第五章 核磁共振谱
合集下载
仪器分析课件第五章:HNMR
选择适当的实验温度,以提高分辨率和信号强度。
实验操作步骤
样品装入
将准备好的样品装入样品管中, 确保密封良好。
数据采集
启动仪器进行数据采集,记录 实验结果。
仪器校准
确保仪器处于最佳工作状态, 提高实验精度。
参数设置
根据实验需求设置适当的实验 参数,如频率、扫描宽度等。
结果处理
对采集的数据进行处理和分析, 得出实验结论。
氢原子在分子中的化学环境不同,会导致其自旋磁矩的共振 频率发生变化,通过测定这些频率,可以推断出分子中氢原 子的连接方式和化学环境。
hnmr的原理
氢核磁共振的原理基于核自旋磁矩的存在。当氢原子核处于磁场中时,其自旋磁矩会与磁场相互作用 ,产生能级分裂。当外加射频场以特定频率照射时,低能级上的氢原子核会吸收能量跃迁到高能级上 ,产生共振信号。
谱图解析难度较大
虽然HNMR谱图可以提供丰富的结构信息,但谱图解析需要较高的专 业知识,对解析人员的要求较高。
未来发展
提高检测灵敏度
通过改进检测方法和技术,提高 HNMR的检测灵敏度,使其能够应 用于更广泛的样品分析。
发展便携式设备
随着技术的进步,便携式HNMR设 备的发展将使得现场快速分析成为可 能。
05
hnmr的局限性及未来发 展
局限性
对样品纯度要求高
HNMR分析要求样品具有一定的纯度,否则会产生较大的干扰峰,影 响分析结果的准确性。
对样品量要求大
为了获得较为准确的HNMR谱图,需要一定量的样品。对于某些珍贵 或稀缺的样品,难以满足需求。
对溶剂残留敏感
HNMR分析中,溶剂残留会对谱图产生干扰,影响分析结果的准确性。
03
hnmr实验技术
实验操作步骤
样品装入
将准备好的样品装入样品管中, 确保密封良好。
数据采集
启动仪器进行数据采集,记录 实验结果。
仪器校准
确保仪器处于最佳工作状态, 提高实验精度。
参数设置
根据实验需求设置适当的实验 参数,如频率、扫描宽度等。
结果处理
对采集的数据进行处理和分析, 得出实验结论。
氢原子在分子中的化学环境不同,会导致其自旋磁矩的共振 频率发生变化,通过测定这些频率,可以推断出分子中氢原 子的连接方式和化学环境。
hnmr的原理
氢核磁共振的原理基于核自旋磁矩的存在。当氢原子核处于磁场中时,其自旋磁矩会与磁场相互作用 ,产生能级分裂。当外加射频场以特定频率照射时,低能级上的氢原子核会吸收能量跃迁到高能级上 ,产生共振信号。
谱图解析难度较大
虽然HNMR谱图可以提供丰富的结构信息,但谱图解析需要较高的专 业知识,对解析人员的要求较高。
未来发展
提高检测灵敏度
通过改进检测方法和技术,提高 HNMR的检测灵敏度,使其能够应 用于更广泛的样品分析。
发展便携式设备
随着技术的进步,便携式HNMR设 备的发展将使得现场快速分析成为可 能。
05
hnmr的局限性及未来发 展
局限性
对样品纯度要求高
HNMR分析要求样品具有一定的纯度,否则会产生较大的干扰峰,影 响分析结果的准确性。
对样品量要求大
为了获得较为准确的HNMR谱图,需要一定量的样品。对于某些珍贵 或稀缺的样品,难以满足需求。
对溶剂残留敏感
HNMR分析中,溶剂残留会对谱图产生干扰,影响分析结果的准确性。
03
hnmr实验技术
第五章 核磁共振谱
于外磁场,发射与磁场强
度相适应的电磁辐射信号。 60 、 80 、 100 、 300 、 400 、
500或600MHz
3 .射频信号接受器和检测 器):当质子的进动频率 与辐射频率相匹配时 ,发 生能级跃迁,吸收能量, 在感应线圈中产生毫伏级 信号。
4.探头:有外径5mm的玻璃样品管座, 发射线圈,接收线圈, 预放大器和变温元件等。样品管座处于线圈的中心,测量过
-CH3 , =1.6~2.0,高场; -CH2I, =3.0 ~ 3.5,
-O-H,
-C-H,
大
低场
小
高场
几种氢核化学位移与元素电负性的关系
化学式 CH3F CH3Cl CH3Br CH3I CH4 (CH3)4Si
电负性
化学位移
4.0
4.26
3.1
3.05
2.8
2.68
2.5
2.16
图右端)其他各种吸收峰的化学位移可用化学参数δ来
表示, δ定义为:
试样 - TMS 10 6 0
δ单位为ppm(百万分之一),无量纲单位, δ与磁场强度无关, 各种不同仪器上测定的数值是一样的。
1H-NMR谱图可以给我们提供的主要信息:
1. 化学位移值——确认氢原子所处的化学环境,即属于何
讨论:
(1) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2:
11B,35Cl,79Br,81Br
I=5/2:17O,127I 这类原子核的核电荷分布可看作一个椭 圆体,电荷分布不均匀,共振吸收复杂, 研究应用较少;
(重要) (2)I=1/2的原子核
1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋,
核磁共振谱(NMR)v5
a H H C H
b H C O CH2CH3 H
H。
高场Βιβλιοθήκη 低场第一种自旋组合:在外加磁中场中2个Hb的自旋方向相同,且磁矩的取向与 外加磁场一致,增强了磁场强度,于是Ha在较低外加磁场中即可发生共振(能 级的跃迁)而出现吸收峰。 第二种组合:在外加磁中场中2个Hb的自旋方向相反,对Ha周围的磁场强度 没有影响,因此对 Hb吸收峰的位置也就没有影响。 第三种组合: 2个Hb的自旋方向相同,且磁矩的取向与外加磁场相反,削弱 了磁场的强度,因此Ha在较高的外加磁场才发生能级的跃迁。
② Hb受到3个Ha 的自旋偶合影响,Hb 裂分为四重峰:
a H H C H
b H C O CH2CH3 H
H。
低场 高场
∴ 质子Hb的共振吸收在图谱中出现了4次。即:Hb在三个Ha的 影响下,其信号分裂为四重峰。
自旋偶合 —— 分子中邻近碳上的H之间自旋的相互影响。
峰裂分的条件 • 在核磁共振中,自旋偶合通常只在两个相邻碳上的质子之间发生; 一般来说,相邻碳上的不同种的氢才可发生偶合。 • 相邻碳上的同种的氢不发生偶合。 • 相间碳上的氢(H-C-C-C-H)不易发生偶合。
有机化学四大谱:
红外光谱(IR)(Infrared Spectroscopy) 紫外光谱(UV)(Ultraviolet Spectroscopy ) 核磁共振谱(NMR) (Nuclear Magnetic Resonance Spectroscopy ) 4. 质谱(MS)(Mass Spectroscopy ) 1. 2. 3.
2. 核磁共振谱(NMR)
50年代初广泛使用的红外光谱, 红外光谱能给出所含的官能团, 而60年代发展起来的核磁共振谱却有助于指出是什么化合物。现成 为测定有机化合物结构的重要手段。
第五章-核磁共振方法解析蛋白质结构
核磁共振的原理
• 自旋量子数(I)
原子序数和原子质量都为偶数:I=0(12C,
16O)
原子序数为奇数,原子质量为偶数: I=整数(14N, 2H, 10B)
原子质量为奇数: I=半整数(1H,
13C, 15N, 31P)
• 自旋状态(M)
M =I,(I-1),(I-2),…,-I
对于1H,
13C, 15N, 31P
2.
3.
耦合常数
• 自旋耦合
共价键(1-4个键)相连核之间的特性张量的相互作用
1
H
C
1
H
1
H
13
three-bond one-bond
• 自旋裂分
由于被测核与相邻核自旋耦合引起的谱线裂分, 裂分的 大小称为耦合常数 bb S ba S I aa
J (Hz)
I
ab
I
S
• • • • •
耦合常数不随磁场的变化而变化 两核耦合引起对方谱线裂分的大小相等 相距越远、所隔键数越多,耦合越弱 重原子比轻原子耦合强 耦合常数的大小与耦合核的二面角有关
核磁共振谱仪的组成
•Magnet
•Probe
•Console •Computer
对磁体的要求
• 高磁场强度
• 高稳定性
• 高均匀性
高磁场强度:高分辨率高灵敏度
• 信噪比的完全方程
Oestradiol-acetate
900 MHz
1450
1400
1350
1300
1250
1200
1150
1100
• • • • • •
NOE—5Å 化学位移—二级结构 偶极常数—二面角 氢氘交换—氢键 顺磁驰豫增强(PRE)—远距离(30Å) 残余偶极耦合(RDC)—空间定向
第五章 碳谱简介
(ppm) 5.7
(2)烯烃的顺反效应。 顺反异构体------順式小,反式大。
11.4 28.2 21.4 12.5 34.1 22.1 12.5
CH3
122.8
CH2 CH2 CH3 C C
129.7
H
123.9
CH2 CH2 CH3 C C
130.6
H
H
CH3
16.5
H
36.1
H C O N
H2C CH2 123.3 H3C 132.8 H C C H 152.1 CHO 191.4
CH3CHO 201
共轭羰基化合物的移向高场,当共轭作用破坏时,移向低场。
O
195.7
O
199.0
O
205.5
共轭双键化合物,中间碳原子因共轭作用移向高场。
140.2 112.8 137.2 116.6 138.7
例5:某化合物分子式为C16H22O4,根据氢谱和碳谱推导其结构。
溶剂峰
=(2×16+2-22)/ 2=6
碳谱有8组峰,共16碳, 对称结构 邻二取代苯 酯羰基-COO6H -O-CH2-CH2CH2CH2CH3 4H 4H
O COCH2CH2CH2CH3 COCH2CH2CH2CH3 O
4H
例2:某未知化合物分子式为C7H12O3,根据氢谱和碳谱推倒 其结构。
-CH2-
=(2×7+2-12)/ 2=2
酮C=O 酯-COO无对称结构
-CH3
-OCH3
-CH2CH3
O
O
CH3CH2CCH2CH2COCH3
-CH2CH2-
Hale Waihona Puke -OCH3例3:某未知化合物分子式为C10H10O,根据氢谱和碳谱推导 其结构。
第五章 氢谱
0.22 H H N 1.62 H S H 1.37 H H N H 2.74 H H H 2.57 H H 2.27 H O H 3.52 H H 2.54 H
H
S
O
5.氢键效应
形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应。
H H3CH2C O H O CH2CH3 CCl 4 5.72ppm 3.7ppm O H O H H O O CH3 CCl 4 7.45ppm 4.37ppm
180
Φ
(2)取代基也影响3J的数值,随着取代基 电负性的增加3J的数值下降。 此外,键长、键角对3J也有影响
3)远程偶合
远程偶合是指跨越四根键及更远的偶合。特点:
(1)饱和体系的J值随偶合跨越键数的增加而迅 速下降,只有当两个磁核由于分子的结构特性被 固定成M型或W型时,可观察到这种远程偶合, 它的J值一般小于2Hz,这种偶合称为W效应。
苯环 的各向异性
苯环上的6个电子产生较 强的诱导磁场,质子位于其磁 力线上,与外磁场方向一致, 去屏蔽。
B0 π-环流电子
+
+
双键的各向异性
价电子产生诱导磁 场,质子位于其磁力线 上,与外磁场方向一致, 去屏蔽。 醛基中的氢也位于去屏 蔽区,同时受羰基的吸 电子诱导作用影响,化 学位移达到9.7
Hb Ha Hc C C C Br Hb Ha Hc
Ha裂分为多少重峰?
Hb
4
3
2
1
0
Jba Jca
Jca Jba
Ha裂分峰:(3+1)(2+1)=12
实际Ha裂分峰:(5+1)=6
强度比近似为:1:5:10:10:5:1
1、氢与氢之间的偶合
H
S
O
5.氢键效应
形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应。
H H3CH2C O H O CH2CH3 CCl 4 5.72ppm 3.7ppm O H O H H O O CH3 CCl 4 7.45ppm 4.37ppm
180
Φ
(2)取代基也影响3J的数值,随着取代基 电负性的增加3J的数值下降。 此外,键长、键角对3J也有影响
3)远程偶合
远程偶合是指跨越四根键及更远的偶合。特点:
(1)饱和体系的J值随偶合跨越键数的增加而迅 速下降,只有当两个磁核由于分子的结构特性被 固定成M型或W型时,可观察到这种远程偶合, 它的J值一般小于2Hz,这种偶合称为W效应。
苯环 的各向异性
苯环上的6个电子产生较 强的诱导磁场,质子位于其磁 力线上,与外磁场方向一致, 去屏蔽。
B0 π-环流电子
+
+
双键的各向异性
价电子产生诱导磁 场,质子位于其磁力线 上,与外磁场方向一致, 去屏蔽。 醛基中的氢也位于去屏 蔽区,同时受羰基的吸 电子诱导作用影响,化 学位移达到9.7
Hb Ha Hc C C C Br Hb Ha Hc
Ha裂分为多少重峰?
Hb
4
3
2
1
0
Jba Jca
Jca Jba
Ha裂分峰:(3+1)(2+1)=12
实际Ha裂分峰:(5+1)=6
强度比近似为:1:5:10:10:5:1
1、氢与氢之间的偶合
第5章 紫外光谱 红外光谱 核磁共振和质谱
N N X
NO2
结论:紫外光谱是检测(1)共轭烯烃;(2)共轭羰基化合物 (3)芳香化合物;(4)顺反异构体构型的有力工具。
5.4.2 红移现象和蓝移现象 5.4.3 增色效应和减色效应
5.5 lmax计算规律
1. 共轭双烯lmax计算规律:
化合物 母体-C=C-C=C- or 双键(参与共轭)(扩展双键) 同环二烯 烷基(R) 环外双键 烷氧基(RO) 烷硫基(RS) 卤素(Cl,Br) lmax(nm) 217(基本值) +30 +36 +5 +5 +6 +30 +5
δ: 7.3
7 6 5 4 PPM 3
H H
H
2
1
0
去屏蔽效应使核磁信号向低场移动。
电子的各向异性效应:去屏蔽效应
例2: CH3CH3
δ:0.86
δ: 5.3
H C H
H感 H
C H
2
PPM
1
0
CH2=CH2
H0
外加磁场
5 4
δ: 5.3
3 PPM 2 1 0
1HNMR
of CH≡CH
乙炔碳是SP杂化,电负较
如果质子的外层电子密度越大,则屏蔽越大, 质子的信号出现在高场,δ值变小。如果质子 的外层电子密度越小,则受到屏蔽越小,质子 的信号出现在低场,δ值变大。
低场 高场
δ
12
11 10
9
8
7
6
5
4
3
2
1
δ
5.11.3 化学位移δ的表示
由于分子中氢所处的化学环境不同,显示不 同的吸收峰,峰与峰之间的差距,就称为化 学位移δ (chemical shift)
第5章核磁共振谱
• 第二种,自旋-自旋弛豫(横向弛豫)。是相邻的同类磁 核中发生能量交换,使高能态的核回复到低能态。在这种 状况下,整个体系各种取向的磁核总数不变,体系能量也 不发生变化,半衰期为T2。
T1 >T2
14
• 激发和弛豫:有一定的联系,但弛豫并不是激发的逆过程, 没有对应关系。
• 两种弛豫不等速: T1 >T2;根据测不准原理,弛豫的时间 越短状态能量的不确定性越大,由E=h则的不确定 性越大,谱线越宽。
19
5.2.1 化学位移及自旋-自旋分裂
同一种原子核在固定的磁场中 均以相同的频率共振。
原子核真正感受到的磁场强度H
核周围的电子云密度
核外电子云受到磁场H0作用时,根据楞次定律,会产生感应磁场 Hˊ,其方向与H0相反,因而对原子核产生屏蔽效应(H0·σ)。
➢σ称为屏蔽常数。
➢其大小表示改变H0的能力。 ➢基团不同则σ值不同,因而出现
8
5.1 核磁共振波谱
5.1.1 核磁共振的基本原理 1. 原子核的磁矩和自旋角动量
原子核的自旋如同电流在线圈中运动一样会 产生磁矩μ,其大小与自旋角动量P、核的磁旋 比γ有关,而P又与自旋量子数I有关。
式中,h为普朗克常数;I可为整数或半整数。
9
产生核磁共振的首要条件:核自旋时要有磁矩产生,I≠0
• 第3次,瑞士科学家Ernst因对NMR波谱方法、傅 里叶变换、二维谱技术的杰出贡献,获1991年诺贝 尔化学奖。
7
• 第4次,瑞士核磁共振波谱学家库尔特·维特里希 Kurt Wüthrich,首次用多维NMR技术在测定溶液 中蛋白质结构的三维构象,获2002年诺贝尔化学奖。
• 第5次,美国科学家保罗·劳特布尔 Paul Lauterbur 于1973年发明在静磁场中使用梯度场,能够获得磁 共振信号的位置,从而可以得到物体的二维图像; 英国科学家彼得·曼斯菲尔德 Peter Mansfield进一步 发展了梯度场方法,并用数学方法精确描述了磁共 振信号,实现了磁共振成像;快速成像方法为医学 磁共振成像临床诊断打下了基础。他俩获2003年诺 贝尔医学奖。
T1 >T2
14
• 激发和弛豫:有一定的联系,但弛豫并不是激发的逆过程, 没有对应关系。
• 两种弛豫不等速: T1 >T2;根据测不准原理,弛豫的时间 越短状态能量的不确定性越大,由E=h则的不确定 性越大,谱线越宽。
19
5.2.1 化学位移及自旋-自旋分裂
同一种原子核在固定的磁场中 均以相同的频率共振。
原子核真正感受到的磁场强度H
核周围的电子云密度
核外电子云受到磁场H0作用时,根据楞次定律,会产生感应磁场 Hˊ,其方向与H0相反,因而对原子核产生屏蔽效应(H0·σ)。
➢σ称为屏蔽常数。
➢其大小表示改变H0的能力。 ➢基团不同则σ值不同,因而出现
8
5.1 核磁共振波谱
5.1.1 核磁共振的基本原理 1. 原子核的磁矩和自旋角动量
原子核的自旋如同电流在线圈中运动一样会 产生磁矩μ,其大小与自旋角动量P、核的磁旋 比γ有关,而P又与自旋量子数I有关。
式中,h为普朗克常数;I可为整数或半整数。
9
产生核磁共振的首要条件:核自旋时要有磁矩产生,I≠0
• 第3次,瑞士科学家Ernst因对NMR波谱方法、傅 里叶变换、二维谱技术的杰出贡献,获1991年诺贝 尔化学奖。
7
• 第4次,瑞士核磁共振波谱学家库尔特·维特里希 Kurt Wüthrich,首次用多维NMR技术在测定溶液 中蛋白质结构的三维构象,获2002年诺贝尔化学奖。
• 第5次,美国科学家保罗·劳特布尔 Paul Lauterbur 于1973年发明在静磁场中使用梯度场,能够获得磁 共振信号的位置,从而可以得到物体的二维图像; 英国科学家彼得·曼斯菲尔德 Peter Mansfield进一步 发展了梯度场方法,并用数学方法精确描述了磁共 振信号,实现了磁共振成像;快速成像方法为医学 磁共振成像临床诊断打下了基础。他俩获2003年诺 贝尔医学奖。
第五章 核磁共振碳谱
1. 质子宽带去偶 ( Proton Broad Band decoupling) 又称质子噪音去偶( proton noise band decoupling ) 用一个强的有一定带宽的去偶射频使全部质子去偶,使得 1H对13C的偶合全部去掉。 CH 3、CH2、CH、季C皆是单峰。 特点:图谱简化,所有信号均呈单峰。 其他核如 D、19F、31P对碳的偶合此时一般还存在。峰的重 数由核的个数和自旋量子数Ix确定,用2nIx+1计算。 如ID=1, IF=1/2, IP=1/2
80 Averages
800 Averages
三、核磁共振碳谱特点
1. 化学位移范围宽,
1H 13C
NMR常用的δ值范围为0~10ppm;
NMR常有范围为0~220ppm(正碳离子可达330ppm,而 CI4约为-292ppm),约是氢谱的20倍,其分辨能力远高于 1H NMR。结构上的细微变化可望在碳谱上得到反映。 2. 13C NMR给出不与氢相连的碳的共振收峰; 季碳、C=O、C≡C、C≡N、C=C等基团中的碳不与氢直 接相连,在1H NMR谱中不能直接观测,只能靠分子式及其 对相邻基团值的影响来判断。而在13C NMR谱中,均能给 出各自的特征吸收峰。
羰基碳、双键季碳因T1值很大,故吸收信号非常弱,有时甚 至弱到无法观测的程度。下图所示-紫罗兰酮的9-、6-、5-碳 信号之所以较弱,就是因为这个原因。其中,5-C因附近还存 在连有多质子的基团 (5-CH3及CH2-),多少还受到因照射1H核 引起的NOE效应的影响,故比6-C信号的强度增大许多。
13C化学位移与1H有着相似的平行趋势。
例如:饱和烃的13C和1H均在高场共振,而烯烃和芳烃均在 较低场出现吸收峰。 取代基的诱导、共轭效应、基团屏蔽的各向异性效应等对 13C化学位移的影响也与1H NMR谱相同。 1. 杂化状态 杂化状态是影响C的重要因素,一般说C与该碳上的H 次 序基本上平行。
80 Averages
800 Averages
三、核磁共振碳谱特点
1. 化学位移范围宽,
1H 13C
NMR常用的δ值范围为0~10ppm;
NMR常有范围为0~220ppm(正碳离子可达330ppm,而 CI4约为-292ppm),约是氢谱的20倍,其分辨能力远高于 1H NMR。结构上的细微变化可望在碳谱上得到反映。 2. 13C NMR给出不与氢相连的碳的共振收峰; 季碳、C=O、C≡C、C≡N、C=C等基团中的碳不与氢直 接相连,在1H NMR谱中不能直接观测,只能靠分子式及其 对相邻基团值的影响来判断。而在13C NMR谱中,均能给 出各自的特征吸收峰。
羰基碳、双键季碳因T1值很大,故吸收信号非常弱,有时甚 至弱到无法观测的程度。下图所示-紫罗兰酮的9-、6-、5-碳 信号之所以较弱,就是因为这个原因。其中,5-C因附近还存 在连有多质子的基团 (5-CH3及CH2-),多少还受到因照射1H核 引起的NOE效应的影响,故比6-C信号的强度增大许多。
13C化学位移与1H有着相似的平行趋势。
例如:饱和烃的13C和1H均在高场共振,而烯烃和芳烃均在 较低场出现吸收峰。 取代基的诱导、共轭效应、基团屏蔽的各向异性效应等对 13C化学位移的影响也与1H NMR谱相同。 1. 杂化状态 杂化状态是影响C的重要因素,一般说C与该碳上的H 次 序基本上平行。
核磁共振氢谱(1)
300 MHz、400 MHz、500 MHz、 600 MHz、800 MHz 900 MHz
由永久磁铁到电磁铁再到超导磁体
60 MHz 300 MHz 600 MHz
1.4092 T 7.046 T 14.092 T
2
B0
0
超导磁铁磁场稳定,磁场高,做出谱图的 分辨率高,灵敏度高,便于分析。
第三阶段 1980 年代:Two-dimensional (2D) NMR 诞生(COSY,碳骨架连接顺 序,非键原子间距离,生物 大分子结构,……)
应用领域广泛
核磁共振谱 有机化学、生物化学、药物化学、 物理化学、无机化学研究,以及多 种工业部门 ,……
核磁共振成像 临床医学
第五章 核磁共振氢谱
0 MHz
1.6 核自旋驰豫
激发到高能态的核必须通过适当的途径将其 获得的能量释放到周围环境中去,使核从高能态回 到原来的低能态,这一过程称为自旋驰豫
• 驰豫过程是核磁共振现象发生后得以保持的必要条 件
自发辐射的概率近似为零
• 高能态核
低能态核
通过一些非辐射途径回到 这种过程叫核自旋驰豫
(将自身的能量传递给周围环境或其它低能级态)
异核偶合 JH-13C
例四 利用某些材料在低温下出现超导现象的原理,制成了超导磁铁。
邻近质子自旋磁矩间的相互作用
CH3
1 核磁共振氢谱的解析步骤
相同基团不是化学等价的。
裂分峰之间的距离相等
m = I, I −1, · · ·, −I 等。
Jab = Jba = 7.
1.65 1.04 0.9
2.35 7.06 7.14
第五章 核磁共振波谱法
Nuclear Magnetic Resonance
由永久磁铁到电磁铁再到超导磁体
60 MHz 300 MHz 600 MHz
1.4092 T 7.046 T 14.092 T
2
B0
0
超导磁铁磁场稳定,磁场高,做出谱图的 分辨率高,灵敏度高,便于分析。
第三阶段 1980 年代:Two-dimensional (2D) NMR 诞生(COSY,碳骨架连接顺 序,非键原子间距离,生物 大分子结构,……)
应用领域广泛
核磁共振谱 有机化学、生物化学、药物化学、 物理化学、无机化学研究,以及多 种工业部门 ,……
核磁共振成像 临床医学
第五章 核磁共振氢谱
0 MHz
1.6 核自旋驰豫
激发到高能态的核必须通过适当的途径将其 获得的能量释放到周围环境中去,使核从高能态回 到原来的低能态,这一过程称为自旋驰豫
• 驰豫过程是核磁共振现象发生后得以保持的必要条 件
自发辐射的概率近似为零
• 高能态核
低能态核
通过一些非辐射途径回到 这种过程叫核自旋驰豫
(将自身的能量传递给周围环境或其它低能级态)
异核偶合 JH-13C
例四 利用某些材料在低温下出现超导现象的原理,制成了超导磁铁。
邻近质子自旋磁矩间的相互作用
CH3
1 核磁共振氢谱的解析步骤
相同基团不是化学等价的。
裂分峰之间的距离相等
m = I, I −1, · · ·, −I 等。
Jab = Jba = 7.
1.65 1.04 0.9
2.35 7.06 7.14
第五章 核磁共振波谱法
Nuclear Magnetic Resonance
有机波谱分析课件核磁1
26
22:18
影响NMR谱线宽度的因素
核在高能级上的平均寿命T取决于横向弛豫时间。 谱线宽度与T成反比,固体样品的T2很小,所以 谱线很宽。因此,常规的NMR 测定,需将固体 样品配制成溶液后进行。
22:18
27
3) 化学位移
h E B0 1 B0 2
ħ=h/2π
22:18 31
2. 化学位移的表示方法
—屏蔽作用引起的共振频率差别很小。
100 MHz仪器中,不同化学环境的1H的共振频率差
别在0~1500Hz范围内,难以测量。 以一标准物质作为基准,测定样品和标准物质的共
振频率之差。
—共振频率与外磁场强度有关,不同仪器测定结果难以 比较。
1 = H( -) 0 1 2
核实际受到的磁场强度 B0(1-) 为屏蔽常数
B0
29
电子云密度和核所处的化学环境有关,因 核所处化学环境改变而引起的共振条件 (核的共振频率或外磁场强度)变化的现 象称为化学位移(chemical shift)。
22:18
30
屏蔽常数 与原子核所处的化学环境有关,其 中主要包括以下几项影响因素:
检测电磁波被吸收的情况就可得到核磁共 振波谱。根据波谱图上共振峰的位臵、强度 和精细结构可以研究分子结构。
22:18 3
一、核磁共振波谱的基本原理
核磁共振现象的产生 弛豫 化学位移 自旋-自旋耦合
22:18
4
1)核磁共振现象的产生 原子核的自旋
原子核有自旋运动,在量子力学中用自旋量子数I描述核的运 动状态。
- 为了能持续检测到吸收信号,必须保持低能级上
的粒子数始终多于高能级。
22:18
影响NMR谱线宽度的因素
核在高能级上的平均寿命T取决于横向弛豫时间。 谱线宽度与T成反比,固体样品的T2很小,所以 谱线很宽。因此,常规的NMR 测定,需将固体 样品配制成溶液后进行。
22:18
27
3) 化学位移
h E B0 1 B0 2
ħ=h/2π
22:18 31
2. 化学位移的表示方法
—屏蔽作用引起的共振频率差别很小。
100 MHz仪器中,不同化学环境的1H的共振频率差
别在0~1500Hz范围内,难以测量。 以一标准物质作为基准,测定样品和标准物质的共
振频率之差。
—共振频率与外磁场强度有关,不同仪器测定结果难以 比较。
1 = H( -) 0 1 2
核实际受到的磁场强度 B0(1-) 为屏蔽常数
B0
29
电子云密度和核所处的化学环境有关,因 核所处化学环境改变而引起的共振条件 (核的共振频率或外磁场强度)变化的现 象称为化学位移(chemical shift)。
22:18
30
屏蔽常数 与原子核所处的化学环境有关,其 中主要包括以下几项影响因素:
检测电磁波被吸收的情况就可得到核磁共 振波谱。根据波谱图上共振峰的位臵、强度 和精细结构可以研究分子结构。
22:18 3
一、核磁共振波谱的基本原理
核磁共振现象的产生 弛豫 化学位移 自旋-自旋耦合
22:18
4
1)核磁共振现象的产生 原子核的自旋
原子核有自旋运动,在量子力学中用自旋量子数I描述核的运 动状态。
- 为了能持续检测到吸收信号,必须保持低能级上
的粒子数始终多于高能级。
第五章 核磁共振波谱分析法
四、脉冲傅里叶变换核磁共振仪
不是通过扫场或扫 频产生共振; 恒定磁场,施加全 频脉冲,产生共振, 采集产生的感应电 流信号,经过傅里 叶变换获得一般核 磁共振谱图。
五、样品处理方法
对样品及样品瓶的要求 1)样品:样品要纯;通常为1-3mg(低灵敏度NMR仪需 10-30mg)、不含氧和灰尘。如含氧,则可能N2或He 或抽真空除之。 2)样品管:通常以硼硅酸盐玻璃制成。对1H谱,瓶 外径约5 mm;对13C 谱,因其自然丰度低,瓶外径 约为10 mm。管长15-20 cm,加入样品约为管长 1/8-1/6。 对溶剂的要求 固体样品的谱峰很宽,应选择适当溶剂配成溶液 (浓度:0.1-0.5 mol/L)后再测定。不含质子、沸 点低、不与样品缔合、溶解度好。 位移试剂 可使各种质子发生顺磁性或反磁性位移,从而将 各种质子信号分开,这对解析复杂光谱有帮助。
△E=E2 -E1= μB0 -(-μB0 ) = 2μB0 μ为自旋核产生的磁矩;B0外加磁感应强度 △E与核磁矩及外磁场强度成正比, B0越大, 能级 分裂越大, △E越大
(二)核磁共振
△E= 2μB0=hν ν=ν0=γB0/2π ν质子发生共振需要的射频电磁波的频率 γ磁旋比 ; B0外加磁感应强度;ν0共振时的进动频率 I=1/2的同一核来说,因磁矩为一定值,γ—为常数, 所以发生共振时,照射频率的大小取决于外磁场强度 的大小。外磁场强度增加时,为使核发生共振,照射 频率也相应增加;反之,则减小。 对自旋量子数I=1/2的不同核来说,若同时放入一固 定磁场中,共振频率取决于核本身磁矩的大小, μ大 的核,发生共振所需的照射频率也大;反之,则小。 照射频率固定,磁矩大的核共振所需磁场强度小。
5.自旋耦合与自旋分 裂现象:CH3CH2OH中有
第五章 核磁共振氢谱-2
式中: 1 - 4 表示A的谱线分裂宽度; 6- 8 近似为B的谱线分裂宽度;
1/3: 表示相互偶合的核共三个. 故除以 3. AB2体系的分析方法对推测结构很有用.
例: 从谱图形状可知它为AB2体系. 代入JAB计算公式: JAB= 1/3[( 4 - 1) + (8 - 6 )] =1/3[(15.6-0.0)+(32.4-23.7)]=8.1 Hz
可以看出: 耦合常数 J 为1, 2线或3, 4线间的距离; D为1, 3线或2, 4线间的距离, 1, 4线称为外线, 2, 3 线称为内线.
2. AB2体系: 介于A3和AX2之间的体系
常见的AB2体系有:
苯环对称三取代 吡啶环对称二取代
R
R
R'
R NR
R'
R
R
R
R
N
CH CH2
CH CH CH
+= (v8-v2) (v6-v4) =14.96 Hz -= (v7-v1) (v5-v3) =12.48 Hz
令26.48Hz属于A核, 则11.52Hz属于B核,剩余19.24Hz和6.76Hz有两种归属的可能性:
a) JAX与JBX同号, a+ 和a-属于A, b+ 和b-属于B,所以
A= 1/2(a++ a-) = 1/2(26.48+19.24) =22.86 Hz
3. ABX体系: 可能成为ABX体系的有
H
C H
H C
H C
H
C CH
H C
HC
C H
H CH C
H
R'
CH CH CH
R''
1/3: 表示相互偶合的核共三个. 故除以 3. AB2体系的分析方法对推测结构很有用.
例: 从谱图形状可知它为AB2体系. 代入JAB计算公式: JAB= 1/3[( 4 - 1) + (8 - 6 )] =1/3[(15.6-0.0)+(32.4-23.7)]=8.1 Hz
可以看出: 耦合常数 J 为1, 2线或3, 4线间的距离; D为1, 3线或2, 4线间的距离, 1, 4线称为外线, 2, 3 线称为内线.
2. AB2体系: 介于A3和AX2之间的体系
常见的AB2体系有:
苯环对称三取代 吡啶环对称二取代
R
R
R'
R NR
R'
R
R
R
R
N
CH CH2
CH CH CH
+= (v8-v2) (v6-v4) =14.96 Hz -= (v7-v1) (v5-v3) =12.48 Hz
令26.48Hz属于A核, 则11.52Hz属于B核,剩余19.24Hz和6.76Hz有两种归属的可能性:
a) JAX与JBX同号, a+ 和a-属于A, b+ 和b-属于B,所以
A= 1/2(a++ a-) = 1/2(26.48+19.24) =22.86 Hz
3. ABX体系: 可能成为ABX体系的有
H
C H
H C
H C
H
C CH
H C
HC
C H
H CH C
H
R'
CH CH CH
R''
5第五章核磁氢谱(上)课件
Ha
O CH3O
Hb
C
OH
O
(3)轨道杂化影响
单键、双键、叁键碳原子的轨道杂化状态不同,屏蔽效 应不同,例如: C—C 单键 sp3杂化 C=C 双键 sp2杂化 向低场 C≡C 三键 sp杂化
当无其它效应存在时,随s成分增加,氢外电子云密度 减小,屏蔽作用减小,δ值增加。
B.远程屏蔽效应
远程屏蔽效应又称邻近的反磁屏蔽或磁各向异 性效应。远程屏蔽效应的特征是有方向性。 当分子中某一原子核外的电子云分布不是球形对称 时,即磁各向异性时,它对相邻核就附加了一个各 向异性的磁场,使在某些位置上的核受屏蔽(向高 场),而另一些位置上的核去屏蔽(向低场),因 而改变了一些核的化学位移值,称为磁各向异性效 应。 常见的各向异性效应(氢谱)
与样品(如醇)生成分子间氢键,化学位移增加而转移
位置,证明-OH的存在。
R O H + HCl
ROH
常用此法检验羟基上的氢
H+Cl-
(2)芳香族溶剂磁各向异性效应: (Aromatic Solvent Introduce shift) (ASIS效应)
CCl4及CDCl3等溶剂对化合物的δ值基本上没有影 响,
核磁共振氢谱图示
CH2 CH3
NMR谱仪常配备有自动积分仪,对每组峰面积进行自动积分, 在谱中以数字(或积分高度显示)。各组峰的积分面积之简比, 代表了相应的氢核数目之比。上图从左至右,三组峰的积分高 度之简比为5:2:3,其质子数目之比也为5:2:3。
δ(ppm),裂分(n+1规律),J,积分曲线(H的比例)。
核磁共振氢谱图示
记录NMR谱的图纸打有刻度,上标Δν(Hz),下标δ (ppm)。
O CH3O
Hb
C
OH
O
(3)轨道杂化影响
单键、双键、叁键碳原子的轨道杂化状态不同,屏蔽效 应不同,例如: C—C 单键 sp3杂化 C=C 双键 sp2杂化 向低场 C≡C 三键 sp杂化
当无其它效应存在时,随s成分增加,氢外电子云密度 减小,屏蔽作用减小,δ值增加。
B.远程屏蔽效应
远程屏蔽效应又称邻近的反磁屏蔽或磁各向异 性效应。远程屏蔽效应的特征是有方向性。 当分子中某一原子核外的电子云分布不是球形对称 时,即磁各向异性时,它对相邻核就附加了一个各 向异性的磁场,使在某些位置上的核受屏蔽(向高 场),而另一些位置上的核去屏蔽(向低场),因 而改变了一些核的化学位移值,称为磁各向异性效 应。 常见的各向异性效应(氢谱)
与样品(如醇)生成分子间氢键,化学位移增加而转移
位置,证明-OH的存在。
R O H + HCl
ROH
常用此法检验羟基上的氢
H+Cl-
(2)芳香族溶剂磁各向异性效应: (Aromatic Solvent Introduce shift) (ASIS效应)
CCl4及CDCl3等溶剂对化合物的δ值基本上没有影 响,
核磁共振氢谱图示
CH2 CH3
NMR谱仪常配备有自动积分仪,对每组峰面积进行自动积分, 在谱中以数字(或积分高度显示)。各组峰的积分面积之简比, 代表了相应的氢核数目之比。上图从左至右,三组峰的积分高 度之简比为5:2:3,其质子数目之比也为5:2:3。
δ(ppm),裂分(n+1规律),J,积分曲线(H的比例)。
核磁共振氢谱图示
记录NMR谱的图纸打有刻度,上标Δν(Hz),下标δ (ppm)。
第五章核磁共振氢谱
2)A与X有相互偶合作用时的能级图
从图1.6可以看出: E2 - E1 = (E2 - J/4) -(E1 + J/4) = ( E2 - E1) -J/2 E4 - E3 = (E4 +J/4) -(E3 - J/4) = ( E4 - E3) + J/2 E3 - E1 = (E3 - J/4) -(E1 + J/4) = ( E3 - E1) - J/2 E4 - E2 = (E4 + J/4) - (E2 - J/4) = ( E4 - E2) + J/2 vA = vA-J/2
AB2体系中: A = 3
B=1/2(5 + 7)
JAB = 1/3[(1 - 4)+( 6 - 8)] 式中: 1 - 4 表示A的谱线分裂宽度; 6- 8 近似为B的谱线分裂宽度; 1/3: 表示相互偶合的核共三个. 故除以 3.
AB2体系的分析方法对推测结构很有用.
A为三重峰, 强度比为: 1 2 1
X为二重峰, 强度比为: 1 1
HA HX Cl C C Cl
Cl HX
3. A2X2 体系:
A为三重峰, 强度比为: 1 2 1 X为三重峰, 强度比为: 1 2 1
例:
X CH2 A CH2 O COCH3
X CH2
A CH2
O
COCH3
2. AB2体系: 介于A3和AX2之间的体系 常见的AB2体系有:
R'
R R
苯环对称三取代
吡啶环对称二取代
R'
R
R
R
R N R
R N
CH
CH2
CH
CH
CH
NMR(核磁共振)解析
自旋—自旋驰豫虽然与体系保持共振条件无关,但却 影响谱线的宽度。核磁共振谱线宽度与核在激发状态的 寿命成反比。对于固体样品来说,T1很长,T2却很短, T2起着控制和支配作用,所以谱线很宽。而在非粘稠液 体样品中,T1和T2一般为1s左右。所以要得到高分辨 的NMR谱图,通常把固体样品配成溶液进行测定。
到低能态而不发射原来所吸收的能量的过程称为驰豫 (relaxation)过程
驰豫过程可分为两种:自旋—晶格驰豫和自旋— 自旋驰豫
(1)自旋—晶格驰豫(spin-lattice relaxation):自旋—晶格 驰豫也称为纵向驰豫,是处于高能态的核自旋体系与其周围的 环境之间的能量交换过程。当一些核由高能态回到低能态时, 其能量转移到周围的粒子中去,对固体样品,则传给晶格,如 果是液体样品,则传给周围的分子或溶剂。自旋—晶格驰豫的 结果使高能态的核数减少,低能态的核数增加,全体核的总能 量下降。
E
hv回
hv射
hγ
2
B0
(5.7)
或
v射
v回
γ
2
B0
(5.8)
可见射频频率与磁场强度B0是成正比的,在进行核磁 共振实验时,所用磁场强度越高,发生核磁共振所需的 射频频率越高。
5.2.5 核的自旋弛豫
前面讨论的是单个自旋核在磁场中的行为,而实际测定 中,观察到的是大量自旋核组成的体系。一组1H核在 磁场作用下能级被一分为二,如果这些核平均分布在高 低能态,也就是说,由低能态吸收能量跃迁到高能态和 高能态释放出能量回到低能态的速度相等时,就不会有 静吸收,也测不出核磁共振信号。但事实上,在热力学 温度0K时,全部1H核都处于低能态(取顺磁方向), 而在常温下,由于热运动使一部分的1H核处于高能态 (取反磁方向),在一定温度下处于高低能态的核数会 达到一个热平衡。处于低能态的核和处于高能态的核的 分布,可由玻尔兹曼分配定律算出。例如 B0=1.4092T , T=300K时,则:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 进动(Precession) – 质子在静磁场中以进动方式运动 – 这种运动类似于陀螺的运动
拉莫尔进动:在磁场中,自传核的赤道平面因受到力矩作用 而发生偏转,结果核磁矩绕着磁场方向转动
自旋量子数I≠0的核,置于恒定的外磁场B0中,自旋核 的行为就像一个陀螺绕磁场方向发生回旋运动,称为
Larmor进动。
3 .射频信号接受器和检测 器):当质子的进动频率 与辐射频率相匹配时,发 生能级跃迁,吸收能量, 在感应线圈中产生毫伏级 信号。
4.探头:有外径5mm的玻璃样品管座, 发射线圈,接收线圈, 预放大器和变温元件等。样品管座处于线圈的中心,测量过 程中旋转, 磁场作用均匀。发射线圈和接收线圈相互垂直。
核自旋量子数、质量数和原子序数的关系
质量数(a) 原子序数(Z)自旋量子(I)
例子
奇数
偶数 偶数
奇或偶
偶数 奇数
1,3,5 222
0 1,2,3……
I
1 2
,1H
1
,
13C6 ,19F9 ,15N 7
I
3 2
,11B5
,
35Cl17
,
I
5 2
,17
O8
12C6 ,16O8 ,32S16
I 1,2 H1,14 N7 ,I 3,10 B5
磁旋比,即核磁矩与自旋角动量的比值,不同的核具有
不同的磁旋比,它是磁核的一个特征(固定)常数。
(3) 与 P方向平行。
1 H 2.79270
13C 0.70216
•产生核磁共振的首要条件:
核自旋时要有磁矩产生,即只有当核的自旋量子数 I ≠ 0 时,核自旋才能具有一定的自旋角动量,产生磁矩。 •I=0 的原子核等没有磁矩,没有核磁共振现象。
吸收此频率的波,发生能级跃迁,从
而产生 NMR 吸收。
5.1.1 原子核的磁矩和自旋角动量 atomic nuclear spin
(1)一些原子核像电子一样存在自旋现象,
因而有自旋角动量:
h
P = [I(I+1)]1/2 2
I:为自旋量子数
(2)由于原子核是具有一定质量的带正电的粒子,故在自
旋时会产生 核磁矩: = P
• 1953年世界上第一台商品化NMR质谱仪。 • 1964年世界上第一台超导磁场的NMR谱仪。 • 1971年世界上第一台脉冲傅里叶变换NMR谱仪。 • 1976年,R.R. Ernst发表了二维核磁共振的理论和实验的文章。
获得1991年诺贝尔化学奖。
• 核磁共振谱:无线电波范围内的吸收光谱,频率 是兆周(MC)或兆赫兹(MHz),属于射频区。
核的自旋轴(与核磁矩矢量μ重合)与B0轴(回旋轴) 不完全一致而是形成一定的角度。
核的Larmor进动频率ν0与外磁场B0成正比
ν0= γ/2 π ▪ B0
νo
P
自旋与核磁
•地球自转产生磁场
•原子核总是不停地按一定频率绕着自身的轴发生自 旋 ( Spin )
•原子核的质子带正电荷,其自旋产生的磁场称为核磁。
5.1.3 核磁共振
•处于高能状态太费劲,并非人人都能做到
•处于低能状态的略多一点
B0越大,N-/N+越小,即低能态的核数越多。
5.2 核磁共振仪
1.永久磁铁:提供外磁场, 要求稳定性好,均匀,不 均匀性小于六千万分之一。 扫场线圈。 2 .射频振荡器:线圈垂直 于外磁场,发射与磁场强 度相适应的电磁辐射信号。 6 0 、 80 、 100 、 300 、 400 、 500或600MHz
核磁矩在磁场B0中出现的不同进动取向现象称为核磁能 级分裂,又叫做Zeeman分裂。 对于I=1/2(例如1H,13C)的核来说,相对于B0有两种 自旋相反的取向,可用符号+1/2和-1/2表示。 m = +1/2,μ与B0方向一致,为低能级自旋取向; m = -1/2,μ与B0方向相反,为高能级自旋取向。
5.3 1H-核磁共振波谱—氢谱
• 5.3.1 屏蔽作用与化学位移
屏蔽作用:由于原子核周围存在电子云,在不同的化学 环境中,和周围电子云密度是不同的,当原子核处于外磁 场中时,核外电子运动要产生方向相反的感应磁场,使核 实际受到的磁场强度减弱。核外电子对原子核的这种作用 就是屏蔽作用。 化学位移:当共振频率发生了变化, 在谱图上反映出了谱峰位置的移动。
这类原子核的核电荷分布可看作一个椭 圆体,电荷分布不均匀,共振吸收复杂, 研究应用较少;
(重要) (2)I=1/2的原子核 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋, 有磁矩产生,是核磁共振研究的主要对象,C,H也是有机 化合物的主要组成元素。
• 5.1.2 拉莫尔进动
扫描速度太慢,样品用量也比较大
傅立叶变换的作用
复杂的时间域信号 傅立叶变换 简单的频率域信号
Amplitude
样品的制备:
试样浓度:5-10%;需要纯样品 15-30 mg; 傅立叶变换核磁共振波谱仪需要纯样品 1 mg ;
标样浓度(四甲基硅烷 TMS) : 1%; 溶剂:1H谱 四氯化碳,二硫化碳;氘代溶剂:氯仿,丙 酮、苯、二甲基亚砜的氘代物;
第5章核磁共振谱
Nuclear magnetic resonance spectroscopy,NMR
核磁共振波谱学的发展
• 1946年,Purcell 和 Bloch观察到核磁共振现象。于1952 年获得诺贝尔物理奖。
• 1945-1951年间,化学位移和自旋耦合的发现,NMR技术的化 学应用。
原子核的自旋量子数I与核的质子数和中子数有关,质 子和中子都是微观粒子,并且同种微观粒子自旋方向相 反且配对。 当质子和中子都为奇数或其中之一是奇数时,就能对原 子核的旋转做贡献,即I≠0,该原子核就有自旋现象; 当质子和中子都是偶数时,自旋量子数I=0,原子核没 有自旋现象。
讨论:
(1) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2: 11B,35Cl,79Br,81Br I=5/2:17O,127I
• 产生条件:只有置于强磁场F的原子核才会发生 能级间的跃迁,当吸收的辐射能量与核能极差相 等时,就发生能级跃迁,从而产生核磁共振信号。
• 分类:氢谱(1H NMR)、碳谱(13C NMR)
NMR方成两个或更多
的量子化能级。
(2)用一个能量恰好等于分裂后相 邻能级差的电磁波照射,该核就可以
拉莫尔进动:在磁场中,自传核的赤道平面因受到力矩作用 而发生偏转,结果核磁矩绕着磁场方向转动
自旋量子数I≠0的核,置于恒定的外磁场B0中,自旋核 的行为就像一个陀螺绕磁场方向发生回旋运动,称为
Larmor进动。
3 .射频信号接受器和检测 器):当质子的进动频率 与辐射频率相匹配时,发 生能级跃迁,吸收能量, 在感应线圈中产生毫伏级 信号。
4.探头:有外径5mm的玻璃样品管座, 发射线圈,接收线圈, 预放大器和变温元件等。样品管座处于线圈的中心,测量过 程中旋转, 磁场作用均匀。发射线圈和接收线圈相互垂直。
核自旋量子数、质量数和原子序数的关系
质量数(a) 原子序数(Z)自旋量子(I)
例子
奇数
偶数 偶数
奇或偶
偶数 奇数
1,3,5 222
0 1,2,3……
I
1 2
,1H
1
,
13C6 ,19F9 ,15N 7
I
3 2
,11B5
,
35Cl17
,
I
5 2
,17
O8
12C6 ,16O8 ,32S16
I 1,2 H1,14 N7 ,I 3,10 B5
磁旋比,即核磁矩与自旋角动量的比值,不同的核具有
不同的磁旋比,它是磁核的一个特征(固定)常数。
(3) 与 P方向平行。
1 H 2.79270
13C 0.70216
•产生核磁共振的首要条件:
核自旋时要有磁矩产生,即只有当核的自旋量子数 I ≠ 0 时,核自旋才能具有一定的自旋角动量,产生磁矩。 •I=0 的原子核等没有磁矩,没有核磁共振现象。
吸收此频率的波,发生能级跃迁,从
而产生 NMR 吸收。
5.1.1 原子核的磁矩和自旋角动量 atomic nuclear spin
(1)一些原子核像电子一样存在自旋现象,
因而有自旋角动量:
h
P = [I(I+1)]1/2 2
I:为自旋量子数
(2)由于原子核是具有一定质量的带正电的粒子,故在自
旋时会产生 核磁矩: = P
• 1953年世界上第一台商品化NMR质谱仪。 • 1964年世界上第一台超导磁场的NMR谱仪。 • 1971年世界上第一台脉冲傅里叶变换NMR谱仪。 • 1976年,R.R. Ernst发表了二维核磁共振的理论和实验的文章。
获得1991年诺贝尔化学奖。
• 核磁共振谱:无线电波范围内的吸收光谱,频率 是兆周(MC)或兆赫兹(MHz),属于射频区。
核的自旋轴(与核磁矩矢量μ重合)与B0轴(回旋轴) 不完全一致而是形成一定的角度。
核的Larmor进动频率ν0与外磁场B0成正比
ν0= γ/2 π ▪ B0
νo
P
自旋与核磁
•地球自转产生磁场
•原子核总是不停地按一定频率绕着自身的轴发生自 旋 ( Spin )
•原子核的质子带正电荷,其自旋产生的磁场称为核磁。
5.1.3 核磁共振
•处于高能状态太费劲,并非人人都能做到
•处于低能状态的略多一点
B0越大,N-/N+越小,即低能态的核数越多。
5.2 核磁共振仪
1.永久磁铁:提供外磁场, 要求稳定性好,均匀,不 均匀性小于六千万分之一。 扫场线圈。 2 .射频振荡器:线圈垂直 于外磁场,发射与磁场强 度相适应的电磁辐射信号。 6 0 、 80 、 100 、 300 、 400 、 500或600MHz
核磁矩在磁场B0中出现的不同进动取向现象称为核磁能 级分裂,又叫做Zeeman分裂。 对于I=1/2(例如1H,13C)的核来说,相对于B0有两种 自旋相反的取向,可用符号+1/2和-1/2表示。 m = +1/2,μ与B0方向一致,为低能级自旋取向; m = -1/2,μ与B0方向相反,为高能级自旋取向。
5.3 1H-核磁共振波谱—氢谱
• 5.3.1 屏蔽作用与化学位移
屏蔽作用:由于原子核周围存在电子云,在不同的化学 环境中,和周围电子云密度是不同的,当原子核处于外磁 场中时,核外电子运动要产生方向相反的感应磁场,使核 实际受到的磁场强度减弱。核外电子对原子核的这种作用 就是屏蔽作用。 化学位移:当共振频率发生了变化, 在谱图上反映出了谱峰位置的移动。
这类原子核的核电荷分布可看作一个椭 圆体,电荷分布不均匀,共振吸收复杂, 研究应用较少;
(重要) (2)I=1/2的原子核 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋, 有磁矩产生,是核磁共振研究的主要对象,C,H也是有机 化合物的主要组成元素。
• 5.1.2 拉莫尔进动
扫描速度太慢,样品用量也比较大
傅立叶变换的作用
复杂的时间域信号 傅立叶变换 简单的频率域信号
Amplitude
样品的制备:
试样浓度:5-10%;需要纯样品 15-30 mg; 傅立叶变换核磁共振波谱仪需要纯样品 1 mg ;
标样浓度(四甲基硅烷 TMS) : 1%; 溶剂:1H谱 四氯化碳,二硫化碳;氘代溶剂:氯仿,丙 酮、苯、二甲基亚砜的氘代物;
第5章核磁共振谱
Nuclear magnetic resonance spectroscopy,NMR
核磁共振波谱学的发展
• 1946年,Purcell 和 Bloch观察到核磁共振现象。于1952 年获得诺贝尔物理奖。
• 1945-1951年间,化学位移和自旋耦合的发现,NMR技术的化 学应用。
原子核的自旋量子数I与核的质子数和中子数有关,质 子和中子都是微观粒子,并且同种微观粒子自旋方向相 反且配对。 当质子和中子都为奇数或其中之一是奇数时,就能对原 子核的旋转做贡献,即I≠0,该原子核就有自旋现象; 当质子和中子都是偶数时,自旋量子数I=0,原子核没 有自旋现象。
讨论:
(1) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2: 11B,35Cl,79Br,81Br I=5/2:17O,127I
• 产生条件:只有置于强磁场F的原子核才会发生 能级间的跃迁,当吸收的辐射能量与核能极差相 等时,就发生能级跃迁,从而产生核磁共振信号。
• 分类:氢谱(1H NMR)、碳谱(13C NMR)
NMR方成两个或更多
的量子化能级。
(2)用一个能量恰好等于分裂后相 邻能级差的电磁波照射,该核就可以