牌中随机2抽一张,抽到红色牌表示硬币正面朝上.D.将1,2,3,4,5分别写在5张纸上,搓成团,每次随机取一张,取到奇数号表示硬币正面朝.5.在一所有4000名学生的学校随机调查了150人,其中有120人上学之前吃早餐.在这所学校里随便问一个人,上学之前吃过早餐的概率大约是____________.6.为估计一自然保护区梅花鹿的数量,保护区工作者第一次捕获100只,作上标记,放回保护区,第二次捕获80只,带记号的有4只,那么该保护区有梅花鹿大约_________只.7.任意抛掷两枚均匀的骰子,出现“向上的点数之和大于6”的概率为_________.8.(1)联系掷两枚质地均匀的骰子,它们点数相同的概率是()(图P72第二题)(2)转动如图所示转盘(转盘分成面积相等的6个扇形)两次,两次所得的颜色相同的概率是()(3)某口袋装有编号为1-6的6个球(除编号外都相同),从中摸出一个球,将它放回口袋中,再摸一次,两次摸到球相同的概率是()(4)小明认为,以上几个求概率的问题本职上是相同的,你同意他的观点吗。

初三数学上学期同步讲解:用频率估计概率

初三数学上学期同步讲解:用频率估计概率

用频率估计概率一、知识点1. 用频率可以估计概率一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么事件A发生的概率P(A)=p=m n.二、标准例题:例1:做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于12C.概率是随机的D.频率会在某一个常数附近摆动【答案】D【解析】A、概率不等于频率,A选项错误;B、频率等于正面朝上的次数总次数,B选项错误C、概率是稳定值不变,C选项错误D、频率会在某一个常数附近摆动,D选项是正确的。

故答案为:D总结:此题主要考查了概率公式,以及频率和概率的区别。

例2:“五一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落子在”铅笔“区域的概率大约是0.70B.假如你去转动转盘一次,获得“铅笔”概率大约是0.70C.如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次D.转动转盘20次,一定有6次获得“文具盒”【答案】D【解析】A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有3000×0.3=900次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选D.总结:本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.例3:下表记录了一名球员在罚球线上投篮的结果.(1)计算表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?【答案】(1)见解析;(2)0.5.【解析】(1)根据题意得:28÷50=0.56;60÷100=0.60;78÷150=0.52;104÷200=0.52;123÷250≈0.49;152÷300≈0.51;350÷251≈0.50;见下表:(2)由题意得:投篮的总次数是50+100+150+200+250+300+350=1400(次),投中的总次数是28+60+78+104+123+152+251=796(次),则这名球员投篮的次数为1400次,投中的次数为796,故这名球员投篮一次,投中的概率约为:796 1400≈0.5.故答案为:0.5.总结:本题考查利用频率估计概率,解题的关机爱你是掌握利用频率估计概率.例4:为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.【答案】(1)故答案为100,30;(2)见解析;(3)0.45.解:(1)5415100360÷=,所以样本容量为100;B组的人数为100153515530----=,所以3010030100a=⨯=,则30a=;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为153045+=,样本中身高低于160cm的频率为450.45 100=,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.总结:本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.三、练习1.以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是1 2【答案】D解:小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23是错误的,3次试验不能总结出概率,故选项A错误,某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,但不一定有5张中奖,故选项B错误,某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12不正确,中靶与不中靶不是等可能事件,一般情况下,脱靶的概率大于中靶的概率,故选项C错误,小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的可能性是12,故选项D正确,故选:D.2.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:下面有四个推断:①当移植的树数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是()A.①③B.①④C.②③D.②④【答案】C【解析】解:①当移植的树数是1 500时,表格记录成活数是1 335,这种树苗成活的概率不一定是0.890,故错误;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900,故正确;③若小张移植10 000棵这种树苗,则可能成活9 000棵,故正确;④若小张移植20 000棵这种树苗,则不一定成活18 000棵,故错误.故选:C.3.某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A.15B.14C.45D.不能确定【答案】D【解析】因为投中是不确定的事件,所以下次投篮投中的概率不能确定.故选:D4.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色后放回……如此大量摸球试验后,小新发现从布袋中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【答案】B【解析】解:∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1-20%-50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选:B.5.在利用正六面体骰子进行频率估计概率的实验中,小闽同学统计了某一结果朝上的频率,绘出的统计图如图所示,则符合图中情况的可能是()A.朝上的点数是6的概率B.朝上的点数是偶数的概率C.朝上的点数是小于4的概率D.朝上的点数是3的倍数的概率【答案】D【解析】A. 掷一枚正六面体的骰子,出现6点的概率为16,故此选项错误;B. 掷一枚正六面体的骰子,点数为偶数的概率为12,故此选项错误;C.掷一枚正六面体的骰子,点数小于4的概率为12,故此选项错误;D.掷一枚正六面体的骰子,点数为3的倍数的概率为10.333,故此选项正确;6.对某批乒乓球的质量进行随机抽查,结果如下表所示:当n越大时,优等品率趋近于概率______.(精确到0.01)【答案】0.82.【解析】解:由表可知,随着乒乓球数量的增多,其优等品的频率逐渐稳定在0.82附近,在这批乒乓球中任取一个,它为优等品的概率大约是0.82,故答案为:0.82.7.有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.【答案】20【解析】解:石块标记3的面落在地面上的频率是15100=320,于是可以估计石块标记3的面落在地面上的概率是3 20.故答案为:3 20.8.某篮球运动员在同一条件下进行投篮训练,结果如下表:投中的频率根据上表,该运动员投中的概率大约是__________(结果精确到0.01).【答案】0.85【解析】由表格可知,该运动员大量投篮时,投中的频率稳定在0.85附近,所以该运动员投中的概率大约是0.85. 故答案为:0.85.9.某林场要考察一种幼树在一定条件下的移植成活率,在移植过程中的统计结果如下表所示:在此条件下,估计该种幼树移植成活的概率为_________________(精确到0.01);若该林场欲使成活的幼树达到4.3万棵,则估计需要移植该种幼树_________万棵.【答案】0.86 5【解析】(1)概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.86.(2)由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定. 当移植总数为15000时,成活率为0.861,于是可以估计树苗移植成活率为0.86, 则该林业部门需要购买的树苗数量约为4.3÷0.86=5万棵. 10.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. (1)他们在一次实验中共做了60次试验,试验的结果如下:①填空:此次实验中“3点朝上”的频率为________;②小红说:“根据实验,出现3点朝上的概率最小.”她的说法正确吗?为什么?(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.【答案】(1)①110;②小红的说法不正确,理由详见解析;(2)16. 【解析】解:(1)①∵实验中“3点朝上”的次数有6次,总数为60, ∴此次实验中“3点朝上”的频率为6÷60=110; ②小红的说法不正确,∵利用频率估计概率实验次数必须比较多,重复实验,频率才慢慢接近概率,而她的实验次数太少,没有代表性,∴小红的说法不正确;(2)两枚骰子朝上的点数之和可能情况:,,,,, ,∴和为2的有1种, 和为3的有2种, 和为4的有3种, 和为5的有4种, 和为6的有5种, 和为7的有6种, 和为8的有5种, 和为9的有4种, 和为10的有3种, 和为11的有2种, 和为12的有1种,两枚骰子朝上的点数之和为7时的概率最大, 则最大概率为:6÷36=16.11.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3. (1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数. 【答案】(1)50;(2)60 【解析】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.3)=50(个) (2)设小明放入红球x 个.根据题意得:200.5100xx+=+解得:x =60(个).经检验:x =60是所列方程的根. 答:小明放入的红球的个数为60.12.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如摸一次,摸到黑球的概率P=;(3)试估算盒子里黑颜色的球有多少只.【答案】(1)0.6;(2)0.4;(3)20.【解析】(1)当n很大时,摸到白球的频率将会接近0.6(2)摸到黑球的概率P=1-0.6=0.4(3)盒子里黑颜色的球有50×0.4=20.13.“五一”期间,某商场推出“购物满额即可抽奖”活动.商场在抽奖箱中装有1个红球、2个黄球、3个白球、8个黑球,每个球除颜色外都相同,红球、黄球、白球分别代表一、二、三等奖,黑球代表谢谢参与.获得抽奖机会的顾客每次从箱子中摸出一个球,按相应颜色对应等级兑换奖品,每次所摸得球再放回抽奖箱,摇匀后由下一位顾客抽奖.已知小明获得1次抽奖机会.(1)小明是否一定能中奖___________;(填是、否)(2)求出小明抽到一等奖的概率;(3)在这个活动中,中奖和没中奖的机会相等吗?为什么?如果不相等,可以如何改变球的个数,使中奖和没中奖的机会相等?(只写一种即可)【答案】(1)否;(2)小明抽到一等奖的概率是114;(3)见解析.【解析】解:(1)否;(2)球的个数有123814+++=(个),而红球有1个所以小明抽到一等奖的概率是1 14;(3)因为黑球的个数有8个,所以没有中奖的概率是84 147=,则中奖的概率是43177 -=,因为43 77≠,所以中奖和没中奖的机会不相等,可以减少2个黑球使中奖和没中奖的机会相等.(答案不唯一).14.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=;(2)“摸到白球”的概率的估计值是(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?【答案】(1) 0.58;(2) 0.6;(3)白球12(个),黑球8 (个)【解析】(1)a=290500=0.58,故答案为:0.58;(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60;(3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).答:黑球8个,白球12个.15.一个袋中装有7个红球,8个黑球,9个白球,每个球除颜色外都相同.(1)求从袋中随机摸出一个球是红球的概率;(2)若先从袋中拿出7个红球和(5)m m>个黑球,再从剩下的球中摸出一球.①若事件“再摸出的球是白球”为必然事件,求m的值;②若事件“再摸出的球是白球”为随机事件,求m 的值,并求出这个事件概率的最小值. 【答案】(1)724;(2)①8m =;②6m =,911. 【解析】解:(1)从袋中随机摸出一个球是红球的概率7778924==++.(2)①由题意袋中,都是白球,8m =. ②由题意6m =或7或8,当6m =时,这个事件概率的最小,最小值911=. 16.小明在一个不透明的口袋里装若干个白球,要求本学习小组的其他成员在不允许将球倒出来数的情况下,估计白球的个数.小组成员小华应用了统计与概率的思想和方法解决了这个问题.他拿了8个黑球放入口袋里,将球搅匀.然后学习小组进行有放回的摸球实验,下表是活动进行中的一组统计数据.请你根据以上统计数据,帮助小华解答下列问题:(1)补全上表中的有关数据,并估计:当n 很大时,摸到白球的频率将会接近______; (2)估计口袋里白球的个数. 【答案】(1)0.4;(2)12. 【解析】(1)上表中的有关数据是0.399,当n 很大时,摸到黑球的频率将会接近0.4.(2)设白球的个数为x ,则80.48x =+,解得12x =.。

中考数学题型归类与解析29---概率(解析版)

中考数学题型归类与解析29---概率(解析版)

中考数学题型归类与解析专题29 概率一、单选题1.(2021·江苏扬州市·中考真题)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽【答案】D【分析】根据事件发生的可能性大小判断即可.【解析】解:A、3天内将下雨,是随机事件;B、打开电视,正在播新闻,是随机事件;C、买一张电影票,座位号是偶数号,是随机事件;D、没有水分,种子不可能发芽,故是不可能事件;故选D.【小结】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(2021·浙江绍兴市·中考真题)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为()A.16B.13C.12D.23【答案】A【分析】先确定袋中任意摸出一个球,是白球的结果数,再确定总结果数,最后利用概率公式即可求解.【解析】解:从袋中任意摸出一个球,是白球的结果数为1个,总结果数为6个,因此袋中任意摸出一个球,是白球的概率为16;故选A.【小结】本题考查了等可能事件的概率问题,解决本题的关键是牢记概率公式,本题较基础,侧重学生对概率的理解与对概率公式的运用.3.(2021·浙江中考真题)下列事件中,属于不可能事件的是().A.经过红绿灯路口,遇到绿灯B.射击运动员射击一次,命中靶心C.班里的两名同学,他们的生日是同一天D.从一个只装有白球和红球的袋中摸球,摸出黄球【答案】D【分析】结合题意,根据不可能事件的定义分析,即可得到答案.【解析】经过红绿灯路口,遇到绿灯是随机事件∴选项A错误;射击运动员射击一次,命中靶心是随机事件∴选项B错误;班里的两名同学,他们的生日是同一天,是随机事件∴选项C错误;从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件∴选项D正确;故选:D.【小结】本题考查了随机事件的知识;解题的关键是熟练掌握不可能事件的性质,从而完成求解.4.(2021·四川乐山市·中考真题)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是().A.32B.7C.710D.45【答案】D【分析】结合题意,根据频率的定义计算,即可得到答案.【解析】根据题意,得测试结果为“健康”的频率是324 405故选:D.【小结】本题考查了抽样调查的知识;解题的关键是熟练掌握频率的性质,从而完成求解.5.(2021·浙江丽水市·中考真题)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同从中任意摸出一个球是红球的概率是()A.13B.15C.38D.58【答案】C【分析】先求出所有球数的总和,再用红球的数量除以球的总数即为摸到红球的概率.【解析】解:任意摸一个球,共有8种结果,任意摸出一个球是红球的有3种结果,因而从中任意摸出一个球是红球的概率是38.故选:C.【小结】本题考查了等可能事件的概率,关键注意所有可能的结果是可数的,并且每种结果出现的可能性相同.6.(2021·贵州黔东南苗族侗族自治州·中考真题)一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是必然事件的为()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【答案】A【解析】试题分析:至少有1个球是黑球是必然事件,A正确;至少有1个球是白球是随机事件,B不正确;至少有2个球是黑球是随机事件,C不正确;至少有2个球是白球是随机事件,D不正确;故选A.考点:随机事件.7.(2021·新疆中考真题)不透明的袋子中有3个白球和2个紅球,这些球除颜色外无其他差別,从袋子中随机摸出1个球,恰好是白球的概率()A.15B.25C.35D.45【答案】C【分析】根据概率公式计算求解即可【解析】∵有5种可能性,白球有3种可能性,∴摸出1个球,恰好是白球的概率3 5 ,故选C.【小结】本题考查了概率公式的应用,熟练掌握概率公式是解题的关键.8.(2021·湖南长沙市·中考真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是()A.19B.16C.14D.13【答案】A【分析】先画出树状图,从而可得投掷两次的所有可能的结果,再找出两次掷得骰子朝上一面的点数之和为5的结果,然后利用概率公式即可得.【解析】解:由题意,画树状图如下:由此可知,投掷两次的所有可能的结果共有36种,它们每一种出现的可能性都相等;其中,两次掷得骰子朝上一面的点数之和为5的结果有4种,则所求的概率为41369P==,故选:A.【小结】本题考查了利用列举法求概率,正确画出树状图是解题关键.9.(2021·湖北武汉市·中考真题)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A.13B.12C.23D.34【答案】C【分析】先画出树状图,然后运用概率公式求解即可.【解析】解:画树状图如图:共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,俗好选出是一男一女两位选手的概率为82 123=.故选C.【小结】本题考查的是用列表法或树状图法求概率,根据题意正确画出树状图成为解答本题的关键.10.(2021·湖南长沙市·中考真题)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4D.甲同学手里拿的两张卡片上的数字是2和9.【答案】A【分析】先根据判断出乙同学手里拿的两张卡片上的数字是1和3,从而可得判断出丁同学手里拿的两张卡片上的数字是2和5,再判断出甲同学手里拿的两张卡片上的数字是4和7,然后判断出丙同学手里拿的两张卡片上的数字是6和10,由此即可得出答案.【解析】解:由题意得:11,4,16,7,17是由110中的两个不相同的数字相加所得的数,4∴只能是1与3的和,即乙同学手里拿的两张卡片上的数字是1和3,=+=+=+,7162534∴丁同学手里拿的两张卡片上的数字是2和5,=+=+=+=+=+,1111029384756∴甲同学手里拿的两张卡片上的数字是4和7,=+=+,1661079∴丙同学手里拿的两张卡片上的数字是6和10,∴戊同学手里拿的两张卡片上的数字是8和9,故选:A.【小结】本题考查了随机事件、等可能事件,正确列出每位同学的所有可能结果,进行逐一判断是解题关键.11.(2021·湖北武汉市·中考真题)下列事件中是必然事件的是()A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级【答案】D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解析】解:A、掷一枚质地均匀的硬币,正面向上是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C 、打开电视机,正在播放广告,是随机事件;D 、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件.故选:D .【小结】本题主要考查的是必然事件、不可能事件、随机事件的概念,掌握三种事件的区别与联系成为解答本题的关键.12.(2021·四川广安市·中考真题)下列说法正确的是( )A .为了了解全国中学生的心理健康情况,选择全面调查B .在一组数据7,6,5,6,6,4,8中,众数和中位数都是6C .“若a 是实数,则0a >”是必然事件D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定【答案】B【分析】根据抽样调查及普查,众数和中位数,随机事件,方差的意义分别判断即可.【解析】解:A 、为了了解全国中学生的心理健康情况,人数较多,应采用抽样调查的方式,故错误; B 、在一组数据7,6,5,6,6,4,8中,众数和中位数都是6,故正确;C 、0a ≥,则“若a 是实数,则0a >”是随机事件,故错误;D 、若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则甲组数据比乙组数据稳定,故错误;故选B .【小结】此题主要考查了抽样调查及普查,众数和中位数,随机事件,方差的意义,解答本题的关键是熟练掌握各个知识点.13.(2021·湖南衡阳市·中考真题)下列说法正确的是()A.为了解我国中学生课外阅读情况,应采取全面调查方式B.某彩票的中奖机会是1%,买100张一定会中奖C.从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是3 4D.某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人【答案】D【分析】根据普查的特点,得出了解我国中学生课外阅读情况应采取抽样调查;由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖;共有7个小球,其中3个红球,抽到红球的概率为37;根据计算公式列出算式853200200×,即可求出答案.【解析】解:A、根据普查的特点,普查适合人数较少,调查范围较小的情况,而了解我国中学生课外阅读情况,人数较多,范围较广,应采取抽样调查,选项说法错误,不符合题意;B、由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖,选项说法错误,不符合题意;C、共有7个小球,其中3个红球,抽到红球的概率为37,选项说法错误,不符合题意;D、根据计算公式该项人数等于该项所占百分比乘以总人数,列出算式853200200×,求出结果为1360人,选项说法正确,符合题意.故选:D.【小结】本题主要考查了普查与抽样调查的区别、概率发生的可能性、求随机事件的概率与求某项的人数,关键在于熟悉普查的适用范围是调查对象的个体数很少,没有破坏性,要求结果准确,同时会根据等可能事件的概率公式求解,进行判断.14.(2021·浙江杭州市·中考真题)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()A.15B.14C.13D.12【答案】C【分析】用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率.【解析】解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是31 93 ,故选:C.【小结】本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键.15.(2021·山东临沂市·中考真题)现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()A.12B.23C.34D.56【答案】D【分析】列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可.【解析】解:∵有4盒同一品牌的牛奶,其中2盒已过期,设未过期的两盒为A,B,过期的两盒为C,D,随机抽取2盒,则结果可能为(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种情况,其中至少有一盒过期的有5种,∴至少有一盒过期的概率是56,故选D.【小结】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.(2021·安徽中考真题)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.49【答案】D【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可.【解析】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,∴所选矩形含点A的概率是4 9故选:D【小结】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.二、填空题17.(2021·湖北荆州市·中考真题)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是________.【答案】1 4 .【分析】根据题意画树状图,由树状图求得所有等可能的结果和一次就能打开锁的情况,再利用概率公式求解即可.【解析】解:锁用A,B表示,钥匙用A,B,C,D表示,根据题意画树状图得:∵共有8种等可能的结果,有2中情况符合条件,∴一次就能打开锁的概率是21 84 .故答案为1 4 .【小结】本题考点:画树状图求概率.18.(2021·湖南邵阳市·中考真题)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是___.【答案】13.【解析】解:根据树状图,蚂蚁获取食物的概率是26=13.故答案为13.考点:列表法与树状图法.19.(2021·湖南株洲市·中考真题)抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.【答案】1 4【解析】试题分析:列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为1 4 .故答案为1 4 .考点:概率公式.20.(2021·浙江金华市·中考真题)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是____________.【答案】1 30【分析】直接利用概率公式求解.【解析】解:根据随机事件概率公式得;1张奖券中一等奖的概率为51 15030,故答案是:1 30.【小结】本题考查了概率公式,解题的关键是:理解随机事件的概率等于事件可能出现的结果数除以所有的可能出现的结果数.21.(2021·浙江温州市·中考真题)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为______.【答案】5 21【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解析】解:∵袋子中共有21个小球,其中红球有5个,∴摸出一个球是红球的概率是521, 故答案为:521. 【小结】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=. 22.(2021·四川南充市·中考真题)在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是________. 【答案】12 【分析】先得出倒数等于本身的个数,再根据概率公式即可得出结论.【解析】解:∵在2-,1-,1,2这四个数中,倒数等于本身的数有1-,1,∴随机取出一个数,其倒数等于本身的概率是21=42; 故答案为:12【小结】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.23.(2021·四川资阳市·中考真题)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为__________.【答案】1 3【分析】结合题意,根据列举法求概率,即可得到答案.【解析】根据题意,将2本艺术类、4本文学类、6本科技类的书籍混在一起,随机抽取一本,共12种情况,其中抽中文学类共4种情况;∴抽中文学类的概率为:41= 123故答案为:13.【小结】本题考查了概率的知识;结果的关键是熟练掌握列举法求概率的性质,从而完成求解.24.(2021·重庆中考真题)在桌面上放有四张背面完全一样的卡片.卡片的正面分别标有数字﹣1,0,1,3.把四张卡片背面朝上,随机抽取一张,记下数字且放回洗匀,再从中随机抽取一张.则两次抽取卡片上的数字之积为负数的概率是_______.【答案】1 4【分析】画出树状图,由树状图求得所有等可能的结果与抽到的两张卡片上标有的数字之积为负数的结果,再由概率公式即可求得答案.【解析】画树状图如图:共有16个等可能的结果,两次抽取的卡片上的数字之积为负数的结果有4个,∴两次抽取的卡片上的数字之积为负数的概率=41 164.故答案为:14.【小结】本题考查了列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.25.(2021·浙江嘉兴市·中考真题)看了《田忌赛马》故事后,小杨用数学模型来分析齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6则田忌能赢得比赛的概率为__________________.【答案】1 6【分析】利用列举法求概率,列举出所有情况,看所求的情况占总情况的多少即可.【解析】解:齐王的三匹马出场顺序为10,8,6;而田忌的三匹马出场顺序为5,7,9;5,9,7;7,5,9;7,9,5;9,5,7;9,7,5;共6种,田忌能赢得比赛的有5,9,7;一种∴田忌能赢得比赛的概率为1 6故答案为:1 6【小结】本题考查概率的求法,解题的关键是要注意列举法需要做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.26.(2021·四川泸州市·中考真题)不透明袋子重病装有3个红球,5个黑球,4个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是_________.【答案】1 4【分析】用红球的数量除以球的总数量即可解题.【解析】解:根据题意,从袋子中随机摸出一个球,则摸出红球的概率是331==3+5+4124,故答案为:14.【小结】本题考查简单概率公式,是基础考点,掌握相关知识是解题关键.27.(2021·重庆中考真题)不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________.【答案】4 9【分析】根据题意,通过列表法或画树状图的方法进行求解即可.【解析】列表如图所示:由上表可知,所有等可能的情况共有9种,其中两次摸出的球都是白球的情况共有4种,∴两次摸出的球都是白球的概率49P ,故答案为:49.【小结】本题考查列表法或画树状图的方法求概率,熟练掌握这两种基本方法是解题关键.28.(2021·浙江中考真题)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.【答案】1 50【分析】用一等奖、二等奖的数量除以奖券的总个数即可.【解析】解:∵有1000张奖券,设一等奖5个,二等奖15个,∴一张奖券中奖概率为5151 100050 +=,故只抽1张奖券恰好中奖的概率是1 50,故答案为:1 50.【小结】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.29.(2021·天津中考真题)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.【答案】3 7【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解析】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37,故答案为37.【小结】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.30.(2021·浙江宁波市·中考真题)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为________.【答案】3 8【分析】用红球的个数除以球的总个数即可.【解析】解:从袋中任意摸出一个球有8种等可能结果,其中摸出的小球是红球的有3种结果,所以从袋中任意摸出一个球是红球的概率为38,故答案为:38.【小结】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.三、解答题31.(2021·山东枣庄市·中考真题)“大千故里,文化内江”,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了,,,A B C D4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品件,并补全条形统计图;(2)在扇形统计图中,表示C班的扇形周心角的度数为;(3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)【答案】(1)抽样调查;6;条形统计图见解析;(2)150°;(3)恰好抽中一男一女的概率为12.【分析】(1)根据只抽取了4个班可知是抽样调查,根据A在扇形图中的角度求出所占的份数,再根据A的人数是4,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数,即可补全统计图(2)利用C得数量除以总数再乘以360度,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解析】(1)王老师采取的调查方式是抽样调查,60424360÷=,所以王老师所调查的4个班共征集到作品24件,B班的作品数为2441046---=(件),条形统计图为:(2)在扇形统计图中,表示C班的扇形周心角10 36015024︒︒=⨯=;故答案为抽样调查;6;150°;(3)画树状图为:共有12种等可能的结果数,其中恰好抽中一男一女的结果数为6,所以恰好抽中一男一女的概率61 122 ==.【小结】此题考查扇形统计图,列表法与树状图法,条形统计图,解题关键在于看懂图中数据32.(2021·四川凉山彝族自治州·中考真题)随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)。

2023年辽宁省锦州市中考数学真题(解析版)

2023年辽宁省锦州市中考数学真题(解析版)

2023年锦州市初中学业水平考试数学试卷考试时间120分钟试卷满分120分※考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效.一、选择题(本大题共8道小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 2023的相反数是()A.12023B. 2023- C. 2023 D.12023-【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2. 如图所示的几何体是由5个完全相同的小正方体搭成的,它的俯视图是()A. B. C. D.【答案】B【解析】【分析】从上面看:共有3列,从左往右分别有1,2,1个小正方形,据此可画出图形.【详解】解:如图所示的几何体的俯视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3. 下列运算正确的是()A. 235a a a += B. 235a a a ×= C. ()325a a = D. ()32626a a -=【答案】B【解析】【分析】根据幂的运算法则判断选项的正确性即可.【详解】对于A ,235a a a +¹,故A 选项错误,对于B ,235a a a ×=,故B 选项正确,对于C ,()3265a a a =¹,故C 选项错误,对于D ,()3266286a a a -=-¹,故D 选项错误,故选:B .【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,掌握相关运算法则是解答本题的关键.4. 如图,将一个含45°角的直角三角板按如图所示的位置摆放在直尺上.若128∠=°,则2∠的度数为( )A. 152°B. 135°C. 107°D. 73°【答案】C【解析】【分析】由平角的定义可得3107∠=°,由平行线的性质可得23107∠=∠=°.【详解】如图,∵128∠=°,∴31802845107∠=°-°-°=°.∵直尺的对边平行,∴23107∠=∠=°,故选:C .【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.5. 在一次跳绳测试中,参与测试的10名学生一分钟跳绳成绩如下表所示:成绩/次129130132135137人数/人13222这10名学生跳绳成绩的中位数和众数分别为( )A. 132,130B. 132,132C. 130,130D. 130,132【答案】A【解析】【分析】中位数:是指将所有数从小到大或从大到小排列后,如果总数为奇数个,中位数就是排在最中间的那个数;如果总数为偶数个,中位数就是排在最中间的两个数的平均数;众数∶一组数据中,出现次数最多的数据.根据定义即可求解.【详解】解:这组数据的中位数为1321321322+=,这组数据中130出现次数最多,则众数为130,故选:A .【点睛】本题考查中位数、众数,熟知中位数、众数的计算方法,数据较大,正确计算是解答的关键.6. 若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是()A. 13k < B. 13k £ C. 13k <且0k ¹ D. 13k £且0k ¹【答案】D【解析】【分析】根据一元二次方程的定义及根的判别式即可解答.【详解】解:∵2230kx x -+=为一元二次方程,∴0k ¹,∵该一元二次方程有两个实数根,∴()22430k D =--´³,解得13k £,∴13k £且0k ¹,故选:D .【点睛】本题考查了一元二次方程的定义及根的判别式,解题的关键是熟知当判别式的值大于0时,方程有两个不相等的实数根,同时要满足二次项的系数不能是0.7. 如图,点A ,B ,C 在O e 上,40ABC ∠=°,连接OA ,OC .若O e 的半径为3,则扇形AOC (阴影部分)的面积为( )A. 23pB. pC. 43pD. 2p【答案】D【解析】【分析】先利用圆周角定理求出AOC ∠的度数,然后利用扇形面积公式求解即可.【详解】解:∵40ABC ∠=°,∴280AOC ABC ∠=∠=°,又O e 的半径为3,∴扇形AOC (阴影部分)的面积为28032360p p ´=.故选:D .【点睛】本题考查的是圆周角定理,扇形面积公式等,掌握“同弧所对的圆周角是它所对的圆心角的一半”是解题的关键.8. 如图,在Rt ABC △中,90ACB ∠=°,3AC =,4BC =,在DEF V 中,5DE DF ==,8EF =,BC 与EF 在同一条直线上,点C 与点E 重合.ABC V 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动,当点B 运动到点F 时,ABC V 停止运动.设运动时间为t 秒,ABC V 与DEF V 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A. B.C. D.【答案】A【解析】【分析】分04t £<,48t £<, 812t £<三种情况,分别求出函数解析即可判断.【详解】解:过点D 作DH CB ^于H ,,∵5DE DF ==,8EF =,∴142EH FH EF ===,∴3DH ==当04t £<时,如图,重叠部分为EPQ △,此时EQ t =,PQ DH ∥,,∴EPQ EDH ∽V V ,∴PQ EQ DH EH=,即34PQ t =,∴34PQ t =∴2133248S t t t =´=;当48t £<时,如图,重叠部分为四边形PQC B ¢¢,此时BB CC t ¢¢==,PB DE ¢∥,∴12B F BC CF BB t ¢¢=+-=-,8FC t ¢=-,∵PB DE ¢∥,∴PB F DCF ¢∽V V ,∴2PB F DCF S B F S CF ¢¢æö=ç÷èøV V ,又183122DCF S =´´=V ,∴212128PB F S t ¢-æö=ç÷èøV ,∴()231216PB F S t ¢=-V ,∵DH BC ^,90A B C ¢¢¢∠=°,∴A C DH ¢¢∥,∴C QF HFD ¢∽V V ,∴2C QFHFD S C F S HF ¢¢æö=ç÷èøV V ,即2814432C QF S t ¢-æö=ç÷èø´´V ,∴()2388C QF S t ¢=-V ,∴()()22233331283168162PB F C QF S S S t t t t ¢¢=-=---=-++V V ;当 812t £<时如图,重叠部分为四边形PFB ¢V ,此时BB CC t ¢¢==,PB DE ¢∥,∴12B F BC CF BB t ¢¢=+-=-,∵PB DE ¢∥,∴PB F DCF ¢∽V V ,∴2PB F DCF S B F S CF ¢¢æö=ç÷èøV V ,即212128PB F S t ¢-æö=ç÷èøV ∴()231216PB F S S t ¢==-V ,综上,()()()()22230483334816231281216t t S t t t t t ì£<ïïï=-++£<íïï-£<ïî,∴符合题意的函数图象是选项A .故选:A .【点睛】此题结合图像平移时面积的变化规律,考查二次函数相关知识,根据平移点的特点列出函数表达式是关键,有一定难度.二、填空题(本大题共8道小题,每小题3分,共24分)9. 近年来,跑步成为越来越多人的一种生活方式.据官方数据显示,2023年上海半程马拉松报名人数达到78922人.将数据78922用科学记数法表示为______________.【答案】47.892210´【解析】【分析】科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10³时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解: 4789227.892210=´;故答案为47.892210´.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.10. 因式分解:224x x -=_________.【答案】2(2)x x -【解析】分析】直接提取公因式即可.【详解】2242(2)x x x x -=-.故答案为:2(2)x x -.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.11. 甲、乙、丙三名运动员在5次射击训练中,平均成绩都是8.5环,方差分别是20.78s =甲,20.20s =乙,2 1.28s =丙,则三名运动员中这5次训练成绩最稳定的是______________.(填“甲”或“乙”或“丙”)【答案】乙【解析】【分析】根据方差越小,波动性越小,越稳定即可判断.【详解】∵20.78s =甲,20.20s =乙,2 1.28s =丙,平均成绩都是8.5环,,∴222s s s <<乙甲丙∴三名运动员中这5次训练成绩最稳定的是乙.故答案为乙.【点睛】本题考查方差.根据方差是反应一组数据的波动大小,方差越大,波动性越大,越不稳定.反之方差越小,波动性越小,越稳定是解答本题关键.12. 一个不透明的盒子中装有若干个红球和5个黑球,这些球除颜色外均相同.经多次摸球试验后发现,摸到黑球的频率稳定在0.25左右,则盒子中红球的个数约为______________.【答案】15【解析】【分析】设袋子中红球有x 个,根据摸到黑球的频率稳定在0.25左右,可列出关于x 的方程,求出x 的值,从而得出结果.【详解】解:设袋子中红球有x 个,根据题意,得50.255x =+,15,x \=【∴盒子中红球的个数约为15,故答案为:15.【点睛】本题主要考查了利用频率估计概率,熟练掌握求概率公式是解此题的关键.13. 如图,在ABC V 中,BC 的垂直平分线交BC 于点D .交AB 于点E .连接CE .若CE CA =,40ACE ∠=°,则B ∠的度数为______________.【答案】35°##35度【解析】【分析】先在ACE △中利用等边对等角求出AEC ∠的度数,然后根据垂直平分线的性质可得BE CE =,再利用等边对等角得出B BCE ∠=∠,最后结合三角形外角的性质即可求解.【详解】解:∵CE CA =,40ACE ∠=°,∴180702ACE A AEC °-∠∠=∠==°,∵DE 是BC 的垂直平分线,∴BE CE =,∴B BCE ∠=∠,又AEC B BCE ∠=∠+∠,∴35B ∠=°.故答案为: 35°.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质等知识,掌握等腰三角形的等边对等角是解题的关键.14. 如图,在Rt ABC △中,90ACB ∠=°,30ABC ∠=°,4AC =,按下列步骤作图:①在AC 和AB 上分别截取AD 、AE ,使AD AE =.②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点M .③作射线AM 交BC 于点F .若点P 是线段AF 上的一个动点,连接CP ,则12CP AP +的最小值是______________.【答案】【解析】【分析】过点P 作PQ AB ^于点Q ,过点C 作CH AB ^于点H ,先利用角平分线和三角形的内角和定理求出30BAF ∠=°,然后利用含30°的直角三角的性质得出12PQ AP =,则12CP AP CP PQ CH +=+³,当C 、P 、Q 三点共线,且与AB 垂直时,12CP AP +最小,12CP AP +最小值为CH ,利用含30°的直角三角的性质和勾股定理求出AB ,BC ,最后利用等面积法求解即可.详解】解:过点P 作PQ AB ^于点Q ,过点C 作CH AB ^于点H ,由题意知:AF 平分BAC ∠,∵90ACB ∠=°,30ABC ∠=°,∴60BAC ∠=°,∴1302BAF BAC ∠=∠=°,∴12PQ AP =,∴12CP AP CP PQ CH +=+³,∴当C 、P 、Q 三点共线,且与AB 垂直时,12CP AP +最小,12CP AP +最小值为CH ,∵90ACB ∠=°,30ABC ∠=°,4AC =,∴28AB AC ==,∴BC =【∵2211ABC S AC B BC A CH =××=V ,∴AC BC CH AB ×===即12CP AP +最小值为.故答案为:【点睛】本题考查了尺规作图-作角平分线,含30°的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.15. 如图,在平面直角坐标系中,AOC V 的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0ky x x=>的图象经过B ,C 两点.若AOC V 的面积是6,则k 的值为______________.【答案】4【解析】【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m æöç÷èø,,则BD m =,由点B为AC 的中点,推出C 点坐标为22k m m æöç÷èø,,求得直线BC 的解析式,得到A 点坐标,根据AOC V 的面积是6,列式计算即可求解.【详解】解:过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,∴BD CE ∥,∴ABD ACE V V ∽,∴BD ABCE AC=,设B 点坐标为k m m æöç÷èø,,则BD m =,∵点B 为AC 的中点,∴12BD AB CE AC ==,∴22CE BD m ==,∴C 点坐标为22k m m æöç÷èø,,设直线BC 的解析式为y ax b =+,∴22k ma b m k ma b m ì+=ïïíï+=ïî,解得2232k a m k b m ì=-ïïíï=ïî,∴直线BC 的解析式为2322k ky x m m=-+,当0x =时,32k y m=,∴A 点坐标为302k m æöç÷èø,,根据题意得132622k m m××=,解得4k =,故答案为:4.【点睛】本题考查了反比例函数的性质、相似三角形的判定及性质、求一次函数解析式、坐标与图形,解题关键是熟练掌握反比例函数的性质及相似三角形的性质.16. 如图,在平面直角坐标系中,四边形1121A B B C ,2232A B B C ,3343A B B C ,4454A B B C ,…都是平行四边形,顶点1B ,2B ,3B ,4B ,5B ,…都在x 轴上,顶点1C ,2C ,3C ,4C ,…都在正比例函数14y x =(0x ³)的图象上,且21212B C A C =,32322B C A C =,43432B C A C =,…,连接12A B ,23A B ,34A B ,45A B ,…,分别交射线1OC 于点1O ,2O ,3O ,4O ,…,连接12O A ,23O A ,34O A ,…,得到122O A B D ,233O A B D ,344O A B D ,….若()12,0B ,()23,0B ,()13,1A ,则202320242024O A B D 的面积为______________.【答案】2023202494【解析】【分析】根据题意和图形可先求得12312290A B B B B A ∠∠=°=,34323290A B B B B A ∠∠=°=,45434390A B B B B A ∠∠=°=,LL ,11190n n n n n n B A B B A B +--∠∠=°=,333,02B æö´ç÷èø2433,02B æöæö´ç÷ç÷ç÷èøèø,3533,02B æöæö´ç÷ç÷ç÷èøèø,LL ,233,02n n B -æöæö´ç÷ç÷ç÷èøèø,从而得2022202433,02B æöæö´ç÷ç÷ç÷èøèø,2023202533,02B æöæö´ç÷ç÷ç÷èøèø,2023202220232024202533333222B B æöæöæö=´-´=ç÷ç÷ç÷èøèøèø,2022202220232024143332342O n B æöæö===ç÷ç÷´èø´´øè,利用三角形的面积公式即可得解.【详解】解:∵()12,0B ,()23,0B ,()13,1A ,∴点()13,1A 与点()23,0B 的横坐标相同,12OB =,12321B B =-=,121A B =,23OB =,∴12A B x ^轴,∴1290A B O ∠=°,∵21212B C A C =,∴21212B C A C =,∵四边形1121A B B C ,2232A B B C ,3343A B B C ,4454A B B C ,…都是平行四边形,∴1122A B A B ∥,222A C OB ∥,233A B OB ∥,2223A B C B =,1121A B B C =∴112223A B B A B B ∠=∠,12212C A C C B O ∠=∠,12212C C A C OB ∠=∠,2222111232B A B A B A BC ==,∴12212C C A C OB ∠V ∽,∴21222212232OB C B OB C A C A B B ===,∴23211322B B OB ==´,∴1222123232B B B B B A B C ==,3233322OB OB ==´,∴212312A A B B B B ∽V ,∴12312290A B B B B A ∠∠=°=,∴333,02B æö´ç÷èø,同理可得34323290A B B B B A ∠∠=°=,45434390A B B B B A ∠∠=°=,LL11190n n n n n n B A B B A B +--∠∠=°=,2433,02B æöæö´ç÷ç÷ç÷èøèø,3533,02B æöæö´ç÷ç÷ç÷èøèø,LL ,233,02n n B -æöæö´ç÷ç÷ç÷èøèø,∴2022202433,02B æöæö´ç÷ç÷ç÷èøèø,2023202533,02B æöæö´ç÷ç÷ç÷èøèø,∴2023202220232024202533333222B B æöæöæö=´-´=ç÷ç÷ç÷èøèøèø,∵2022202333,2O n æöæö´ç÷ç÷ç÷èøèø在14y x =上,∴2022202220232024143332342O n B æöæö===ç÷ç÷´èø´´øè,∴202320242024202320232202302240464220242025404820240211333222223944OA B S B O A B æöæö=×=´´==ç÷ç÷è´øèøV ,故答案为:2023202494.【点睛】本题考查相似三角形的判定及性质,平行四边形的性质,坐标与图形,坐标规律,熟练掌握相似三角形的判定及性质以及平行四边形的性质是解题关键.三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)17. 化简,再求值:2141122a a a -æö+¸ç÷++èø,其中3a =.【答案】22a -,2【解析】【分析】先把括号里的式子通分相减,然后把除数的分子、分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约成最简分式或整式;求值时把a 值代入化简的式子算出结果.【详解】解:原式()()()21111122a a a a a a ++æö=+×ç÷+++-èø()()()212122a a a a a ++=×++-22a =-.当3a =时,原式2232==-.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算的顺序和运算法则,是解题的关键.18. 2023年,教育部等八部门联合印发了《全国青少年学生读书先去实施方案》,某校为落实该方案,成立了四个主题阅读社团:A .民俗文化,B .节日文化,C .古曲诗词,D .红色经典.学校规定:每名学生必须参加且只能一个社团.学校随机对部分学生选择社团的情况进了调查.下面是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次随机调查的学生有 名,在扇形统计图中“A ”部分圆心角的度数为;(2)通过计算补全条形统计图;(3)若该校共有1800名学生,请根据以上调查结果,估计全校参加“D ”社团的人数.【答案】(1)60,36°; (2)见解析 (3)540名【解析】【分析】(1)由C组的人数及其所占百分比可得总人数,用360°乘以A人数所占比例即可得其对应圆心角度数;(2)根据各类型人数之和等于总人数求得B组的人数,补全图形即可得;(3)总人数乘以D组人数和所占比例即可.【小问1详解】本次调查的总人数2440%60¸=(名),扇形统计图中,C所对应的扇形的圆心角度数是63603660´=°°,故答案为:60,36°;【小问2详解】606241812---=(人);补全条形统计图如答案图所示.【小问3详解】18180054060´=(名).答:全校1800名学生中,参加“D”活动小组的学生约有540名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.四、解答题(本大题共2道题,每题8分,共16分)19. 垃圾分类工作是今年全国住房和城乡建设工作会议部署的重点工作之一.为营造人人参与垃圾分类的良好氛围,某市环保部门开展了“让垃圾分类成为低碳生活新时尚”宣传活动,决定从A,B,C三名志愿者中通过抽签的方式确定两名志愿者到社区进行垃圾分类知识宣讲,抽签规则:将三名志愿者的名字分别写在三张完全相同且不透明卡片的正面,把三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的两张卡片中随机抽取第二张卡片,记下名字.(1)从三张卡片中随机抽取一张,恰好是“B志愿者”的概率是;(2)按照抽签规则,请你用列表法或画树状图法表示出两次抽签所有可能的结果,并求出A,B两名志愿者同时被抽中的概率.【答案】(1)13(2)13【解析】【分析】(1)从三张卡片中随机抽取一张,恰好是“B 志愿者”的概率是13;(2)利用画树状图或列表法求概率即可.【小问1详解】解:从三张卡片中随机抽取一张,恰好是“B 志愿者”的概率是13,故答案为:13;【小问2详解】解:方法一:根据题意可画树状图如下:由树状图可知共有6种结果,每种结果出现的可能性相同,其中A ,B 两名志愿者同时被选中的有2种,∴P (A ,B 两名志愿者同时被选中)2163==.方法二:根据题意可列表如下:ABCA(),A B (),A C B(),B A (),B C C(),C A (),C B 由表格可知共有6种结果,每种结果出现的可能性相同,其中A ,B 两名志愿者同时被选中的有2种,∴P (A ,B 两名志愿者同时被选中)2163==.【点睛】本题考查列表法和树状图法求概率,掌握概率的求法是解题的关键.20. 2023年5月15日,辽宁男篮取得第三次CBA 总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A ,B 两种品牌篮球,已知A 品牌篮球单价比B 品牌篮球单价的2倍少48元,采购相同数量的A ,B 两种品牌篮球,分别需要花费9600元和7200元.求A ,B 两种品牌篮球的单价分别是多少元?【答案】A 品牌篮球单价为96元,B 品牌篮球单价为72元【解析】【分析】设B 品牌篮球单价为x 元,则A 品牌篮球单价为()248x -元,,再利用“采购相同数量的A ,B 两种品牌篮球,分别需要花费9600元和7200元”,列方程,解方程即可.【详解】解:设B 品牌篮球单价为x 元,则A 品牌篮球单价为()248x -元,根据题意,得96007200248x x=-.解这个方程,得72x =.经检验,72x =是所列方程的根.2724896´-=(元).所以,A 品牌篮球单价为96元,B 品牌篮球单价为72元.【点睛】本题考查的是分式方程的应用,设出恰当的未知数,确定相等关系是解题的关键.五、解答题(本大题共2道题,每题8分,共16分)21. 如图1,是某校教学楼正厅一角处摆放的“教学楼平面示意图”展板,数学学习小组想要测量此展板的最高点到地面的高度.他们绘制了图2所示的展板侧面的截面图,并测得120cm AB =,80cm BD =,105ABD ∠=°,60BDQ ∠=°,底座四边形EFPQ 为矩形,5cm EF =.请帮助该数学学习小组求出展板最高点A 到地面PF 的距离.(结果精确到1cm 1.41» 1.73»)【答案】159cm 【解析】【分析】过点A 作AG PF ^于点G ,与直线QE 交于点H ,过点B 作BM AG ^于点M ,过点D 作DN BM ^于点N ,分别解作出的直角三角形即可解答.【详解】解:如图,过点A 作AG PF ^于点G ,与直线QE 交于点H ,过点B 作BM AG ^于点M ,过点D 作DN BM ^于点N ,∴四边形DHMN ,四边形EFGH 均为矩形,∴MH ND =,5EF HG ==,BM DH ∥,∴60NBD BDQ ∠=∠=°,∴1056045ABM ABD NBD ∠=∠-∠=°-°=°,在Rt ABM V 中,90AMB ∠=°,∵sin sin 45AMABM AB∠=°=,∴sin 45120AM AB =×°==在Rt BDN △中,90BND ∠=°,∵sin sin 60NDNBD BD∠=°=,∴sin 6080ND BD =×°==,∴MH ND ==∴()560 1.4140 1.735159cm AG AM MH GH =++=+»´+´+»,答:展板最高点A 到地面PF 的距离为159cm .【点睛】本题考查解直角三角形的应用,正确作出辅助线构造出直角三角形,熟练通过解直角三角形求相应未知量是解题的关键.22. 如图,AE 为O e 直径,点C 在O e 上,AB 与O e 相切于点A ,与OC 延长线交于点B ,过点B 作BD OB ^,交AC 的延长线于点D.的(1)求证:AB BD =;(2)点F 为O e 上一点,连接EF ,BF ,BF 与AE 交于点G .若45E ∠=°,5AB =,3tan 7ABG ∠=,求O e 的半径及AD 的长.【答案】(1)见解析 (2)O e 的半径为154;AD =【解析】【分析】(1)根据AB 与O e 相切于点A 得到90OAC BAD ∠+∠=°,再根据BD OB ^得到90BCD D ∠+∠=°,再根据OA OC =得到OAC OCA ∠=∠即可根据角的关系解答;(2)连接OF ,过点D 作DM AB ^,交AB 延长线于点M ,在Rt ABG △等多个直角三角形中运用三角函数的定义求出O e 半径154r =,再根据勾股定理求出3BM =,4DM =即可解答.【小问1详解】证明:如图,∵AE 为O e 的直径,AB 与O e 相切于点A ,∴OA AB ^,∴90OAB ∠=°,∴90OAC BAD ∠+∠=°,∵BD OB ^,∴90OBD ∠=°,∴90BCD D ∠+∠=°,∵OA OC =,∴OAC OCA ∠=∠,∵BCD OCA ∠=∠,∴OAC BCD ∠=∠,∴BAD D ∠=∠,∴AB AD =.【小问2详解】连接OF ,过点D 作DM AB ^,交AB 延长线于点M ,如图,在Rt ABG △中,90GAB ∠=°,∴3tan 7AG ABG AB ∠==,∴15tan 7AG AB ABG =×∠=,∵45E ∠=°,∴290AOF E ∠=∠=°,∴AOF OAB ∠=∠,∴OF AB ∥,∴OFG ABG ∠=∠,∴3tan tan 7OFG ABG ∠=∠=,设O e 的半径为r ,∴15377r r -=,∴154r =,∴3tan 4OA OBA AB ∠==,∵DM AB ^,∴90M ∠=°,∴90BDM DBM ∠+∠=°,∵BD OB ^,∴90OBD ∠=°,∴90OBA DBM ∠+∠=°,∴BDM OBA ∠=∠,即3tan tan 4BDM OBA ∠=∠=,∴设3BM x =,4DM x =,在Rt DBM △中,90M ∠=°,∵222BM DM BD +=,5BD AB ==,∴()()222345x x +=,解得1x =,∴3BM =,4DM =,∴8AM AB BM =+=,∴AD ==.【点睛】本题考查了圆与三角形的综合问题,解题的关键是熟练掌握圆、三角形的线段、角度关系并运用数学结合思想.六、解答题(本题共10分)23. 端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y (袋)与售价x (元/袋)满足如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?【答案】(1)40680y x =-+(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元【解析】【分析】(1)直接应用待定系数法即可求出一次函数解析式;(2)根据题意列出获日销售利润与x 的函数关系式,然后利用二次函数的性质即可求解.【小问1详解】解:设一次函数的解析式为y kx b =+,将()10,280,()14,120代入得:2801012014k b k b =+ìí=+î,解得:40680k b =-ìí=î,∴求y 与x 之间的函数关系式为40680y x =-+;小问2详解】解:设日销售利润为w ,由题意得:()()()8840680w x y x x =-=--+24010005440x x =-+-()24012.5810x =--+,∴当12.5x =时,w 有最大值,最大值为810,∴当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.【点睛】本题考查了二次函数的应用,二次函数的最值,理解掌握题意,正确的找出题目中的等量关系,列出方程或函数关系式是解题的关键.七、解答题(本大题共2道题,每题12分,共24分)24. 【问题情境】如图,在ABC V 中,AB AC =,ACB a ∠=.点D 在边BC 上将线段DB 绕点D 顺时针旋转得到线段DE (旋转角小于180°),连接BE ,CE ,以CE 为底边在其上方作等腰三角形FEC ,使FCE a ∠=,连接AF .【尝试探究】(1)如图1,当60a =°时,易知AF BE =;如图2,当45a =°时,则AF 与BE 的数量关系为 ;【(2)如图3,写出AF 与BE 的数量关系(用含α的三角函数表示).并说明理由;【拓展应用】(3)如图4,当30a=°,且点B ,E ,F 三点共线时.若BC =15BD BC =,请直接写出AF 的长.【答案】(1)BE =;(2)2cos BE AF a =,理由见解析;(3)AF =【解析】【分析】(1)先证明ABC FEC △△∽,可得BC EC AC FC =,再证BCE ACF ∽V V 得出BE BC AF AC=,利用等腰三角形三线合一的性质得出2BC CH =,在Rt AHC V 中,利用余弦定义可求cos cos CH ACH ACa ∠==,即可得出2cos BE AF a =,然后把45a =°代入计算即可;(2)仿照(1)的思路即可解答;(3)方法一:如图,过点D 作DM BF ^于点M ,过点C 作CH BF ^,交BF 延长线于点H ,可求30HCF =°∠,得出2FC FE FH ==,设BM x =,则2BE x =,利用平行线分线段成比例得出15BM BD BH BC ==,则可求5BH x =,3EH x =,2FE FC x ==,FH x =,HC =,在Rt BHC △中,利用勾股定理构建方程())(2225x +=,求出2x =.证明BEC AFC ∽V V ,利用相似三角形的性质即可求解;方法二:如图,过点C 作CG BF ∥交ED 延长线于点G ,过点D 作DM CG ^于点M ,过点E 作EH CG ^于点H ,利用等腰三角形的性质与判断,平行线的性质可证明DG DC =,GM CM =,证明BDE CDG ∽△△,可得出14BE ED BD CG DG DC ===.设2GE x =,则8GC x =,设2GE x =,则8GC x =,利用平行线分线段成比例得出14HM ED MG DG ==,求出HM x =,3HC x =,5GH x =,HE =.然后在Rt EHG △中,利用勾股定理构建方程())(2225x +=,求出2x =,证明BEC AFC ∽V V ,利用相似三角形的性质即可求解.【详解】(1)如图,过点A 作AH BC ^于点H ,∵AB AC =,ACB a ∠=,∴ABC ACB a ∠=∠=,∴1802BAC a ∠=°-.∵FEC V 是以CE 为底边的等腰三角形,FCE a ∠=,∴FEC FCE a ∠=∠=,ACB FCE a ∠=∠=.∴1802EFC a ∠=°-.∴BAC EFC ∠=∠.∴ABC FEC △△∽.∴BCACEC FC =.∴BC ECAC FC =.∵ACB FCE a ∠=∠=,∴BCE ACF ∠=∠.∴BCE ACF ∽V V .∴BE BCAF AC =.∵AB AC =,H 为BC 的中点,∴2BC CH =.在Rt AHC V 中,90AHC ∠=°,∴cos cos CH ACH ACa ∠==.∴22cos BE CH AF ACa ==.∴2cos BE AF a =.又45a =°,∴BE =;(2)解:2cos BE AF a =;如图,过点A 作AH BC ^于点H ,∵AB AC =,ACB a ∠=,∴ABC ACB a ∠=∠=,∴1802BAC a ∠=°-.∵FEC V 是以CE 为底边等腰三角形,FCE a ∠=,∴FEC FCE a ∠=∠=,ACB FCE a ∠=∠=.∴1802EFC a ∠=°-.∴BAC EFC ∠=∠.∴ABC FEC D D ∽.∴BC AC EC FC=.∴BC EC AC FC =.∵ACB FCE a ∠=∠=,∴BCE ACF ∠=∠.∴BCE ACF ∽V V.的∴BE BC AF AC=.∵AB AC =,H 为BC 的中点,∴2BC CH =.在Rt AHC V 中,90AHC ∠=°,∴cos cos CH ACH ACa ∠==.∴22cos BE CH AF ACa ==.∴2cos BE AF a =.(3)AF =.方法一:如图,过点D 作DM BF ^于点M ,过点C 作CH BF ^,交BF 延长线于点H ,∴90BMD H ∠=∠=°.∴DM CH ∥.∵线段DB 绕点D 顺时针旋转得到线段DE ,∴DB DE =.∴BM EM =.∵FEC V 是以CE 为底边的等腰三角形,30FCE ∠=°,∴FE FC =,30∠=∠=°FEC FCE .∴60HFC FEC FCE ∠=∠+∠=°.∴18030HCF H HFC ∠=°-∠-∠=°.∴2FC FH =.∵FE FC =,∴2FE FH =.设BM x =,则2BE x =,∴15BM BD BH BC ==,∴55BH BM x ==.∴3EH BH BE x =-=.∵2FE FH =,∴2FE FC x ==,FH x =.∴HC =.在Rt BHC △中,90BHC ∠=°,BC =∴222+=BH CH BC .∴())(2225x +=,解得2x =.∴24BE x ==.∵BEC AFC ∽V V ,∴AF BE ==方法二:如图,过点C 作CG BF ∥交ED 延长线于点G ,过点D 作DM CG ^于点M ,过点E 作EH CG ^于点H ,∴90DMG EHG ∠=∠=°.∴DM EH ∥.∵线段DB 绕点D 顺时针旋转得到线段DE ,∴DB DE =.∴DBE DEB ∠=∠.∴DBE DCG ∠=∠,DEB G ∠=∠.∴DG DC =.∵DM CG ^,∴GM CM =.∵FEC V 是以CE 为底边的等腰三角形,30FCE ∠=°,∴30∠=∠=°FEC FCE .∵CG BF ∥,∴30ECG FEC ∠=∠=°,BDE CDG D D ∽.∴14BE ED BD CG DG DC ===.设2GE x =,则8GC x =,∵DM EH ∥,∴14HM ED MG DG ==.∴HM x =.∴3HC x =.∴5GH GM HM x =+=.在Rt EHC △中,30ECH ∠=°,∴HE =.在Rt EHG △中,90EHG ∠=°,GE BC ==,∴222GH EH GE +=.∴())(2225x +=,解得2x =.∴24BE x ==.∵BEC AFC ∽V V ,∴AF BE ==【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判断与性质,勾股定理,锐角三角函数等知识,解决问题的关键是作辅助线,构造相似三角形.25. 如图,抛物线2y bx c =++交x 轴于点()1,0A -和B ,交y 轴于点(C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为,求点E 的坐标;(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且60EFG ∠=°,如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)2y =++(2)(E(3)存在,点G 的坐标为73æçè或53æçè【解析】【分析】(1)根据待定系数法求解即可;(2)方法一:连接DB ,过点E 作EP y ∥轴交BD 于点P .先求得直线BD 的表达式为:y =-+.再设(2,E x ++,(,P x -+,则2EP =+-,利用面积构造一元二次方程求解即可得解;方法二:令抛物线的对称轴与x轴交于点M ,过点E 作EN x ^轴于点N ,设(2,E x ++,利用面积构造一元二次方程求解即可得解;(3)如下图,连接CG ,DG ,由菱形及等边三角形的性质证明CEG DEF D D ≌得30ECG EDF ∠=∠=°.从而求得直线CG 的表达式为:y x =+CG ,DG ,CF ,证DGE CFE D D ≌.得DG CF =,又证CDG CEG D D ≌.得30DCG ECG ∠=∠=°.进而求得直线CG的表达式为:y =+【小问1详解】解:∵抛物线2y bx c =++经过点()1,0A -,(C ,∴0c ì+=ïíïî,解得b c ì=ïí=ïî∴抛物线的表达式为:2y =++.【小问2详解】解:方法一:如下图,连接DB ,过点E 作EP y ∥轴交BD 于点P .∵2y =++)21x =-+,∴(1,D .令2y =++中0y =,则20=++解得=1x -或3x =,∴()3,0B ,设直线BD 为y kx b =+,∵y kx b =+过点(1,D ,,()3,0B ,∴03k b k bì=+ïí=+ïî,解得k b ì=ïí=ïî∴直线BD的表达式为:y =-+.设(2,E x ++,(,P x -+,∴(2EP =++-+2=+-.∴OBD EBDODEB S S S D D =+四边形()1122D B D OB y EP x x =×+×-(2113222=´´++-×2=++.∵ODEB S =四边形,∴2++=.整理得2440x x -+=,解得122x x ==.∴(E .方法二:如下图,抛物线的对称轴与x 轴交于点M ,过点E 作EN x ^轴于点N ,设(2,E x ++,∴3BN x =-,1MN x =-∴M ODEB OD ENBDMNE S S S S D D =++梯形四边形(()(()22111113222x x =´´+×++-+++×-2=++.∵ODEB S =四边形,∴2++=.整理得2440x x -+=,解得122x x ==.∴(E .【小问3详解】解:存在,点G 的坐标为73æçè或53æçè.如下图,连接CG ,DG ,∵四边形EFGH 是菱形,60EFG ∠=°,∴EF FG GH EG ===,∵60EFG ∠=°,∴EFG V 是等边三角形.∴60FEG EF FG ∠=°=,,∵(E ,(C ,(1,D ,∴2CE CD ==,2=,2DE ==,点C 与点E 关于对称轴1x =对称,∴CE CD DE ==,DF CE n ,∴DCE △是等边三角形,EDF ∠=12CDE ∠,∴60CED FEG CDE ∠∠∠===°,∴CED CEF FEG CEF ∠∠∠∠+=+即DEF CEG ∠∠=,30EDF ∠=°,∴CEG DEF D D ≌.∴30ECG EDF ∠=∠=°.∴直线CG的表达式为:y x =+.与抛物线表达式联立得2y x yì=+ïíï=++î∴点G 坐标为73æçè.如下图,连接CG ,DG ,CF ,同理可证:EFG V 是等边三角形,DCE △是等边三角形,DGE CFE D D ≌.∴DG CF =,∵CF FE =,=GE FE ,∴DG GE =.∴CDG CEGD D ≌.∴30DCG ECG ∠=∠=°.∴直线CG 的表达式为:y x =+.与抛物线表达式联立得2y y ì=+ïíï=++î∴点G坐标为53æçè.【点睛】本题主要考查了二次函数的图像及性质,菱形的性质,等边三角形的判定及性质,待定系数法求一次函数与二次函数的解析式,一元二次方程的应用,解二元一次方程组,熟练掌握二次函数的图像及性质,菱形的性质,等边三角形的判定及性质,待定系数法求一次函数与二次函数的解析式是解题的关键.。

九年级数学上册《用频率估计概率》练习题(附答案解析)

九年级数学上册《用频率估计概率》练习题(附答案解析)

九年级数学上册《用频率估计概率》练习题(附答案解析)学校:___________姓名:___________班级:____________一、单选题1.下列说法正确的是()A.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616 C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等2.传说中的小李飞刀,飞刀绝技高超,飞刀靶心的命中率为96%,在一次飞刀演练中,前96次均命中靶心,那么他的第97次飞刀命中靶心的概率为()A.96%B.100%C.4%D.03.木箱里装有仅颜色不同的9张红色和若干张蓝色卡片,随机从木箱里摸出一张卡片后记下颜色后再放回,经过多次的重复实验,发现摸到红色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A.6张B.8张C.10张D.4张4.一个不透明的箱子里装有m个球,其中红球有5个,这些球除颜色外都相同.每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回.大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出m 的值为()A.25B.20C.15D.10P A的值不可能是()5.某随机事件A发生的概率()A.0.0001B.0.5C.0.99D.16.关于频率和概率的关系,下列说法正确的是()A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率7.在一个不透明的盒子中装有8个白球和m个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为黄球的概率是13,则m的值为()A.16B.12C.8D.48.一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为()A.0.2B.0.5C.0.6D.0.89.掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.1610.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4B.6C.8D.12二、填空题11.一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为_________.12.在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为___________.13.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间不超过15min的频率为______.14.某水果店购进1000kg水果,进价为每千克5元,售价为每千克9元,很快所有水果都销售完.(1)这批水果全部出售后的利润是____元.(2)老板看到销售情况很好,第二次又以同样的价格购进了该水果1000kg,销售过程中有3%的水果因被损坏而不能出售.按每千克9元售出第二次进货量的一半后,为了尽快售完,水果店准备将余下的水果打折出售,两次获得的总利润为5615元.在余下的水果销售中,打了______折.15.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则盒子中大约有白球_______个.三、解答题16.某水果公司新进一批柑橘,销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录在下表中.(1)柑橘损坏的概率约为______(精确到0.1);(2)当抽取柑橘的总质量n=2000kg时,损坏柑橘质量m最有可能是______.A.99.32kg B.203.45kg C.486.76kg D.894.82kg(3)若水果公司新进柑橘的总质量为10000kg,成本价是1.8元/kg,公司希望这些柑橘能够获得利润5400元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表调查结果扇形统计图请根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a b +=________,m =________;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.在一个暗箱里放有a 个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a 的值;(2)从中任意摸出一个球,下列事件:①该球是红球;①该球是白球;①该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).19.计算:(1) (2)按要求填空:小王计算22142x x x --+的过程如下:解:22142x x x --+ ()()()()()()21222222222x x x x x x x x x x =--------+-+-=---+-+-第一步第二步()()()()222222222x x x x x x x x x -------------+-------------+------------------+=第三步=第四步=第五步 小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .参考答案与解析:1.B【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,根据选项一一判断即可.【详解】某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,A 错;某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是3080.616500=,B 正确;当试验次数很大时,频率稳定在概率附近,C 错;试验得到的频率与概率有可能相等,D 错.故选:B【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即为概率.2.A【分析】每次射出的飞刀命中都是相互独立的,每次命中靶心的概率都是96%.【详解】解:第97次飞刀命中靶心的概率与前96次没有关系,所以第97次命中靶心的概率还是96%. 故选:A .【点睛】题目考查随机事件的概率,理解概率的含义及意义是解题关键.3.A【分析】根据概率的求法,找准两点:一是全部情况的总数,二是符合条件的情况数目,求解即可;【详解】解:设木箱中蓝色卡片x 个,根据题意可得,99x +=0.6, 解得:x =6,经检验,x =6是原方程的解,则估计木箱中蓝色卡片有6张;故答案为:A .【点睛】此题考查了用频率估计概率,解题的关键是准确计算.4.B【分析】用红球的数量除以红球的频率即可.【详解】解:50.2520÷=(个),所以可以估算出m 的值为20,故选:B .【点睛】本题考查利用频率估计概率,解题的关键是掌握在大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.D【分析】概率取值范围:01p ,随机事件的取值范围是01p <<.【详解】解:概率取值范围:01p .而必然发生的事件的概率P (A )1=,不可能发生事件的概率P (A )0=,随机事件的取值范围是01p <<.观察选项,只有选项D 符合题意.故选:D .【点睛】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.6.C【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.【点睛】此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.7.D【分析】根据黄球的概率公式列出关于m的方程,求出m的值即可解答.【详解】解:由题意知:1 83mm=+,解得m=4.故选D.【点睛】本题主要考查了概率公式的应用.解决本题的关键是根据概率公式列出关于m的方程,再利用方程思想求解.8.A【分析】设袋中绿球有x个,根据经大量实验,发现摸到绿球的频率稳定在0.2,估计摸到绿球的频率为0.2,从而确定答案.【详解】】解:大量重复试验中,事件发生的频率可以估计概率,①经大量试验,发现摸到绿球的频率稳定在0.2,①摸到绿球的概率约为0.2,故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.D【分析】根据概率的意义进行解答即可.【详解】解:掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时,不会受前3次的影响,掷第4次时仍有6种等可能出现的结果,其中6点朝上的有1种,所以掷第4次时6点朝上的概率是16, 故选:D .【点睛】本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.10.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】设红球约有x 个, 根据题意可得:0.420x , 解得:x =8,故选C .【点睛】本题考查利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.11.20【分析】利用大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:①通过大量重复试验后发现,摸到红球的频率稳定于0.2, ①55m +=0.2, 解得:m =20.经检验m =20是原方程的解,故答案为:20.【点睛】此题主要考查了利用频率估计概率和解分式方程,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据摸出红球的频率得到相应的等量关系.12.6【分析】用球的总个数乘以摸到红球的频率即可.【详解】解:估计这个口袋中红球的数量为8×75100=6(个).故答案为:6.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.0.9.【详解】试题解析:①不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,①通话时间不超过15min的频率为4550=0.9.考点:频数(率)分布表.14.4000四六【分析】(1)根据利润=(售价-进价)×销售量,可以计算出这批水果全部出售后的利润;(2)根据利润=(售价-进价)×销售量,可以列出相应的方程,然后求解即可,注意计算过程中打折数要除以10.【详解】(1)由题意可得,这批水果全部出售后的利润是:(9-5)×1000=4×1000=4000(元),故答案为:4000;(2)设在余下的水果销售中,打了x折,由题意可得:(9-5)×(1000×12)+(9×10x-5)×[1000×(1-12-3%)]+4000=5615,解得x=4.6,即在余下的水果销售中,打了四六折,故答案为:四六.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.15.12【分析】根据共摸球40次,其中10次摸到黑球,则摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.【详解】解:①共摸了40次,其中10次摸到黑球,①有30次摸到白球,①摸到黑球与摸到白球的次数之比为1:3,①口袋中黑球和白球个数之比为1:3,4÷13=12(个). 故答案为:12.【点睛】本题考查的是样本估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.16.(1)0.1(2)B(3)2.6元【分析】(1)根据随着总质量的增加,频率的稳定值可得答案;(2)总质量乘以柑橘损坏的概率即可得出答案;(3)设每千克定价为x 元,根据“销售额-总成本=利润”列方程求解即可.(1)根据表格信息,柑橘损坏的概率约为0.1,故答案为:0.1;(2)当抽取柑橘总质量n =2000kg 时,损坏柑橘质量m 约为2000×0.1=200(kg ),故选:B .(3)根据柑橘损坏的概率约为0.1,可得能够出售的柑橘为:()1000010.19000⨯-=(kg ) 则定价为:10000 1.85400 2.69000⨯+=(元) 答:每千克大约定价2.6元比较合适.【点睛】本题考查了用频率估计概率的知识,用到的知识点为:频率等于所求情况数与总情况数之比.得到售价的等量关系是解决问题的关键.17.(1)50,28,8;(2)144︒;(3)在60120x ≤<范围内的人数为560人.【分析】(1)利用B 组人数与百分率,得出样本的人数;再求出b ,a;再根据所有百分率之和为1,求出m .(2)利用C 组的百分率,求出圆心角度数.(3)用全样的总人数乘以在这个范围内人数的百分率即可.【详解】解:(1)调查人数:16÷32%=50,b: 50⨯16%=8,a=50-4-16-8-2=20, a+b=28; C 组点有率:20÷50=40%,m%=1-32%-40%-16%-4%=8%,m=8;(2)360°⨯40%=144°;(3) 在60120x≤<范围内的人数为:1000⨯2850=560.【点睛】本题主要考查频率,扇形统计图,利用百分率求圆心角以及用样本估计总体,解题的关键是求总出样本总量以及各组别与样本总量的百分率.18.(1)20;(2)①①①.【分析】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【详解】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率=1020=50%;该球是蓝球的概率=620=30%,所以可能性从小到大排序为:①①①.【点睛】本题考查用频率估计概率,强调“同样条件,大量试验”是解题关键.19.(1)(2)因式分解;三和五;12 x-【分析】(1)先化成最简二次根式,然后根据二次根式的四则运算法则求解即可;(2)按照分式的加减运算法则逐步验算即可.(1)解:原式632333222233;(2)解:由题意可知:2212222222222214222222122x x x x xx x x x x x x x x x x x x xx x 第一步第二步=第三步=第四步=第五步故小王的计算过程中第三步和第五步出现了错误;最终正确的计算结果为12x -. 故答案为:因式分解,第三步和第五步,12x - 【点睛】本题考查二次根式的四则运算法则及分式的加减运算法则,属于基础题,熟练掌握运算法则是解题的关键.。

新人教版九年级上册25.3用频率估计概率

新人教版九年级上册25.3用频率估计概率

(1)请计算出现向上点数为3的频率及出现向上点数为5的频 率. (2)王强说:“根据试验,一次试验中出现向上点数为5的概 率最大.” 李刚说:“如果抛540次,那么出现向上点数为6的次数正好 是100次.”请判断王强和李刚说法的对错. (3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为5
的倍数的概率.
变化(集中)趋势,即观察各数值主要集中在哪个常数附近,
这个常数就是所求概率的估计值.同时要明确,频率只是一
个估计值,不同的试验受试验次数及试验条件的影响,所得 到的结果可能有所不同.
Байду номын сангаас
1.(2010 ·南充中考)在“抛掷正六面体”的试验中,如果正 六面体的六个面分别标有数字“1”、“2”、“3”、“4”、
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少?
【思路点拨】应用频率估计概率与生产生活实际联系密切, 是数学生活化的重要体现,解题关键是理解概率的意义、频 率与概率的关系,结合方程的思想解决问题 .
【自主解答】(1)参加此项游戏得到海宝玩具的频率
m 8 000 m 1 ,即 n 40 000 n 5
【解析】(1)根据频率与概率的关系,此次统计是大规模的, 所以可以用字母出现的频率估计其概率; (2)不可以,一篇只有200个字母的文献,出现E的频率就有 不确定性,因其数量太少.
用频率估计概率时一定要注意试验的次数及
试验条件对试验结果的影响.用试验估计概率时,必须经过
大量的试验,再用频率的稳定值估计概率 .同时理解概率只
(2)设袋中共有m个球,则摸到红球的概率P(红球)= 8 . 8 1
m m
5
解得m=40,∴白球接近40-8=32(个)

重庆市2019届中考数学一轮复习《7.2概率》讲解含答案

重庆市2019届中考数学一轮复习《7.2概率》讲解含答案

第二节概率课标呈现_指引方向1.能通过列表、画树状图等方法列m简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.2.知道通过大量地重复试验,可以用频率来估计概率.考点梳理夯实基础1.事件的分类(1)在自然和现实社会中,有些事件我们事先能够肯定它一定会发生的事件称为必然事件.(2)有些事件事先能肯定它一定不会发生的事件称为不可能事件.(3) 必然事件和不可能事件统称为不确定事件.(4)在一定条件下,有可能发生,也有可能不发生的事件,称为随机事件.2.概率(1)定义:表示一个事件发生的可能性大小的数,叫做该事件的概率.P(必然事件)= 1;P(不可能事件)=0;0 <P(随机事件)<1.(2)计算公式:P(事件的概率)= mn(m表示所关注的事件的结果数.n表示所有可能的结果数).(3)两步试验事件的概率计算方法主要有两种:一是列表法,二是画树状图.(4)用频率估计概率:在大量重复试验中,如果事件A发生的频率!会稳定在某个常数p附近,那么这个常数p就叫做事件A发生的概率,即P(A)=p.考点精析专项突破考点一事件的分类【例l】(2019攀枝花)下列说法中正确的是(D)A.“打开电视,正在播放《新闻联播》”是必然事件B.“20x<(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,一定有5次正面向上D.367人中,必有两人的生日在同一天解题点拨:解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法,必然事件指在一定条件下一定发生的事件:不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.考点二概率【例2】(2019泸州)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取1只球,则取出黑球的概率是 ( C )A. 12B.14C.13D14解题点拨:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目:②全部情况的总数.二者的比值就是其发生的概率的大小.【例3】(2019重庆4卷)从数一2,12-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n.若k= mn,,则正比例函数y=kx的图象经过第一、第三象限的概率是1 6解题点拨:利用树状图或列表,可得五有12个值,其中正数七的值有2个,所以概率为16.【例4】(2019潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了4、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩(n)分评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是4等级的概率.解题点拨:(1)由C等级频数为15,占60%,即可求得m的值:(2)首先求得日等级的频数,继而求得B等级所在扇形的圆心角的大小:(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是4等级的情况,再利用概率公式求解即可求得答案.解:(1) C等级频数为15,占60%,可求出m的值.m =15÷60%= 25:(2) B等级频数为:25-2-15-6=2,B等级所在扇形的圆心角的大小为:225×360 =28.8= 28`28;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∴共有12种等可能的结果,其中至少有一家是A等级的有10种情况,其中至少有一家是A等级的概率为:105. 126=考点三用频率估计概率【例5】(2019泰州)事件4发生的概率为嘉,大量重复做这种试验,事件4平均每100次发生的次数是5.解题点拨:用频率估计概率的思想进行计算可.【例6】有形状、大小和质地都相同的四张卡片,正面分别写有A,B,C,D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用面树状图或列表的方法表示抽取两张卡片可能m现的所有情况(结果用A,B,C,D表示).(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由:若不公平,则这个规则对谁有利?为什么?A16=±4 B. 22-=4 C.33332x x x-= D. 532b b b÷=解题点拨:计算出每种情况的概率即可.解:(1)所有情况有12种:(A,B)、(A,C)、(A,D)、(B,A)、(B,C)、(B,D)、(C,A)、(C,B)、(C,D)、(D,A)、(D,B)、(D,C).(2)游戏不公平.这个规则对小强有利.理由如下:P(小明获胜)=21 126=,P(小强获胜)= 105 126=P(小明获胜)<P(小强获胜),∴这个规则对小强有利.1.(2019湖北)下列说法中正确的是 (B)A.“任意面m一个等边三角形,它是轴对称图形”是随机事件B.“任意面m一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为62.(2019重庆B卷)点P的坐标是(a,b),从-2,-1,0,l,2这五个数中任取一个数作为。

初中数学用频率估计概率解答题专题训练含答案

初中数学用频率估计概率解答题专题训练含答案

初中数学用频率估计概率解答题专题训练含答案试卷主标题姓名:__________班级:__________考号:__________一、解答题(共20题)1、一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个。

已知从袋中摸出一个球是红球的概率是。

(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率。

2、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图5所示的统计图,根据统计图提供的信息解决下面问题:⑴柑橘损坏的概率估计值为,柑橘完好的概率估计值为;⑵估计这批柑橘完好的质量为千克;⑶如果公司希望销售这些柑橘能够获得25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?3、小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定。

游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营。

(1)用画树状图的方法表示三次抛掷硬币的所有结果。

(2)小刚任意挑选两球队的概率有多大?(3)这个游戏规则对两个球队是否公平?为什么?4、在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.5、有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?6、下面第一排表示了十张扑克牌中不同情况,任意摸一张,请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.7、一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?8、小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 (1)分别计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?9、某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)10、甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?11、网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了??个评价;②请将图1补充完整;③图2中“差评”所占的百分比是??;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.12、在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率 0.65 0.62 0.593 0.604 0.601 0.599 0.601 (1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(3)试估算盒子里黑、白两种颜色的球各有多少只?13、某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)则样本容量容量是,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.发言次数n A 0≤n<3 B 3≤n<6 C 6≤n<9 D 9≤n<12 E 12≤n <15 F 15≤n<1814、甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.15、有五张卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一张,记下字母后不放回,洗匀后再从中摸出一张,则两次摸到卡片字母相同的概率又是多少?16、宜城市2016年体育考试即将开始,某中学为了预测本校应届毕业生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次为六个小组,每小组含最小值,不含最大值)和扇形统计图。

北师版九年级上册数学概率及其求法(含中考真题解析)

北师版九年级上册数学概率及其求法(含中考真题解析)

概率及其求法☞解读考点☞2年中考1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A . 12B . 13C . 14 D . 1【答案】C .考点:概率公式.2.下列事件是必然事件的为( ) A .明天太阳从西方升起 B .掷一枚硬币,正面朝上C .打开电视机,正在播放“河池新闻”D .任意一个三角形,它的内角和等于180° 【答案】D .考点:随机事件.3.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.45【答案】C.【解析】试题分析:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=3 5.故选C.考点:1.概率公式;2.中心对称图形.4.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.10 【答案】C.【解析】试题分析:∵摸到红球的概率为15,∴2125n=+,解得n=8.故选C.考点:概率公式.5.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【答案】B.【解析】试题分析:由题意可得,3a×100%=20%,解得,a=15.故选B.考点:利用频率估计概率.6.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有0 xC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 【答案】C.考点:概率的意义.7.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是()A.a>b B.a=b C.a<b D.不能判断【答案】B.【解析】试题分析:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a=36=12,∵投掷一枚硬币,正面向上的概率b=12,∴a=b,故选B.考点:几何概率.8.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112B.512C.16D.12【答案】A.考点:概率公式.9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A .16B .13C .12D .23【答案】B . 【解析】试题分析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:39=13.故选B .考点:列表法与树状图法. 10.如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( )A .43B .32C .31D .21【答案】B . 【解析】试题分析:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是46=23.故选B .考点:1.列表法与树状图法;2.图表型.11.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.12B.14C.38D.58【答案】B.考点:列表法与树状图法.12.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34【答案】B.【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B.考点:1.概率公式;2.分式的定义;3.综合题.13.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx图象上的概率是()A.12B.13C.14D.16【答案】D.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3),∴点(a ,b )在函数12y x =图象上的概率是:212=16.故选D .考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.14.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( )A .21B .31C .41D .51【答案】C .考点:1.列表法与树状图法;2.三角形三边关系.15.如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.35【答案】C.【解析】试题分析:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是:1230=25.故选C.考点:1.列表法与树状图法;2.新定义.17.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 【答案】0.07. 【解析】试题分析:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07. 考点:利用频率估计概率.18.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .【答案】15.考点:1.几何概率;2.勾股定理.19.写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件.【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3. 【解析】试题分析:21(1)32y x m x =--+,12bx m a =-=-,∵当3x <-时,y 随x 的增大而减小,∴13m -<-,解得:2m <-,∴2m <-的任意实数皆可.故答案为:答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:1.随机事件;2.二次函数的性质;3.开放型.20.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____. 【答案】49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式;4.压轴题. 21.从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是 .【答案】25.【解析】试题分析:∵不等式组2343111x x +<⎧⎨->-⎩的解集是:10132x -<<,∴a 的值是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数2122y x x =+的自变量取值范围为:2220x x +≠,即0x ≠且1x ≠-,∴a 的值在函数2122y x x =+的自变量取值范围内的有﹣3,﹣2,4;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的有:﹣3,﹣2;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是:25.故答案为:25.考点:1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题. 22.从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为 .【答案】35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.23.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为 .【答案】(﹣1,2).考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移;4.数形结合.24.如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 .【答案】1322y x =-+. 【解析】试题分析:∵A (0,4),B (3,0),∴OA=4,OB=3,在Rt △OAB 中,=5,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,∴BA′=BA=5,CA′=CA ,∴OA′=BA′﹣OB=5﹣3=2,设OC=t ,则CA=CA′=4﹣t ,在Rt △OA′C 中,∵222''OC OA CA +=,∴2222(4)t t +=-,解得t=32,∴C 点坐标为(0,32),设直线BC的解析式为y kx b=+,把B(3,0)、C(0,32)代入得3032k bb+=⎧⎪⎨=⎪⎩,解得:1232kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为1322y x=-+.故答案为:1322y x=-+.考点:1.翻折变换(折叠问题);2.待定系数法求一次函数解析式;3.综合题.25.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)2 3.(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P (一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2). 表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)12.(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P(一男一女)=36=12.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.27.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)【答案】(1)59;(2)一样.(2)他们两次抽得的数字和是奇数的可能性大小一样,∵x为奇数,两次抽得的数字和是奇数的可能性有4种,∴P(甲)=49,∵x为偶数,两次抽得的数字和是奇数的可能性有4种,∴P(乙)=49,∴P(甲)=P(乙),∴他们两次抽得的数字和是奇数的可能性大小一样.考点:列表法与树状图法.28.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图. 29.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100 九(2)班:89,93,93,93,95,96,96,98,98,99 通过整理,得到数据分析表如下:(1)直接写出表中m 、n 的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率. 【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)13.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P (另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.30.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【答案】(1)144;(2)640;(3)2 3.(2)估计该校获奖的学生数=16100%50×2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)=812=23.故答案为:23.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.扇形统计图.31.甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率; (2)求甲比乙先出场的概率.【答案】(1)13;(2)12.考点:列表法与树状图法. 32.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n (n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.【解析】试题分析:(1)先画树状图,由树状图可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是2n,第三步传的结果是总结过是3n,传给甲的结果是n(n﹣1),根据概率的意义,可得答案.考点:列表法与树状图法.33.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→ → ,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)【答案】(1)13;(2)丙、甲、乙、14,14;(3)P(甲胜出)=P(乙胜出)=P(丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=1 3;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为:丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.34.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数1+=xy图象上的概率.【答案】(1)点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)1 3.∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数1+=xy图象上,∴P(点P在一次函数y=x+1的图象上)=26=13.考点:1.列表法与树状图法;2.一次函数图象上点的坐标特征.35.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.1.一个袋中只装有3个红球,从中随机摸出一个是红球()A.可能性为13B.属于不可能事件C.属于随机事件D.属于必然事件【答案】D.【解析】试题分析:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选D.考点:1.随机事件;2.可能性的大小.2.小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.16B.15C.12D.1【答案】A.考点:概率公式.3.100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【答案】1 20.【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:51 10020.考点:概率公式.4.下列事件中是必然事件是()A、明天太阳从西边升起B、篮球队员在罚球线投篮一次,未投中C、实心铁球投入水中会沉入水底D、抛出一枚硬币,落地后正面向上【答案】C.【解析】试题分析:A、明天太阳从西边升起,是不可能事件;B、篮球队员在罚球线投篮一次,未投中,是随机事件;C、实心铁球投入水中会沉入水底,是必然事件;D、抛出一枚硬币,落地后正面向上,是随机事件.故选C.考点:必然事件.5.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).【答案】A.考点:1.几何概率;2.转换思想的应用.6.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= .【答案】9.【解析】试题分析:∵从3只红球,n只白球的袋中任取一个球,摸出白球的概率为34,∴n3n34=+.解得:n=9,经检验:x=9是原分式方程的解.∴n=9.考点:1.概率公式;2.分式方程的应用7.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同)在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是.【答案】1 3.【解析】试题分析:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:41123 .考点:1.列表法或树状图法;2.概率.8.从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.【答案】(1)13;(2)23.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:23.考点:概率.9.有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n .(1)请画出树状图并写出(m ,n )所有可能的结果;(2)求所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.【答案】(1)答案见试题解析;(2)16.试题解析:解:(1)画树状图得:∴(m ,n )共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3). (2)∵当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,∴所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3).∴所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三四象限的概率为:21126 . 考点:1.树状图法;2.概率;3.一次函数图象与系数的关系.10.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去. (1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果; (2)你认为这个规则公平吗?请说明理由. 【答案】(1)答案见试题解析;(2)这个游戏公平.考点:1.列表法或树状图法;2.概率;3.游戏公平性.☞考点归纳归纳1:概率的有关概念基础知识归纳:1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件.不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件.2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件.3、概率的概念一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).3.频率与概率的关系当我们大量重复进行试验时,某事件出现的频率逐渐稳定到某一个数值,把这一频率的稳定值作为该事件发生的概率的估计值.基本方法归纳:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.注意问题归纳:判断事件是必须根据定义判断.【例1】下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上。

初三数学用频率估计概率知识精讲

初三数学用频率估计概率知识精讲

初三数学用频率估计概率知识精讲一. 本周教学内容:用频率估计概率、课题学习——键盘上字母的排列规律【知识回顾】概率事件发生的可能性,也称为事件发生的概率.利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.频数,频率在考察中,每个对象出现的次数称为频数,而每个对象出现的次数与总次数的比值称为频率.当试验次数很大时,一个事件发生的频率稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.例1. 要知道一个鱼缸里有多少条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢?先考虑一个比较简单的问题:问题1一个口袋中有8个黑球和若干个白球,如果不许将球倒出来数,那么你能估计出其中的白球数吗?方法1从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程.我共摸了200次,其中有57次摸到黑球,因此我估计口袋中大约有20个白球.假设口袋中有x个白球,通过多次试验,我们可以估计出从口袋中随机摸出一球,它为黑球的概率;另一方面,这个概率又应等于8/(8+x),据此可估计出白球数x.这是一种方案,你能理解并运用到实践中吗?方法2利用抽样调查的方法,从口袋中一次随机摸出10个球,求出其中黑球数与10的比值,再把它放回口袋中.不断重复上述过程.我总共摸了20次,黑球数与10的比值的平均数为0.25,因此我估计口袋中大约有24个白球.假设口袋中有x个白球,通过多次抽样调查,求出样本中黑球与总球数比值的“平均水平”,这个“平均水平”就接近于8/(8+x),据此,我们可以估计出白球数x的值。

九年级数学用频率求概率

九年级数学用频率求概率

验田的麦苗数是8550株,该需麦
种约
千克。
1. 概率的获取有 理论计算 和 实验估算两种。
2. 本节课的事件概率无法用理论计算来解决, 只能通过概率实验,用 频率来估算。
问题情景:
小明参加夏令营,一天夜里熄灯了,伸手不 见五指,想到明天去八达岭长城天不亮就出 发,想把袜子准备好,而现在又不能开灯。 袋子里有尺码相同的3双黑袜子和1双白袜子, 混放在一起,只能摸黑去拿出2只。同学们能 否求出摸出的2只恰好是一双的可能性?
一个学习小组有6名男生3名女生。
柑橘,进行了“柑橘损坏率”的统计,把获得 考虑哪一事件出现的机会
(2)不透明的袋中装有3个大小相同的小球,其中2个为白
的数据记录在下: 子的实验,而是中途变成了3双黑袜子实验,这两
答:在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率。
答:在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率。
不可以,用不同的替代物混在一起,大大地改变了实验条件,所以结果是不准确的。
坏10的.5概率15? 42 5 93 2 24 7 质量 (2)不透明的袋中装有3个大小相同的小球,其中2个为白
51.5 4
柑橘
损坏
0.105
0.10 1
练习巩固
某种小麦播种的发芽概率约是95%,1株
麦芽长成麦苗的概率约是90%,一块试
(m)
成活 的频 0.9 0.87 率 40 1
0.890 0.915
0.902
问题2
某水果公司以2元/千克的成本新进了 10000千克的柑橘,如果公司希望这些 柑橘能够获利5000元,那么在出售柑橘 (已去掉损坏的柑橘)时,每千克大约 定价为多少元比较合适?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2012年1月最新最细)2011全国中考真题解析120考点汇编频率估计概率的方法来求概率一、选择题1.(2011•南充,12,3分)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为件.考点:用样本估计总体。

分析:首先可以求出样本的不合格率,然后利用样本估计总体的思想即可求出这一万件产品中不合格品约为多少件.解答:解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为:5÷100=5%,∴估计该厂这一万件产品中不合格品为10000×5%=500件.故答案为:500.点评:此题主要考查了利用样本估计总体的思想,解题时首先求出样本的不合格率,然后利用样本估计总体的思想即可解决问题.二、填空题1.(2011江苏淮安,16,3分)有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为 .考点:利用频率估计概率。

专题:应用题。

分析:因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.解答:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为摸到红球的频率约为0.6,红球所占的百分比是60%,从而可求出解.3.(2011湖北黄石,12,3分)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛.组委会现定:任问一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如表(一)表(一)根据表(一)提供的信息n= 0.3 .考点:频数(率)分布表。

专题:计算题;图表型。

分析:根据60≤x<70,可知其分数段内的频数为30,频率为0.15,可求出总人数,然后总人数60=n ,从而得结果.解答:解:∵60≤x <70,可知其分数段内的频数为30,频率为0.15, ∴30÷0.15=200(人) ∴3.020060==n . 故答案为:0.3.点评:本题考查频数,频率,总数之间的关系,总数频数频率=,从而知道任何两个可求出另外一个,从而求出解.三、解答题 1.(2011•贵,19,)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x .甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是 0.33 .(2)如果摸出的这两个小球上数字之和为9的概率是31,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值. 考点:利用频率估计概率;列表法与树状图法。

分析:(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x ,用列表法或画树状图法说明当x=7时,得出数字之和为9的概率,即可得出答案. 解答:解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是0.33. (2)当x=7时,∴∴两个小球上数字之和为9的概率是:122=61 当x=5时,两个小球上数字之和为9的概率是31.点评:此题主要考查了利用频率估计概率,以及列树状图法求概率,注意甲、乙两人每次同时从袋中各随机摸出1个球,列出图表是解决问题的关键. 2.(2011丽江市中考,21,分)为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:根据上述信息回答下列问题: (1)a= 15 ,b= 0.16 ;(2)在扇形统计图中,B 组所占圆心角的度数为 144° ;(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?考点:频数(率)分布表;用样本估计总体;扇形统计图。

专题:图表型;数形结合。

分析:(1)读图可知:总人数减去其余4级的人数即为a的值,D级的人数除以总人数即可求得b的值;(2)求出B级人数占总人数的百分比,再乘以360度即可解答.(3)先求出样本中平均每周做家务时间不少于4小时的学生所占的频率,在用样本估计总体的方法计算即可解答.解答:解:(1)a=50﹣3﹣4﹣8﹣20=15,b=8÷50=0.16;(2)B组所占圆心角的度数为20÷50×360°=144°;(3)2000×(0.3+0.08+0.16)=1080(人),即该校平均每周做家务时间不少于4小时的学生约有1080少人.故答案为15,0.16,144°.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时考查了用样本估计总体的知识.3.(2011•贺州)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:(1)频数分布表中的m= 4 ,n= 18 ;(2)样本中位数所在成绩的级别是D ,扇形统计图中,E组所对应的扇形圆心角的度数是108°;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?考点:频数(率)分布表;用样本估计总体;扇形统计图;中位数。

专题:应用题。

分析:(1)根据频数分布表和扇形统计图可知E占30%,B占8%,即可得出B、D的频数,(2)根据中位数的概念,可得出中位数在D级别中,E组所占的比例为30%,所对应的扇形圆心角的度数即为360°×30%=108°,(3)成绩不少于80分即计算D、E的频率,再进一步计算800名学生中的人数即可.解答:解:(1)∵15÷3=5,且A占6%,∴E占30%,∴B占8%,∴=,∴m=4,∵=,∴n=18.故答案为4,18;(2)样本中位数在36%部分,即为D部分,360°×36%=108°,故答案为D,108°;(3)×800=528(人).答:该校九年级的学生中,体育综合测试成绩不少于80分的大约有528人.点评:本题主要考查了中位数、频率的求法,以及利用所学统计知识分析数据、解决实际问题的能力,难度适中.4.(2011浙江衢州,20,6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?考点:模拟实验;利用频率估计概率。

专题:应用题。

分析:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.解答:解:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,∴总球数为5081004⨯=,∴红球数为100×40%=40,答:盒中红球有40个.点评:此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.5.(2011浙江绍兴,19,8分)为调查学生的身体累质,随机抽取了某市的若干所初中学校,根据学校学生的肺活量指标等级绘制了相应的统计图,如图.根据以上统计图,解答下列问题:(1)这次调查共抽取了几所学校?请补全图1;(2)估计该市140所初中学校中,有几所学校的肺活量指标等级为优秀?考点:条形统计图;用样本估计总体;扇形统计图。

专题:图表型。

分析:(1)结合条形统计图和扇形统计图,用肺活量指标良好的学校数除以它所占的百分比可得本次抽取的学校总数,再用本次抽取的学校总数减去肺活量指标优秀、良好、不及格的学校数得及格学校数,最后补全统计图1.(2)运用样本估计总体的方法可知,该市140所初中学校中肺活量指标等级为优秀的有140×所学校.解答:解:9÷45%=20(所),即这次调查共抽取了20所学校.如下图.(2)140×203=21(所) 答:该市140所初中学校中,有21所学校的肺活量指标等级为优秀.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.(2011浙江义乌,20,8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60 ,b的值为0.15 ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内? C (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数。

专题:应用题;图表型。

分析:(1)首先根据表格A中的数据可以求出随机抽取部分学生的总人数,然后根据B中频率即可求解a,同时也可以求出b;(2)根据中位数的定义可以确定中位数的分数段,然后确定位置;(3)首先根据频率分布直方图可以求出样本中在40分以上的人数,然后利用样本估计总体的思想即可解决问题.解答:解:(1)随机抽取部分学生的总人数为48÷0.2=240,∴a=240×60,b=36÷240=0.15,如图所示:(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;(3)0.8×10440=8352(名)(7分)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.)如图8.(2010广东佛山,23,8分)现在初中课本里所学习的概率计算问题只有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验;解决概率计算问题,可以直接利用模型,也可以转化后再利用模型;请解决以下问题(1)如图,类似课本的一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖除颜色外完全相同),则宝物藏在阴影砖下的概率是多少?(2)在1﹣9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:请你根据表中数据,估计构成钝角三角形的概率是多少?(精确到百分位)考点利用频率估计概率;几何概率分析(1)根据题意藏在阴影砖下的结果有4种,所有的可能有16种,从而可求出结果.(2)求出每组里面钝角三角形的概率.其中的的众数即为所求.解答解:(1)根据题意藏在阴影砖下的结果有4种,所有的可能有16种,P=416=14=0.25.(2)各组实验的钝角三角形的频率依次是0.24,0.26,0.21,0.22.0.22,所以P=0.22.所以钝角三角形的概率是0.22.点评本题考查运用频率来估计概率以及几何概率的知识点,关键知道什么时候是频率和概率等同,什么时候取众数.。

相关文档
最新文档