大学物理静电场精彩试题库
3大学物理习题-静电场
3大学物理习题-静电场静电场一、选择题1.一带电体可作为点电荷处理的条件是(A)电荷必须呈球形分布;(B)带电体的线度很小;(C)带电体的线度与其它有关长度相比可忽略不计;(D)电量很小。
2.真空中有两个点电荷M、N,相互间作用力为F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变;(B)大小改变,方向不变;(C)大小和方向都不变;(D)大小和方向都改变。
3.下列几种说法中哪一个是正确的(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;F(C)场强方向可由E定义给出,其中q为试验电荷的电量,q可正、可负,F为试验q电荷所受的电场力;(D)以上说法都不正确。
4.一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A)F0,M0;(B)F0,M0;(C)F0,M0;(D)F0,M0。
5.一电场强度为E的均匀电场,E的方向与某轴正向平行,如图所示,则通过图中一半径为R的半球面的电场强度通量为(A)R2E;(B)O第题图1R2E;(C)2R2E;(D)0。
2E某6.如图所示,一个带电量为q的点电荷位于立方体的度通量等于:(A)A角上,则通过侧面abcd的电场强12060A·qb图2404807.下列说法正确的是c(A)闭合曲面上各点的电场强度都为零,曲面内一定没有电荷;(B)闭合曲面上各点的电场强度都为零,曲面内电荷代数和必定为零;(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
8.电场中高斯面上各点的电场强度是由:(A)分布在高斯面上的电荷决定的;(B)分布在高斯面外的电荷决定的;(C)空间所有的电荷决定的;(D)高斯面内电荷代数和决定的。
9.根据高斯定理的数学表达式EdSSq/0可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零;(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零;(C)闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零;(D)闭合面上各点场强均为零时,闭合面内一定处处无电荷;10.已知一高斯面所包围的体积内电量代数和qi0,则可肯定:(A)高斯面上各点场强均为零;(B)穿过高斯面上每一面元的电通量均为零;(C)穿过整个高斯面的电通量为零;(D)以上说法都不对。
大学物理:静电场练习题
由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向
静电场练习题及答案解析
静电场练习题及答案解析练习1一、选择题1. 一带电体可作为点电荷处理的条件是( )A. 电荷必须呈球形分布;B. 带电体的线度与其它有关长度相比可忽略不计;C. 电量很小;D. 带电体的线度很小。
2. 试验点和q0在电场中受力为F⃗,其电场强度的大小为F,以下说法正确的( )q0A. 电场强度的大小E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定;B. 电场强度的大小E正比于F且反比与q0;C. 电场强度的大小E反比与q0;D. 电场强度的大小E正比于F。
3. 如果通过闭合面S的电通量Φe为零,则可以肯定( )A. 面S内没有电荷;B. 面S内没有净电荷;C. 面S上每一点的场强都等于零;D. 面S上每一点的场强都不等于零。
4. 如图所示为一具有球对称性分布的静电场的E~r关系曲线,产生该静电场的带电体是( ) A 半径为R的均匀带电球面;B半径为R的均匀带电球体;C半径为R的、电荷体密度为ρ=Ar(A为常数)的非均匀带电球体;D半径为R的、电荷体密度为ρ=A r⁄(A为常数)的非均匀带电球体。
5. 在匀强电场中,将一负电荷从A移动B,如图所示,则( )A. 电场力做负功,负电荷的电荷能增加;B. 电场力做负功,负电荷的电势能减少;C. 电场力做正功,负电荷的电势能增加;D. 电场力做正功,负电荷的电势能减少。
二、填空题1. 点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量∮E⃗⃗∙dS⃗=,式中E⃗⃗是点电荷在闭合曲面上任一点产生的场强的矢量和。
2. 真空环境中正电荷q均匀地分布在半径为R的细圆环上.在环环心O处电场强度为,环心的电势为。
=0,这表3. 在静电场中,场强沿任意闭合路径的线积分等于零,即∮E⃗⃗∙dl⃗L明静电场中的电场线。
4. 一半径为R的均匀带电球面,其电荷面密度为σ,该球面内、外的场强分布为(r⃗表示从球心引出的矢径):E⃗⃗r=(r<R);E⃗⃗r=(r>R)。
《静电场》_单元测试题(含答案)
第一章 《静电场 》单元测试题班级 姓名一、单项选择题(本题共6小题,每小题5分,共30分)1.关于电场强度与电势的关系,下面各种说法中正确的是( )A .电场强度大的地方,电势一定高B .电场强度不变,电势也不变C .电场强度为零时,电势一定为零D .电场强度的方向是电势降低最快的方向2.如图1所示,空间有一电场,电场中有两个点a 和b .下列表述正确的是A .该电场是匀强电场B .a 点的电场强度比b 点的大C .a 点的电势比b 点的高D .正电荷在a 、b 两点受力方向相同3.如图2空中有两个等量的正电荷q 1和q 2,分别固定于A 、B 两点,DC 为AB连线的中垂线,C 为A 、B 两点连线的中点,将一正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,下列结论正确的有( )A .电势能逐渐减小B .电势能逐渐增大C .q 3受到的电场力逐渐减小D .q 3受到的电场力逐渐增大 图24.如图3所示,a 、b 、c 为电场中同一条水平方向电场线上的三点,c 为ab 的中点,a 、b 电势分别为φa =5 V 、φb =3 V .下列叙述正确的是( )A .该电场在c 点处的电势一定为4 VB .a 点处的场强E a 一定大于b 点处的场强E bC .一正电荷从c 点运动到b 点电势能一定减少D .一正电荷运动到c 点时受到的静电力由c 指向a 图35.空间存在甲、乙两相邻的金属球,甲球带正电,乙球原来不带电,由于静电感应,两球在空间形成了如图4所示稳定的静电场.实线为其电场线,虚线为其等势线,A 、B 两点与两球球心连线位于同一直线上,C 、D 两点关于直线AB 对称,则( )A .A 点和B 点的电势相同B .C 点和D 点的电场强度相同C .正电荷从A 点移至B 点,静电力做正功D .负电荷从C 点沿直线CD 移至D 点,电势能先增大后减小 图46.如图5所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、 b 、d 三个点,a 和b 、b 和c 、 c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ). 图5A .k 3q R 2B .k 10q 9R 2C .k Q +q R 2D .k 9Q +q 9R 2 二、多项选择题(本题共4小题,每小题8分,共32分)7.下列各量中,与检验电荷无关的物理量是( )A .电场力FB .电场强度EC .电势差UD .电场力做的功W图18.带电粒子M 只在电场力作用下由P 点运动到Q 点,在此过程中克服电场力做了2.6×10-8 J 的功,那么( ) A .M 在P 点的电势能一定小于它在Q 点的电势能B .P 点的场强一定小于Q 点的场强C .P 点的电势一定高于Q 点的电势D .M 在P 点的动能一定大于它在Q 点的动能9.如图6所示的电路中,AB 是两金属板构成的平行板电容器.先将电键K 闭合,等电路稳定后再将K 断开,然后将B 板向下平移一小段距离,并且保持两板间的某点P 与A 板的距离不变.则下列说法正确的是( )A .电容器的电容变小B .电容器内部电场强度大小变大C .电容器内部电场强度大小不变D .P 点电势升高10.带电粒子在匀强电场中的运动轨迹如图7所示,如果带电粒子只受电场力作用从a 到b 运动,下列说法正确的是( )A .粒子带正电B .粒子在a 和b 点的加速度相同C .该粒子在a 点的电势能比在b 点时大D .该粒子在b 点的速度比在a 点时大三.计算题:(38分)11.(16分)有一带电荷量q = -3×10-6 C 的点电荷,从某电场中的A 点移到B 点,电荷克服电场力做6×10-4 J 的功,从B 点移到C 点,电场力对电荷做9×10-4 J 的功,求A 、C 两点的电势差并说明A 、C 两点哪点的电势较高图7图612.(22分)如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点。
大学物理-静电场(一)(带答案)
一、库仑定律和电场力1.关于摩擦一物体后,物体呈现正电性的一种解释是:在摩擦过程中,[ ]A.物体获得了中子。
B.物体获得了质子。
C.物体失去了电子。
D.物体失去了中子。
【答案】:C2.两条平行的无限长直均匀带电线,相距为d,线电荷密度分别为±λ,若已知一无限长均匀带电直线的场强分布为λ2πε0r方向垂直于带电直线,则其中一带电直线上的单位长度电荷受到另一带电直线的静电作用力大小为[ ]A.λ24πε0d2B.λ24πε0dC.λ22πε0d2D.λ22πε0d【答案】:D3.关于电荷与电场,有下列几种说法,其中正确的是[]A.点电荷的附近空间一定存在电场;B.电荷间的相互作用与电场无关;C.若电荷在电场中某点受到的电场力很大,则表明该点的电场强度一定很大;D.在某一点电荷附近的任一点,若没放试验电荷,则该点的电场强度为零。
【答案】:A4. 两个静止不动的点电荷的带电总量为2q,为使它们间的排斥力最大,各自所带的电荷量分别为[]A.q2,3q 2B.q3,5q 3C.q,qD.−q2,5q 2【答案】:C5.关于电场力和电场强度,有下列几种说法,其中正确的是[]A.静电场的库仑力的叠加原理和电场强度的叠加原理彼此独立、没有联系;B.两静止点电荷之间的相互作用力遵守牛顿第三定律;C.在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同;D.以上说法都不正确。
【答案】:B6.—点电荷对放在相距d处的另一个点电荷的作用力为F,若两点电荷之间的距离减小一半,此时它们之间的静电力为[ ]A.4FB.2FC.0.5FD.0.25F【答案】:A7.如图所示为一竖直放置的无穷大平板,其上均匀分布着面电荷密度为σ的正电荷,周围激发的电场强度大小为σ2ε0,方向沿水平方向向外且垂直于平板。
在其附近有一水平放置的、长度为l的均匀带电直线,直线与平板垂直,其线电荷密度为λ,则该带电直线所受到的电场力大小为[ ]A.σλ2πε0ln lB.σλ2ε0ln lC.σλl2πε0D.σλl2ε0【答案】:D8.质量为m、电荷为-e的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r,旋转频率为γ,动能为E,则下列几种关系中正确的是[]A.E=e8πε0rB.γ2=32ε02E3me4C.E=e 24πε0rD.γ2=32ε0E3me2【答案】:B9.电偶极子在非均匀电场中的运动状态[ ]A.只可能有转动运动;B.不可能有转动运动;C.只可能有平动运动;D.既可能有转动运动,也可能有平动运动。
大学物理——静电场考试题
大学物理——静电场考试题5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B). 5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210===F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41re εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度. 解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为 ()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2 (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+-显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+= 考虑到z >>d ,简化上式得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-= 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度k E 403π41zQ ε= 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==DEFG OABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有22a E ABGF CDEO -=-=ΦΦ同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2Sπ4d r E ⋅=⋅⎰S E根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场rrεqe E 20π4d d =由电场叠加可解得带电球体内外的电场分布()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()4202πd π41π4r εk r r kr εr r E r==⎰()r εkr r e E 024=球体外(r >R )()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εσe E 012=n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212 它们的合电场强度为n rx x εσe E E E 22212+=+=在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则n nεσxr εσe e E 02202/112≈+=上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为r E 03ερ=所以 r E 013ερ=,2023r E ερ-=()210213r r E E E -=+=ερ根据几何关系a r r =-21,上式可改写为a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=E R 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4r εQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-=这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理 ∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明. 解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30C· m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1)0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角.解 由点电荷电势的叠加2000P π4cos π4π4r εθp r εq r εq V V V =-+=+=-+-+(1) 若o0=θ V 1023.2π4320P -⨯==rεp V (2) 若o45=θ V 1058.1π445c o s 320oP -⨯==rεp V(3) 若o90=θ 0π490cos 20oP ==rεp V 5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV 5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==5 -28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅VV εd 1d 0S E 可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2 .(1)求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布. 解 (1) 带电圆环激发的电势220d π2π41d x r rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V -1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεqE 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15m)分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为rεeV 0π4=。
大学物理第5章 静电场
(B) 正电荷总是从电势能高的地方向电势能低的地方运动 (C) 正电荷总是从电场强的地方向电场弱的地方运动 (D) 正电荷加速的地方总是与等势面垂直
二、填空题
2. 半径为 R 的均匀带电球面, 若其面电荷密度为 , 则在球面外距离球面 R 处的电场强
3. 正方形的两对角处, 各置点电荷 Q, 其余两角处各置点电荷 Q
q
q,如图 5-1-3 所示.若某一 Q 所受合力为零, 则 Q 与 q 的关系为
[ ] (A) Q=-2.8q
(B) Q=2.8q
(C) Q=-2q
(D) Q=2q
q
Q
图 5-1-3
5. 关于静电场, 下列说法中正确的是
[ ] (A) 电场和检验电荷同时存在, 同时消失
(D) 已知 R→∞积分路径上的场强分布, 便可由此计算出 R 点的电势
43. 在电场中有 a、b 两点, 在下述情况中 b 点电势较高的是 [ ] (A) 正电荷由 a 移到 b 时, 外力克服电场力做正功
(B) 正电荷由 a 移到 b 时, 电场力做正功 (C) 负电荷由 a 移到 b 时, 外力克服电场力做正功 (D) 负电荷由 a 移到 b 时, 电场力做负功
(B) 不一定为零
(C) 一定不为零
(D) 是一常数
图 5-1-15
19. 两个点电荷相距一定距离, 若在这两个点电荷连线的中点处场强为零, 则这两个点
电荷的带电情况为
[ ] (A) 电荷量相等, 符号相同
(B) 电荷量相等, 符号不同
(C) 电荷量不等, 符号相同
(D) 电荷量不等, 符号不同
大学静电场试题及答案
大学静电场试题及答案一、选择题1. 静电场中的电场线是从正电荷出发,终止于负电荷。
A. 正确B. 错误答案:A2. 电场强度的方向是正电荷所受电场力的方向。
A. 正确B. 错误答案:A3. 电场中某点的电势与该点的电场强度大小无关。
A. 正确B. 错误答案:A4. 电容器的电容与两极板间的距离成反比。
A. 正确B. 错误答案:B5. 电场中某点的电势与该点的电场强度方向无关。
A. 正确B. 错误答案:A二、填空题1. 电场强度的定义式为_______,其中E表示电场强度,F表示电场力,q表示试探电荷。
答案:E = F/q2. 电势差的定义式为_______,其中U表示电势差,W表示电场力做的功,q表示试探电荷。
答案:U = W/q3. 电容器的电容公式为_______,其中C表示电容,Q表示电荷量,V表示电势差。
答案:C = Q/V4. 电场力做功的公式为_______,其中W表示功,q表示电荷量,U表示电势差。
答案:W = qU5. 电场中某点的电势与该点的电场强度大小_______关系。
答案:无关三、简答题1. 简述电场强度和电势的概念及其物理意义。
答案:电场强度是描述电场强弱和方向的物理量,其大小等于单位正电荷在该点所受的电场力,方向与正电荷所受电场力的方向相同。
电势是描述电场能的性质的物理量,它表示单位正电荷在电场中从某点移到参考点(通常取无穷远处)所做的功。
2. 电容器的电容与哪些因素有关?请简述其关系。
答案:电容器的电容与电容器的几何尺寸、两极板间的距离以及介质的介电常数有关。
电容与两极板的面积成正比,与两极板间的距离成反比,与介质的介电常数成正比。
四、计算题1. 一个平行板电容器,其极板面积为0.05平方米,两极板间的距离为0.01米,介质为空气(介电常数ε₀=8.85×10^-12 F/m)。
求该电容器的电容。
答案:C = ε₀ * A / d = 8.85×10^-12 * 0.05 / 0.01 =4.425×10^-11 F2. 已知电场中某点的电势为100V,试探电荷为-2C,求该点的电场强度。
大物考题完整版
2. 把一块两表面电荷密度之和为 0 的无限大导体平板置于均匀电场 中, 与
板面垂直,如图 25-2 所示,则导体左侧面电荷面密度 1=
,右
侧表面外附近的场强 E1=
。
解:设 、 均为正电荷根据电荷守恒得出
静电平衡的时候 得出
左
侧
表
面
外
附
近
的
场
强
4
3. [ 2 ]一金属球壳的内外半径分别为 R1 和 R2,其中心放一点电荷 q,则金属球
C 'C3 C ' C3
1515 15 15
7.5 f
, C ' 与 C3 串联
电容大小相等,所以 C ' 上分到一
般的电压
50V, C1
的储存的电能为We
1 2
C1V
2
1 2
(10106 ) 502
0.0125J
3、[ 3 ] 真空中 A、B 两平行板相距为 d,面积均为 S,分别均匀带电 q 和 q ,不计
D 4 r2 Q
D
Q 4 r2
E
D
Q 40r r 2
R
2
R
(2)U R2 Edr R2 Q dr Q ( 1 1 )
R1
R1 40 r r 2
40r R1 R2
1
(3)C Q 40r R1R2
U
R2 R1
(4)We Q2 Q2 (R2 R1) 2C 80r R1R2
磁场(一) 1、两个载有相等电流 I 的圆线圈,半径均为 R,
(1)导体球壳外附近的场强仍与其表面垂直; (2)导体球壳面上的电荷仍为均匀分布; (3)导体球壳的电势仍保持不变; (4)由于静电屏蔽,球壳外的带电体在球壳内产生的场强处处为零。
(完整版)大学物理静电场试题库
真空中的静电场一、选择题1、下列关于高斯定理的说法正确的是(A )A 如果高斯面上E 处处为零,则面内未必无电荷。
B 如果高斯面上 E 处处不为零,则面内必有静电荷。
C 如果高斯面内无电荷,则高斯面上 E 处处为零。
D 如果高斯面内有净电荷,则高斯面上 E 处处不为零。
2、以下说法哪一种是正确的(B )A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B 电场中某点电场强度的方向可由E F q确定,其中q0 为试验电荷的电荷量,可负,Fq0 可正为试验电荷所受的电场力C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D 以上说法都不正确3、如图所示,有两个电2、下列说法正确的是(D)A 电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。
C 带正电的物体电势一定为正,带负电的物体电势一定为负。
D 静电场中任一导体上电势一定处处相等。
3、点电荷q 位于金属球壳中心,球壳内外半径分别为R1, R2 ,所带静电荷为零A, B为球壳内外两点,试判断下说法的正误(C)A 移去球壳,B 点电场强度变大B 移去球壳,A 点电场强度变大C 移去球壳,A 点电势升高D 移去球壳,B 点电势升高4、下列说法正确的是(D )A 场强相等的区域,电势也处处相等B 场强为零处,电势也一定为零C 电势为零处,场强也一定为零D 场强大处,电势不一定高10、如图所示,在半径为 R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度 大小与距轴线的距离 r 关系曲线为( A )5、如图所示,一个点电荷60B12 0 24 06、如图所示,在电场强度 E 的均匀电场中,有一半径为 R 的半球面, 场强 E 的方向与半球面的对称抽平行,穿过此半球面的电通量为( C )A 2 R 2 EB 2 R 2EC R 2ED 1 R 2E27、如图所示两块无限大的铅直平行平面A 和B ,均匀带电,其电荷密2度均为 ( 0C ?m 2),在如图所示的 a 、b 、c 三处的电场强度分别 为(D ) A 0, ,0,0B 0,2 ,0,0D ,0,008、如图所示为一具有球对称性分布的静电场的 E ~ r 关系曲线. 请指出该静电场是由下列哪种带电体产生的. (B ) A 半径为 R 的均匀带电球面. B 半径为 R 的均匀带电球体. C 半径为 R 的、电荷体密度为Ar ( A 为常数)的非均匀带电球体 A/r ( A 为常数)的非均匀带电球体9、设无穷远处电势为零, 则半径为 R 的均匀带电球体产生的电场的电势分布规律为 (图中的U 0和b 皆为常量 ):(C )E 的q 位于立方体一顶点xA 沿逆时针方向旋转直到电偶极距 P 水平指向棒尖端而停止。
(完整版)静电场练习题及答案
静电场练习题一、电荷守恒定律、库仑定律练习题4.把两个完满相同的金属球 A 和B 接触一下,再分开一段距离,发现两球之间相互排斥,则A、 B 两球原来的带电情况可能是[ ]A.带有等量异种电荷B.带有等量同种电荷C.带有不等量异种电荷 D .一个带电,另一个不带电8.真空中有两个固定的带正电的点电荷,其电量Q1> Q2,点电荷q 置于Q1、Q2连线上某点时,正好处于平衡,则[ ]A. q 必然是正电荷 B . q 必然是负电荷C. q 离 Q2比离 Q1远D. q 离 Q2比离 Q1近-8在同一高度相距3cm 时,丝线与竖直夹角为45°,此时小球 B 碰到的库仑力F= ______,小球 A 带的电量 q A= ______.二、电场电场强度电场线练习题6.关于电场线的说法,正确的选项是[ ]A.电场线的方向,就是电荷受力的方向B.正电荷只在电场力作用下必然沿电场线运动C.电场线越密的地方,同一电荷所受电场力越大D.静电场的电场线不能能是闭合的7.如图 1 所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、 B 两点,用E A、 E B表示A、B 两处的场强,则 [ ]A. A、 B 两处的场强方向相同B.因为 A、 B 在一条电场上,且电场线是直线,所以E A=E BC.电场线从 A 指向 B,所以 E A> E BD.不知 A、 B 周边电场线的分布情况,E A、 E B的大小不能够确定8.真空中两个等量异种点电荷电量的值均为q,相距 r ,两点电荷连线中点处的场强为[ ]A. 0 B . 2kq/ r 2 C . 4kq/ r 2 D . 8kq/ r 29.四种电场的电场线如图 2 所示.一正电荷q 仅在电场力作用下由M点向N 点作加速运动,且加速度越来越大.则该电荷所在的电场是图中的[ ]11.如图 4,真空中三个点电荷的带电量、电性及相互距离都未知,但A、 B、 C,能够自由搬动,依次排列在同素来线上,都处于平衡状态,若三个电荷AB> BC,则依照平衡条件可判断[ ]A. A、 B、C 分别带什么性质的电B. A、 B、C 中哪几个带同种电荷,哪几个带异种电荷C. A、 B、C 中哪个电量最大D. A、 B、C 中哪个电量最小二、填空题12.图 5 所示为某地域的电场线,把一个带负电的点电荷为 ______.q 放在点 A 或B 时,在________点受的电场力大,方向16.在 x 轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷 Q2,且 Q1= 2Q,用 E1、 E2表示这两个点电荷所产生的场强的大小,则在 x 轴上, E1= E2的点共有 ____处,其中 _______处的合场强为零, ______处的合场强为 2E2。
大学物理静电学题库与答案
一、选择题:(每题3分)1、 在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x >1. (B) x 轴上0<x <1. (C) x 轴上x <0. (D) y 轴上y >0.(E) y 轴上y <0.[ ]2、一均匀带电球面,电荷面密度为,球面内电场强度处处为零,球面上面元d S 带有 d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零.(B) 不一定都为零.(C) 处处不为零. (D) 无法判定 . [ ]3、在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Qεπ.(C) 203a Q επ. (D) 20a Qεπ. [ ]4、电荷面密度分别为+和-的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ](B)σ(D)5、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]6、设有一“无限大”均匀带负电荷的平面.取x 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]x7、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A) 场强E的大小与试探电荷q 0的大小成反比.(B) 对场中某点,试探电荷受力F与q 0的比值不因q 0而变.(C) 试探电荷受力F 的方向就是场强E的方向.(D) 若场中某点不放试探电荷q 0,则F =0,从而E=0. [ ]8、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]9、下面列出的真空中静电场的场强公式,其中哪个是正确的? (A) 点电荷q 的电场:204rq E επ=.(r 为点电荷到场点的距离)(B) “无限长”均匀带电直线(电荷线密度)的电场:r rE302ελπ= (r为带电直线到场点的垂直于直线的矢量)(C) “无限大”均匀带电平面(电荷面密度)的电场:02εσ=E(D) 半径为R 的均匀带电球面(电荷面密度)外的电场:r rR E302εσ= (r为球心到场点的矢量)10、下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F为试验电荷所受的电场力.(D) 以上说法都不正确. [ ]P 011、一电场强度为E 的均匀电场,E的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) R 2E . (B) R 2E / 2. (C) 2R 2E . (D) 0. [ ]12、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定: (A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零.(D) 以上说法都不对. [ ]13、一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化: (A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内. (C) 将球心处的点电荷移开,但仍在高斯面内.(D) 将高斯面半径缩小. [ ]14、点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化.(D) 曲面S的电场强度通量不变,曲面上各点场强变化.[]15、半径为R的均匀带电球面的静电场中各点的电场强度的大小E与距球心的距离r之间的关系曲线为:[]16、半径为R的均匀带电球体的静电场中各点的电场强度的大小E与距球心的距离r的关系曲线为:[]EOr (D)E∝1/r217、半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]18、半径为R 的均匀带电球面,若其电荷面密度为,则在距离球面R 处的电场强度大小为:(A)0εσ. (B)02εσ. (C) 04εσ.(D) 08εσ. [ ]19、高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]20、根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. [ ]21、关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零. [ ]22、如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:(A) 20214r Q Q επ+.(B)()()2202210144R r Q R r Q -π+-πεε. (C) ()2120214R R Q Q -π+ε. (D)2024rQ επ. [ ]23、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为1和2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212ελλπ+.(B) ()()20210122R r R r -π+-πελελ.(C) ()20212R r -π+ελλ. (D) 20210122R R ελελπ+π. [ ]24、A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则(A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B) 通过S 面的电场强度通量为q /0,S 面上场强的大小为20π4rqE ε=.(C) 通过S 面的电场强度通量为(- q ) / 0,S 面上场强的大小为20π4r qE ε=.(D) 通过S 面的电场强度通量为q /0,但S 面上各点的场强不能直接由高斯定理求出. [ ]25、在空间有一非均匀电场,其电场线分布如图所示.在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S的电场强度通量为e ,则通过该球面其余部分的电场强度通量为(A) -e . (B)e SR Φ∆∆π24. (C)e SSR Φ∆∆∆-π24. (D) 0.[ ]26、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]27、静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]E O r(A) E ∝1/r28、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷. [ ]29、如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (041επ=9×10-9 N m /C 2)(A) E =0,U =0.(B) E =1000 V/m ,U =0. (C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V . [ ]30、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,rQU 04επ=.(B) E =0,RQ U 04επ=. (C) 204r QE επ=,r Q U 04επ= .(D) 204r Q E επ=,RQU 04επ=. [ ]ba31、关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ]32、在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)aQ034επ . (B)a Q032επ.(C) a Q06επ. (D)aQ012επ . [ ]33、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带正电球面. (B) 半径为R 的均匀带正电球体. (C) 正点电荷. (D) 负点电荷. [ ]34、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带负电球面. (B) 半径为R 的均匀带负电球体. (C) 正点电荷. (D) 负点电荷. [ ]35、一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上的电势值为零,则无限远处的电势将等于 (A)R Q0π4ε. (B) 0.(C) RQ0π4ε-. (D) ∞. [ ]36、 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为 (A)24220rr Qq π⋅πε. (B) r r Qq 2420επ. (C) r rQqππ204ε. (D) 0. [ ]37、点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ]38、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为:(A)a qQ023επ . (B) aqQ 03επ.A3q2q(C)a qQ 0233επ. (D) aqQ032επ. [ ]39、在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A) P 1和P 2两点的位置. (B) P 1和P 2两点处的电场强度的大小和方向. (C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小. [ ]40、如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功 (A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ]41、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.[ ]42、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M >E N . (B) 电势U M >U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]43、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点.a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为-r(A)⎪⎪⎭⎫ ⎝⎛-π-21114r r Q ε. (B) ⎪⎪⎭⎫ ⎝⎛-π210114r r qQ ε. (C) ⎪⎪⎭⎫⎝⎛-π-210114r r qQ ε. (D) ()1204r r qQ -π-ε [ ]44、带有电荷-q 的一个质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U ,距离为d ,则此带电质点通过电场后它的动能增量等于(A) dqU-. (B) +qU . (C) -qU . (D) qU 21. [ ]45、在匀强电场中,将一负电荷从A 移到B ,如图所示.则:(A) 电场力作正功,负电荷的电势能减少. (B) 电场力作正功,负电荷的电势能增加. (C) 电场力作负功,负电荷的电势能减少.(D) 电场力作负功,负电荷的电势能增加. [ ]46、 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:(A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C . [ ]47、电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A) k r m ee . (B) rm ke e . (C) r m k ee 2. (D) rm ke e 2. (式中k =1 / (40) )[ ]-q dOU-BE48、质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A)⎪⎪⎭⎫⎝⎛-21112r r m ke . (B) ⎪⎪⎭⎫⎝⎛-21112r r m ke . (C) ⎪⎪⎭⎫ ⎝⎛-21112r r m k e. (D) ⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (40) ) [ ]49、相距为r 1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r 2,从相距r 1到相距r 2期间,两电子系统的下列哪一个量是不变的? (A) 动能总和; (B) 电势能总和;(C) 动量总和; (D) 电相互作用力. [ ]50、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A) F =0,M = 0. (B) F = 0,M≠0.(C) F ≠0,M =0. (D) F ≠0,M≠0. [ ]51、真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变.(B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ]52、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?(A) 使两金属板相互靠近些. (B) 改变两极板上电荷的正负极性. (C) 使油滴离正极板远一些.(D) 减小两板间的电势差. [ ]-+53、正方形的两对角上,各置电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A) Q =-22q . (B) Q =-2q .(C) Q =-4q . (D) Q =-2q . [ ]54、电荷之比为1∶3∶5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C 不动,改变B的位置使B 所受电场力为零时,AB 与BC 的比值为(A) 5. (B) 1/5.(C)5. (D) 1/5. [ ]55、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ]56、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2. [ ]57、 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小.qP(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]58、关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷. (C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]59、关于静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ ]60、两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]二、填空题(每题4分)61、静电场中某点的电场强度,其大小和方向与__________________________________________________________________相同.62、电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.63、静电场场强的叠加原理的内容是:_________________________________________________________________________________________________________________________________________________________________.64、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.65、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的 电场强度通量为__________________.66、电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为1E 和2E,空间各点总场强为E =1E+2E .现在作一封闭曲面S ,如图所示,则以下两式分别给出通过S 的电场强度通量⎰⋅S Ed 1=______________________________,⎰⋅S E d =________________________________.67、一面积为S 的平面,放在场强为E 的均匀电场中,已知 E与平面间的夹角为(</2),则通过该平面的电场强度通量的数值e =______________________.68、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_____________,式中E为_________________处的场强.69、一半径为R 的均匀带电球面,其电荷面密度为.该球面内、外的场强分布为(r表示从球心引出的矢径): ()r E=______________________(r <R ), ()r E =______________________(r >R ).70、一半径为R 的“无限长”均匀带电圆柱面,其电荷面密度为.该圆柱面内、外场强分布为(r表示在垂直于圆柱面的平面上,从轴线处引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).71、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别 是:1=________,2=___________,3=__________72、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.73、一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量e =_________________.74、图中曲线表示一种球对称性静电场的电势分布,r表示离对称中心的距离.这是____________________________________________的电场.75、一半径为R 的均匀带电球面,其电荷面密度为.若规定无穷远处为电势零点,则该球面上的电势U =____________________.76、电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =___________ .1 2 3q 1377、描述静电场性质的两个基本物理量是______________;它们的定义式是________________和__________________________________________.78、静电场中某点的电势,其数值等于______________________________ 或_______________________________________.79、一点电荷q=10-9C,A、B、C三点分别距离该点电荷10 cm、20 cm、30 cm.若选B点的电势为零,则A点的电势为______________,C点的电势为________________.(真空介电常量0=8.85×10-12 C2·N-1·m-2)80、电荷为-Q的点电荷,置于圆心O处,b、c、d为同一圆周上的不同点,如图所示.现将试验电荷+q0从图中a点分别沿ab、ac、ad路径移到相应的b、c、d各点,设移动过程中电场力所作的功分别用A1、A2、A3表示,则三者的大小的关系是______________________.(填>,<,=)81、如图所示,在一个点电荷的电场中分别作三个电势不同的等势面A,B,C.已知U A>U B>U C,且U A-U B=U B-U C,则相邻两等势面之间的距离的关系是:R B-R A______ R C-R B.(填<,=,>)b82、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.83、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功A =______________.84、真空中电荷分别为q 1和q 2的两个点电荷,当它们相距为r 时,该电荷系统的相互作用电势能W =________________.(设当两个点电荷相距无穷远时电势能为零)85、在静电场中,一质子(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =____________________.设A 点电势为零,则B 点电势U =____________________.86、静电力作功的特点是________________________________________________________________________________,因而静电力属于_________________力.A87、静电场的环路定理的数学表示式为:______________________.该式的物理意义是:__________________________________________________________________________________________________________.该定理表明,静电场是____________________________________场.88、一电荷为Q的点电荷固定在空间某点上,将另一电荷为q的点电荷放在与Q相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e=________________________.89、图示为某静电场的等势面图,在图中画出该电场的电场线.90、图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并比较它们的大小.E a ________ E b (填<、=、>).91、一质量为m ,电荷为q 的粒子,从电势为U A 的A 点,在电场力作用下运动到电势为U B 的B 点.若粒子到达B 点时的速率为v B ,则它在A 点时的速率v A=___________________________.92、一质量为m 、电荷为q 的小球,在电场力作用下,从电势为U 的a 点,移动到电势为零的b 点.若已知小球在b 点的速率为v b ,则小球在a 点的速率v a= ______________________.93、一质子和一粒子进入到同一电场中,两者的加速度之比,a p ∶a =________________.94、带有N 个电子的一个油滴,其质量为m ,电子的电荷大小为e .在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为__________________,大小为_____________.OU U95、在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为____________.96、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.97、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小)98、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .99、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.100、A 、B 两个导体球,相距甚远,因此均可看成是孤立的.其中A 球原来带电,B 球不带电,现用一根细长导线将两球连接,则球上分配的电荷与球半径成______比.101、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为: 内表面___________ ; 外表面___________ .102、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小)103、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度 =______________.104、一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________.105、一平行板电容器,上极板带正电,下极板带负电,其间充满相对介电常量为r = 2的各向同性均匀电介质,如图所示.在图上大致画出电介质内任一点P 处自由电荷产生的场强 0E, 束缚电荷产生的场强E ' 和总场强E .106、两个点电荷在真空中相距d 1 = 7 cm 时的相互作用力与在煤油中相距d 2 = 5cm时的相互作用力相等,则煤油的相对介电常量r =___________________.107、如图所示,平行板电容器中充有各向同性均匀电介质.图中画出两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线,(2)为__________________线.108、一个半径为R 的薄金属球壳,带有电荷q ,壳内充满相对介电常量为r 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势(1)(2)U = ________________________________.109、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为.若极板上的自由电荷面密度为,则介质中电位移的大小D =____________,r电场强度的大小E =____________________.110、一个半径为R的薄金属球壳,带有电荷q,壳内真空,壳外是无限大的相对介电常量为r的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势U =____________________________.111、一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为r 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.112、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为r的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的_________倍;电场能量是原来的_________倍.113、在相对介电常量为r的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .114、分子的正负电荷中心重合的电介质叫做_______________ 电介质.在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.115、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为.若极板上的自由电荷面密度为,则介质中电位移的大小D =____________,r电场强度的大小E =____________________.116、一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变)117、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.118、一个孤立导体,当它带有电荷q 而电势为U 时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.119、两个空气电容器1和2,并联后接在电压恒定的直流电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)120、真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W 1与带电球体的电场能量W 2相比,W 1________ W 2 (填<、=、>).三、计算题:(每题10分)121、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.Lq P。
《大学物理》静电场练习题及答案
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
(完整版)大学物理静电场练习题及答案
练习题7-1 两个点电荷所带电荷之和为 Q,它们各带电荷为多少时,互相间的作用力最大 ?解 : 这是一个条件极值问题。
设此中一个点电荷带电 q,则另一个点电荷带电Q q ,两点电荷之间的库仑力为1Q q qFr 24 0由极值条件 dF dq0 ,得q 1 Q 2又因为d2 F1dq2 2 0 r 2<0这表示两电荷均分电荷Q 时,它们之间的互相作用力最大。
7-2 两个相同的小球,质量都是 m,带等值同号的电荷 q,各用长为 l 的细线挂在同一点,如图7-43 所示。
设均衡时两线间夹角 2很小。
( 1)试证均衡时有以下的近似等式成立:123q lx0 mg2式中 x 为两球均衡时的距离。
(2)假如 l= 1.20 m, m=10 g,x=5.0 cm,则每个小球上的电荷量 q 是多少 ?(3)假如每个球以10 9 C s-1的变化率失掉电图 7-43 练习题 7-2 图荷,求两球相互趋近的刹时相对速率dx/dt 是多少 ?解:(1)带电小球受力解析如图解所示。
小球平衡时,有FTsinTcos mg由此二式可得tanFmg因为 很小,可有 tanx 2l ,再考虑到Fq20 x 24可解得21xq l 32 0mg(2)由上式解出3120 mgx22.38 108 Cql(3) 因为1 1dx l3 2 dq 2x dq3dt2 0 mgqdt3q dt3带入数据解得1.4010 3 m s-1合力的大小为F F x 2F 1cos212e 2x224d0 x2x 2d22132e 2 x44 x2d 2 3 2令 dF dx0 ,即有8e 2138x 24x2d23 22 4x 2d25 2由此解得 粒子受力最大的地点为xd2 2第七章静电场7-4 由相距较近的等量异号电荷构成的系统称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为好多电偶极子的会集。
所以,电偶极子是一个十分重要的物理模型。
大学物理静电场练习题带答案
大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ](A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。
物理静电场试题及答案
物理静电场试题及答案一、选择题1. 两个点电荷之间的距离为r,它们之间的库仑力大小为F,如果将它们之间的距离增加到2r,则它们之间的库仑力大小为:A. F/2B. F/4C. F/8D. 2F答案:B2. 电场强度的方向是:A. 正电荷所受电场力的方向B. 负电荷所受电场力的方向C. 正电荷所受电场力的反方向D. 与电场线的方向垂直答案:C3. 电容器的电容与下列哪个因素无关?A. 电容器两极板的面积B. 电容器两极板之间的距离C. 电容器两极板的材料D. 电容器两极板之间的电压答案:D二、填空题4. 一个电荷量为q的点电荷在电场中受到的电场力大小为F,则该点电荷所在位置的电场强度E等于______。
答案:F/q5. 两个相同大小的点电荷,分别带有+Q和-Q的电荷,它们之间的距离为r,若将它们之间的距离增加到原来的2倍,则它们之间的库仑力大小将变为原来的______。
答案:1/4三、计算题6. 一个半径为R的均匀带电球体,其电荷量为Q,求球体外距离球心r处的电场强度。
答案:若r > R,则电场强度E = kQ/r^2;若r < R,则电场强度E = 0。
7. 一个平行板电容器,其电容为C,两极板间的电压为U,求电容器所带的电荷量Q。
答案:Q = CU四、简答题8. 简述电场线的特点。
答案:电场线从正电荷出发,指向负电荷;电场线不相交;电场线越密集,电场强度越大。
9. 电容器在充电过程中,其电场能如何变化?答案:电容器在充电过程中,电场能逐渐增加,因为电容器存储了更多的电荷,两极板之间的电势差也随之增大。
大学物理电磁学第二章静电场
第二章 有导体时的静电场 练习一、选择题1、[ ]当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零.2、[ ]在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. 3、[ ]在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变.4、[ ]半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图所示,设地的电势为零,则球上的感生电荷q '为(A) 0. (B)2q . (C) 2q-. (D)q.5、[ ]选无穷远处为电势零点,半径为R 的导体球带电后,其电势为0U ,则球外离球心距离为r 处的电场强度的大小为(A) 203R U r . (B) 0U R . (C) 02RU r. (D) 0U r . 6、[ ]如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0.(B)2σε.(C)hσε.(D)2hσε.7、[]两个同心薄金属球壳,半径分别为1R和2R(21()R R>,若分别带上电荷1q和2q,则两者的电势分别为1V和2V(选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为:(A)1V. (B)2V. (C)12V V+. (D)121()2V V+.8、[]如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P处的场强大小与电势(设无穷远处为电势零点)分别为:(A) 0,0E V=>. (B) 0,0E V=<. (C) 0,0E V==;(D) 0,0E V><.9、[]一空气平行板电容器,两极板间距为d,充电后板间电压为U。
静电场练习及答案
静电场练习题一、选择题1、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ] 2、关于高斯定理的理解有下面几种说法,其中正确的是:[ ] (A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D)如果高斯面内有净电荷,则通过高斯面的电场强度 通量必不为零.3、一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C点场强方向的四个图示中正确的是:[ ]4、如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E为:[ ] (A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. 5、边长为a 的正方形的四个顶点各有一个电量为q 的点电荷,若将点电荷Q由远处移到正方形中心处,电场力的功是[ ]aQq A02πεaQq B 02πε-aQq C0πεaQq D 0πε-6、在X 轴上,点电荷Q 位于x =a 处,负的点电荷–Q 位于x = – a 处,点P 位于轴上x 处,当x»a 时,P 点的场强 E =[ ]xQq A04πε20x QaBπε30x Qa Cπε204xQ Dπε7、孤立导体球A 的半径为R ,带电量Q ,其电场能为W A ,孤立导体球B 的半径为R /2,带电量Q /2,xEAB C其电场能为W B ,则[]A W A =WB B W A =2W BC W A =W B /2D 以上都不对8、真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电为q 的点电荷。
大学物理(下)试试题库
大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。
2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。
4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。
5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。
8、【 】两个点电荷21q q 和固定在一条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空中的静电场 一、选择题1、下列关于高斯定理的说确的是(A )A 如果高斯面上E 处处为零,则面未必无电荷。
B 如果高斯面上E 处处不为零,则面必有静电荷。
C 如果高斯面无电荷,则高斯面上E 处处为零。
D 如果高斯面有净电荷,则高斯面上E 处处不为零。
2、以下说法哪一种是正确的(B )A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B 电场中某点电场强度的方向可由0q FE 确定,其中0q 为试验电荷的电荷量,0q 可正可负,F 为试验电荷所受的电场力C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D 以上说法都不正确3、如图所示,有两个电2、 下列说确的是(D )A 电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。
C 带正电的物体电势一定为正,带负电的物体电势一定为负。
D 静电场中任一导体上电势一定处处相等。
3、点电荷q 位于金属球壳中心,球壳外半径分别为21,R R ,所带静电荷为零B A ,为球壳外两点,试判断下列说法的正误(C )A 移去球壳,B 点电场强度变大 B 移去球壳,A 点电场强度变大C 移去球壳,A 点电势升高D 移去球壳,B 点电势升高4、下列说确的是(D )A 场强相等的区域,电势也处处相等B 场强为零处,电势也一定为零C 电势为零处,场强也一定为零D 场强大处,电势不一定高5、如图所示,一个点电荷q 位于立方体一顶点A 上,则通过abcd 面上的电通量为(C ) A 06q ε B 012q ε C 024q ε D 036qε6、如图所示,在电场强度E 的均匀电场中,有一半径为R 的半球面,场强E 的方向与半球面的对称抽平行,穿过此半球面的电通量为(C )A E R 22πB E R 22π C E R 2π D E R 221π7、如图所示两块无限大的铅直平行平面A 和B ,均匀带电,其电荷密度均为)(20-•〉m C σσ,在如图所示的c b a 、、三处的电场强度分别为(D ) A 0,,00,εσ B 0,2,00,εσ C 000,,2εσεσεσ D 00,0,εσεσ 8、如图所示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(B )A 半径为R 的均匀带电球面.B 半径为R 的均匀带电球体.C 半径为R 的、电荷体密度为Ar =ρ(A 为常数)的非均匀带电球体D 半径为R 的、电荷体密度为r A /=ρ(A 为常数)的非均匀带电球体9、设无穷远处电势为零,则半径为R 的均匀带电球体产生的电场的电势分布规律为(图中的0U 和b 皆为常量):(C)10、如图所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度E 的大小与距轴线的距离r 关系曲线为(A )da bc qA11、下列说确的是( D )(A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。
(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
12、 在一个带负电的带电棒附近有一个电偶极子,其电偶极距P 的方向如图所示。
当电偶极子被释放后,该电偶极子将( B )A 沿逆时针方向旋转直到电偶极距P 水平指向棒尖端而停止。
B 沿逆时针方向旋转至电偶极距P 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 C 沿逆时针方向旋转至电偶极距P 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 D 沿顺时针方向旋转至电偶极距P 水平指向方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动13、 电荷面密度均为σ+的两块“无限大”均匀带电的平行平板如图(a )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为( B )Rr E(A)Rr E (B)Rr (C)Rr(D)(A) -(B)二 填空题1、如图所放置示,在坐标-l 处放置点电荷q -,在坐标+l 放置+q ,在Ox 轴上取P 点,其坐标x )(l >>,则P 点电场强度E 的大小为30x qlπε2、 如图所示,一点电荷C q 910-=。
A B C 三点分别与点电荷q 相距为10cm 、20cm 、30cm 。
若选B 点电势为零,则A 点电势为 45v C 点的电势为-15v1、 如图所示一无限大均匀带电平面,电荷密度为σ,Ox 轴与该平面垂直,且b a 、两点与平面相距为a r 和b r ,试求b a 、两点的电势差b a V V -=)2(2-00ba r r εσεσ--。
根据所求结果,选取0r =b 处为电势零点,则无限大均匀带电平面的电势分布表达式r02-V εσ=最简洁。
4、如图所示一无限长均匀带电直线,电荷密度为λ,Ox 轴与该直线垂直,且b a 、两点与直线相距为a r 和b r ,试求b a 、两点的电势差b a V V -=)ln 2-(ln 2-0b a r r πελπελ-。
根据所求结果,选取m b 1r =处为电势零点,则无限长均匀带电直线的电势分布表达式σ Oa rb rqq -a+a xO/σε-a+a xO0/σε习题13(b )图习题13(a )图r ln 2-V 0πελ=。
5、有一半径为R 的细圆环, 环上有一微小缺口,缺口宽度为)(R d d <,环上均匀带正电, 总电量为q ,如图所示, 则圆心O 处的电场强度大小E =3028Rqd επ,场强方向为 圆心O 点指向缺口的方向 。
6、如图所示两个点电荷分别带电q 和q 2,相距l ,将第三个点电荷放在离点电荷q 的距离为(21)l -处它所受合力为零7、一点电荷q 位于正立方体中心,通过立方体没一个表面的电通量是6εq 8、真空中有一均匀带电球面,球半径为R ,所带电量为Q (>0),今在球面上挖去一很小面积ds (连同其上电荷),设其余部分电荷仍均匀分布,则挖去以后,球心处电场强度40216R Qds E επ=,方向球心O 到ds 的矢径方向9、空间某区域的电势分布为22By Ax +=ϕ,其中A B 为常数,则电场强度分布为x E =x A 2-,y E =y B 2-10、点电荷1q 2q 3q 4q 在真空中的分布如图所示,图中S 为闭合面,则通过该闭合面的电通量⎰⋅sds E =42εq q +,式中的E 是点电荷1q 2q 3q 4q 在闭合面上任一点产生的电场强度的矢量和。
11、电荷量分别为1q 2q 3q 的三个点电荷,分布如图所示,其中任一点电荷所受合力均为零。
λOa rb rROd已知电荷1q =3q =q ,则2q =4-q;若固定将从O 点经任意路径移到无穷远处,则外力需做功A =aq 028πε12、真空中有有一点电荷,其电荷量为Q三 计算题1、用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=,∴电荷线密度:911.010q C m lλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O d E d R R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅; 解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
2、如图所示,半径为R 的均匀带电球面,带有电荷q ,沿某一半径方向上有一均匀带电细线,电荷线密度为λ,长度为l ,细线左端离球心距离为0r 。
设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零)。
解:(1)以O 点为坐标原点,有一均匀带电细线的方向为x 轴, 均匀带电球面在球面外的场强分布为:204q E rπε=(r R >)。
2cmORxαα12q3qODa取细线上的微元:dq dl dr λλ==,有:d F E d q =, ∴0020000ˆ44()r lr qql r F dr x r r l λλπεπε+==+⎰(ˆr 为r 方向上的单位矢量) (2)∵均匀带电球面在球面外的电势分布为:04q U rπε=(r R >,∞为电势零点)。
对细线上的微元d q d r λ=,所具有的电势能为:04q dW d r rλπε=⋅,∴0000ln44r lr r lq d rq W rr λλπεπε++==⎰。
3、半径10.05,R m =,带电量8310C q -=⨯的金属球,被一同心导体球壳包围,球壳半径20.07R m =,外半径30.09R m =,带电量8210C Q -=-⨯。
试求距球心与电势。
(1)0.10r m =(2)0.06r m =(3)0.03r m =。
解:由高斯定理,可求出场强分布:112122032343200404E r R q E R r R r E R r R Q q E r R r πεπε=<⎧⎪⎪=<<⎪⎪⎨=<<⎪⎪+=>⎪⎪⎩∴电势的分布为: 当1r R ≤时,2131220044R R R q Q q U d r d r rr πεπε∞+=+⎰⎰0120311()44q Q qR R R πεπε+=-+, 当12R r R <≤时,232220044R r R qQ q U d r d r rr πεπε∞+=+⎰⎰020311()44q Q qr R R πεπε+=-+, 当23R r R <≤时,33204R Q q U d r r πε∞+=⎰034Q q R πε+=, 当3r R >时,420044r Q q Q qU d r r rπεπε∞++==⎰, ∴(1)0.10r m =,适用于3r R >情况,有:3420910N 4Q q E r πε+==⨯,40900V 4Q q U rπε+==; (2)0.06r m =,适用于12R r R <<情况,有: 42207.510N 4q E r πε==⨯,32020311() 1.6410V 44qQ q U r R R πεπε+=-+=⨯; (3)0.03r m =,适用于1r R <情况,有:10E =,310120311() 2.5410V 44q Q q U R R R πεπε+=-+=⨯。