数列的概念与简单表示法(一)
2.1.1 数列的概念与简单表示法(一)
②一些数列的通项公式不是唯一的; 如:数列1,-1,1,-1,…
③不是每一个数列都能写出它的通项公式。 如:1,24,8,3,19
例1、试写出下面数列的一个通项公式,使它的前4项分别 是下列各数:
(1)2,4,6,8; 变题:4,6,8,10
an=2n
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4 天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场 景法
练习:试写出数列1,3,6,10,…的一个递推公式。
例5、已知a1
1, an
1
1 an1
(n
2), 写出这个
数列的前5项.
解:∵a1=1
1
1
a2
1
a1
1 1
2
1
13
a3 1 a 2 1 2 2
a4
1
1 a3
1
2 3
5 3
a5
1
1 a4
1
3 5
8 5
练习:写出下列数列{an}的前5项 (1)a1=5,an=an-1+3 (n≥2); (2)a1=2,an=2an-1 (n≥2);
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
第五章 第一节 数列的概念与简单表示法1
返回
奇数项为2-1,偶数项为2+1, 2+-1n 所以an=(-1) · n .
n
1 -n n为正奇数, 也可写成an= 3 n为正偶数. n
返回
[冲关锦囊] 1.根据数列的前几项求它的一个通项公式,要注意观察每 一项的特点,可使用添项、还原、分割等办法,转化为 一些常见数列的通项公式来求.
返回
返回
2 3 4 5 1.(教材习题改编)数列1,3,5,7,9„的一个通项公式是 A.an= n 2n+1 B.an= n 2n-1
(
)
n C.an= 2n-3
n D.an= 2n+3
答案: B
返回
2.已知数列{an}的通项公式为an=n+1,则这个数列是 ( A.递增数列 C.常数列 答案: A B.递减数列 D.摆动数列 )
式的求法以及数列的性质.
2.题型多以选择、填空题为主,有时也作为解答题的一 问,难度不大.
返回
返回
一、数列的定义 按照 一定顺序 排列着的一列数称为数列,数列中
的每一个数叫做这个数列的 项 .排在第一位的数称为
这个数列的第1项(通常也叫做 首项 ).
返回
二、数列的分类 分类原则 按项数分 类 类型 有穷数列 满足条件 项数 有限
返回
[精析考题] [例 2] (2011· 四川高考)数列{an}的前 n 项和为 Sn,若 a1=1, ( )
an+1=3Sn(n≥1),则 a6= A.3×44 C.45 B.3×44+1 D.45+1
返回
[自主解答]
a1=1,a2=3S1=3,a3=3S2=12=3×41,a4=3S3=48
无穷数列
递增数列 递减数列 常数列 摆动数列
2.1.1数列的概念与简单表示法(一)
(2)会用观察法由数列的前几项 求数列的通项公式。
1.选择题
补充练习
(1)下面数列是有穷数列的是(
)
A.1,0,1,0, C.2,22,222,
B.1, 1 , 1 , 1 ; 234
D.0,0,0,0,
(2)以下四个数中是数列{n(n 1)}中的一项是(
子放2颗麦粒
?
64个格子
8 7
你认为国王有
6 能力满足上述
5 4
要求吗?
3
8 76
543
2
2 1 1
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
210 21 22 23 263
18446744073709551615
传说古希腊毕达哥拉斯学派数学家研究的问题:
观察下列图形:
① ② ③ ④ ……
例如 : 1,2,22,23,263
1.数列的一般形式可以写成:
a1,a2,a3,,an , 简记为an
1.辨析数列的概念:
(1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一个 数列吗?与“1, 3, 2, 4, 5”呢? (2) 数列中的数可以重复吗? (3) { 1, 2, 3, 4, 5 }是数列吗?若不是,那么 数列与集合有什么区别? (4) -3,-1,1,x,5,7,y,11是一个项数 为8的数列吗?
(2)
53 50
是这个数列的第几项?
(3)这个数列有多少个整数项?
(4)有否等于序号的
1 3
的项?如果有,求出
这些项;如果没有,试说明理由。
例5. 已知函数 f (x) x 1 ,设 an f (n), n N
2.1数列的概念与简单表示法
第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。
2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。
3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。
(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。
2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。
3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。
4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。
高中数学必修5高中数学必修5《2.1数列的概念与简单表示法(一)》教案
2.1数列的概念与简单表示法(一)一、教学要求:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课“有人说,大自然是懂数学的”“树木的,。
”,(一)、复习准备:1. 在必修①课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“12”,再取一半还剩“14”,、、、、、、,如此下去,即得到1,12,14,18,、、、、、、 2. 生活中的三角形数、正方形数. 阅读教材提问:这些数有什么规律?与它所表示的图形的序号有什么关系?(二)、讲授新课:1. 教学数列及其有关概念:(1)三角形数:1,3,6,10,···(2)正方形数:1,4,9,16,··· (2)1,2,3,4……的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,……排列成一列数:-1,1,-1,1,-1,。
(4)无穷多个1排列成的一列数:1,1,1,1,。
有什么共同特点? 1. 都是一列数;2. 都有一定的顺序① 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢? ----------数列的有序性(2)数列中的数可以重复吗?(3)数列与集合有什么区别?集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。
② 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、、、、、、排在第n 位的数称为这个数列的第n 项.③ 数列的一般形式可以写成123,,,,,n a a a a ,简记为{}n a .④ 数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.⑤ 数列中的数与它的序号有怎样的关系?序号可以看作自变量,数列中的数可以看作随着变动的量。
高中数学必修五2.1.1 数列的概念与简单表示法(一)
2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。
数列的概念与简单表示法(1)
数列的表示方法
数列的一般形式可以写成:
a1,a2,a3,,an ,
a 简记为 an ,其中 n 叫做数列的第n 项。
第n项的n是该项的序号, 也叫做该项的项数
例如,三角形数构成的数列{an} :
1 , 3 , 6 , 10 , 15 ...
球队 马刺 雷霆 快船 火箭
胜场 62
59 57
项数有限的数列叫做有穷数列, 项数无限的数列叫做无穷数列。
实例分析
2010年到2014年我校高考升学人数构成一个数列: 1820 ,1960 , 2100 , 2330 ,2590
有穷数列
递增数列
正整数的倒数构成的数列 1, 1 , 1 , 1 , 1 ,
2345
递减数列
实例分析
高一年级6次数学测验中,某同学的数学成绩构成的数列: 112 , 108 , 110 , 118 , 99 , 102
递
摆
常
增
减
动
数
数
数数
列
列
列
列
作业一:探究与思考 1、数列与集合有什么区别? 2、数列与数集有什么区别? 3、数列中的项与集合中的元素有什么区别? 4、数列4,7,10,13与数列13,10,7,4是相同的数列吗? 5、每一个数列都有通项公式吗? 6、同一个数列的通项公式的表达形式唯一吗?
作业二: 课本 31页第4题
摆动数列 我贷款买房子,月均等额还款数目构成数列: 2100 , 2100 , 2100 , … , 2100
常数列
我们可以按照数列的每一项随序号变化的情 况对数列进行分类
⑴从第2项起,每一项都不小于它的前一项的 数列叫做递增数列;
⑵从第2项起,每一项都不大于它的前一项的 数列叫做递减数列;
2.1数列的概念与简单表示法(1)
A. 380 B. 392 C. 321 D. 232
3.在横线上填上适当的数:
3,8,15,,35,48.
4.数列 的第4项是.
5.写出数列 , , , 的一个通项公式.
课堂反思
⑶数列与函数有关系吗?如果有关,是什么关系?
5.数列的分类:
1)根据数列项数的多少分数列和数列;
2)根据数列中项的大小变化情况分为数列,
数列,数列和数列.
3自学检测
(1)写出下面数列的一个通项公式,使它的前4项分别是下列各数:
⑴1,- , ,- ;
⑵1,0,1,0.
二.合作交流
1已知数列2, ,2,…的通项公式为 ,求这个数列的第四项和第五项.
反思:
⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?
⑵同一个数在数列中可以重复出现吗?
3.数列的一般形式: ,或简记为 ,其中 是数列的第项.
4.数列的通项公式:如果数列 的第n项 与n之间的关系可以用来表示,那么就叫做这个数列的通项公式.
反思:
⑴所有数列都能写出其通项公式?
⑵一个数列的通项公式是唯一?
一.自主学习
1学习目标
1.理解数列及其有关概念,了解数列和函数之间的关系;
2.了解数列的通项公式,并会用通项公式写出数列的任意一项;
3.对于比较简单的数列,会根据其前
探究任务:数列的概念
⒈数列的定义:的一列数叫做数列.
⒉数列的项:数列中的都叫做这个数列的项.
年级:高二学科:数学
安阳县实验中学“四步教学法”导学案
Anyangxian shiyan zhongxue sibujiaoxuefa daoxuean
2.1数列的概念与简单表示法
情景导入
1. 一尺之棰,日取其半,万世不竭. (单位:尺)
22 23
↑↑ ↑ ↑ ↑
1,2, 3, 4,…,n,…
n(1 n) 2
1,22,32,42…,n2…
1.
2. 三角形数 1,3,6,10,···
3. 正方形数 1,4,9,16,···
这些数有什么有什么共同特点?
三、数列的对应性
数列可以看成以正整数集N*(或它的 有限子集{1,2,…,n})为定义域的函数 an=f(n)当自变量按照从小到大的顺序依次 取值时所对应的一列函数值。
反过来,对于函数y=f(x),如果f(i) (i=1,2,3,…) 有意义那么我们可以得到一个 数列
f(1),f(2),f(3),…,f(n),…
1.正负号的循环性。 乘以符号因子-1的幂,3个一循环指数为3n+某 数,某数为0,1,2,3,按3的余数0,1,2分 类讨论. 2.分子分母分开看。 3.幂形式,统底看指、统指看底。 4.等差数列比与自然数列1,2,3,…对应。 f(n)=公差乘以n+某数. 5.把项数写在下方找感觉。
例2. 根据下面数列{an}的通项公式,写出 前五项:
1
2ቤተ መጻሕፍቲ ባይዱ
785
3
52
4
23
5
66
6
986
定义域 解析式
图象
函数
数列 (特殊的函数)
定义域 解析式
图象
函数
R或R的子集 y=f(x)
连续的线条
数列 (特殊的函数)
N*或它的子集
an=f(n) 一些离散的点 的集合
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一 个数列吗?与“1, 3, 2, 4, 5”呢?
2.1 数列的概念与简单表示法(一)
反思与感悟
在通项公式an=f(n)中,an相当于y,n相当于x.求数列的某一项,相当于 已知x求y,判断某数是不是该数列的项,相当于已知y求x,若求出的x是 正整数,则y是该数列的项,否则不是.
1.与集合中元素的性质相比较,数列中的项也有三个性质: 规律与方法
(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的. (2)可重复性:数列中的数可以重复. (3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排 列次序也有关. 2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精 确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.根据 所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特 征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征; ④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳. 3.如果一个数列有通项公式,则它的通项公式可以有多种形式.
熟记一些基本数列的通项公式,如: ①数列-1,1,-1,1 , …的通项公式是 an=(-1)n. ②数列1,2,3,4,…的通项公式是 an=n. ③数列1,3,5,7,…的通项公式是 an=2n-1. ④数列2,4,6,8,…的通项公式是 an=2n. ⑤数列1,2,4,8,…的通项公式是 an=2n-1. ⑥数列1,4,9,16,…的通项公式是 an=n2.
类型二 数列的通项公式的应用 例2 已知数列{an}的通项公式an=2n--11nn2+n+11,n∈N*. (1)写出它的第10项;
a10=-119×10×2111=31919.
(2)判断323是不是该数列中的项. 令2n-n1+21n+1=323,化简得 8n2-33n-35=0, 解得 n=5(n=-78舍去). 当 n=5 时,a5=-323≠323.所以323不是该数列中的项.
高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1
第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。
1_数列的概念与简单表示法(一)
数列的概念与简单表示法(一)
认识课标(2分钟)
• 1.了解数列的概念、表示、分类; • 2.理解数列的通项公式及其简单应用; • 3.能根据数列的前几项写出一个通项公式。
• 一.学习内容(6分钟)
• 阅读教材P28-29(含例1),梳理教材内容; 然后阅读并填写《学与导》P8知识导读; 1.什么叫数列?以及数列的项和首项的含义? 2.数列的一般形式是怎样的? 3.数列的分类 (1)根据数列的项数可以将数列分为哪两类数列? (2)按照数列的每一项随序号变化的情况可以怎样分类? 4.什么叫数列的通项公式?
2 3 4 • 4.写出数列 1, , , ,... 3 5 7 断它的增减性。
六.小结和作业(2分钟) 本节课你有哪些收获? • • • • • • • 1.作业本上的作业: P31练习2 2.《学与导》上的作业: 必做题: 课中例2(1);课后1、2; 选做题: 课中例2(2);课后3.
• 二.导读单
• • • • • •
• 三.生成问题(6分钟)
• 每个同学把生成的问题写在《学与导》P8, 小组负责人组织交流、讨论问题;最后各小组 负责人组织填写问生成反馈单。
• 四.师生互动解决问题(6分钟)
五.目标达成检测(15分钟)
• • • • • 1.完成教材P31练习4和P33习题A组3; 2.完成《学与导》P8导读题2、5; 3.已知数列 {an }的通项公式为 an 5n 3 (1)写出数列的第4项和第6项; (2)18是否是该数列的一项?如果是,是哪 一项?27是否是该数列的一项呢? 的通项公式,并判
高中数学选择性必修二 4 1 数列的概念与简单表示法(含答案)
课时同步练4.1 数列的概念与简单表示法(1)一、单选题1.已知数列{}n a 中,2n+5,则3a =( ) A .13 B .12 C .11 D .10【答案】C【解析】由已知得2×3+5=11. 故选C .2.有下面四个结论:①数列的通项公式是唯一的;②每个数列都有通项公式;③数列可以看作一个定义在正整数集上的函数;④数列的图象是坐标平面上有限或无限个离散的点.其中真命题的个数为( ) A .0个B .1个C .2个D .3个 【答案】B【解析】对①,数列1,1,1,1,--其通项公式1(1)n n a +=-,也可以是3(1)n n a +=-,故①错误; 对②,数列的项与n 具备一定的规律性,才可求出数列的通项公式,所以有的数列是无通项公式的,故②错误;对③,数列可以看作一个定义在正整数集上或正整数集的子集上的函数,故③错误; 对④,由数列的定义知命题正确.故选B.3.已知数列-1,0,19,18,…,22n n -,…中,则572是其( ) A .第14项 B .第12项 C .第10项 D .第8项【答案】B 【解析】令22n n-=572,化为:5n 2﹣72n +144=0, 解得n =12,或n =125(舍去). 故选B .4.数列{}n a 的通项公式()*2n a n n =∈N不满足下列递推公式的是( ) A .()122n n a a n -=+ B .()1223n n n a a a n --=-C .()()()11222n n n n a a a a n ---=-D .()122n n a a n -= 【答案】D【解析】将2n a n =代入四个选项得:A. 22(1)2n n =-+ 成立;B. 222(1)2(2)n n n =⨯--- 成立;C. ()2222(1)2(1)][2n n n n -=--- 成立;D. 222n n =⨯ 不恒成立。
数列的概念与简单表示法(1)
数列的概念与简单表示法(1)教学目标(1)了解数列的概念,了解数列的分类,理解数列是一种特殊的函数,会用列表法和图象法表示数列;(2)理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式. 教学重点,难点(1)理解数列是一种特殊的函数;(2)会根据简单数列的前几项写出数列的通项公式 一.问题情境(1)全体正整数:1,2,3,4,5,……(2)1996~2002年某市普通高中生人数(单位:万人): 82,93,105,119,129,130,132(3)无穷多个3构成的一列数:3,3,3,3,3,……(4)日前通用的人民币面面额按从大到小的顺序排列(单位:元) 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01 (5)-1的1次幂, 2次幂, 3次幂, 4次幂……: -1,1,-1,1,……(6)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为: 1,12,14,18,116,...二.建构概念 1.数列按照一定次序排列的一列数称为数列.数列的一般形式可以写成1a ,2a ,3a ,...,n a ,...,简记为{}n a . 数列中的每个数都叫做这个数列的项. 2.数列的分类: (1)按项数多少分类: (2)按增减性分类:3.数列是特殊的函数(数列与函数的关系) 4.通项公式:一般地,如果数列{}n a 的第n 项与序号n 之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式. 三.知识运用例1.已知数列的第n 项n a 为21n -,写出这个数列的首项、第2项和第3项.例2.写出数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,7,15,31; (2)1-,1,1-,1,1-; (3)112⨯,123-⨯,134⨯,145-⨯; (4)13,45,97,169,...;(5)0,2,0,2;例3.已知数列{}n a 的通项公式,写出这个数列的前5项,并作出它的图象:(1)1n n a n =+;(2)2(1)2n na -=.练习:1、课本31P 练习1,2,42、写出下列数列的通项公式:(1)13-,18,115-,124-,...,;(2)9,99,999,9999,...,;(3)0.7.0.77,0.777,0.7777,...,(4)10,0,10,0,……说明:写出数列的通项公式(1)关键是寻找n a 与n 的对应关系()n a f n =; (2)符号用(1)n-或1(1)n +-来调节;(3)分式的分子,分母可以分别找通项,但要充分借助分子与分母的关系;(4)并不是每一个数列都有通项公式,即使有通项公式,通项公式也未必是唯一的; (5)对于形如a ,b ,a ,b ,...,的数列,其通项公式均可写成1(1)22n n a b a b a ++-=+-备选练习:1、数列3,7,13,21,31,……的通项公式是( )322,41,2,1,n n n A a n B a n n n C a n n D =-=-++=++不存在2、两两相交的n 条直线,交点个数最多是多少?3、已知数列{}n a 的能项公式是关于n 的一次函数,且14a =,1649a =,求该数列的通项公式.。
数列的概念与简单表示法教案
数列的概念与简单表示法(第一课时)一、教学目标(1)了解数列的概念通过实例,引入数列的概念,并理解数列的顺序性,感受数列是刻画自然规律的数学模型。
同时了解数列的几种分类。
(2)体会数列之间的变量依赖关系,了解数列与函数之间的关系。
二、教学重点与难点教学重点:了解数列的概念,以及数列是一种特殊函数,体会数列是反映自然规律的数学模型。
教学难点:将数列作为一种特殊函数去认识,了解数列与函数之间的关系。
三、教学过程一、创设情境,实例引入1.斐波那契数列,《算盘全书》中兔子繁殖的问题2.引导学生观察向日葵图片,建自然现象中体现出的数的规律。
师:观察向日葵花瓣,你会发现花瓣的排列有怎样的规律2.早在春秋战国时期,惠施说过:“一尺之棰,日取其半,万世不竭”。
实际上这里面就蕴含着数列的知识和以后要学习的极限思想,因此,我们所研究数列非常重要。
今天我们就来学习数列的概念与简单表示法。
板书课题:数列的概念与简单表示法二、新课教学(一)引入1.古希腊毕达哥拉斯的学派的基本观点:万物皆数。
他们认为数是万物的本源,因此他们曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,比如他们曾经过的三角形数。
师:什么叫做三角形数这些数可以用图中的三角形点阵来表示。
我们看三角形数分别是1,3,6,10……(板书)师:类似的他们还研究了正方形数,他们分别是1,4,9,16,25……(板书)(二)新课教学问题一:那么现在就请大家循着古代数学家的足迹,归纳一下这几列数都有那哪些特点我们刚才说这个学派的最根本观点是什么万物皆数所以第一个特点是什么都是一列数第二个特点呢我们看他的排列是不是乱排的,也就是说这几列数都研究的是数,同时有规律,那我们把满足这两个性质的一列数叫做数列。
按照一定顺序排列的一列数成为数列。
师:数列中的每一个数叫做这个数列的项。
数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(或叫首项),排在第二位的数称为这个数列的第2项......排在第n位的数称为这个数列的第n项.板书记法:a1,a2,a3,...,an,...那么这里的角标起到什么作用代表着它的项数,也就是它在数列中的具体位置,对于任何数列都可以这样表示,但如果项数过多,这样表示又很麻烦,所以我们通常把数列简记为{an}例如:三角形构成的数列{an}:1,3,6,10,15……,a1=a2=,a3=,a5,...活动一:分析下列5个数列,按照适当的标准分类.问题1:可以对数列进行怎样的分类教师引导:从数列的项的数量,或者数列前后各项之间的大小关系等角度,你能体会以上这些数列之间的区别吗它们各有什么特点师:引导学生根据项数的多少和项数大小进行分类分类,并给出定义。
2.1 数列概念与简单表示法(一)(A3)
通项公式
-1,1,-1,1,…
an=
1,2,3,4,…
an=
1,3,5,7,…
an=
2,4,6,8,…
16,…
an=
1,,,,…
an=
例1根据数列的通项公式,分别写出数列的前5项与第2 012项.
(1)an=cos;(2)bn=+++…+.
小结由数列的通项公式可以求出数列的指定项,要注意n=1,2,3,….如果数列的通项公式较为复杂,应考虑运算化简后再求值.
和函数不一定有解析式一样,并不是所有的数列都有通项公式.一个数列的通项公式不唯一,可以有不同的表现形式,an=(-1)n-1可以写成an=(-1)n+1,还可以写成an=
探究根据所给数列的前几项求其通项公式时,需仔细观察数列的特征,并进行联想、转化、归纳,同时要熟悉一些常见数列的通项公式.下表中的一些基本数列,你能准确快速地写出它们的通项公式吗?
(1)数列:1,3,5,7,9,…
①用公式法表示:an=;
②用列表法表示:
n
1
2
3
4
5
…
an
…
③用图象法表示为(在下面坐标系中绘出):
(2)数列:1,,,,,…
①用公式法表示:an=.
②用列表法表示:
n
1
2
3
4
5
…
an
1
…
③用图象法表示为(在下面坐标系中绘出):
【数列的通项公式】
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的公式.
训练1根据下面数列的通项公式,写出它的前4项.
(1)an=2n+1;(2)bn=.
例2根据数列的前几项,写出下列各数列的一个通项公式:
高中二年级数学 第二章 数 列§2.1 数列的概念与简单表示法(一)
第二章 数 列§2.1 数列的概念与简单表示法(一) 课时目标1.理解数列及其有关概念;2.理解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前n 项写出它的通项公式.1.按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项.2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为{a n }.3.项数有限的数列称有穷数列,项数无限的数列叫做无穷数列.4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.一、选择题1.数列2,3,4,5,…的一个通项公式为( )A .a n =nB .a n =n +1C .a n =n +2D .a n =2n答案 B2.已知数列{a n }的通项公式为a n =1+(-1)n +12,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1C.12,0,12,0 D .2,0,2,0 答案 A3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )A .a n =12[1+(-1)n -1] B .a n =12[1-cos(n ·180°)] C .a n =sin 2(n ·90°)D .a n =(n -1)(n -2)+12[1+(-1)n -1] 答案 D解析 令n =1,2,3,4代入验证即可.4.已知数列{a n }的通项公式为a n =n 2-n -50,则-8是该数列的( )A .第5项B .第6项C .第7项D .非任何一项答案 C解析 n 2-n -50=-8,得n =7或n =-6(舍去).5.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+1 答案 C解析 令n =1,2,3,4,代入A 、B 、C 、D 检验即可.排除A 、B 、D ,从而选C.6.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2答案 D解析 ∵a n =1n +1+1n +2+1n +3+…+12n ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 二、填空题7.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3n +1(n 为正奇数)4n -1(n 为正偶数) .则它的前4项依次为____________.答案 4,7,10,158.已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),那么1120是这个数列的第______项. 答案 10解析 ∵1n (n +2)=1120, ∴n (n +2)=10×12,∴n =10.9.用火柴棒按下图的方法搭三角形: 按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是______________.答案 a n =2n +1解析 a 1=3,a 2=3+2=5,a 3=3+2+2=7,a 4=3+2+2+2=9,…,∴a n =2n +1.10.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.答案 55解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式:(1)-1,7,-13,19,…(2)0.8,0.88,0.888,…(3)12,14,-58,1316,-2932,6164,…(4)32,1,710,917,… (5)0,1,0,1,…解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5)(n ∈N *).(2)数列变形为89(1-0.1),89(1-0.01), 89(1-0.001),…,∴a n =89⎝⎛⎭⎫1-110n (n ∈N *). (3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,…, ∴a n =(-1)n ·2n -32n (n ∈N *). (4)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得它的一个通项公式为a n =2n +1n 2+1(n ∈N *). (5)a n =⎩⎪⎨⎪⎧0 (n 为奇数)1 (n 为偶数)或a n =1+(-1)n 2(n ∈N *) 或a n =1+cos n π2(n ∈N *). 12.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1; (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有、无数列中的项?若有,有几项?若没有,说明理由.(1)解 设f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831. (2)解 令3n -23n +1=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-33n +1, 又n ∈N *,∴0<33n +1<1,∴0<a n <1. ∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23,则⎩⎪⎨⎪⎧3n +1<9n -69n -6<6n +2,即⎩⎨⎧ n >76n <83.∴76<n <83. 又∵n ∈N *,∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23上有数列中的项,且只有一项为a 2=47. 能力提升13.数列a ,b ,a ,b ,…的一个通项公式是______________________.答案 a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2解析 a =a +b 2+a -b 2,b =a +b 2-a -b 2, 故a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2.14.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.1.与集合中元素的性质相比较,数列中的项也有三个性质:(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的.(2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关.2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.3.如果一个数列有通项公式,则它的通项公式可以有多种形式.例如:数列-1,1,-1,1,-1,1,…的通项公式可写成a n =(-1)n ,也可以写成a n =(-1)n +2,还可以写成a n =⎩⎪⎨⎪⎧-1 (n =2k -1),1 (n =2k ),其中k ∈N *.。
§2.1.1数列的概念与简单表示法(一)
§2.1.1数列的概念与简单表示法(一)
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同 一 个数列吗?与“1, 3, 2, 4, 5”呢?
——数列的有序性 (2) 数列中的数可以重复吗? (3) 数列与集合有什么区别? 集合讲究:无序性、互异性、确定性, 数列讲究:有序性、可重复性、确定性.
重庆市万州高级中学 曾国荣 wzzxzgr@
15
§2.1.1数列的概念与简单表示法(一)
如何用数学式子表示递增数列、递减数列 和常数列?
递增数列: an > an - 1(n = 2, 3, 4, L ) 递减数列: an < an - 1(n = 2, 3, 4, L ) 常数列: an = c (n = 1, 2, 3, L )
22 1 32 1 42 1 52 1 (2) , , , ; 2 3 4 5 解:此数列的前四项的分母都是序号加1,分 子都是分母的平方减去1,所以通项公式是:
an
n 1
1 nn 2 n 1 n 1
2
重庆市万州高级中学 曾国荣 wzzxzgr@ 20
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
2 1
0
2 2 18,446,744,073,709,551,615
2
1
2
3
2 63 ?
2013-8-14
重庆市万州高级中学 曾国荣 wzzxzgr@
3
§2.1.1数列的概念与简单表示法(一)
一斤小麦约1万粒。
项
2
1
2.1数列的概念和简单表示法(1)
有穷数列、无穷数列。
(2)按项与项之间的大小关系分为:
递增数列 、递减数列 、常数列、摆动数列.
将“观察”中的 6个数列分类
自变量 项数 1 因变量 项 a1 ,
3.数列的函数本质
an f ( n )
f ( x) 7 x 9
2 a2 ,
3 n a3 , , an ,
n N*
(5)2, 0, 2, 0, 2;
完成P 31练习4
例2.下图中的三角形称为谢 宾斯基三角形,在这四 个 三角形中,着色三角形 的个数依次构成一个数 列的 前4项,请写出这个数列的 一个通项公式.
(1)
( 2)
( 3)
(4)
练习:教材P 33 A组5
例3.数列{an }的通项公式是an n2 5n 4. (1)30是不是数列的一项?70呢? (2)数列中有多少项是负数? (3)n为何值时,an有最小值?求出最小值.
数列的概念和简单表示法(1)
阅读课本P 28,理解数列的概念及其分类
观察: 1,3,6,10,…
1,4,9,16,…
1.数列的概念 按照一定顺序排列着的 一列数 1, 2,4,8与8,4, 2,1 是不同的数列
数列的一般形式:a1 , a2 , a3 ,, an , 简记为{an }2. 数Βιβλιοθήκη 的分类 (1)按项数有限还是无限分为
完成P 31练习1
例1.写出下面数列的一个通 项公式,使它的前 5项分别是 下列各数:
(1)1, 3, 5, 7, 9;
(2)2, 4, 8, 16, 32;
1 1 1 1 (3)1, , , , ; 2 3 4 5 1 1 1 1 1 (4) , , , , ; 1 2 2 3 3 4 4 5 5 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的概念与简单表示法(A )
班级 姓名
1.将正整数的前5个数排成:①1,2,3,4,5;②5,4,3,2,1; ③2,1,5,3,4;④4,1,5,3,2,那么可以称为数列的有( )
A .①
B .①②
C .①②③
D .①②③④
2.在数列1,1,2,3,5,8,13,x ,34,55…中x 的值是( )
A .19
B .20
C .21
D .22
3.数列的通项公式为n a n 22-=,则-8是该数列的( )
A .第5项
B .第6项
C .第7项
D .非任何一项
4.已知数列的通项公式1
2+=n n a n ,那么这个数列的第5项是—————————— 5.设数列{}n a 满足),(12,211*+∈-==N n a a a n
n 那么=2a ————————————, =3a ———————————————,______________4=a
6.数列⎭⎬⎫⎩
⎨⎧+n og )21(122中的第10项为———————————————— 7.已知数列{}n a 中,)7,(,3≤∈+=*n N n n a n ,试用图象表示出这个数列。
8.已知数列{}n a ,p q pn a a a n (,9,531+===、q 为常数),*∈N n ,求8a
9.写出下列数列的一个通项公式,使它的前4项分别是下列各数:
(1)1,2,3,2
(2)1,0,1,0
(3)7,77,777,7777
(4)5
41,431,321,211⨯⨯⨯⨯
(5)17
16,109,54,21
(6)35
6,245,154,83,32---
数列的概念与简单表示法(B )
班级 姓名
1.下列结论:(1)数列就是数的集合;(2)任何数列都有首项和末项;
(3)项数无限的数列是无穷数列;(4)前若干项相同的两个数列必相同。
其中正确的序号是( )
A .(1)(3)
B .(3)(4)
C .(2)(4)
D .(3)
2.下列四个数中,是数列{})1(+n n 中的一项的是( )
A .380
B .39
C .32
D .23
3.若数列{}n a 的通项公式是11
)2(-+-=n a n
n ,则它的前三项是( ) A .21,35,21---
B .2
3,31,2--- C .0,1,37- D .3,3
1,2-- 4.n 个连续自然数按规律排成下表:
0 3→ 4 7→ 8 11→…
↓ ↑ ↓ ↑ ↓ ↑
1 →
2 5 →6 9 →10
根据规律,从2005到2007,箭头的方向依次为( )
A .↓→
B .↑→
C .→↑
D .→↓
5.若数列的前四项为2,0,2,0,则这个数列的通项公式不能是( ) A .1)1(1+-+=n n a
B .πn a n cos 1-=
C .2sin 22πn a n =
D .)2)(1()1(11--+-+=-n n a n n
6.已知数列{}n a 中,)1(1,111++
==+n n a a a n n ,则这个数列的前五项项为———— 7.已知数列{}n a 满足q pa a a a a n n +====+1421,15,3,1,求q p 和。
8.写出一个通项公式,使它的前4项分别是下列各数:
(1)1,6,11,16 (2),―1,7,―13,19 (3)2,22,222,2222
9.数列{}n a 中,已知)(3
12*∈-+=N n n n a n (1) 写出2,,110n n a a a + (2)79
3
2是否为数列中的项?若是,是第几项?
10.已知数列{}n a 的第1项是1,第2项是2,以后各项由)2(21 n a a a n n n --+=给出。
(1)写出这个数列的前5项。
(2)利用上面的数列{}n a ,通过公式n n n a a b 1+=
构成一个新的数列{}n a , 试写出数列{}n b 的前5项。