无线电测向基本技术

合集下载

2无线电测向基本技术

2无线电测向基本技术

第二节无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面:一、收测电台信号1、收听电台信号当不了解被收听电台信号的强度时,如在起点收听首找台或找某台后收测下号台(应迅速离开该台十余米),可将音量旋至最大,边转动测向机,边调整频率旋钮,听到信号后,首先辨认台号是不是你现在需要寻找的电台呼号,然后缓慢的左右细调,使声音最大,音调悦耳。

最后,将音量旋钮旋至适当位置,进行测向。

2、测出电台方向线的基本方法单向一双向法:按前述的持机方法持机,按下单向开关,使本机大音面作环向扫动,同时旋转频串钮,当耳机内出现需要测收的电台信号且声音最大时,侧向机大音面所指方向即为电台方向.这一过程称测单向。

由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测向后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁捧所指方向,即为电台的准确方向。

后面的这个过程称测双向。

双向一单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转溅向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机如90度,在此位置上,反复迅速的旋转测向机180度。

比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。

二、方向蹬踪沿测向机指示的电台方向,边跑边测,直接接近并找到电台的方法叫方向跟踪。

由于80米波段测向机双向小音点方向线(或称哑点线)清晰准确,因此跟踪时多使用此方向线。

在地形简单、障碍较少的情况,方向跟踪时可快速奔跑,并在跑动中左右强动测向机,不仔的校正方向(注意随时调小音量)。

方向跟踪时,容易出现从电台附近越过而并未觉察的情况,这时运动员虽己跑过电台,但测向机磁性天线指示的方向线,由于变化不大而未能及时发现,造成反方向跟踪,越跑越远,甚至耳机音量明显减弱时才会发觉。

避免的办法是在跟踪中打儿次单向,判断大音面是否己转向到后面宁跑勿走,宁过勿欠,这是迅速到位的最基本要求,切忌尚未到位便进行搜索。

无线电测向的技巧

无线电测向的技巧

无线电测向的技巧
无线电测向是一项需要技巧和策略的竞技活动。

以下是在无线电测向中取得成功的关键技巧:
1.了解信号特性
在无线电测向中,理解信号的特性是非常重要的。

你需要熟悉信号的频率、强度、波形等特性,以便在接收时能够准确地识别和判断。

2.选择合适的设备
选择适合的无线电测向设备对成功至关重要。

使用高品质、高灵敏度的无线电测向设备可以增强你的接收能力,提高准确性。

3.优化接收设备
熟悉你使用的接收设备的所有功能和设置,并对其进行优化以提高性能。

这可能包括调整频率范围、选择滤波器设置、优化天线配置等。

4.掌握操作技巧
正确地操作无线电测向设备也是关键。

这包括熟练地使用控制面板、掌握搜索策略、调整灵敏度等。

5.判断信号方向
通过分析接收到的信号特性,如强度、频率和波形等,可以推断出信号的大致方向。

熟练掌握这一技巧将有助于你更快地找到信号源。

6.保持专注
在搜索信号时,保持专注和耐心是必要的。

不要被外界干扰,保持注意力集中,以便在接收到的瞬间做出准确的判断。

7.学会预判
在某些情况下,你可能需要对信号的移动方向或出现时机进行预判。

通过了解信号的一般行为模式或观察相关模式的变化,可以帮助你提前预判。

8.实践与总结
最后,不断地实践和总结是提高无线电测向技能的关键。

通过参与活动、练习和反思,你可以逐渐改进自己的技巧和策略,提高在无线电测向中的表现。

总之,无线电测向需要综合运用以上技巧,不断地练习和积累经验才能提高自己的技能水平。

无线电测向基本技巧

无线电测向基本技巧

无线电测向基本技巧 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面:一、收测电台信号1、收听电台信号当不了解被收听电台信号的强度时,如在起点收听首台或找到某台后收测下号台(应迅速离开该台十余米),可将音量旋到最大,边转动测向机,边调整频率旋钮,听到信号后,首先辩认台号是不是你现在需要寻找的电台呼号,然后缓慢地左右细调,使声音最大,音调悦耳。

最后,将音量旋钮旋至适当位置,进行测向。

2、测出电台方向线的基本方法:(1)80米波段测向的基本方法:单向—双向法:按下单向开关,使本机大音面作环向扫动,同时旋转频率钮,当耳机内出现需要测收的电台信号且声音最大时,测向机大音面所指方向即为电台方向。

这一过程称测单向。

由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测完后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁棒所指方向,即为电台的准确方向。

后面的这个过程称为测双向。

双向—单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机90°,在此位置上,反复迅速的旋转测向机180°,比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。

最后再用双向小音点瞄准。

(2)2米波段测向的基本方法:单向法(也叫主瓣一次测向法):当2米波段测向机收到电台信号后,转动天线360,依靠尖锐的主瓣方向图(此时引向器的前引伸方向声音最大),即可明确地测出电台方向线。

若发现主瓣与后瓣难以分清(在前后两个方向上声音大小差不多),可将测向机音量关小,举过头顶,在主、后瓣两个方向上翻转天线(见图,应注意保持天线所在面与地面的平行),反复对比两边的音量大小,防止测反方向。

无线电测向原理

无线电测向原理

无线电测向原理
无线电测向原理是一种通过测量无线电信号到达接收器的方向来确定信号发射源位置的技术。

该原理基于电磁波传播的特性,利用接收器接收到的信号的方向性信息来定位信号源。

无线电测向原理的关键在于利用多个接收器或天线阵列来接收同一个信号。

通过测量接收到信号的时间差和信号强度的变化,可以计算出信号的到达角度。

这种测向方式被称为时差测向和幅度比测向。

时差测向是基于接收到信号的时间差来测量信号到达的角度。

当信号到达不同的接收器或天线时,会产生微小的时间差。

通过计算这些时间差,可以确定信号的到达角度。

幅度比测向则是基于接收到信号的强度变化来测量信号到达的角度。

当信号到达不同的接收器或天线时,由于传播路径的不同,信号的强度会发生变化。

通过计算这些幅度变化,可以确定信号的到达角度。

无线电测向原理常用于无线电定位、无线电导航、无线电干扰源定位等领域。

它的应用范围广泛,可以用于定位无线通信设备、监测无线电信号、解决无线电干扰问题等。

总的来说,无线电测向原理通过测量接收到的信号的方向性信息来确定信号发射源的位置。

它是一种基于电磁波传播特性的技术,可以在无线通信、定位、干扰源定位等领域发挥重要作用。

小升初无线电测向

小升初无线电测向

小升初无线电测向无线电测向是一种利用无线电信号的传播特性来确定信号源位置的技术。

在小升初考试中,无线电测向也是一个重要的考点。

下面,我们来了解一下关于无线电测向的基本知识。

一、无线电测向的原理无线电测向是利用无线电信号传播时的信号强度、相位差等特性来确定信号源的位置。

当一个无线电信号源发出信号时,信号会在空间中传播并到达接收器。

通过接收机测量到的信号参数,例如信号强度、相位差等,结合接收机的方向性,可以计算出信号源的位置。

二、无线电测向的应用无线电测向在现实生活中有着广泛的应用。

最常见的应用就是无线电定位系统,例如GPS系统。

通过多个接收器接收到的信号强度差异,可以确定接收器所在的位置。

此外,无线电测向还可以用于电磁波辐射监测、通信干扰定位等领域。

三、无线电测向的方法无线电测向主要有三种方法:信号强度测向、相位测向和多基站测向。

1. 信号强度测向:这是最简单也是最常用的测向方法。

通过测量信号强度,比较不同接收器的信号强度差异来确定信号源的位置。

但是由于信号的传播受到环境等因素的影响,信号强度测向的精度较低。

2. 相位测向:相位测向是通过测量接收到的信号相位差来确定信号源的位置。

相位测向的精度较高,但需要较为复杂的算法和设备支持。

3. 多基站测向:多基站测向是利用多个接收器同时接收信号,并通过测量不同接收器之间的信号时差来确定信号源的位置。

多基站测向的精度较高,但需要多个接收器的支持。

四、无线电测向的局限性无线电测向虽然在定位和测向方面有着广泛的应用,但也存在一些局限性。

首先,信号的传播受到环境等因素的影响,如建筑物、地形等会对信号传播产生阻碍或反射,影响测向的精度。

其次,测向设备的成本较高,对设备的要求也较高,限制了无线电测向的推广应用。

无线电测向是一种通过测量无线电信号参数来确定信号源位置的技术。

在小升初考试中,了解无线电测向的原理、应用和方法是很重要的。

希望通过本文的介绍,可以为大家对无线电测向有一个初步的了解。

无线电测向原理

无线电测向原理

无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。

无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。

下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。

首先,无线电测向的基本原理是基于电磁波的传播特性。

当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。

利用这些变化,可以通过信号处理技术确定信号的方向。

其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。

天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。

接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。

信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。

显示器则用于显示测向结果,通常以图形或数字的形式呈现。

最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。

干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。

方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。

跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。

综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。

它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。

无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。

无线电测向技术

无线电测向技术

第十一章无线电测向技术(参考件)一、无线电波与其传输特性1.1 关于无线电波的一些基本概念1.1.1 无线电波是电磁波的一种从物理含义上讲,电磁波包含无线电波、光辐射和光子辐射。

电磁波中波长小于0.1mm,或者说频率低于3000GHz的波,叫无线电波。

把电磁波和无线电波视为同等概念,严格说是不确切的。

但从当今应用目的看,习惯叫法也是可以的。

1.1.2 无线电波的分段和名称根据国际电信联盟无线电规则第二条(Article 2,20δ,Geneva,1982)频带命名如表示:表1.(2)频带命名关于无线电波的频带划分与命名,需补充几点:①国际电联频带划分时规定,每个频率范围含上限而不含下限;②实际工作中常有这样一些情况:仅使用频带的一部分,比如战术通信台工作频段为30~88MHz,这时仍称VHF电台;边沿垮接相邻频带,如2~30MHz的接收机,因其主要工作频率处于高频,这时仍称高频(HF)接收机;当工作频率范围跨接两个频带,又都为主要工作频段时,如25~1000MHz的测向机,这时,则惯称甚高频/特高频(VHF/UHF)测向机等。

③国内一些部门习惯用短波、超短波、微波等称谓。

显然短波与高频等效。

超短波包括甚高频(VHF)和特高频(UHF),但界限含混,微波一般指频率高于300MHz的众多频带。

1.1.3 无线电波的一般传输特性在2.1节介绍有关述语的函义中,已讲到无线电波的一些特性,为使读者便于理解后面的内容,现就电磁波传输的一般特性归纳如下:●电磁场中电场和磁场具有确定的方向和数值,即S(t) = E(t) . H(t)E=-ZH●传输中的电场和磁场都具有极化特性;●电磁波在自由空间传输时,其传输平面是一确定的大圆面,其传输方向不变,且相速度和群速度相同;●电磁波在界质中传输时,将受到界质的影响。

在各向同性的色散界质中传输时,使相速与群速不等;在各向异性的色散界质传输时,还会使极化和方向发生变化;●电磁波传输时会产生衰减。

无线电测向机的原理框

无线电测向机的原理框

无线电测向机的原理框无线电测向机是一种用于测量无线电信号来自何方向的设备。

其原理框如下:1. 接收天线:无线电测向机首先将接收天线与要测量的无线电信号相连。

接收天线通常是一个带有向心性能的天线,可以接收来自不同方向的信号。

2. 信号放大器:接收到的信号被送入信号放大器,以放大信号的强度,以便更好地进行测量。

信号放大器通常是一个低噪声放大器,能够提高信号强度,同时不引入太多的噪声。

3. 相移网络:经过信号放大器放大的信号被送入相移网络。

相移网络用于改变信号的相位,通过改变相位,可以实现对信号方向的测量。

相移网络通常由一组电子元件(如相移器或延迟线)组成。

4. 相位比较器:经过相移网络处理后的信号被送入相位比较器。

相位比较器将信号与参考信号进行比较,以确定信号的相位差。

相位差可以用来确定信号来自何方向。

5. 显示器:最后,测向机将测量到的信号方向显示在显示器上。

显示器通常是一个数字显示屏或指示灯,可以显示信号来自的方向。

无线电测向机的工作原理可以概括为接收信号、放大信号、改变相位、比较相位差以及显示信号方向。

通过测量信号的相位差,无线电测向机可以确定信号来自何方向。

此外,为了提高测向机的准确性和灵敏度,还可以采用以下措施:1. 天线阵列:使用多个接收天线组成天线阵列,可以提高测向机的方向探测能力。

通过分析天线阵列接收到的信号,可以利用多路径效应实现更精确的方向测量。

2. 单侧带调制:采用单侧带调制技术可以提高无线电测向机的灵敏度。

单侧带调制可以将信号的能量集中在较低的频率范围内,减少了噪声的干扰,提高了信号的可测性。

3. 数字信号处理:采用数字信号处理技术可以提高测向机的处理能力和抗干扰能力。

通过对信号进行数字滤波、频谱分析、相关计算等处理,可以提高测向的准确性和测量的稳定性。

综上所述,无线电测向机的原理框包括接收天线、信号放大器、相移网络、相位比较器和显示器。

通过测量信号的相位差,无线电测向机可以确定信号来自何方向。

无线电测向原理基本技术

无线电测向原理基本技术

磁性天线平行于地面放置,并接收垂直极化波;电波从左向右传播,其磁场方向(图中虚线所示)必定垂直于电波传播方向并与地面平行;磁棒轴线与电波传播方向的夹角为θ。

则磁性天线的输出感应电势E磁随θ的变化而变化。

当磁棒轴线对准电台,磁棒轴线与电波传播方向平行(θ=0°、θ=180°),磁场方向与磁棒轴线垂直,即磁力线与天线线圈截面平行,磁力线无法顺着磁棒穿过线圈,线圈中没有变化的磁力线,线圈感应电势为零,即e磁=0。

耳机声音最小,甚至完全没有声音,此时磁性天线正对着电台的那个面,称小音面或小音点、哑点;当磁棒轴线与电台的面成一定的角度,磁场方向也与磁棒成一定的角度,会有部分磁力线穿过线圈,线圈中有一定感应电势输出,即e磁为某一定值,耳机声音不是最小,音量会随着角度的变化而变化。

所以,在测向运动中,只要旋转测向机的磁性天线,找出“哑点”(或小音点),发射台必定位于磁棒轴线所指的直线上,也就是说,利用磁性天线可确定电台所在的直线,但不能确定在直线的哪一边,这就是通常所说的测“双向”。

单方向的测定:具有双值性的测向机在实际测向运动中是不能使用的。

为了使运动员在任何一个测向点,都可获得电台明确的“线”和“面”就要求测向机天线具有单值性。

磁性天线和直立天线组成的复合天线是具有单方向性的天线。

当测出电台所在在直线时,运用直线天线和磁棒天线,按下单向按钮,磁性天线转动一周时,只有一个方向使信号消失;也只有一个方向信号最强。

这样就克服了磁性天线的双值性,获得了单方向性能。

我们把信号强的这个面叫单向大音面,简称大音面。

利用大音面就可直接定出电台在那一边。

关于无线电测向机

关于无线电测向机

关于无线电测向机无线电测向是一种科技类体育运动.该运动所使用器具为"无线电测向机",无线电测向机共分为4种型号即“短80米波段测向机”,“长80米波段测向机”,“短2米波段测向机”,“长2米波段测向机”.无线电测向基本技术我们现有的设备是短80型测向机,即80米波段(3.5-3.6MHz)无线电测向机。

由主机和耳机两部分构成,使用五号电池,电源开关即耳机接孔,当耳机接入时电源接通,耳机拔下时,电源断开。

还有一根磁性天线和天线,容易制作,所以测向机制作比赛制作的就是短80米的测向机。

短2米测向机PJ-2A型(三单元)2米波段无线电测向机为超外差式电路设计,性能良好,适用于广大青少年中、小学生开展小型场地的短距离无线电测向运动训练和竞赛。

主要技术指标:1、频率范围:不窄于144.000-146.000MHz2、灵敏度:不劣于10uV3、选择性:对间隔为100KHz的信号明显可辨4、方向性:距电台3米内仍有较好的方向性5、电源:直流6V6、整机耗电:静态≤25mA7、输出阻抗:8欧姆8、实物尺寸:长510×宽38×高25mm9、整机耗电:静态≤25mARF-80型长80米测向机主要性能指标:1、频率范围:不窄于3.5-3.6MHz2、灵敏度:不劣于50uV/m3、方向性:距信号源天线0.3米时能明显分辨出双向,单向可听辨最近距离小于3米。

4、电源:直流6V5、整机耗电:静态≤18mA6、输出功率:≥150mW7、实物尺寸:长140×宽76×高30mm本机为用于体育训练竞赛的80米波段无线电测向机。

整机设计紧凑,操作灵活,方向性好,灵敏度高,便于在运动中使用。

无线电测向基本技巧

无线电测向基本技巧

无线电测向基本技巧 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面:一、收测电台信号1、收听电台信号当不了解被收听电台信号的强度时,如在起点收听首台或找到某台后收测下号台(应迅速离开该台十余米),可将音量旋到最大,边转动测向机,边调整频率旋钮,听到信号后,首先辩认台号是不是你现在需要寻找的电台呼号,然后缓慢地左右细调,使声音最大,音调悦耳。

最后,将音量旋钮旋至适当位置,进行测向。

2、测出电台方向线的基本方法:(1)80米波段测向的基本方法:单向—双向法:按下单向开关,使本机大音面作环向扫动,同时旋转频率钮,当耳机内出现需要测收的电台信号且声音最大时,测向机大音面所指方向即为电台方向。

这一过程称测单向。

由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测完后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁棒所指方向,即为电台的准确方向。

后面的这个过程称为测双向。

双向—单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机90°,在此位置上,反复迅速的旋转测向机180°,比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。

最后再用双向小音点瞄准。

(2)2米波段测向的基本方法:单向法(也叫主瓣一次测向法):当2米波段测向机收到电台信号后,转动天线360,依靠尖锐的主瓣方向图(此时引向器的前引伸方向声音最大),即可明确地测出电台方向线。

若发现主瓣与后瓣难以分清(在前后两个方向上声音大小差不多),可将测向机音量关小,举过头顶,在主、后瓣两个方向上翻转天线(见图,应注意保持天线所在面与地面的平行),反复对比两边的音量大小,防止测反方向。

无线电测向技能实训报告

无线电测向技能实训报告

一、实训背景无线电测向,又称无线电定向,是一项集科技、体育、教育于一体的综合性运动。

它要求选手在规定的区域内,通过无线电测向机捕捉无线电信号,判断信号源的方向,并在规定时间内找到目标。

为了提高我国无线电测向运动水平,培养更多优秀的无线电测向人才,我们学校开展了无线电测向技能实训。

二、实训目的1. 熟悉无线电测向的基本原理和操作方法;2. 掌握无线电测向机的使用技巧;3. 提高无线电测向的实际操作能力;4. 培养团队协作精神和顽强拼搏的精神。

三、实训内容1. 无线电测向基本原理及操作方法(1)无线电波传播特性:无线电波在传播过程中具有直线传播、反射、折射、绕射等特性,这些特性对无线电测向有着重要影响。

(2)无线电测向机原理:无线电测向机通过接收无线电信号,判断信号源的方向,实现定位。

其主要部件包括天线、接收机、控制器等。

(3)无线电测向操作方法:选手手持测向机,根据信号强弱变化判断方向,通过多次调整,最终确定目标位置。

2. 无线电测向机使用技巧(1)天线调整:根据信号源方向调整天线角度,使信号最强。

(2)灵敏度调整:根据信号强度调整灵敏度,保证信号清晰可辨。

(3)控制器操作:熟练掌握控制器按键功能,提高操作效率。

3. 无线电测向实际操作训练(1)模拟信号源:在规定区域内设置模拟信号源,选手进行定位训练。

(2)实际信号源:在指定区域内设置实际信号源,选手进行实际定位训练。

(3)团队协作训练:多人组队,共同完成定位任务,提高团队协作能力。

四、实训过程1. 实训准备:了解无线电测向的基本原理和操作方法,熟悉测向机使用技巧。

2. 实训实施:(1)模拟信号源定位训练:在规定区域内设置模拟信号源,选手进行定位训练。

(2)实际信号源定位训练:在指定区域内设置实际信号源,选手进行实际定位训练。

(3)团队协作训练:多人组队,共同完成定位任务。

3. 实训总结:对实训过程进行总结,分析存在的问题,提出改进措施。

五、实训成果1. 选手们对无线电测向的基本原理和操作方法有了深入的了解。

无线电测向原理

无线电测向原理

无线电测向原理一、导言随着无线电技术的不断发展和应用的广泛推广,无线电测向原理作为无线通信领域的重要技术,已经在许多领域发挥了重要作用。

本文将围绕无线电测向原理展开全面、详细、完整且深入的探讨。

二、无线电测向原理概述无线电测向原理是通过测量和分析无线电信号的特性来判断信号源的方位和位置的技术。

它利用接收到的无线电信号的强度、到达时间差、多普勒效应等特征参数,运用三边测量、多边测量等方法进行位置定位。

无线电测向原理可以应用于通信系统的无线网络规划与优化、无线电频谱监测、无线电定位和导航等领域。

2.1 无线电测向原理的基本流程无线电测向原理的基本流程包括信号接收、信号测量和信号处理三个步骤。

首先,无线电接收器接收到信号源发出的无线电信号;然后,通过测量信号的强度、到达时间差和多普勒效应等参数,得到信号源的位置信息;最后,通过信号处理算法对测量得到的信号参数进行分析和处理,得出信号源的方位和位置。

2.2 无线电测向原理的关键技术在无线电测向原理中,有一些关键技术对于实现高精度的测向结果非常重要。

2.2.1 天线阵列技术天线阵列技术是无线电测向原理中常用的一种技术,它通过使用多个天线元件组成的阵列,来实现对信号的方向敏感性。

通过对不同天线元件接收到的信号进行加权、相位差分析等处理,可以较准确地确定信号的方向。

2.2.2 超宽带技术超宽带技术是一种通过在时间域上产生极短脉冲信号来实现测向的技术。

它具有带宽宽、抗干扰能力强的特点,可以实现对信号的高精度测向。

2.2.3 多传感器数据融合技术多传感器数据融合技术是指将来自多个不同传感器的数据进行集成和处理,以提高测向精度和鲁棒性。

通过利用不同传感器的特点和优势,可以更好地抑制噪声、提高信号检测和估计的性能。

三、无线电测向原理的应用领域无线电测向原理作为一项重要的技术,已经在许多领域得到了广泛的应用。

3.1 通信系统无线网络规划与优化在通信系统的无线网络规划与优化中,无线电测向原理可以用于确定基站的布设位置和方位,优化无线网络的覆盖范围和质量。

《无线电测向》课件

《无线电测向》课件
实用价值
无线电测向技术可以帮助我们定位和追踪无线电信号源,提供重要的情报和数据支持。
测向方法
立体测向法
通过多个接收天线的组合和信号参数的测量,确定信号的三维方向和位置。
单站测向法
基于单个接收站点的对信号参数进行测量和分析,确定信号的方向和位置。
多站测向法
通过多个接收站点的组合和信号参数的测量,确定信号的方向和位置。
测向设备及工具
接收设备
用于接收和转换无线电信号的设备,如接收机和信号处理器。
天线
具有不同特性和功能的天线,用于接收和定向无线电信号。
测向仪器
用于进行信号参数测量和分析的专用设备,如测向接收机和测向系统。
无线电测向在实践中的应用
通信监测领域的应用
通过对通信信号进行测向分 析,帮助监测和识别无线电 通信活动和干扰源。
导航和定位领域的应用
利用测向技术进行卫星导航 定位、导航系统校准和目标 追踪。
安全领域的应用
用于监控和保护重要设施, 如边境和机场安全、无线电 频谱管理等。
技术展望
1 新技术发展
随着科技的不断进步,无 线电测向技术将会越来越 先进,应用领域将进一步 扩大。
2 应用前景
无线电测向技术在通信、 导航和安全领域的应用前 景广阔,将发挥越来越重 要的作用。
《无线电测向》PPT课件
无线电测向是一项用于定位无线电信号源的技术。它的原理是通过对信号进 行测量和分析,确定信ห้องสมุดไป่ตู้的方向和位置。
技术简介
定义
无线电测向是一种用于定位无线电信号源的技术,通过测量和分析信号参数,确定其方向和 位置。
原理和应用领域
无线电测向基于信号传播的特性和无线电波的传播规律,广泛应用于通信监测、导航定位和 安全领域。

无线电测向基础原理.

无线电测向基础原理.

1 无线电测向基础1.1 示向度为了确定某个目标的方位,必须确定连接该目标至已知坐标的点的直线同某个起始方向(起始线之间的夹角。

例如,在点X 上有一个须要确定方位的目标,而点A 的地理坐标已知,那么,点X 和点A 的连线同地理正北方向之间的夹角A a 称为示向度(图1-1。

这就是说,示向度是以已知地理坐标的观测点A 的地球子午线的指北方向沿顺针方向旋转至点A 与被测目标连线所转过的角度。

其取值范围:0≤示向度<360°。

无线电测向是用无线电技术手段确定来波..的示向度。

请注意,无线电测向设备所测定的是来波..的示向度(到达角,由于电波传播中可能出现的不正常现象会导致其等相位面畸变,因而来波的到达角未必是其辐射源所在的方位。

图1-1 测向与定位1.2 交会定位只在一个已知地理坐标的点测向,只能得到一条方位线,而不能得到一个定位点。

为了实现定位,必须产生两条或两条以上相互独立的方位线。

例如,点X 有一个须要确定位置的目标,而点A 与点B 的地理坐标已知,那么,由点A 和点B 测得示向度A a 和B a 与相应的方位线A LOP 和B LOP ,方位线A LOP 与B LOP 的交点,就认为是目标位置(图1-1。

如果用n 条方位线交会定位,那么,由于测向误差的影响,在目标真实位置W 周围将得出最多可达m 个交会点。

m 由下式得出:21(-=n n m (1-1a式中,n ——用于交会定位的方位线的条数。

目标真实位置w 仅以一定的概率位于这些交点所构成的多边形内。

这个概率121--=n n n p (1-2式中,n ——用于交会定位的方位线的条数。

n p 随着用于交会定位的方位线的条数的增多而增大。

表1-1是根据式(1-2制得的。

表1-1 目标位于方位线交点多边形内的概率与方位线条数的关系1.3 电磁波电磁场是相互联系着的电场与磁场的总和。

由发射天线辐射出来的无线电波的电磁场是行波场:电磁场的相位随着电波传播的路程成比例地变化,而幅度变化比较小。

无线电测向基本常识

无线电测向基本常识

无线电测向基本常识1、无线电测向的特点在景色宜人的公园、森林、丘陵、原野,手持测向机奋力奔跑着,跟踪搜寻“狡猾的狐狸”(隐蔽电台)。

没有别人的帮助,完全凭借手中测向机的导引,凭借自己掌握的测向技术,经过独立的思考、判断,去揭开一层层神秘的面纱,揪出深藏的“狐狸”,去享受胜利的喜悦,这就是无线电测向活动。

人们不甘落后,奋力向上的品质,使参加这项活动的人无不争先恐后,出于强烈的竞争意识,无线电测向运动又是一项竞技体育项目。

由“国防体育”、“军事体育”,到人们公认的“科技体育”,无线电测向运动始终以自己独特的魅力影响着广大群众。

它集体育、科技、娱乐等为一体,使参加活动的人在锻炼体魄、掌握知识、休闲娱乐、培养品质、磨练意志等多方面得到收益。

无论是十几岁的孩子,还是6、70岁的老人,都可以因时、因地、根据各种情况组织无线电测向活动和比赛。

2、如何组织无线电测向活动开展无线电测向运动场地可繁可减、设台数可多可少、距离可长可短,可根据不同的情况进行变化。

我国目前竞赛的形式主要有两种。

一种是按照国际标准组织的“长距离测向”,一种是根据我国情况由我国无线电测向工作者自己创造的“短距离测向”。

“长距离测向”的场地选择在面积为10平方公里左右,地形略有起伏(高、差在200米以内),树木较多,通透力较差的地形。

“短距离测向”的场地可以选择在城市的公园、市郊和较大的校园。

以下按照这两种测向的模式介绍开展无线电测向活动的方法。

(1)长距离测向正式比赛设5部隐蔽电台,1—5号台的呼号是MOE、MOI、MOS、MOH、MO5,按照顺序循环发射,每次工作一分钟。

终点信标台呼号为MO,均拍发摩尔斯电码。

各隐蔽台距起点的直线距离不小于750米,各台之间不小于400米。

运动员自己确定找台顺序,最佳台序的直线距离为4—7公里。

运动员实际跑的距离约6—10公里。

参加比赛的运动员统一到达起点,在预备区内准备和休息,测向机交裁判员集中保管。

每5分钟出发一批运动员,每人的出发批次在赛前抽签确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线电测向基本技术无线电测向运动作为一项科技体育竞技项目,同其它竞技体育项目一样,具有鲜明的竞技特征。

具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。

竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。

它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。

无疑,技术训练是任何一项科技体育运动员训练的重要内容之一。

一、无线电测向技术的内容无线电测向运动对参加者的运动素质的要求无疑是很高的。

以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。

近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。

在本课里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向大家介绍无线电测向的各种技术。

第四讲再介绍技术训练的方法。

在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。

知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。

这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。

无线电测向技术如果以竞赛过程的先后分,可以划为以下三项:(1)起点测向包括起点前技术、起点测向、离开起点三部分。

(2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。

(3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。

主要的有沿方向线跟踪、交叉定点、比音量、无信号找台、搜索等。

还有一些技术内容,例如指北针和地图使用、体力分配、复杂条件下对干扰、反射等特殊情况的处理等,难于划入上述三阶段中的某一阶段,但也必须掌握。

无线电测向技术如果以从易到难、先单项后综合的顺序划分,可视为包含以下内容:(1)使用和掌握测向机包括持机方法、收测电台信号技术的训练及掌握测向机性能。

收测电台信号技术包括:信号的辨认、调谐和抗干扰接收、测出电台方向线的步骤等。

掌握测向机性能包括:学会使用增益旋钮和衰减开关,了解测向机一般检查和简单故障的应急处理方法。

(2)基本技术包括测向技术、地图和指北针的使用和越野技术。

测向技术的内容有:原地和移动中测记电台方向线;参照实地方位物按方向线前进;利用测向机的音量、指向、强度变化等判断关键距离(如近台区、一轮信号奔跑距离)和电台设置位置(如高低、向背);近台区技术(方向跟踪、交叉定点、比音量、无信号找台、搜索);测向点的选择:识别和排除环境等因素对方向的影响。

地图与制北针的使用包括:地图的识读,分析、记背以及现地对照;指北针的安装、使用及利用指北针按方向线行进。

标绘电台方向线和地图上的远距离交叉。

越野技术包括:越野奔跑技术和体力分配;选择道路的基本原则。

(3)专项技术包括确定首找台和找台顺序、到位技术、近台区测向和识图越野。

(4)综合技术包括综合运用各种技术的能力、体力和竞技状态的调整和心理控制及心理训练。

二、无线电测向原理1、无线电波的发射随着科学技术的不断发展,人们与“无线电”的关系越来越密切了。

播送广播节目和电视节目的广播电台和电视台,是通过发射到空间的无线电波把声音和图像神奇地传诵到千家万户的,这个道理已成为人们的常识。

让我们再来简单地回顾一下发射和接收过程:广播电台(电视台)首先把需要向外发射声音和图像变为随声音和图像变化的电信号,然后用一中频率很高、功率很强的交流电作为“运载工具”,将这种电信号带到发射天线上去。

再通过天线的辐射作用,把载有电信号的高频交流电转变为同频率的无线电波(或称电磁波),推向空间,并像水波一样,不断向四周扩散传播,其传播的速度在大气中为每秒30万公里。

在电波所能到达的范围内,只要我们将收音机、电视机打开,通过接收天线将这种无线电波接收下来,再经过接收机大放大、解调等各种处理,把原来的电信号从“运载工具”中分离出来,逼真地还原成发射时的声音和图像,我们就能在远隔千里的地方收听(收看)到广播电台(电视台)播出的节目。

无线电测向也是利用类似的途径和方式实现的,只是它所发射的仅仅是一组固定重复的莫尔斯电报信号。

电台的发射功率小,信号能到达的距离也极为有限。

一般在10公里以内。

下面,我们紧密结合无线电测向,介绍一些有关的无线电波的基础知识。

A无线电波的传播途径无线电波按传播途径可分为以下四种:天波——由空间电离层反射而传播;地波——沿地球表面传播;直射波——由发射台到接收台直线传播;地面反射波——经地面反射而传播。

无线电测向竞赛的距离通常都在10公里以内,所以,除用于远距离通信的天波外,其它传播方式都与测向有关,160米和80米波段测向,主要使用地波;2米波段测向,主要使用直射波和地面发射波。

B无线电波在传播中的主要特性无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,其传播的情况是非常复杂的。

它虽具有一定的规律性,但对它产生影响的因素却很多。

无线电波在传播中的主要特性如下:(1)直线传播均匀媒介质(如空气)中,电波沿直线传播。

无线电测向就是利用这一特性来确定电台方位的。

(2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。

图1所示的射线由第一种介质射向第二种介质,在分界面上出现两种现象。

一种是射线返回第一种介质,叫做反射;另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。

一般情况下反射和折射是同时发生的。

入射角等于反射角,但不一定等于折射角。

反射和折射给测向准确性带来很大的不良影响;反射严重时,测向机误指反射体,给接近电台造成极大困难。

图1波反射与折射图2音量与电台距离的关系(3)绕射电波在传播途中,有力图饶过难以穿透的障碍物的能力。

绕射能力的强弱与电波的频率有关,又和障碍物大小有关。

频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。

工作于80米波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。

2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。

因此,测向点的选择就成为测向爱好者随时都要考虑的一大问题。

(4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向机收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。

这种现象称为波的干涉。

产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断电台距离造成错觉。

2米波段测向中,这种现象比较常见。

另外,天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。

反之,距电台愈近,单位面积上获得的能量愈大。

如图2所示,耳机中的音量随距离成反比例变化在距电台数十米以内,电场强度的变化十分剧烈,反映在测向机耳机中的音量变化也格外明显。

这一特点有助于测向运动员在接近电台后判断电台的距离及其位置。

C天线的架设与电波传播形式的关系当发射天线垂直于地面时,天线辐射电磁波的电场也垂直于地面,我们称它“垂直极化波”;当天线平行于地面时,天线辐射电磁波的电场也平行于地面,我们叫它“水平极化波”。

160米波段和80米波段,规定发射垂直极化波,因而要求发射天线必须垂直架设;2米波段规定发射水平极化波,因而要求发射天线必须水平架设。

2、无线电测向机的组成与特点无线电测向机是测向运动员在训练与比赛中赖以测向隐蔽电台方位的工具,根据工作波段的不同,测向机的电路和外形结构也不尽相同。

但一部测向机,无论是简是繁,是大是小,都是由测向天线、收信机和指示器三部分组成的。

其方框图如图3所示图3测向机方框图A测向天线测向天线接收被测电台发出的无线电信号,并对来自不同方向的电波产生不同的感应电势。

这是测向机不同于一般收音机的主要区别。

目前测向运动中,160米波段测向机使用磁性天线以及与它相配合的直立天线;80米波段测向机多数也用磁性天线加直立天线(过去也有用环形天线加直立天线的,但因环形天线体积大,不易看准方向线,已很少使用);2米波段测向机使用八木天线。

B收信机收信机对测向天线送来的感应电势进行放大解调等一系列处理,最后把所需信号送入指示器。

一般测向机的收信部分与普通收音机基本相似,但根据测向的特殊需要,它还应具备以下特点:(1)为保证远距离收到隐蔽状态下的小功率电台信号,应有较高的灵敏度。

但为使近距离测向时信号不致阻塞,(信号过强时出现的现象)保持良好的方向性,以及能准确判断电台距离,收信机必须有整机放大量调整和衰减信号装置。

(2)测向机的音量应随天线感应电势的大小发生明显的变化。

收音机中为提高音量稳定而设置的自动音量控制电路,不能用于测向机。

(3)测向机的外形结构设计应适应剧烈运动的需要,即坚固、防雨、防震、便于携带和操作。

(4)除天线外,其余部件不得接收电波,以防破坏测向机的方向性。

因此,应使用金属外壳将整机屏蔽。

C指示器指示器将天线对不同方向电波的反应显示出来.目前,测向机都采用耳机作指示器,通过它将电信号还原成声音,依靠耳机中声音大小判断电台方向。

3测向天线的基本工作原理测向机的主要功能是测定发信电台的方向,这就要求测向机必须具备良好的方向性。

这主要依赖测向天线的设计与制作。

A磁性天线工作原理160米和80米波段测向使用的磁性天线,由磁棒和绕在磁棒上的天线线圈及引线、屏蔽罩组成。

基本结构如图4所示。

图4磁性天线结构示意图图5(a)图5(b)(1)磁棒磁棒由软磁铁氧体磁性材料制成。

它的特点是既易被磁化,又易退磁,有较高的导磁率。

对于均匀磁场来说,磁棒内部所产生的磁阻远较空气小,所以将有大部分磁力线集中到磁棒内。

图5(a)所示为一均匀磁场,图5(b)表示了加入磁棒后磁场的分布。

由图中不难看出,磁棒的加入,聚集了大量空间磁力线,从而使磁棒上的线圈感应出很强的信号电压。

(2)磁性天线工作原理我们来看图6,这是将磁性天线平行于地面放置,并接收垂直极化波时的俯视图。

电波从左向右传播,其磁场方向必定垂直于电波传播方向,并与地面平行(如图中虚线所示)。

磁性天线的输出电势E磁会随θ的改变而变化。

相关文档
最新文档