反比例函数与几何的综合应用及答案
反比例函数的应用经典习题(含答案)
反比例函数的应用反比例函数应用——跨学科的综合性问题:解答该类问题的关键是确定两个变量之间的函数关系(常应用物理公式),然后利用待定系数法求出它们的关系式.常见模型:1.压力与压强、受力面积的关系2.电压、电流与电阻的关系3.水池中水的体积、排水量与所需时间的关系 4、气体的气压P(千帕)与气体体积V(立方米)的关系例1、某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1) 用含S的代数式表示p,并求木板面积为0.2 m2时.压强是多少?解:P=F/S=600/S ,S=0.2 m2 ,P=600/0.2=1200(Pa)(2)如果要求压强不超过6000 Pa,木板面积至少要多大?方法一:P=600/S≤6000,S≥600/6000=0.1,故面积至少0.1 m2方法二:已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线P=6000下方的图象上(3) 在直角坐标系中,作出相应的函数图象.注意:只需要坐第一象限的图,因为S>0.例2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间的函数关系如图所示。
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?解:因为电流I与电压U之间的关系为IR=U(U为定值),把图象上的点A的坐标(9,4)代入,得U=36.所以蓄电池的电压U=36V.这一函数的表达式为:I=36/R(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R(Ω) 3 4 5 6 7 8 9 10I(A) 4解:当I≤10A时,解得R≥3.6(Ω).所以可变电阻应不小于3.6Ω.试一试1.某蓄水池的排水管每时排水8m 3 ,6h 可将满池水全部排空。
中考反比例函数与几何综合
Oy xBAABxy O反比例函数与几何综合基本图形及常见结论 (1) 反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴;所围k S =矩形(2)反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴及原点连线;所围2k S =三角形(3)反比例函数与正比例函数图像交于A ,B 两点,AM 与x 轴垂直; 则:①A ,B 两点关于原点对称;②k S ABM =△(4)过反比例函数xk y 11=图像上任一点向坐标轴做垂线,与反比例函数)(2122k k xk y >=交于两点; 则:①BNBP AM AP =,即AB ∥MN②21k k S APNH -=矩形③)(△2121k k S OAP -=一次函数)0(≠+=kb b kx y 和反比例函数)0(≠=m xmy 图像交于A 、B 两点,AE ⊥x 轴,BF ⊥y 轴,则:①OAE OBF S S △△= ② OAB ABFE S S △梯形=③AC BD =④BFAEOE OF AE OE BF OF =⇒⋅=⋅ ⑤OACOBD S S △△=(一)巧用k 的几何意义解题y x ABO CDy xDC F EO B A例1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是________。
迁移练习1(1).如图,双曲线)0x (k>=xy 经过Rt △OAB 斜边OB 的中点D ,与AB 交于点C .若△OBC 面积为3,则k =_______迁移练习1(2)..双曲线)0x (k>=xy 经过矩形OABC 边AB 的中点F ,交BC 于点E ; 若梯形OEBA 的面积为9,则k=________。
第32课时 反比例函数的图像和性质的综合运用(解析版)
第32课时反比例函数的图像和性质的综合运用(解析版)核心考点:1.反比例函数的图像和性质的综合运用;2.反比例函数与一次函数的综合运用;3.反比例与一次函数的综合运用一、考点过关1.(2011•和平区校级自主招生)一次函数y=ax+12的图象过一、二、四象限,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=a−1x图象上的三点,则下列结论正确的是( )A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1【答案】B【思路引领】根据一次函数y=ax+12的图象过一、二、四象限推知a<0,所以a﹣1<0,则反比例函数y=a−1x的图象位于第二、四象限,然后将点A、B、C在反比例函数图象上大致标出,根据图象直接判定x1>x3>x2【详解】∵一次函数y=ax+12的图象过一、二、四象限,∴a<0,∴a﹣1<0,∴反比例函数y=a−1x图象位于第二、四象限,其大致图象如图所示:,根据图象知,x1>x3>x2;故选:B.【总结提升】本题考查了反比例函数图象上点的坐标特征、一次函数图象与系数的关系.解答此题时,采用了“数形结合”的数学思想.2.(2022•成县校级模拟)如图,已知A为反比例函数y=kx(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为 ﹣2 .【答案】﹣2.【思路引领】利用反比例函数比例系数k的几何意义得到12|k|=1,然后根据反比例函数的性质确定k的值.【详解】∵AB⊥y轴,∴S△OAB =12|k|=1,而k<0,∴k=﹣2.故答案为﹣2.【总结提升】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.(2020•潍坊)如图,函数y=kx+b(k≠0)与y=mx(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>mx的解集为( )A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1【答案】D【思路引领】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】∵函数y =kx +b (k ≠0)与y =m x (m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,∴不等式kx +b >m x 的解集为:x <﹣2或0<x <1,故选:D .【总结提升】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.4.(2021•潜江模拟)如图,双曲线y =−32x(x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( )A .32B .94C .3D .6【答案】C【思路引领】根据平行四边形的性质结合反比例函数系数k 的几何意义,即可得出S ▱ABCO =4S △COD =2|k |,代入k 值即可得出结论.【详解】∵点D 为▱ABCD 的对角线交点,双曲线y =−32x(x <0)经过点D ,AC ⊥y 轴,∴S ▱ABCO =4S △COD =4×12×|−32|=3.故选:C .【总结提升】本题考查了反比例函数系数k 的几何意义以及平行四边形的性质,根据平行四边形的性质结合反比例函数系数k 的几何意义,找出S ▱ABCO =4S △COD =2|k |是解题的关键.5.(2022春•靖江市期末)如图,在直角坐标系中,点A 在函数y =k x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =k x(x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,若四边形ACBD 的面积等于k 的值为( )A .4B .C .4D 【答案】见试题解答内容【思路引领】设A (a ,k a ),可求出D (2a ,k 2a),由于对角线垂直,所以面积=对角线乘积的一半即可.【详解】设A (a ,k a ),可求出D (2a ,k 2a),∵AB ⊥CD ,∴S 四边形ACBD =12AB •CD =12×2a ×k a=解得k =故选:B .【总结提升】本题主要考查了反比例函数图象上点的坐标特征以及线段垂直平分线的性质,解题的关键是设出点A 和点D 的坐标.6.(2017•东营)如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =n x 的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x >0时,kx +b −n x <0的解集.【答案】见试题解答内容【思路引领】(1)根据三角形面积求出OA ,得出A 、B 的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【详解】(1)∵S△AOB=3,OB=3,∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:0=3k+b −2=b,解得:k=23,b=﹣2,∴一次函数y=23x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=23×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=12 x;(2)当x>0时,kx+b−nx<0的解集是0<x<6.【总结提升】本题考查了用待定系数法求出函数的解析式,一次函数和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.二、能力提升训练7.(2019•澄江市模拟)如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为( )A.﹣6B.﹣5C.﹣4D.﹣3【答案】D【思路引领】将平行四边形面积转化为矩形BDOA面积,再得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【详解】如图所示,过点P作PE⊥y轴于点E,∵四边形ABCD为平行四边形,∴AB=CD,又∵BD⊥x轴,∴ABDO为矩形,∴AB=DO,∴S矩形ABDO=S▱ABCD=6,∵P为对角线交点,PE⊥y轴,∴四边形PDOE为矩形面积为3,即DO•EO=3,∴设P点坐标为(x,y),k=xy=﹣3,故选:D.【总结提升】本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.(2016•长春)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小【答案】B【思路引领】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【详解】AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC•CQ=4﹣n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.故选:B.【总结提升】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.9.(2013•内江)如图,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A.1B.2C.3D.4【答案】C【思路引领】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC 的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则S△OCE =|k|2,S△OAD=|k|2,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO =4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则k2+k2+9=4k,解得:k=3.故选:C.【总结提升】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.10.(2017•南京)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 ①③ .【答案】见试题解答内容【思路引领】结合图形判断各个选项是否正确即可.【详解】①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+4x=−2)2+4≥4,当且仅当x=2时取“=”.即在第一象限内,最低点的坐标为(2,4),故正确;∴正确的有①③.故答案为:①③.【总结提升】考查根据函数图象判断相应取值;理解图意是解决本题的关键.11.(2018•连云港)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b<k2x的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【答案】见试题解答内容【思路引领】(1)将A点坐标代入y=k2 x(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.【详解】(1)将A(4,﹣2)代入y=k2x,得k2=﹣8.∴y =−8x将(﹣2,n )代入y =−8xn =4.∴k 2=﹣8,n =4(2)根据函数图象可知:﹣2<x <0或x >4(3)将A (4,﹣2),B (﹣2,4)代入y =k 1x +b ,得k 1=﹣1,b =2∴一次函数的关系式为y =﹣x +2与x 轴交于点C (2,0)∴图象沿x 轴翻折后,得A ′(4,2),S △A 'BC =(4+2)×(4+2)×12−12×4×4−12×2×2=8∴△A 'BC 的面积为8.【总结提升】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.三、思维拓展训练12.(2022春•邹城市校级月考)点P ,Q ,R 在反比例函数y =k x(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=30,则S 2的值为 275 .【答案】见试题解答内容【思路引领】设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ),推出CP =k 3a,DQ =k 2a ,ER =k a ,推出OG =AG ,OF =2FG ,OF =23GA ,推出S 1=23S 3=2S 2,根据S 1+S 3=30,求出S 1,S 3,S 2即可.【详解】∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a,a ),∴CP =k 3a ,DQ =k 2a ,ER =k a,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,∵S 1+S 3=30,∴S 3=18,S 1=12,S 2=6,故答案为:6.【总结提升】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.13.(2019秋•鼓楼区校级月考)已知一次函数y 1=kx +n (n <0)和反比例函数y 2=m x (m >0,x >0).(1)如图1,若n =﹣2,且函数y 1、y 2的图象都经过点A (3,4).①求m ,k 的值;②直接写出当y 1>y 2时x 的范围;(2)如图2,过点P (1,0)作y 轴的平行线l 与函数y 2的图象相交于点B ,与反比例函数y 3=n x (x >0)的图象相交于点 C .①若k =2,直线l 与函数y 1的图象相交点 D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m ﹣n 的值;②过点B 作x 轴的平行线与函数y 1的图象相交于点 E .当m ﹣n 的值取不大于1的任意实数时,点B 、C间的距离与点B、E间的距离之和d始终是一个定值.设直线y1交y轴于点F,求DE的最小值.【答案】见试题解答内容【思路引领】(1)①将点A的坐标代入一次函数表达式即可求解,将点A的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出;(2)①BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2,由BD=BC或BD=DC得:m﹣n=1或0或4,即可求解;②点E的坐标为(m−nk,m),d=BC+BE=m﹣n+(1−m−nk)=1+(m﹣n)(1−1k),根据点B、C间的距离与点B、E间的距离之和d始终是一个定值,求出k,d的值即可解决问题.【详解】(1)①n=﹣2将点A(3,4)代入一次函数y1=kx+n(n<0)得:3k﹣2=4,解得:k=2,将点A(3,4)代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;故答案为:x>3;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m=2+n,即:m﹣n=1或0或4或2,当m﹣n=0时,m=n与题意不符,故m﹣n=1或4或2;②点E的横坐标为:m−n k,当点E在点B左侧时,d =BC +BE =m ﹣n +(1−m−n k )=1+(m ﹣n )(1−1k),m ﹣n 的值取不大于1的任意数时,d 始终是一个定值,当1−1k=0时,此时k =1,从而d =1.当点E 在点B 右侧时,同理BC +BE =(m ﹣n )(1+1k)﹣1,当1+1k=0,k =﹣1时,(不合题意舍去)故k =1,d =1,此时D (1,1+n ),B (1,m ),C (1,n ),y 1=x +n ,∴∠DEB =45°,△DEB 是等腰直角三角形,∴DE =1+n ﹣m ),BC =m ﹣n∵m ﹣n ≤12,∴BC 的最大值为12,∵DE +BC =1,∴DE 的最小值为12.【总结提升】本题是反比例函数综合题目,考查了一次函数解析式的求法、反比例函数解析式的求法、一次函数和反比例函数的图形与性质、函数定值的求法等知识;关键是通过确定点的坐标,求出对应线段的长度,进而求解。
反比例函数与几何的综合应用及答案
专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程组,解方程组即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x 6x>0的图象交于Am,6,B3,n 两点. 1求一次函数的解析式;2根据图象直接写出使kx +b<x 6成立的x 的取值范围; 3求△AOB 的面积.第1题2.如图,点A,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,AO =CD =2,AB =DA=,反比例函数y =x kk >0的图象过CD 的中点E.1求证:△AOB ≌△DCA ; 2求k 的值;3△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.第2题反比例函数与四边形的综合反比例函数与平行四边形的综合3.如图,过反比例函数y =x 6x >0的图象上一点A 作x 轴的平行线,交双曲线y =-x 3x <0于点B,过B 作BC ∥OA 交双曲线y =-x 3x <0于点D,交x 轴于点C,连接AD 交y 轴于点E,若OC =3,求OE 的长.第3题反比例函数与矩形的综合4.如图,矩形OABC 的顶点A,C 的坐标分别是4,0和0,2,反比例函数y =x kx>0的图象过对角线的交点P 并且与AB,第4题BC 分别交于D,E 两点,连接OD,OE,DE,则△ODE 的面积为________.5.如图,在平面直角坐标系中,矩形OABC 的对角线OB,AC 相交于点D,且BE ∥AC,AE ∥OB. 1求证:四边形AEBD 是菱形;2如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.第5题反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数y =x 3的图象第6题经过A,B 两点,则菱形ABCD 的面积为A .2B .4C .2D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =x kk>0,x>0的图象上,点D 的坐标为4,3.1求k 的值;2若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =x kk>0,x>0的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.第7题反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,反比例函数y =x kx >0,k ≠0的图象经过线段BC 的中点D1求k 的值;2若点Px,y 在该反比例函数的图象上运动不与点D 重合,过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q,记四边形CQPR 的面积为S,求S 关于x 的函数解析式并写出x 的取值范围.第8题反比例函数与圆的综合第9题9.如图,双曲线y =x kk>0与⊙O 在第一象限内交于P,Q 两点,分别过P,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为1,3,则图中阴影部分的面积为________.10.如图,反比例函数y =x kk <0的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.第10题专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =m -1x |m|-2是反比例函数,则m 的取值为A .1B .-1C .±1D .任意实数2.某学校到县城的路程为 5 km ,一同学骑车从学校到县城的平均速度v km /h 与所用时间t h 之间的函数解析式是A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 是x 的反比例函数:①xy =-31;②y =5-x ;③y =5x -2;④y =x 2aa 为常数且a ≠0. 其中________是反比例函数.填序号 2个方法:画反比例函数图象的方法 4.已知y 与x 的部分取值如下表:1试猜想y 与x 的函数关系可能是你学过的哪类函数,并写出这个函数的解析式; 2画出这个函数的图象. 求反比例函数解析式的方法5.已知反比例函数y =x k的图象与一次函数y =x +b 的图象在第一象限内相交于点A1,-k +4.试确定这两个函数的解析式.6.如图,已知A -4,n,B2,-4是一次函数y =kx +b 的图象和反比例函数y =x m的图象的两个交点.求:1反比例函数和一次函数的解析式;2直线AB 与x 轴的交点C 的坐标及△AOB 的面积; 3方程kx +b -x m=0的解请直接写出答案;4不等式kx +b -x m <0的解集请直接写出答案.第6题2个应用反比例函数图象和性质的应用7.画出反比例函数y =x 6的图象,并根据图象回答问题: 1根据图象指出当y =-2时x 的值;2根据图象指出当-2<x<1且x ≠0时y 的取值范围; 3根据图象指出当-3<y<2且y ≠0时x 的取值范围. 反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x 单位:吨,库存的原料可使用的时间为y 单位:小时.1写出y 关于x 的函数解析式,并求出自变量的取值范围.2若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内1个技巧:用k 的几何性质巧求图形的面积9.如图,A,B 是双曲线y =x k k ≠0上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为A .34B .38C .3D .4第9题第10题10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x 2和y =-x 4的图象于A,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =x 3与函数y =x 6在第一象限内的图象,点P 是y =x 6的图象上一动点,PA ⊥x 轴于点A,交y =x 3的图象于点C,PB ⊥y 轴于点B,交y =x 3的图象于点D.1求证:D 是BP 的中点; 2求四边形ODPC 的面积.第11题答案1.解:1∵Am,6,B3,n 两点在反比例函数y =x 6x>0的图象上, ∴m =1,n =2,即 A1,6,B3,2.又∵A1,6,B3,2在一次函数y =kx +b 的图象上,∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8.第1题2根据图象可知使kx +b<x 6成立的x 的取值范围是0<x<1或x>3.3如图,分别过点A,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E,C,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D4,0.∵A1,6,B3,2,∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8.2.1证明:∵点A,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA. 2解:在Rt △ACD 中,∵CD =2,DA =,∴AC ==1.∴OC =OA +AC =2+1=3.∴D 点坐标为3,2.∵点E 为CD 的中点,∴点E 的坐标为3,1.∴k =3×1=3.3解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称,∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为1,3.∵1×3=3,∴点G1,3在反比例函数的图象上.3.解:∵BC ∥OA,AB ∥x 轴,∴四边形ABCO 为平行四边形.∴AB =OC =3.设A a 6,则B a 6,∴a -3·a 6=-3.∴a =2. ∴A2,3,B -1,3.∵OC =3,C 在x 轴负半轴上,∴C -3,0,设直线BC 对应的函数解析式为y =kx +b, 则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29.解方程组,3得y1=3,x1=-1,.3∴D 23.设直线AD 对应的函数解析式为y =mx +n, 则,3解得.9∴直线AD 对应的函数解析式为y =83x +49. ∴E 49.∴OE =49.4.415点拨:因为C0,2,A4,0,由矩形的性质可得P2,1,把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x 2.因为D 点的横坐标为4,所以AD =42=21.因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415.5.1证明:∵BE ∥AC,AE ∥OB, ∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =21AC,DB =21OB,AC =OB. ∴DA =DB.∴四边形AEBD 是菱形.2解:如图,连接DE,交AB 于F,∵四边形AEBD 是菱形,∴DF =EF =21OA =23,AF =21AB =1.∴E ,19.设所求反比例函数解析式为y =x k ,把点E ,19的坐标代入得1=29,解得k =29.∴所求反比例函数解析式为y =2x 9.第5题第7题6.D 7.解:1如图,过点D 作x 轴的垂线,垂足为F.∵点D 的坐标为4,3,∴OF =4,DF =3.∴OD =5.∴AD =5.∴点A 的坐标为4,8.∴k =xy =4×8=32.2将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32x>0的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′.∵DF =3,∴D ′F ′=3.∴点D ′的纵坐标为3.∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332.∴FF ′=332-4=320.∴菱形ABCD 沿x 轴正方向平移的距离为320.8.解:1∵正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,∴C0,2.∵D 是BC 的中点,∴D1,2.∵反比例函数y =x k x >0,k ≠0的图象经过点D,∴k =2.2当P 在直线BC 的上方,即0<x <1时,∵点Px,y 在该反比例函数的图象上运动,∴y =x 2.∴S 四边形CQPR =CQ ·PQ =x ·-22=2-2x ;当P 在直线BC 的下方,即x >1时,同理求出S 四边形CQPR =CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41.1.B 3.①③④4.解:1反比例函数:y =-x 6.2如图所示.第4题 5.解:∵反比例函数y =x k 的图象经过点A1,-k +4,∴-k +4=1k ,即-k +4=k,∴k =2,∴A1,2.∵一次函数y =x +b 的图象经过点A1,2,∴2=1+b,∴b =1.∴反比例函数的解析式为y =x 2,一次函数的解析式为y =x +1.6.解:1将B2,-4的坐标代入y =x m ,得-4=2m ,解得m =-8.∴反比例函数的解析式为y =x -8.∵点A -4,n 在双曲线y =x -8上,∴n =2.∴A -4,2.把A -4,2,B2,-4的坐标分别代入y =kx +b,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2.2令y =0,则-x -2=0,x =-2.∴C -2,0.∴OC =2.∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6.3x 1=-4,x 2=2.4-4<x<0或x>2.7.解:如图,由观察可知:1当y =-2时,x =-3;2当-2<x<1且x ≠0时,y<-3或y>6;3当-3<y<2且y ≠0时,x<-2或x>3.第7题点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:1库存原料为2×60=120吨,根据题意可知y 关于x 的函数解析式为y =x 120.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.2根据题意,得y ≥24,所以x 120≥24.解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:1由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.2要使机器不停止运转,需y ≥24,解不等式即可.第9题9.B 点拨:如图,过点B 作BE ⊥x 轴于点E,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =21BE.设A x k ,则B 2x k ,CD =4x k ,AD =x k -4x k .∵△ADO 的面积为1,∴21AD ·OC =1,即214x k ·x =1.解得k =38.10.311.1证明:∵点P 在双曲线y =x 6上,∴设P 点坐标为,m 6.∵点D 在双曲线y =x 3上,BP ∥x 轴,D 在BP 上,∴D 点坐标为,m 3.∴BD =m 3,BP =m 6,故D 是BP 的中点.2解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6.∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3.。
专题九-反比例函数与几何的综合应用
在物理学中,一些物理量之间可能存在反比例关系,如电阻与电流、压力与面积等。通过运用反 比例函数的性质,可以更好地理解和解决这些物理问题。
反比例函数在经济学中的应用
在经济学中,一些经济指标之间可能存在反比例关系,如价格与需求量、成本与产量等。通过运 用反比例函数的性质,可以对这些经济指标进行更准确的预测和分析。
如长度、面积等。
利用反比例函数性质建立关系
02
根据反比例函数的性质,结合几何图形的特点,建立所求最值
与相关量之间的关系。
求解最值
03
通过求解反比例函数的最值,得到所求几何量的最值。
判定存在性问题
根据题意列出方程或不等式
01
根据题目条件,列出与几何图形相关的方程或不等式
。
利用反比例函数性质分析解的情况
反比例关系在圆中的应用
在圆中,当一个圆的半径增加时,其 面积会按平方比例增加,但其周长只 会按线性比例增加。这种关系虽然不 是严格的反比例关系,但也可以用于 解决一些与圆相关的问题。
解题技巧与实例分析
通过利用圆的性质和上述关系, 可以求解一些与圆相关的问题。 例如,已知一个圆的半径和另一 个圆的面积或周长,可以求解未 知圆的半径或面积等。
仔细阅读题目要求,明确题意 ,避免答非所问。
合理安排答题顺序
先做易做的题目,确保会做的 题目不丢分,再攻克难题。
控制答题时间
每道题目分配合理的时间,避 免时间不够用或浪费过多时间
。
检查答案
做完题目后要认真检查答案, 确保没有遗漏或错误。
THANKS FOR WATCHING
感谢您的观看
解题技巧与实例分析
对于其他几何图形中的反比例关系问题,可以通过设定未知数、利用几何图形的性质和反比例关系来求解。 需要注意的是,在解题过程中要仔细分析题目条件和数据特点,选择合适的解题方法和思路。
八年级反比例函数综合(含答案)
反比例函数的综合要点一、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中y=kx,只有一个待定系数k,因此只需要知道一对x,y的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式y=kx中.要点二、反比例函数的图象和性质1.反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x轴、y轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a,b)在反比例函数y=kx的图象上,则点(-a,-b)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数y =k x(k 为常数,k ≠0)中,由于x ≠0且y ≠0,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小.(2)如图2,当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大.要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点三、反比例函数y =k x(k ≠0)中的比例系数k 的几何意义过双曲线y =k x (k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k|.过双曲线y =k x (k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为||2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.例1.两个反比例函数y =3x ,y =6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2020在反比例函数y =6x 图象上,它们的横坐标分别是x 1,x 2,x 3……x 2020,纵坐标分别是1,3,5,…,共2020个连续奇数,过点P 1,P 2,P 3……P 2020分别作y 轴的平行线,与反比例函数y =3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3)……Q 2020(x 2020,y 2020),则y 2020等于()A .2019.5B .2020.5C .2019D .4039例2.如图,直线y =k 1x +b 与双曲线y =2k x A ,B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是.1.一次函数y 1=k 1x +b 和y 2=2k x (k 2>0)相交于A (1,m ),B (3,n )两点,则不等式k 1x +b >2k x的解集为()A.1<x<3B.x<1或x>3C.x<0或x>3D.1<x<3或x<02.反比例函数y=kx和正比例函数y=mx的图象如图.由此可以得到方程kx=mx的实数根为()A.x=﹣2B.x=1C.x1=2,x2=﹣2D.x1=1,x2=﹣2例3.如图,点A在双曲线y=kx的第一象限的那一支上,AB垂直y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.1.如图,在反比例函数y=4x的图象上有一点A向x轴作垂线交x轴于点C,B为线段AC的中点,又D点在x轴上,且OD=3OC,则△OBD的面积为.例4.在平面直角坐标系xOy中,反比例函数y=kx(k≠0,x>0)的图象经过点A(1,-4),直线y=-2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,-2n)(n>0),过点P作平行于x轴的直线,交直线y=-2x+m于点C,过点P作平行于y轴的直线交反比例函数y=kx(k≠0,x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.1.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=kx的图象在同一直角坐标系中,若y3>y2>y1,则自变量x的取值范围是()A.x<﹣1B.﹣1<x<0或x>1.6C.﹣1<x<0D.x<﹣1或0<x<12.设函数y1=kx,y2=kx (k>0),当2≤x≤3时,函数的y1最大值是a,函数y2的最小值是a﹣4,则ak=()A.4B.6C.8D.103.已知反比例函数y=8x和y=3x在第一象限内的图象如图所示,则△AMN的面积为.4.如图,P1是反比例函数y=kx(k>0)图象在第一象限上的一点,点A1的坐标为(2,0).(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?逐渐减少.(2)若点P2在反比例函数图象上,点A2在x轴上,△P1OA1与△P2A1A2均为等边三角形,①求次反比例函数的解析式;②求点A2的坐标.5.如图,反比例函数y=kx图象和一次函数y=ax+b经过M(1,6)和N(2,a).(1)求一次函数解析式;(2)一次函数y=ax+b与x轴交于点B,与y轴交于点A,求证:AM=BN.6.已知:A (a ,y 1).B (2a ,y 2)是反比例函数y =k x (k >0)图象上的两点.(1)比较y 1与y 2的大小关系;(2)若A 、B 两点在一次函数y =43x+b 第一象限的图象上(如图所示),分别过A 、B 两点作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,且S △OAB =8,求a 的值;(3)在(2)的条件下,如果3m =-4x +24,3n =32x ,求使得m >n 的x 的取值范围.7.如图,在平面直角坐标系xOy 中,函数y =k x(x <0)的图象经过点A (﹣1,6),直线y =mx ﹣2与x 轴交于点B (﹣1,0).(1)求k ,m 的值;(2)过第二象限的点P (n ,﹣2n )作平行于x 轴的直线,交直线y =mx ﹣2于点C ,交函数y =k x(x <0)的图象于点D .①当n =﹣1时,判断线段PD 与PC 的数量关系,并说明理由;②若PD ≥2PC ,结合函数的图象,直接写出n 的取值范围.8.在平面直角坐标系xOy中,函数y=mx(x>0)的图象G与直线l:y=kx-4k+1交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,求k的取值范围.【经典例题1】A【解析】解:∵P n 的纵坐标为:2n -1,∴P 2020的纵坐标为2×2020-1=4039.∵y =与y =在横坐标相同时,y =的纵坐标是y =的纵坐标的2倍,∴y 2020=×4039=2019.5.∴A 答案正确.【经典例题2】-5<x <-1或x >0【解析】解:根据一次函数平移和反比例函数的对称性可得,直线y =k 1x -b 与双曲线y =2k x 交于第三象限点的坐标为(-5,-1)和(-1,-5),如下图所示,∴不等式k 1x <2k x +b ,即k 1x -b <2k x 的解集,即当直线y =k 1x -b 的图象在反比例函数y =2k x 图象的下方对应的自变量x 的取值范围为:-5<x <-1或x >0.【举一反三1】D【解析】解:如图,由图象可得:不等式k 1x +b >2k x 的解集是1<x <3或x <0.故选:D .【举一反三2】C【解析】解:如图,反比例函数y =和正比例函数y =mx 相交于点A (﹣2,1),∴另一个交点为:(2,﹣1),∴方程=mx 的实数根为:x 1=2,x 2=﹣2.故选:C .【经典例题3】163【解析】解:连DC ,∵AE =3EC ,S △ADE =3,∴S △CDE =1.∴S △ADC =4.设A (a ,b ),则AB =a ,OC =2AB =2a .∵D 为OB 的中点,∴BD =OD =12b .∵S 梯形OBAC =S △ABD +S △ADC +S △ODC ,12(a +2a )·b =12a ·12b +4+12·2a ·b ,∴ab =163.把A (a ,b )代入y =,得k =ab =163.【举一反三1】3【解析】解:设A (x 、y ),由反比例函数y =4x可知xy =4,BC =AC =y ,OD =3OC =3x ,∴S △OBD =BC ×OD =×y ×3x =xy =×4=3.故答案为:3.【经典例题4】【解析】解:(1)把A(1,-4)代入y=k x,得k=1×(-4)=-4;把B(1,0)代入y=-2x+m,得-2+m=0,解得m=2;(2)反比例函数解析式为y=-(x>0),一次函数解析式为y=-2x+2,如图,当y=-2n时,-2x+2=-2n,解得x=n+1,则C(n+1,-2n),∴PC=n+1-n=1,当y=-2n时,y=-=,∴D(n,-),∴PD=|-2n+|,∵PD=2PC,∴|-2n+|=2,当-2n+=2时,解得n1=-2(舍去),n2=1,当-2n+=-2时,解得n1=-1(舍去),n2=2,综上所述,当PD=2PC时,n=1或n=2.【自我检测1】B【解析】解:由图象可知,当﹣1<x<0或x>1.6时,双曲线y3落在直线y2上方,且直线y2落在直线y1上方,即y3>y2>y1,所以若y3>y2>y1,则自变量x的取值范围是﹣1<x<0或x>1.6.故选:B.【自我检测2】C【解析】解:∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1取最大值,最大值为=a①;当x=2时,y2取最小值,最小值为﹣=a﹣4②;由①②得a=2,k=4,∴ak=8,故选:C.【自我检测3】25 16【解析】解:设A(a,),则M(a,),N(,),∴AN=a﹣=,AM=﹣=,∴△AMN的面积=AN×AM=××=25 16,故答案为:25 16.【自我检测4】【解析】解:(1)△P1OA1的面积逐渐减少;(2)作P1C⊥OA1于C,∵△P1OA1为等边三角形,A1(2,0),∴OC=1,P1C3P1(1,3).∴反比例函数的解析式为y=3 x.(3)作P2D⊥A1A2于D,如上图,设A1D=x,则OD=2+x,P2D3x,∴P2(2+x3x).将点P2代入y=3x,得y332x=+.x2+2x-1=0,解得x1=-2,x2=-12<0(舍).∴x=-2,OA2=2+x+x=2+2x=2+2(-2)=22.∴A2(22,0).【自我检测5】【解析】解:(1)∵点M(1,6)在反比例函数y=图象上,∴k=1×6=6,∴反比例函数的关系式为y=,把N(2,a)代入得,a==3,∴N(2,3).∵点M(1,6)和N(2,3)在一次函数y=ax+b的图象上,∴a+b=6,2a+b=3,解得a=﹣3,b=9,∴一次函数的关系式为y=﹣3x+9;(2)过点M、N分别作MC⊥OA,ND⊥OB,垂足分别为C、D,当x=0时,y=9,当y=0时,x=3,∴一次函数y=﹣3x+9与x轴的交点B(3,0),与y轴的交点A(0,9),由于A(0,9),B(3,0),M(1,6),N(2,3),∴MC=1,AC=9﹣6=3,ND=3,BD=3﹣2=1,∴MC=BD=1,AC=ND=3,又∵∠ACM=∠NDB=90°,∴△ACM≌△NDB(SAS),∴AM=BN.【自我检测6】【解析】解:(1)∵A、B是y=kx(k>0)图象上的两点,∴a≠0.当a>0时,A、B在第一象限,a<2a,∴此时y1>y2,同理,a<0时,y1<y2.(2)∵A(a,y1)、B(2a,y2)在y=kx(k>0)图象上,∴AC=y1=,BD=y2=.∴y1=2y2.又A (a ,y 1)、B (2a ,y 2)在y =a +b 图象上,∴y 1=a +b ,y 2=a +b .∴a +b =2(a +b ),得b =4a .∵S △AOC +S 梯形ACDB =S △AOB +S △BOD ,又S △AOC =S △BOD ,∴S 梯形ACDB =S △AOB ,即[(a +b )+(a +b )]•a =8.∴a 2=4,由a >0,得a =2.(3)由(2)知,一次函数y =x +8,反比例函数y =.∵A 、B 两点的横坐标分别为2,4,且m =x +8,n =,∴使得m >n 的x 的范围,是反比例函数的图象在一次函数图象下方的点的横坐标取值范围.∴由图可知,2<x <4或x <0.【自我检测7】【解析】解:(1)∵函数y =k x (x <0)的图象经过点A (﹣1,6),∴k =﹣6.∵直线y =mx ﹣2与x 轴交于点B (﹣1,0),∴m =﹣2.(2)①判断:PD =2PC .理由如下:当n =﹣1时,点P 的坐标为(﹣1,2),∵y =﹣2x ﹣2交于于点C ,且点P (﹣1,2)作平行于x 轴的直线,∴点C 的坐标为(﹣2,2),∵函数y =k x(x <0)的图象于点D ,且点P (﹣1,2)作平行于x 轴的直线,点D 的坐标为(﹣3,2).∴PC =1,PD =2.∴PD =2PC .②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3【自我检测8】【解析】(1)解:把A(4,1)代入y=mx(x>0),得m=4×1=4;(2)①当n=5时,把B(1,5)代入直线l:y=kx-4k+1得,5=k-4k+1,解得k=4 3-,如图所示,区域W内的整点有(2,3),(3,2),有2个;(3)直线l:y=kx-4k+1过(1,6)时,k=53-,区域W内恰有4个整点,直线l:y=kx-4k+1过(1,7)时,k=-2,区域W内恰有5个整点,∴区域W内恰有5个整点时,k的取值范围是-2≤k<5 3-.。
专题:反比例函数与几何图形结合
专题4:反比例函数与几何图形结合方法点睛反比例函数与几何图形结合常涉及以下几个方面:1.求反比例函数与一次函数的解析式:(1)找到或求出反比例函数图象上一点的坐标,利用待定系数法求解;(2)找到或求出一次函数图象上两点的坐标,再利用待定系数法求解.注:当已知一次函数与反比例数函数图象上的一个交点A的坐标及交点B的横(纵)坐标,确定两个函数的解析式时,先利用点A的坐标求得反比例函数解析式,再由反比例函数解析式求得点B的坐标,再利用A,B两点的坐标确定一次函数解析式.2、(1)给出图形面积求点的坐标:根据解析式用只含一个参数的代数式表示该点的坐标,列出关于该图形面积的等式进行求解.(2)点的存在性问题:涉及线段和面积的关系,图形的判定等,对这类题应观察图形,结合问题,建立数学模型,按照题意列出等量关系式进行求解.典例分析例1:(2022达州中考)如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P专题过关1.(2022西宁中考)如图,正比例函数4y x =与反比例函数()0k y x x=>的图象交于点(),4A a ,点B 在反比例函数图象上,连接AB ,过点B 作BC x ⊥轴于点()2,0C .(1)求反比例函数解析式;(2)点D 在第一象限,且以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出....点D 的坐标.2.(2022绵阳中考)如图,一次函数1y k x b =+与反比例函数2k y x=在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN3.(2022眉山中考)已知直线y x =与反比例函数k y x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与k y x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.4.(2022衡阳中考)如图,反比例函数myx=的图象与一次函数y kx b=+的图象相交于()3,1A,()1,B n-两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.A,B两点.5.(2022常德中考)如图,已知正比例函数1y x=与反比例函数2y的图象交于()2,2y y<时x的取值范围;(1)求2y的解析式并直接写出12(2)以AB为一条对角线作菱形,它的周长为,在此菱形的四条边中任选一条,求其所在直线的解析式.6.(2022绥化中考)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.7.(2022大庆中考)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.8.(2022湘潭中考)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P 在线段AB 上,以点P 为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N 是线段OB 上一点,连接AN ,将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,求经过A 、N 两点的一次函数表达式.9.(2022成都中考)如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,ABPQ 是完美筝形时,求P ,Q 两点的坐标.10.(2022河南西华二模)如图,反比例函数(0)my x x=>的图象与一次函数y kx b =+的图象交于(14)B ,和(1)C n ,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式(0)mkx b x x+> 的解集;(3)将直线BC 向下平移5个单位长度得到直线l ,已知点P ,Q 分别为x 轴、直线l 上的动点,当PC PQ +的值最小时,请直接写出点P 的坐标.11.(2022河南西华一模)在平面直角坐标系xOy 中,函数()0ky x x=>的图象经过点()2,3A ,()6,B a ,直线l :y =mx +n 经过A ,B 两点,直线l 分别交x 轴,y 轴于D ,C 两点.(1)求反比例函数与一次函数的解析式;(2)在y 轴上是否存在一点E ,使得以A ,C ,E 为顶点的三角形与△CDO 相似?若存在,请求出点E 的坐标;若不存在,请说明理由.12.(2022河南长垣一模)如图,在平面直角坐标系中,直线y x =与反比例函数1y x=(x >0)的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C ,且13BC OA =.AD ⊥y 轴于点D 、CE ⊥y 于点E .(1)求证:△BCE ∽△OAD ;(2)求点A 和点C 的坐标;(3)求k 值.13.(2022河南虞城二模)如图,点A 为直线y =3x 上位于第一象限的一个动点,过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度到点C ,以AB ,BC 为边构造矩形ABCD ,经过点A 的反比例函数()0ky x x=>的图象交CD 于点M .(1)若B(1,0),求点M 的坐标;(2)连接AM ,当AM ⊥OA 时,求点A 的坐标.14.(2022河南商城二模)如图,一次函数2y x =与反比例函数(0)ky k x=>的图象交于点A ,B ,点P 在以点(2,0)C -为圆心,1为半径的C 上,Q 是AP 的中点,OQ 长的最大值为32时.(1)试确定反比例函数ky x=的表达式.(2)C 与x 轴在点C 的左侧交于点M ,请直接写出劣弧MP 的长是___________.(sin 310.52︒≈,sin 400.64︒≈,sin530.8︒≈.)15.(2022新乡二模)如图,在平面直角坐标系中,正比例函数为11y k x =和反比例函数22k y x=图像交于A ,B 两点,矩形OAEC 的边EC 交x 轴于点D ,AD ⊥x 轴,点D 的坐标为(2,0),且AE=ED .(1)求这两个函数的解析式;(2)点P 为y 轴上的一个动点,当PE-PA 的值最大时,求点P 的坐标.16.(2022河南西平一模)如图,一次函数11y k x b =+经过点()4,0A ,()0,4B ,与反比例函数()220k y x x=>的图象交于点()1,C n ,D 两点.(1)求反比例函数和一次函数的解析式;(2)结合函数图象,直接写出当210k k x b x<+≤时x 的取值范围;(3)点P 在x 轴上,是否存在PCD 是以CD 为腰的等腰三角形,若存在,请直接写出点P 的坐标;若不存在,说明理由.17.(2022河南天一大联考)如图,一次函数y =k 1x+b 的图象与反比例函数y 2k x=的图象交于点A (m ,2),B (﹣1,4),与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的解析式;(2)求△OAB 的面积;(3)若点P 在y 轴上,且BP 12=OA ,请直接写出点P 的坐标.18.(2022河南实验中学一模)如图,在矩形OABC中,AB=2,BC=4,D是AB边的中点,反比例函数yk x(x>0)的图象经过点D,与BC边交于点E.(1)求反比例函数的表达式及点E的坐标;(2)若点P在y轴上,当△PDE的周长最小时,求出此时点P的坐标.19.(2022河南虞城二模)如图,一次函数142y x=-+交反比例函数(0)ky xx=>于A,B两点,过点A作AC x⊥轴于点C,AOC△的面积为3.(1)求反比例函数的解析式;(2)D为y轴上一个动点,当DA DB+有最小值时,求点D的坐标.20.(2022河南夏邑一模)在平面直角坐标系xOy 中,函数(0)k y x x=>的图象经过点(2,3),(6,)A B a ,直线:l y mx n =+经过A ,B 两点.(1)求反比例函数与一次函数的解析式,并在下面的平面直角坐标系中描绘出一次函数的大致图象.(2)当直线l 向下平移b 个单位时,与(0)k y x x=>的图象有唯一交点,求b 的值.(3)若直线AB 分别交x 轴,y 轴于D ,C 两点,在y 轴上是否存在一点Q ,使得ACQ 与CDO 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.21.(2022南阳方城二模)如图,在矩形OABC 中,2,4AB BC ==,点D 是边AB 的中点,反比例函数1(0)k y x x=>的图象经过点D ,交BC 边于点E ,直线DE 的解析式为2(0)y mx n m =+≠.(1)求反比例函数1(0)k y x x=>的解析式和直线DE 的解析式;(2)在y 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标;(3)在(2)的条件下,PDE △的周长最小值是______.22.(2022洛阳一模)如图,反比例函数()0k y k x =≠的图象与正比例函数32y x =-的图象相交于(),3A a ,B 两点.(1)求k 的值及点B 的坐标;(2)请直接写出不等式32k x x >-的解集;(3)已知AD x ∥轴,以AB 、AD 为边作菱形ABCD ,求菱形ABCD 的面积.23.(2022开封二模)如图,平面直角坐标系中,反比例函数()0n y n x=≠与一次函数()0y kx b k =+≠的图像相交于点()1,A m ,()3,1B --两点.(1)求反比例函数与一次函数的解析式;(2)直接写出n kx b x+>的解集.(3)已知直线AB 与y 轴交于点C ,点(),0P t 是x 轴上一动点,作PQ ⊥x 轴交反比例函数图像于点Q ,当以C ,P ,Q ,O 为顶点的四边形的面积等于2时,求t 的值.24.(2022鹤壁一模)如图,在矩形ABCO 中,84AB BC ==,,点D 是边AB 的中点,反比例函数11(0)k y x x=<的图象经过点D ,交BC 边于点E ,直线DE 的解析式为()2220y k x b k =+≠.(1)求反比例函数和直线DE 的解析式.(2)在x 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标.(3)在(2)的条件下,PDE △的周长最小值是_________.25.(2022周口扶沟一模)如图,正比例函数y x =的图象与反比例函数k y x=(0x >)的图象交于点()1,A a ,在ABC 中,90ACB ∠=︒,CA CB =,点C 坐标为()2,0-.(1)求k 的值;(2)求AB 所在直线的解析式.26.(2022信阳一模)如图,直线y=-2x+b与x轴、y轴分别相交于点A,B,以线段AB为边在第一象限作正方形ABCD,已知(1)求直线AB的解析式;(2)求点D的坐标,并判断点D是否在双曲线y=12x,说明理由.27.(2022雅安中考)如图,在平面直角坐标系中,等腰直角三角形ABO的直角顶点A的坐标为(m,2),点B在x轴上,将△ABO向右平移得到△DEF,使点D恰好在反比例函数y=8x(x>0)的图象上.(1)求m的值和点D的坐标;(2)求DF所在直线的表达式;(3)若该反比例函数图象与直线DF的另一交点为点G,求S△EFG.28.(2022盘锦中考)如图,平面直角坐标系xOy 中,四边形OABC 是菱形,点A 在y 轴正半轴上,点B 的坐标是(4,8)-,反比例函数(0)k y x x=<的图象经过点C .(1)求反比例函数的解析式;(2)点D 在边CO 上,且34CD DO =,过点D 作DE x 轴,交反比例函数的图象于点E ,求点E 的坐标.29.(2022天门中考)(7分)如图,OA=OB,∠AOB=90°,点A,B分别在函数y=(x>0)和y=(x >0)的图象上,且点A的坐标为(1,4).(1)求k1,k2的值;(2)若点C,D分别在函数y=(x>0)和y=(x>0)的图象上,且不与点A,B重合,是否存在点C,D,使得△COD≌△AOB.若存在,请直接写出点C,D的坐标;若不存在,请说明理由.30.(2022恩施中考)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.31.(2022河南中考)如图,反比例函数()0ky x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.32.(2022荆州中考)小华同学学习函数知识后,对函数()()2410410x x y x x x⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.x…-4-3-2-134-12-14-01234…y (1)4324941140-4-243--1…请根据图象解答:(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接PA ,PB .①求当n =3时,直线l 的解析式和△PAB 的面积;②直接用含....n .的代数式表示......△PAB 的面积.33.(2022牡丹江中考)如图,在平面直角坐标系中,四边形ABCD ,A 在y 轴的正半轴上,B ,C 在x 轴上,AD//BC ,BD 平分ABC ∠,交AO 于点E ,交AC 于点F ,CAO DBC ∠=∠.若OB ,OC 的长分别是一元二次方程2560x x -+=的两个根,且OB OC >.请解答下列问题:(1)求点B ,C 的坐标;(2)若反比例函数()0ky k x=≠图象的一支经过点D ,求这个反比例函数的解析式;(3)平面内是否存在点M ,N (M 在N 的上方),使以B ,D ,M ,N 为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N 的坐标;若不存在,请说明理由.34.(2022驻马店六校联考三模)如图,在平面直角坐标系中,反比例函数kyx(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.35.(2022周口川汇区一模)如图,正方形ABCD的边AB在x轴上,点D的坐标为(2,2),点M是AD的中点,反比例函数ykx的图象经过点M,交BC于点N.(1)求反比例函数的表达式;(2)若点P是x轴上的一个动点,求PM+PN的最小值.36.(2022郑州外国语一模)如图,点()4,B a 是反比例函数()120y x x=>图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数()0ky x x=>的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,连接BF .(1)求k 的值;(2)求BDF 的面积;(3)设直线DE 的解析式为1y k x b =+,请结合图像直接写出不等式1kk x b x+<的解集______.37.(2022郑州二模)如图1,点A、B是双曲线y=kx(k>0)上的点,分别经过A、B两点向x轴、y轴作垂线段AC、AD、BE、BF,AC和BF交于点G,得到正方形OCGF(阴影部分),且S阴影=1,△AGB的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A和点B,上述作图不变,得到矩形OCGF(阴影部分),点A、B在运动过程中始终保持S阴影=1不变(如图2),则△AGB的面积是否会改变?说明理由.38.(2022信阳三模)如图,在矩形OABC中,BC=4,OC,OA分别在x轴、y轴上,对角线OB,AC交于点E;过点E作EF⊥OB,交x轴于点F.反比例函数kyx=(x>0)的图像经过点E,且交BC于点D,已知S△OEF=5,CD=1.(1)求OF的长;(2)求反比例函数的解析式;(3)将△OEF沿射线EB个单位长度,得到△O'E'F',则EF的对应线段E'F'的中点(填“能”或“不能”)落在反比例函数kyx=(x>0)的图上.39.(2022河南新野一模)如图,()()4,30P m m m ->是双曲线12y x =-上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线k y x=于E 、F 两点.(1)求直线AB 的解析式;(2)若12BFBP =,求k 的值和EF 的长.40.(2022平顶山二模)如图,四边形ABCD,EFGH均为菱形,其中点E,A,B,F四点均在x轴上,点D,H在y轴上,EH∥AD.双曲线y=kx(x>0)的图象过点C(5,4),交边GH于点P(103,a).(1)填空:k=______,a=______;(2)求菱形EFGH的面积.41.(2022南阳卧龙一模)如图,已知在平面直角坐标系中,点(3,4)B 在反比例函数(0,0)k y k x x=>>的图象上,过点B 作BA x ⊥轴于点A ,连接OB ,将OAB 向右平移,得到,'''''O A B O B 交双曲线于点(3,)C a a .(1)求k ,a 的值;(2)求OAB 向右平移的距离;(3)连接,BC OC ,则OBC 的面积为____________.42.(2022洛阳伊川一模)如图,已知点()0,1A 在y 轴上,点()10B ,在x 轴上,以AB 为边在第一象限内作正方形ABCD ,此时反比例函数(0)k y k x=≠在第一象限内的图象恰好经过点C ,D .(1)直接写出点D 的坐标和反比例函数的表达式;(2)将正方形ABCD 绕点B 按顺时针方向旋转,当点C 的对应点C '落在x 轴上时,判断点D 的对应点D ′是否落在反比例函数k y x =的图象上,并说明理由.43.(2022洛阳二模)如图,在平面直角坐标系中,ABCD 的顶点分别为()1,2A ,()4,2B ,()7,5C ,曲线():0k G y x x=>.(1)求点D 的坐标;(2)当曲线G 经过ABCD 的对角线的交点时,求k 的值;(3)若曲线G 刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,则直接写出k 的取值范围是______.44.(2022河南林州一模)如图,在平面直角坐标系中,正方形ABCD 的边BC 在x 轴上,点A 坐标为()2,4,点M 是AB 的中点,反比例函数k y x=的图象经过点M ,交CD 于点N .(1)求反比例函数的表达式;(2)若反比例函数图象上的一个动点(),P m n 在正方形ABCD 的内部(含边界),求POC △面积的最小值.45.(2022河南兰考一模)如图,在平面直角坐标系中,ABCD 的顶点分别为(1,2),(4,2),(7,5)A B C ,曲线(0)k y k x=>.(1)当曲线经过ABCD 的对角线的交点时,求k 的值.(2)若曲线刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,求k 的取值范围.46.(2022河南兰考二模)如图,在矩形OABC 中,2AB =,4BC =,D 是AB 边的中点,反比例函数()0k y x x=>的图象经过点D ,与BC 边交于点E .(1)求反比例函数的表达式及点E 的坐标;(2)若点P 在y 轴上,当△PDE 的周长最小时,直接写出△PDE 的面积.47.(2022河南滑县一模)如图,平行四边形OABC 的顶点A ,C 都在反比例函数y k x=(k >0)的图象上,已知点B 的坐标为(8,4),点C 的横坐标为2.(1)求反比例函数y k x=(k >0)的解析式;(2)求平行四边形OABC 的面积S .48.(2022河南邓州一模)如图,在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),反比例函数k y x =的图象经过了矩形的顶点B ,且1tan 2ABD ∠=.(1)求反比例函数表达式;(2)动手画直线OB ,记为y mx =,结合图象直接写出关于x 的不等式0k mx x ->的解集.。
【常考压轴题】2023学年九年级数学下册压轴题攻略(人教版) 反比例函数与几何图形综合(解析版)
反比例函数几何图形综合例1.(等腰三角形)已知反比例函数1=myx-(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图若该反比例函数的图象经过▱ABOD的顶点D点A B的坐标分别为(0 4)(﹣3 0).①求出函数解析式;②【分类讨论思想】设点P是该反比例函数图象上的一点若以D O P为顶点的三角形是等腰三角形则满足条件的点P的个数为______个.AD OB例2.(直角三角形)如图 在平面直角坐标系中 直线32y kx k =++与坐标轴交于点B 与()0,1C 点A 是x 轴上一点 连接AC 且1AB = ()1,D m 是线段BC 上一点 反比例函数k y x'=的图象经过点D .(1)求k '的值.(2)求线段AC 所在直线的函数表达式.(3)延长DO 与反比例函数k y x'=的图象在第三象限交于点F Q 是x 轴上的一点 当以F 、Q 、D 三点构成的三角形为直角三角形时 直接写出Q 点的坐标.例3.(平行四边形)如图四边形OBAC是矩形OC=2 OB=6 反比例函数kyx=的图象过点A.(1)求k的值.(2)点P为反比例函数图象上的一点作PD▱直线AC PE▱x轴当四边形PDCE是正方形时求点P的坐标.(3)点G为坐标平面上的一点在反比例函数的图象上是否存在一点Q使得以A、B、Q、G为顶点组成的平行四边形面积为16?若存在请求出点G的坐标;若不存在请说明理由.例4.(菱形)如图 直线y =ax +b 与反比例函数y =k x(x <0)的图象相交于点A 、点B 与x 轴交于点C 其中点A 的坐标为(-2 6) 点B 的横坐标为-6(1)试确定反比例函数的关系式;(2)求点C 的坐标;(3)点M 是x 轴上的一个动点.①若点M 在线段OC 上 且△AMB 的面积为8 求点M 的坐标;②点N 是平面直角坐标系中的一点 当以A 、B 、M 、N 四点为顶点的四边形是菱形时 请直接写出点N 的坐标【变式训练1】.如图在平面直角坐标系中已知Rt▱AOB的两直角边OA、OB分别在x轴和y轴的正半轴上A(8 0) B(0 6) 点C从原点O出发沿边OA向点A运动速度为每秒1个单位长度点D从点A出发沿边AB向点B运动速度为每秒2个单位长度.设两点同时出发运动时间为t秒(0 < t < 5)(1)当t = 时 DC ∥BO ;(2)当▱ADC 的面积为9时 求t 的值;(3)在(2)的条件下;①作射线BC 若M 是射线BC 上的一个动点 在坐标平面内是否存在点P 使以A 、B 、M 、P 为顶点的四边形是矩形?若存在 请直接写出点P 的坐标;若不存在 请说明理由.② 过点C 作直线1l ▱x 轴 过点B 作直线2l ▱y 轴 直线1l 与直线2l 交于点P 反比例函数k y x=(k >0 x >0)的图像与直线1l 、2l 分别交于点E 、F 连接EF 在y 轴上是否存在点Q 使得▱PEF 和▱QEF 全等 若存在 请直接写出相应的k 的值;若不存在 请说明理由. ▱ADC ABO ∽AD AC AB AO = AD AB AC OA = 21088t t =- 40AD DE 2t DE ADC S =的面积为9 9=2BCO ACM ∴∽▱22P Q B BOC ∽2222Q P P B Q B OB BC OC== 即222256335P Q Q B == 224P Q ∴=,22Q B =2Rt ABM 中,22BM AB =21,AM BM ⊥▱1BAM BM ∠=∠又2ABM ∠=∠12BAM BM A ∴∽▱122AM AB AM BM = 1102545AM =▱11PBQ BAO ∽11BQ BP OA AB ∴= 15810BQ = 解得14BQ =,则6OQ OB BQ =-=11Rt PQ B 中 )3,2-如图 ▱QE PE =EF EF =只能是PFQ QFE ≌B 12l l ⊥ ▱PFQ QFE ≌36k PF QF ==-,FQE ∠如图 过点E 作EG ⊥又FBQ QGE ∠=∠▱FBQ QGE ∽4【变式训练2】如图已知矩形OABC中OA=6 AB=8 双曲线kyx=(k>0)与矩形两边AB BC分别交于点D E且BD=2AD.(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点是否存在点P使▱APE=90°?若存在求出此时点P的坐标若不存在请说明理由.经检验 m =2或m =6都是原方程的解 且符合题意▱存在要求的点P 点P 的坐标为(2 0)或(6 0).【变式训练3】如图 抛物线L :()()142y x t x t =---+(常数0t >)与x 轴从左到右的交点为B A 过线段OA 的中点M 作MP x ⊥轴 交双曲线k y x =(0k > 0x >)于点P 且12OA MP ⨯=.(1)求k 的值.(2)当t=1时 求AB 的长 并求直线MP 与L 的对称轴之间的距离.(3)把L 在直线MP 左侧部分的图像(含与直线MP 的交点)记为G 用t 表示图像G 最高点的坐标.(4)设L 与y 轴的交点为N 当2t =时 在x 轴上是否存在一点Q 使ONQ △与PMQ 相似 若存在 求出Q 的坐标 若不存在 请说明理由.1m 时:m 1m <<时:0<时:1m 时:m 1m <<时:0<时:-【变式训练4】如图 在平面直角坐标系中 点B D 分别在反比例函数()60y x x =-<和()0,0k y k x x =>>的图象上 AB x ⊥轴于点A DC x ⊥轴于点C O 是线段AC 的中点 3AB = 2DC =.(1)求反比例函数k y x=的表达式; (2)连接BD OB OD 求ODB △的面积;(3)P 是线段AB 上的一个动点 Q 是线段OB 上的一个动点 试探究是否存在点P 使得APQ 是等腰直角三角形?若存在 求所有符合条件点P 的坐标;若不存在 请说明理由.3⎛⎫2⎝⎭使得APQ是等腰直角三角形。
反比例函数与几何综合讲义及答案
反比例函数与几何综合讲义及答案一、反比例函数的定义及性质1.反比例函数的定义:如果两个变量的乘积为常数,那么它们之间存在反比例关系,可以表示为y=k/x。
2.反比例函数的性质:函数图像关于坐标轴对称;随着x的增大,y 的值逐渐减小;随着x的减小,y的值逐渐增大。
二、反比例函数的图像与性质1.绘制反比例函数y=k/x的图像。
2.如果k为正数,当x趋近于无穷大时,y趋近于0;当x趋近于0时,y趋近于正无穷大。
3.如果k为负数,当x趋近于无穷大时,y趋近于负无穷大;当x趋近于0时,y趋近于0。
三、反比例函数的解析表达式和图像的关系1.根据解析表达式y=k/x,结合k的正负性质,分析函数图像的大致形状。
2.当k为正数时,函数图像在第一象限逐渐接近于x轴,且没有定义域为x=0的点。
3.当k为负数时,函数图像在第三象限逐渐接近于x轴,且没有定义域为x=0的点。
四、反比例函数的应用1. 反比例函数的例题:如果旅行的时间与旅行的速度成反比例关系,当速度增大时,时间会减少。
求出速度为60 km/h时需要的时间。
答案:假设旅行的时间为t小时,则速度为60 km/h,根据反比例函数的定义可得60 = k/t,解得k = 60t。
根据题意可得t = k/60 = 1小时。
2.反比例函数出题:已知两个变量x和y成反比例关系,在一组数据中,当x=2时,y=5;当x=4时,y=10。
求出该反比例函数的解析表达式。
答案:根据反比例函数的定义可得k = xy,由已知数据可得2k = 5;4k = 10。
解方程可得k = 5/2、将k带入反比例函数中得到y = (5/2)x。
请注意,以上是一些常见的反比例函数综合讲义及试题及答案,实际上反比例函数的应用非常广泛,可以结合实际问题进行更多的应用练习。
反比例函数与几何图形的综合
反比例函数与几何图形的小综合题型一反比例函数与三角形结合1.(2020•沙坪坝区校级月考)如图,一次函数y=x+32分别与x轴、y轴交于A、B两点,点P为反比例函数y=kx(k≠0,x<0)图象上一点,过点P作y轴的垂线交直线AB交于C,作PD⊥PC交直线AB于D,若AC•BD=7,则k的值为()A.﹣2B.﹣3C.−72D.−92【点睛】设P(m,n).则AC=√2n,BD=−√2m,构建方程求出mn的值即可.【解析】解:设P(m,n).则AC=√2n,BD=−√2m,∵AC•BD=7,∴﹣2mn=7,∴mn=−72,∴k=−72.故选:C.2.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为12.【解析】解:∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,∴点C的坐标为(6,2),∴2=k6,解得,k=12,3.(2020•薛城区期中)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C ′的坐标为 (52,0) .【解析】解:过点B 作BD ⊥x 轴于点D ,∵∠ACO +∠BCD =90°,∠OAC +∠ACO =90°, ∴∠OAC =∠BCD ,在△ACO 与△BCD 中,{∠OAC =∠BCD∠AOC =∠BDC AC =BC ,∴△ACO ≌△BCD (AAS )∴OC =BD ,OA =CD ,∵A (0,2),C (1,0)∴OD =3,BD =1,∴B (3,1),∴设反比例函数的解析式为y =kx,将B (3,1)代入y =k x,∴k =3,∴y =3x,∴把y =2代入y =3x ,∴x =32,当顶点A 恰好落在该双曲线上时,此时点A 移动了32个单位长度,∴C 也移动了32个单位长度,此时点C 的对应点C ′的坐标为( 52,0)故答案为(52,0).4.(2020•盐湖区期末)如图,在平面直角坐标系中,边长为4的等边△OAB 的OA 边在x 轴的正半轴上,反比例函数y =kx (x >0)的图象经过AB 边的中点C ,且与OB 边交于点D ,则点D 的坐标为 (√3,3) .【解析】解:∵△AOB 是等边三角形,边长为4,∴B (2,2√3),∵BC =CA ,∴C (3,√3),把点C 坐标代入y =k x上,得到k =3√3,∵直线OB 的解析式为y =√3x , 由{y =√3xy =3√3x,解得{x =√3y =3或{x =−√3y =−3(舍弃)∴D (√3,3),故答案为(√3,3). 题型二 反比例函数与四边形结合5.(2020•北海期末)如图,矩形ABCD 在第一象限,AB 在x 轴的正半轴上,AB =3,BC =1,直线y =12x ﹣1经过点C 交x 轴于点E ,双曲线y =kx经过点D ,则k 的值为( )A .1B .2C .3D .4【解析】解:根据矩形的性质知点C 的纵坐标是y =1,∵直线y =12x ﹣1经过点C ,∴1=12x ﹣1, 解得,x =4,即点C 的坐标是(4,1).∵矩形ABCD 在第一象限,AB 在x 轴正半轴上,AB =3,BC =1,∴D (1,1),∵双曲线y =kx 经过点D ,∴k =xy =1×1=1,即k 的值为1.故选:A .6.(2020•秀洲区二模)平面直角坐标系中,菱形AOBC 的位置如图所示,点A 在x 轴负半轴上,B (1,√3),反比例函数y =kx 在第二象限的图象经过点C ,则k = −√3 .【点睛】根据菱形的性质可以求得点C 的坐标,再根据点C 在反比例函数图象上,从而可以求得k 的值.【解析】解:∵点A在x轴负半轴上,B(1,√3),∴OB=2,点C的纵坐标是√3,∴OA=2,∵四边形AOBC是菱形,点A在x轴的负半轴,∴点C的坐标为(﹣1,√3),∵反比例函数y=kx在第二象限的图象经过点C,∴√3=k−1,得k=−√3,故答案为:−√3.7.如图,在平面直角坐标系中,矩形OABC的对角线OB、AC相交于点D,BE∥AC,AE∥OB,函数y=kx(k>0,x>0)的图象经过点E,若点A、C的坐标分别为(3,0),(0,2),则k的值为92.【解析】解:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形,∵四边形OABC是矩形,C的坐标为(0,2),∴DA=12AC,DB=12OB,AC=OB,AB=OC=2,∴DA=DB,∴四边形AEBD是菱形;连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=12OA=32,AF=12AB=1,3+32=92,∴点E坐标为:(92,1).∵函数y=kx(k>0,x>0)的图象经过点E,∴k=92×1=92,故答案为:92.8.(2020•盘龙区二模)如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是2√26.【解析】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M (6,k 6),N (k6,6),∴BN =6−k 6,BM =6−k 6,∵△OMN 的面积为10,∴6×6−12×6×k 6−12×6×k 6−12×(6−k6)2=10,∴k =24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4,∴BM ′=10,BN =2,∴NM ′=√BM′2+BN 2=√102+22=2√26,故答案为2√26.巩固练习1.(2020•铜山区二模)如图,矩形ABCD 的边BC 在x 轴的负半轴上,顶点D (a ,b )在反比例函数y =kx的图象上,直线AC 交y 轴点E ,且S △BCE =4,则k 的值为( )A .﹣16B .﹣8C .﹣4D .﹣2【解析】解:D (a ,b ),则CO =﹣a ,CD =AB =b ,∵矩形ABCD 的顶点D 在反比例函数y =kx (x <0)的图象上,∴k =ab ,∵△BCE 的面积是4,∴12×BC ×OE =4,即BC ×OE =8,∵AB ∥OE ,∴BC OC=AB EO,即BC •EO =AB •CO ,∴8=b ×(﹣a ),即ab =﹣8,∴k =﹣8故选:B .2.(2020•九龙坡区校级期末)如图,已知反比例函数y =ax和一次函数y =kx +b 的图象相交于点A (﹣1,y 1)、B (4,y 2)两点,则不等式ax ≤kx +b 的解集为( )A .x ≤﹣1或x ≥4B .﹣1≤x ≤4C .x ≤4D .x ≤﹣1或.0<x ≤4【解析】解:不等式a x≤kx +b 的解集就是反比例函数值小于或等于一次函数值的自变量的取值范围,观察图象可得:第二象限x ≤﹣1,第四象限0<x ≤4,故选:D .3.(2020•深圳模拟)如图,点A 是双曲线y =3x上的动点,连结AO 并延长交双曲线于点B ,将线段AB 绕B 顺时针旋转60°得到线段BC ,点C 在双曲线y =kx上的运动,则k = ﹣9 .【解析】解:∵双曲线y =3x 关于原点对称,∴点A 与点B 关于原点对称.∴OA =OB .连接OC ,AC ,如图所示.∵将线段AB 绕B 顺时针旋转60°得到线段BC ,∴△ABC 是等边三角形,OA =OB ,∴OC ⊥AB ,∠BAC =60°,∴tan ∠OAC =OCOA =√3,∴OC =√3OA .过点A 作AE ⊥y 轴,垂足为E ,过点C 作CF ⊥y 轴,垂足为F ,∵AE ⊥OE ,CF ⊥OF ,OC ⊥OA ,∴∠AEO =∠OFC ,∠AOE =90°﹣∠FOC =∠OCF ,∴△AEO ∽△OFC .∴AE OF=EO FC=AO OC.∵OC =√3OA ,∴OF =√3AE ,FC =√3EO .设点A 坐标为(a ,b ),∵点A 在第一象限,∴AE =a ,OE =b .∴OF =√3AE =√3a ,FC =√3EO =√3b .∵点A 在双曲线y =3x上,∴ab =3.∴FC •OF =√3b •√3a =3ab =9,设点C 坐标为(x ,y ),∵点C 在第四象限,∴FC =x ,OF =﹣y .∴FC •OF =x •(﹣y )=﹣xy =9.∴xy =﹣9.∵点C 在双曲线y =kx 上,∴k =xy =﹣9.故答案为:﹣9.4.(2020•普陀区二模)如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC 沿x 轴向左平移得到△A 1B 1C 1,点B 1落在函数y =−6x 的图象上.如果此时四边形AA 1C 1C 的面积等于552,那么点C 1的坐标是 (﹣5,112) .【解析】解:如图,∵点B 的坐标是(2,2),BB 1∥AA 1,∴点B 1的纵坐标为2, 又∵点B 1落在函数y =−6x 的图象上,∴当y =2时,x =﹣3,∴BB 1=AA 1=5=CC 1,又∵四边形AA 1C 1C 的面积等于552,∴AA 1×OC =552,∴OC =112,∴点C 1的坐标是(﹣5,112).故答案为:(﹣5,112).5.(2020•九龙坡区校级期末)如图,菱形OABC 在直角坐标系中,点A 的坐标为(52,0),对角线OB =2√5,反比例函数y =kx (k ≠0,x >0)经过点C .则k 的值为 3 .【解析】解:∵四边形OABC 是菱形,∴OA =AB =BC =CO ,设点C 的坐标为(a ,b ),∵点A 的坐标为(52,0),对角线OB =2√5,∴点B 的坐标为(a +52,b ),OC =52,∴{a 2+b 2=(52)2(a +52)2+b 2=(2√5)2,解得a =32,b =2,∴ab =32×2=3,∵反比例函数y =kx (k ≠0,x >0)经过点C ,点C 的坐标为(a ,b ),∴b =ka ,∴k =ab =3. 故答案为:3.6.以矩形ABCD 两条对角线的交点O 为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE ⊥AC ,垂足为E .若双曲线y =32x(x >0)经过点D ,则OB •BE 的值为 3 .【解析】解:如图,∵双曲线y =32x (x >0)经过点D ,∴S △ODF =12k =34, 则S △AOB =2S △ODF =32,即12OA •BE =32,∴OA •BE =3,∵四边形ABCD 是矩形,∴OA =OB ,∴OB •BE =3,故答案为:3.7.(2020•通辽)如图,在平面直角坐标系中,反比例函数y =k x(k >0)的图象与半径为5的⊙O 交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 5√2 .【解析】解:如图设点M (a ,b ),N (c ,d ),∴ab =k ,cd =k ,∵点M,N在⊙O上,∴a2+b2=c2+d2=25,作出点N关于x轴的对称点N'(c,﹣d),∴S△OMN=12k+12(b+d)(a﹣c)−12k=3.5,∴bc﹣ad=7,∴kca−kac=7,∴ac=k(c2−a2)7,同理:bd=k(b2−d2)7,∴ac﹣bc=k(c2−a2)7−k(b2−d2)7=k7[(c2+d2)﹣(a2+b2)]=0,∵M(a,b),N'(c,﹣d),∴MN'2=(a﹣c)2+(b+d)2=a2+b2+c2+d2﹣2ac+2bd=a2+b2+c2+d2﹣2(ac﹣bd)=50,∴MN'=5√2,故答案为:5√2。
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
专题 反比例函数与几何小综合
专题 反比例函数与几何小综合1、如图,直线122y x =-+交x 轴于A 点,交y 轴于B 点,点P 为双曲线()0ky x x=>上一点,且P A =PB ,90APB ∠=︒,求k 的值.2、如图,直线122y x =--与坐标轴交于A 、B 两点,与双曲线()0ky x x=<交于C 点,且AC =AB ,求k 的值.3、如图,55y x =-+与坐标轴交于A 、B 两点,△ABC 为等腰直角三角形,BC =AC ,双曲线()0ky x x=<过C 点,求k 的值.4、双曲线ky x=经过1P 、2P 二点,1AOP △为等腰直角三角形,1AP x ⊥轴且21AP =,求k 的值.5、如图,直线115y x =-与x 轴、y 轴分别相交于B 、A ,点M 为双曲线()0ky x x=>上一点,若△AMB 是以AB 为底的等腰直角三角形,求k 的值.6、如图,1P 是反比例函数()0ky k x=>在第一象限图象上的一点,点1A 的坐标为(2,0).(1)当点1P 的横坐标逐渐增大时,11POA △的面积将如何变化?(2)若11POA △与212P A A △均为等边三角形,求此反比例函数的解析式及2A 点的坐标.7、如图,直线24y x =-分别交x 轴、y 轴于B 、A 二点,交双曲线()0ky x x=>于点C ,且8AOC S =△.(1)求双曲线的解析式;(2)在C 点右侧的双曲线上是否存在点P ,使45PBC ∠=︒?若存在,求P 点坐标;若不存在,请说明理由.8、如图所示,已知()4,A m ,()1,B n -在反比例函数8y x=的图象上,直线AB 与x 轴交于C ,如果点D 在y 轴上,且DA =DC . (1)求C 点的坐标; (2)求D 点的坐标.9、如图1,A (-2,0)、B (10,0),点D 在第一象限,且DA =DB ,90ADB ∠=︒,双曲线ky x=经过D 点. (1)求k 的值;(2)如图2,已知C (0,-4),点M 为双曲线上一点,CM 交x 轴于N ,若y 轴平分△ACM 的面积,求MNCN.10、已知点A (-1,0)、C (0,-3),双曲线()80y x x =->. (1)如图1,点M 为双曲线上一点,且5=2ACM S △,求点M 的坐标;(2)如图2,点N 为y 轴上一点,将线段AN 沿线段AC 的垂直平分线折叠,使点N 的对应点P 恰好落在双曲线上,求直线AP 的解析式.11、如图1,直线4y x =-+交x 轴、y 轴于B 、C ,点A 为x 轴正半轴上一点,16=5ABC S △,CA 的延长线交双曲线()0ky x x=>于E ,且CA =4AE . (1)求点A 的坐标及k 的值;(2)如图2,正方形OMKN 的顶点M 、N 分别在双曲线及线段BC 上,求出点M 、N 的坐标.。
专题2.10反比例函数与几何综合大题(学生版)
专题2.11反比例函数与几何综合大题一、解答题1.(2022·上海奉贤·九年级期中)如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图像经过点A、B(−1,0),反比例函数y=6x的图像也经过点A,且点A横坐标是2.(1)求一次函数的解析式.(2)点C是x轴正半轴上的一点,连接AC,tan∠ACB=34,过点C作CE⊥x轴分别交反比例函数y=6x和一次函数y=kx+b(k≠0)的图像于点D、E,求点D、E的坐标.(3)在(2)的条件下,连接AD,一次函数y=kx+b(k≠0)的图像上是否存在一点F使得△EAD和△ECF相似?若存在,请直接写出点F坐标;若不存在,请说明理由.2.(2022·上海·八年级专题练习)如图,在平面直角坐标系中,△AOB是等边三角形.(1)在y轴正半轴取一点E,使得△EOB是一个等腰直角三角形,EB与OA交于M,已知MB=32,求MO.≠0的图(2)若等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD.反比例函数y=象恰好经过点C和点D,求反比例函数解析式.(此题无需写括号理由)3.(2022·福建·晋江市季延中学九年级期中)如图点P(m,n)是双曲线y=k x(x<0)上一动点,且m,n为关于a的一元二次方程4a2+ba+320的两根,动直线与x轴、y轴正半轴分别交于点A、B,过点A与AB垂直的直线交y轴于点E,点F是AE的中点,过B点且与AB垂直的直线交FO的延长线于Q点.(1)求双曲线的解析式;(2)当OP取最小值求b的值.(3)若点O到AB的距离等于OP的最小值,求1EF+1BQ的值.>04.(2022·安徽·淮南市龙湖中学九年级期中)如图,直线y=ax+6经过点A−3,0,交反比例函数y=的图象于点B1,m.(1)求k的值;(2)点D为第一象限内反比例函数图象上点B下方的一个动点,过点D作DC⊥y轴交线段AB于点C,连接AD,求△ACD的面积的最大值.5.(2022·广东·南山实验教育麒麟中学九年级期中)直线y=2x与反比例函数y=2x图象交于A,B两点,CA点右侧任意一点;(1)如图1,求A,B两点坐标;(2)如图2,连接BC,若∠ABC=45°,求点C的坐标;(3)如图3,设直线AC,BC分别与x轴相交于D,E两点,且AC=mCD,BC=nCE,求n−m的值.6.(2022·江苏·景山中学九年级阶段练习)在平面坐标系xOy中,给出如下定义:若点P在图形M上,点Q 在图形N上,称线段PQ长度的最小值为图形M、N的“最近距离”,记为d M,N.特别地,若图形M、N有公共点,规定值为0.(1)如图1,⊙O的半径为2,①点A0,1,则d A,⊙O=_________.>0的图像为G1,则d G1,⊙O=_________.②记反比例函数y=(2)如图2,点B2,0,⊙B的半径为1,直线l1:y=kx+3,若d l1,⊙B=135,求k的值.(3)如图3,直线l2:y=−x+4与x轴交于点C,与y轴交于点D,边长为2的正方形EFHK的中心为O,将正方形EFHK沿着x m个单位,记正方形EFHK为图形G2,若线段CD与正方形EFHK的“最近距离”满足0≤d CD,G2≤12,请直接写出m的取值范围.7.(2022·重庆第二外国语学校九年级期中)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,S△ABC=3,且CA⊥x轴.(1)若点C在反比例函数y=k x(k≠0)的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由;(3)在(2)的条件下,取OB的中点M,将线段OM沿着y轴上下移动,线段OM的对应线段是O1M1,直接写出四边形CM1O1N周长的最小值.8.(2022·陕西·西北大学附中九年级期中)如图,一次函数y=−x+4的图象与反比例函数y=k x(k为常数,且k≠0)的图象交与A1,a、B两点.(1)求反比例函数的表达式及点B的坐标;(2)点P在反比例函数第三象限的图象上,使得△PAB的面积最小,求满足条件的P点坐标及△PAB面积的最小值.9.(2021·广东·佛山市南海外国语学校九年级阶段练习)如图1,平面直角坐标系xOy中,A−4,3,反比例<0的图象分别交矩形ABOC的两边AC、BC于E、F(E、F不与A重合),沿着EF将矩形ABOC函数y=折叠使A、D重合(1)如图2,连接BC,求证:EF∥BC;(2)当点D落在矩形ABOC内部时,求k的取值范围;(3)如图3,连接CD,求CD的最小值,并直接写出此时点D的坐标.>0图象上10.(2022·山西·大同市云州区初级示范中学校九年级阶段练习)如图,已知点A为函数y=任意一点,连接OA并延长至点B,使AB=OA,过点B作BC∥x轴交函数图象于点C,过点A作AD⊥BC,垂足为D,连接OC.求四边形OCDA的面积.11.(2022·山东师范大学第二附属中学九年级阶段练习)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,已知顶点B(2,4),反比例函数y=k x(x>0)的图像与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)若点F在直线AC上,点G在反比例函数y=k x(x>0)的图像上,是否存在合适的F、G点,使四边形BCFG平行四边形,若存在,请求出点G的坐标.若不存在,请说明理由.12.(2022·湖南·长沙市北雅中学模拟预测)知识拓展如图1,由DE∥BC,AD=DB,可得AE=EC;如图2,由AB∥CD∥EF,AE=EC,可得BF=FD;解决问题如图3,直线AB与坐标轴分别交于点A m,0,B0,n m>0,n>0,反比例函数y=m x x>0的图象与AB交于C,D两点.(1)若m+n=8,n取何值时ΔABO的面积最大?(2)若SΔAOC=SΔCOD=SΔBOD,求点B的坐标.13.(2022·辽宁·灯塔市第一初级中学九年级期中)如图,在直角坐标系中,点B的坐标为(4,2),过点B 分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=4x(x>0)的图象分别交AB,BC于点E,F.(1)求直线EF的解析式;(2)求△EOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.14.(2022·山东·新泰市宫里镇初级中学九年级阶段练习)如图,函数y=k x(x>0)的图像过点A(n,2)和B(85,2n−3)两点.(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=k x(x>0)于点C,若S△ACO=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.15.(2022·上海·新区川沙新镇江镇中学九年级阶段练习)如图,直线AC:y=ax+2分别交y轴和反比例函数y=k x(x>0)的图象于点C和点A(2,m),点B也在反比例函数的图象上,且BC∥x轴,tan∠ACB=2.(1)求点A、B的坐标;(2)设点D在x轴的正半轴上,点E在该反比例函数的图象上.①若四边形BDCE是菱形,求出该菱形周长;②若以点A、C、D、E为顶点的四边形是平行四边形,请直接写出点D的坐标.16.(2022·浙江·九年级专题练习)已知在平面直角坐标系xOy中,点A是反比例函数y=1x(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=k x(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=k x(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.17.(2021·河南·商城县第二中学九年级阶段练习)已知反比例函数y=1-m x(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,4),(﹣3,0).①求出函数解析式;②【分类讨论思想】设点P是该反比例函数图象上的一点,若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为______个.18.OABC,OA在y轴上,OC在x轴上,OA=2,AB=4,双曲线k>0与矩形的边AB、BC分别交于点E、F.(1)若点E是AB的中点,求点F的坐标;(2)将△BEF沿直线EF对折,点B落在x轴上的D处,过点E作EG⊥OC于点G.问:△EGD与△DCF是否相似?若相似,请求出相似比;若不相似,请说明理由.19.(2021·辽宁·沈阳市清乐围棋学校九年级阶段练习)如图,在平面直角坐标系中,边长为2的正方形ABCD 关于y轴对称,边AD在x轴上,点B在第四象限,直线BD:y1=kx+b与反比例函数y2=m x的图象交于点B,点E.(1)求反比例函数及直线BD的关系式;(2)直接写出不等式m x﹣kx﹣b<0的解集.20.(2022·安徽·利辛县汝集镇西关学校九年级阶段练习)如图,ΔAOB的边OB在x轴上,且∠ABO=90°,反比例函数y=k x(x>0)的图像与边AO、AB分别相交于点C、D,连接BC.已知OC=BC,ΔBOC的面积为12.(1)求k的值;(2)若AD=6,求直线OA的函数表达式.21.(2022·浙江省武义县实验中学八年级阶段练习)如图,四边形OBAC是矩形,OC=2,OB=6,反比例函数y=k x 的图象过点A.(1)求k的值.(2)点P为反比例函数图象上的一点,作PD⊥直线AC,PE⊥x轴,当四边形PDCE是正方形时,求点P的坐标.(3)点G为坐标平面上的一点,在反比例函数的图象上是否存在一点Q,使得以A、B、Q、G为顶点组成的平行四边形面积为16?若存在,请求出点G的坐标;若不存在,请说明理由.22.(2022·广东·深圳市宝安第一外国语学校模拟预测)数学是一个不断思考,不断发现,不断归纳的过程,古希腊数学家帕普斯(Pappus,约300−350)把∠AOB三等分的操作如下:(1)以点O为坐标原点,OB所在的直线为x轴建立平面直角坐标系;(2)在平面直角坐标系中,绘制反比例函数y=1x(x>0)的图像,图像与∠AOB的边OA交于点C;(3)以点C为圆心,2OC为半径作弧,交函数y=1x的图像于点D;(4)分别过点C和D作x轴和y轴的平行线,两线交于点E,M;(5)作射线OE,交CD于点N,得到∠EOB.(1)判断四边形CEDM的形状,并证明;(2)证明:O、M、E三点共线;(3)证明:∠EOB=13∠AOB.23.(2022·江苏省盐城中学新洋分校八年级阶段练习)【感知】如图1,已知反比例函数y=k x上有两点A(−2,1),B(1,−2),AE⊥x轴交x轴于点E,BF⊥y轴交y轴于点F,则S△AEF=______;S△BEF=_______;EF与AB的位置关系:_______.【探究】数学社团的同学们对上述问题又时行了思考,如图2,当A,B是双曲线y=k x(x>0)同一支上任意两点,过A,B分别向y轴,x轴作垂线,交y轴于点E,交x轴于点F,连接AF、BE.①试探究△AEF与△BEF面积的关系并说明理由.②试探究EF与AB之间的位置关系并说明理由.【运用】如图3,已知点A、B在反比例函数y=12x的图像上,且A(3,m),B是反比例函数y=12x第三象限内图像上的一动点,过点A作AE⊥x轴,过点B作BF⊥y轴,垂足分别分为E,F,若四边形AEFB的面积为20,求点B的坐标.(提示,可直接运用上述所发现的结论,答案见公众号:绿爱生活)【拓展】如图4,函数y=k x(x>0)的图像与过原点O的直线相交于B、D两点,点A是第一象限内图像上的动点(点A在点B的左侧),直线AB分别交于y轴、x轴于点C、E,连接AD分别交y轴、x轴于点M、N.若AC=23AB,则AM AD=______.24.(2022·广东·佛山市南海外国语学校三模)如图1,在平面直角坐标系xOy中,点C在x轴负半轴上,四边形OABC为菱形,反比例函数y=−12x(x>0)经过点A(a,−3),反比例函数y=k x(k>0,x<0)经过点B,且交BC边于点D,连接AD.(1)求直线BC的表达式.(2)求tan∠DAB的值.(3)如图2,P是y轴负半轴上的一个动点,过点P作y轴的垂线,交反比例函数y=−12x(x>0)于点N.在点P运动过程中,直线AB上是否存在点E,使以B,D,E,N为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.25.(2021·江苏·开明中学八年级期末)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴和y轴的正半轴上,A(8,0),B(0,6),点C从原点O出发,沿边OA向点A运动,速度为每秒1个单位长度,点D从点A出发,沿边AB向点B运动,速度为每秒2个单位长度.设两点同时出发,运动时间为t秒(0< t<5)(1)当t=时,DC∥BO;(2)当△ADC的面积为9时,求t的值;(3)在(2)的条件下;①作射线BC,若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.②过点C作直线l1⊥x轴,过点B作直线l2⊥y轴,直线l1与直线l2交于点P,反比例函数y=k x(k>0,x>0)的图像与直线l1、l2分别交于点E、F,连接EF,在y轴上是否存在点Q,使得△PEF和△QEF全等,若存在,请直接写出相应的k的值;若不存在,请说明理由.26.(2022·广东·东莞市万江第三中学三模)阅读理解对于任意正实数a,b,∵(a−b)2≥0,∴a+b−2ab≥0,∴a+b≥2ab,只有当a=b时,等号成立.结论:在a+b≥2ab(a,b均为正实数)中,若ab为定值p,则a+b≥2p只有当a=b时,a+b有最小值2p.根据上述内容,回答下列问题:(1)若m>0,只有当m=______时,m+1m有最小值______.(2)探索应用如图,已知A−2,0,B0,−3,P为双曲线y=6x(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.(3)实践应用建筑一个容积为800m3,深为8m的长方体蓄水池,池壁每平方米造价为80元,池底每平方米造价为120元,如何设计池底的长、宽,使总造价最低?27.(2022·山东·新泰市楼德镇初级中学九年级阶段练习)反比例函数y=k x(k>0)的图像与直线y=mx+n的图像交于Q点,点B(3,4)在反比例函数y=k x的图像上,过点B作PB∥x轴交OQ于点P,过点P作PA∥y轴交反比例函数图像于点A,已知点A的纵坐标为94.(1)求反比例函数及直线OP的解析式;(2)在x轴上存在点N,使得△AON的面积与△BOP的面积相等,请求出点N的坐标;(3)在y轴上找一点E,使△OBE为等腰三角形,直接写出点E坐标.28.(2022·江苏·泰州中学附属初中八年级期末)如图在平面直角坐标系中,已知直线y=﹣12x+2及双曲线y =k x(k>0,x>0).直线交y轴于A点,x轴于B点,C、D为双曲线上的两点,它们的横坐标分别为a,a+m(m >0).(1)如图①连接AC、DB、CD,当四边形CABD为平行四边形且a=2时,求k的值.(2)如图②过C、D两点分别作CC'∥y轴∥DD'交直线AB于C',D',当CD∥AB时,①对于确定的k值,求证:a(a+m)的值也为定值.②若k=6,且满足m=a﹣4+d a,求d的最大值.29.(2022·江苏·泰州中学附属初中八年级期末)定义:平面直角坐标系内的矩形若满足以下两个条件:①各边平行于坐标轴:②有两个顶点在同一反比例函数图像上,我们把这个矩形称为该反比例函数的“伴随矩形”.例如,图1中,矩形ABCD的边AD∥BC∥x轴,AB∥CD∥y轴,且顶点A、C在反比例函数y=k x(k≠0)的图像上,则矩形ABCD是反比例函数的“伴随矩形”.解决问题:(1)已知,矩形ABCD中,点A、C的坐标分别为:①A(﹣3,8),C(6,﹣4);②A(1,5),C(2,3);③A(3,4),C(2,6),其中可能是某反比例函数的“伴随矩形”的是______;(填序号)(2)如图1,点B(2,1.5)是某比例系数为8的反比例函数的“伴随矩形”ABCD的顶点,求直线BD的函数解析式;(3)若反比例函数“伴随矩形”ABCD如图2所示,试说明有一条对角线所在的直线一定经过原点.30.(2022·上海市梅陇中学九年级期中)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数y=−1x,y=4x的图像交于A、B两点,(1)当OB与x轴的正半轴的夹角为45°时,求点A、B的坐标.(2)在直角∠BOA绕原点O按顺时针方向旋转过程中,∠OAB大小会变化吗?如果不变,请求出tan∠OAB的值如果有变化,请说明理由.(3)如果AB交y轴于点C,若AC=2BC时,求点A,B的坐标.。
初中数学中考考点综合专题(二):反比例函数与几何图形的综合
∠A=60°,菱形的一个顶点 C 在反比例函数 y= k (k≠0)的 x
图象上,则反比例函数的解析式为( B )
A.y=- 3 3 x
B.y=- 3 x
C.y=- 3 x
D.y= 3 x
8.如图,四边形 AOBC 和四边形 CDEF 都是正 方形,边 OA 在 x 轴上,边 OB 在 y 轴上,点 D 在边
由题意得 A′B′=4,∠A′B′E=60°. ∴∠B′DE=30°. 在 Rt△DEB′中,B′D=2, ∴B′E=1.
∴DE= B' D2 B' E 2 22 12 3.
∴O′E=3.
把 y= 3代入 y=4x3,得 x=4. ∴OE=4. ∴a=OO′=1;
如图③,当反比例函数图象经过 A′O′的中点 F 时,过点 F 作 FH⊥x 轴于点 H.
∴AE=6. 又∵▱ABCD 的面积是 24, ∴AD=BC=4.
∴D(4,2). ∴k=4×2=8.
∴反比例函数的解析式为 y= 8 . x
(2)AB 所在直线的解析式. (2)由题意知 B 的纵坐标为-4, ∴其横坐标为-2. ∴B(-2,-4). 设 AB 所在直线的解析式为 y=ax+b,
(4,12)
.
10.如图,在▱ ABCD 中,顶点 A 的坐标是(0, 2),AD∥x 轴,BC 交 y 轴于点 E,顶点 C 的纵坐 标是-4,▱ ABCD 的面积是 24.反比例函数 y= k 的
x 图象经过点 B 和点 D,求:
(1)反比例函数的解析式;
解:(1)∵顶点 A 的坐标是(0,2),顶点 C 的纵坐 标是-4,
x 得 k=2,∴y= 2 .
x
(2)连接 BD,若点 P 是反比例函数图象上的一 点,且直线 OP 将△OBD 的周长分成相等的两部分, 求点 P 的坐标.
反比例函数与几何综合 (通用版)(含答案)
反比例函数与几何综合(通用版)试卷简介:反比例函数与几何综合一、单选题(共8道,每道10分)1.如图,在平面直角坐标系中,直线y=-3x+3与x轴,y轴分别交于A,B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )A.1B.2C.3D.4答案:B解题思路:如图,作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.根据题意可得,A(1,0),B(0,3),△CEB≌△BOA≌△AFD.∴BE=OA=DF=1,CE=OB=AF=3,∴OF=OE=4,∴C(3,4),D(4,1),k=1×4=4.∵平移后点C的纵坐标为4,∴平移后点C的横坐标为1,∴a=3-1=2.试题难度:三颗星知识点:反比例函数与几何综合2.如图,反比例函数(x>0)的图象与矩形OABC的边AB,BC分别交于点E,F,且AE=BE, 则△OEF的面积为( )A.3B.C. D.答案:C解题思路:由反比例函数常用模型知道,若点E是BA中点,则点F是线段BC的中点,,,,∴.试题难度:三颗星知识点:反比例函数与几何综合3.如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于( )A.4:1B.3:1C.2:1D.1:1答案:D解题思路:方法一:易知点E,则反比例函数为,∴点,,∴DF:FC=1:1.方法二:如图,延长CD交y轴于点G,连接FE,BG.由反比例函数常见模型,可知FE∥BG,∴△CFE∽△CGB,∴,∵,易求∴DF:FC=1:1.试题难度:三颗星知识点:反比例函数与几何综合4.如图,在函数(x<0)和(x>0)的图象上,分别有A,B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,已知,,则线段AB的长度为( )A. B.C. D.答案:D解题思路:由,得.∴两反比例函数的解析式为,设B点坐标为(t>0),∵AB∥x轴,∴A点坐标为.由题意,可证得Rt△AOC∽Rt△OBC,∴OC:BC=AC:OC,即,∴,∴,,∴.试题难度:三颗星知识点:反比例函数与几何综合5.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数的解析式为( )A. B.C. D.答案:B解题思路:只需求出点D的坐标即可.如图,连接OB,∵∴∵OC=AB=4,∴CD=2,即点D(2,4),∴.试题难度:三颗星知识点:反比例函数与几何综合6.如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B,C均在第一象限,OA=2,∠AOC=60°.点D在边AB上,将菱形OABC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且.若某反比例函数的图象经过点,则这个反比例函数的解析式为( )A. B.C. D.答案:D解题思路:连接CD,由折叠性质可知,,∴点A与点D重合.如图所示:根据题意可求得,点B的坐标为,∴点的坐标为,∴经过点的反比例函数的解析式为.试题难度:三颗星知识点:反比例函数与几何综合7.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积之比为4:1,则k的值为( )A. B.C.2D.3答案:B解题思路:由题意可知点,点易知△OPQ与△MPR相似,且相似比为2:1,∴,∴点,则试题难度:三颗星知识点:反比例函数与几何综合8.函数y=x的图象与函数的图象在第一象限内交于点B,点C是函数在第一象限图象上的一个动点,当△OBC的面积为3时,点C的坐标是( )A. B.C. D.答案:D解题思路:在x轴上找到点D使得△OBD的面积为3,过点D作OB的平行线,根据平行线间的距离处处相等及同底等高转化面积可知,平行线与反比例函数图象的交点即为要求的点C.如图,CD∥OB,由,点B的纵坐标为2,得OD=3,∴D(3,0).由CD∥OB可设直线CD的函数解析式为y=x+b,把D点坐标代入可得b=-3,∴直线CD的函数解析式为y=x-3.联立直线CD和反比例函数的解析式可求得C(4,1).同理可求得,直线的函数解析式为y=x+3,联立直线和反比例函数的解析式可求得.试题难度:三颗星知识点:反比例函数与几何综合二、填空题(共2道,每道10分)9.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线经过点C,交x轴于点E,双曲线经过点D,则k=____.答案:1解题思路:∵点C的纵坐标为1,则点,∴OB=4,∵AB=3,BC=1,∴D(1,1),∴.试题难度:知识点:反比例函数图象上点的坐标特征10.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数(k<0)的图象上,则k=____.答案:-12解题思路:题目当中关键点是点C和点D,我们需要建立等式来求解,题干中给出建等式的信息有三点:①点C,D都在反比例函数的图象上;②四边形ABCD是平行四边形,可以利用对边相等等条件建立等式;③BC=2AB,可以用来建等式.设点C的坐标是,过点C作x轴的垂线,过点D作y轴的垂线,两垂线交于点E,如图所示:易证得△CED≌△BOA,则DE=1,CE=2,∴点D的坐标是.∵点D在反比例函数的图象上,∴(此时利用①②两个条件);由于DA=BC=2AB=,点D,点A(-1,0),构造直角三角形,利用勾股定理可以得到,整理我们可以得到,将其代入可以得到,∵,∴,∴.试题难度:一颗星知识点:反比例函数与几何综合第 11 页共 11 页。
中考数学专题复习《反比例函数与几何综合》测试卷-附带答案
中考数学专题复习《反比例函数与几何综合》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图 在直角坐标系中 A B C D 四点在反比例函数k y x=线段AC BD ,都过原点O ()4,2A 点B 点纵坐标为4 连接AB CD DA ,,.(1)求该反比例函数的解析式(2)当-2y ≥时 写出x 的取值范围(3)求四边形ABCD 的面积.2.如图 在平面直角坐标系中 直线2y x b =+经过点()2,0A - 与y 轴交于点B 与反比例函数()0k y x x =>的图象交于点(),6C m 过点B 作BD y ⊥轴 交反比例函数()0k y x x=>的图象于点D 连接AD CD 、.(1)b =______ k =______(2)求ACD 的面积.3.如图 一次函数y kx b =+与反比例函数m y x=的图象相交于A B 两点(点A 在点B 的左侧) 与x 轴相交于点C 已知点()1,4A 连接OB .(1)求反比例函数的解析式(2)若BOC 的面积为3 求AOB 的面积(3)在(2)的条件下 根据图象 直接写出m kx b x>+的解集. 4.小明借助反比例函数图象设计“鱼形”图案.如图 在平面直角坐标系中 以反比例函数ky x =图象上的点()2A 和点B 为顶点 分别作菱形AOCD 和荾形OBEF 点D E 在x 轴上 以点O 为圆心 OA 长为半径作AC 连接BF(1)求k 值(2)计算图形阴影部分面积之和.5.在平面直角坐标系xOy 中 反比例函数()0k y x x=>的图象与等腰直角三角形OAB 相交 90OBA ∠=︒ 6OA =.(1)如图1 若反比例函数的图象恰好经过OAB 的顶点B 时 求反比例函数的表达式(2)在(1)的前提下 过点A 作AQ OB 交反比例函数的图象于点Q 连接BQ 求OBQ △的面积和点Q 的坐标(3)如图2 若反比例函数的图象交OAB 的边OB 于点C 且13BC OB = 点P 是反比例函数图象上的一动点 满足OCP △的面积是3 请直接写出点P 的坐标.6.平面直角坐标系xOy 中 横坐标为a 的点A 在反比例函数()10k y x x=>的图象上 点A '与点A 关于点O 对称 一次函数2y mx n =+的图象经过点A '.(1)设2a = 点()4,2B 在函数1y 2y 的图象上 分别求函数1y 2y 的表达式.(2)如图① 设函数1y 2y 的图象相交于点B 点B 的横坐标为3aAA B '的面积为16 求k 的值(3)设12m = 如图① 过点A 作AD x ⊥轴 与函数2y 的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数2y 的图象与线段EF 的交点P 一定在函数1y 的图象上. 7.如图 在矩形OABC 中 3OA = 2OC = F 是AB 上的一个动点(F 不与A B 重合) 过点F 的反比例函数()0ky x x=>的图象与BC 边交于点E .(1)当F 为AB 的中点时 求该反比例函数的解析式和点E 的坐标.(2)当k 为何值时 CEF △的面积最大 最大面积是多少?8.已知直线11y x =+与双曲线22y x=相交于点A 和点B 如图所示 过点B 作BD y ⊥轴于点D 设直线AB 交x 轴于点C 连接CD .(1)求:BCD △的面积(2)求:当12y y ≥时 x 的取值范围.9.如图 在平面直角坐标系中 O 为坐标原点 ABO 的边AB 垂直x 轴于点B 反比例函数()0k y x x=>的图象经过AO 的中点C 与边AB 相交于点D 若D 的坐标为()4,m 3AD =.(1)反比例函数k y x=的解析式是 (2)设点E 是线段CD 上的动点 过点E 且平行y 轴的直线与反比例函数的图象交于点F 则OEF 面积的最大值是 .10.如图 一次函数1y kx b =+的图象与x 轴 y 轴分别交于点A B 与反比例函数()20m y x x=>的图象交于点()1,2C ()2,D n .(1)分别求出两个函数的解析式(2)连接OC OD 求COD △的面积(3)点P 是反比例函数上一点 PQ x ∥轴交直线AB 于Q 且3PQ = 求点P 的坐标. 11.如图 反比例函数(0)k y x x =<的图像与直线3x =-交于点P AOP 的面积等于3.(1)求反比例函数的表达式(2)利用图像 求当30x -<<时 y 的取值范围.12.如图 ABC 中 60CAB ∠= 45ABC ∠= 点A B 在x 轴上 反比例函数k y x =的图象经过点(123C , 且与BC 边交于另一点D CE x ⊥轴 垂足为点E .(1)求反比例函数的解析式(2)求点D 的坐标(3)在x 轴上是否存在点P 使得BDP △与BCE 相似 若存在 请直接写出满足条件点P 的坐标 若不存在 请说明理由.13.如图 Rt OAB 的直角顶点B 在x 轴的正半轴上 点A 在第一象限内 已知反比例函数()0k y x x =>的图象经过线段OA 的中点D 交直线AB 于点C .若OAB 的面积为6.(1)求k 的值(2)若AC OB = 求点A 的坐标.14.如图 在Rt ABO △中 直角顶点B 在x 轴正半轴上 反比例函数n y x=(0n >)的图象分别与边AO 边AB 交于点C D .(1)如果点C 的坐标为()23,且8AD = 求n 的值及点B 的坐标 (2)连结CB 如果AD DB = 求OAB OCB S S :的值.15.如图 一次函数y ax b =+与反比例函数k y x =的图象交于D E 两点 CD x ⊥轴 垂足为C 过C 作CB DE ∥交y 轴于B 已知四边形ABCD 的面积为12 E 点纵坐标为2-.(1)求反比例函数的解析式(2)当6AB =时 求一次函数的解析式(3)在(2)的条件下 直接写出k ax b x+<的自变量x 的取值范围. 参考答案:1.(1)8y x= (2)4x ≤-或0x >(3)242.(1)4 6 (2)92.3.(1)4y x= (2)3AOB S =△(3)01x <<或2x >4.(1)43(2)833π5.(1)9y x = (2)9 点Q 的坐标为()332,323+(3)()1,4或()4,16.(1)18y x=22y x =- (2)6k =7.(1)3y x = 3,22E ⎛⎫ ⎪⎝⎭ (2)3k =时 CEF S △最大为348.(1)BCD △的面积为1(2)20x -≤<或1x ≥9.(1)4y x= (2)1410.(1)13y x =-+ 22y x= (2)32(3)(3P 或(3P11.(1)()60y x x=-< (2)2y >12.(1)y =(2)()D(3)()P 或()10P ,13.(1)3(2)()3,414.(1)()660n B =,,15.(1)反比例函数的解析式为12y x=- (2)一次函数的解析式为4y x =-+(3)20x -<<或6x >.。
9.2 反比例函数与几何综合
综合训练
3 y 如图,一次函数的图象与反比例函数 1 (x<0)的图象相交 x
a y 轴对称,在 2 (x>0)的图象上取一点P(P点的横坐标大于 x 2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2, 求P点的坐标.
拓展思维
m 若直线y1=kx+4 (k>0) 与反比例函数 y2= x 的
图象一个交点为A(-3,1),如图. 3 (1)y1=________, x+ 4 y2=________. x (2)直接写出两函数的另一个交点坐标; y (3)当x取何值时,y1>y2; N B 3 解:-3<x<-1 或x>0 (4)求△OAB的面积; A 1 解:S △OAB=4
M -3 -1 O
x
(5)过点A作x轴的垂线,过点B作y轴的垂线, 两线交于点C. m 若反比例函数 y2= x 的图象与△ABC有公共 点,请直接写出m的取值范围; 解: -9≤m≤-3
能力训练
(2011中考)如图,正比例函数 y1 k1 x 与反比例函数 k2 y2 相交于A、B点。已知点A的坐标为A(4,n), x BD⊥x轴于点D且 SBDO 4 ,过点A的一次函数 y3 k3 x b 与反比例函数的图象交于另一点C,与x轴 交于点E(5,0)。 (1)求正比例函数 y1 、反比例函数 y2 和一次函数 y3 的解析式; (2)结合图象,求出当
k1 y= k1 > 0 x
于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x< -1时,一次函数值大于反比例函数值,当x>-1时,一次函数值 小于反比例函数值. (1)求一次函数的解析式;
3 a (2)设函数 y2 x (x>0)的图象与 y1 x (x<0)的图象关于y
2022年中考数学专题复习:反比例函数与几何综合
2022年中考数学专题复习:反比例函数与几何综合1.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.2.如图1,点A 、B 是双曲线y =kx (k >0)上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段AC 、AD 、BE 、BF ,AC 和BF 交于点G ,得到正方形OCGF (阴影部分),且S 阴影=1,△AGB 的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A 和点B ,上述作图不变,得到矩形OCGF (阴影部分),点A 、B在运动过程中始终保持S 阴影=1不变(如图2),则△AGB 的面积是否会改变?说明理由.3.已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.4.如图,直线1:l y k x b =+与双曲线()20k y x x=>相交于A ,B 两点,与x 轴交于点C ,若点A ,B 的横坐标分别是1和2,(1)请直接写出21k k x b x+>的解集; (2)当AOB 的面积为3时,求2k 的值.5.如图,在平面直角坐标系中,A(8,0)、B(0,6)是矩形OACB的两个顶点,双曲线y=kx(k≠0,x>0)经过AC的中点D,点E是矩形OACB与双曲线y=kx的另一个交点.(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足S△PBO=56S△ODE.①若点P在这个反比例函数的图象上,求点P的坐标;①若点Q是平面内一点,使得以A、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.6.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数ykx=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.(1)若点D的坐标为(4,n).①求反比例函数ykx=的表达式;①求经过C,D两点的直线所对应的函数解析式;(2)在(1)的条件下,设点E是x轴上的点,使△CDE为以CD为直角边的直角三角形,求E点的坐标.7.如图1,点(08)(2)A B a ,、,在直线2y x b =-+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ①x 轴于点F ,交反比例函数图象于点E ,求E 点坐标;①在线段AB 运动过程中,连接BC ,若①BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.8.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为(8,4),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将①OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到①ODE ,OD 与CB 相交于点F ,反比例函数()0ky x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,求四边形OAGF 的面积.(3)图中是否存在与①BFG相似的三角形?若存在,请找一个,并进行证明;若不存在,请说明理由.9.如图,在平面直角坐标系中,四边形ABCD为矩形,若点AD①AB=3①4,A(-6,0)、D(-9,4),点B、C在第二象限内.(1)请直接写出:点B的坐标________;(2)将矩形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、C两点的对应点B′、C′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式:(3)在(2)的情况下,是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、C′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q 的坐标;若不存在,请说明理由.10.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin①AOB=45,反比例函数y=kx(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.11.如图,在正方形OABC 中,点O 为坐标原点,点()3,0C -,点A 在y 轴正半轴上,点E ,F 分别在BC ,CO 上,2CE CF ==,一次函数()0y kx b k =+≠的图象过点E 和F ,交y 轴于点G ,过点E 的反比例函数()0my m x=≠的图象交AB 于点D .(1)求反比例函数和一次函数的解析式;(2)在线段EF 上是否存在点P ,使ADP APG S S =△△,若存在,求出点P 的坐标;若不存在,请说明理由.12.如图是反比例函数y 2x=与反比例函数y 4x =在第一象限中的图象,点P 是y 4x =图象上一动点,P A ①x 轴于点A ,交函数y 2x =图象于点C ,PB ①y 轴于点B ,交函数y 2x=图象于点D ,点D 的横坐标为a .(1)求四边形ODPC 的面积;(2)连接DC 并延长交x 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形.13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,OA=3,AB=4,反比例函数kyx(k>0)的图象与矩形两边AB,BC分别交于点D,点E,且BD=2AD.(1)求点D的坐标和k的值;(2)连接OD,OE,DE,求①DOE的面积;(3)若点P是线段OC上的一个动点,是否存在点P,使①APE=90°?若存在,求出此时点P的坐标;若不存在,请说明理由.14.如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A①y轴于点A,PB①x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P(6,3),求①PCD的面积;(2)在(1)的条件下,当PG平分①CPD时,求点G的坐标;(3)如图2,若点G是OP与CD的交点,点M是线段OP上的点,连接MC、MD.当①CMD=90°时,求证:MG=12CD.15.在矩形AOBC 中,分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数(0)ky x x=>的图象与AC 边交于点E ,连接,OE OF ,作直线EF .(1)若2CF =,求反比例函数解新式; (2)在(1)的条件下求出EOF △的面积; (3)在点F 的运动过程中,试说明ECFC是定值.16.如图1,一次函数y =kx ﹣3(k ≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x>0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O 'CD ',若点O 的对应点O '恰好落在该反比例函数图象上(如图2),求出点O ',D '的坐标.17.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()4,2,OA ,OC 分别落在x 轴和y 轴上,OB 是矩形的对角线,将OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求出k 的值.(2)在x 轴上是否存在一点M ,使MF MG -的值最大?若存在,求出点M ;若不存在,说明理由.(3)在线段OA 上存在这样的点P ,使得PFG △是等腰三角形,请直接写出OP 的长.18.如图,菱形OABC 的点B 在y 轴上,点C 坐标为(4,3),双曲线ky x=的图象经过点A .(1)菱形OABC 的边长为 ; (2)求双曲线的函数关系式;(3)①点B 关于点O 的对称点为D 点,过D 作直线l 垂直于x 轴,点P 是直线l 上一个动点,点E 在双曲线上,当P 、E 、A 、B 四点构成平行四边形时,求点E 的坐标; ①将点P 绕点A 逆时针旋转90°得点Q ,当点Q 落在双曲线上时,求点Q 的坐标.19.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),ky x 0k 0x=>>的图象上,点(),P m n 是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.20.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数2(0)ky x x=>的图象经过点D ,且与边BC 交于点E ,连接OE ,已知AB =3. (1)点D 的坐标是 ; (2)求tan ①EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围; (4)连接DE ,在x 轴上取一点P ,使98DPES =,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请直接写出线段PQ 的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x 6(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx +b<x 6成立的x 的取值范围;(3)求△AOB 的面积.(第1题)2.如图,点A,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,AO =CD=2,AB =DA =,反比例函数y =x k (k >0)的图象过CD 的中点E 、(1)求证:△AOB ≌△DCA;(2)求k 的值;(3)△BFG 与△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 就是否在反比例函数的图象上,并说明理由.(第2题)反比例函数与四边形的综合反比例函数与平行四边形的综合3.如图,过反比例函数y =x 6(x >0)的图象上一点A 作x 轴的平行线,交双曲线y=-x 3(x <0)于点B,过B 作BC ∥OA 交双曲线y =-x 3(x <0)于点D,交x 轴于点C,连接AD 交y 轴于点E,若OC =3,求OE 的长.(第3题)反比例函数与矩形的综合4.如图,矩形OABC 的顶点A,C 的坐标分别就是(4,0)与(0,2),反比例函数y =xk (x>0)的图象过对角线的交点P 并且与AB,(第4题)BC 分别交于D,E 两点,连接OD,OE,DE,则△ODE 的面积为________.5.如图,在平面直角坐标系中,矩形OABC 的对角线OB,AC 相交于点D,且BE ∥AC,AE ∥OB 、(1)求证:四边形AEBD 就是菱形;(2)如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.(第5题)反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B两点的纵坐标分别为3,1,反比例函数y =x 3的图象(第6题)经过A,B 两点,则菱形ABCD 的面积为( )A .2B .4C .2D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =x k (k>0,x>0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =xk (k>0,x>0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.(第7题)反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为(2,2),反比例函数y =x k (x >0,k ≠0)的图象经过线段BC的中点D(1)求k 的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q,记四边形CQPR 的面积为S,求S 关于x 的函数解析式并写出x 的取值范围.(第8题)反比例函数与圆的综合(第9题)9.如图,双曲线y =x k (k>0)与⊙O 在第一象限内交于P,Q 两点,分别过P,Q 两点向x 轴与y 轴作垂线,已知点P 的坐标为(1,3),则图中阴影部分的面积为________.10.如图,反比例函数y =x k (k <0)的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.(第10题)专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质就是历年来中考的热点,既有与本学科知识的综合,也有与其她学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =(m -1)x |m|-2就是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.某学校到县城的路程为5 km ,一同学骑车从学校到县城的平均速度v(km /h )与所用时间t(h )之间的函数解析式就是( )A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 就是x 的反比例函数:①xy =-31;②y =5-x;③y =5x -2;④y =x 2a (a 为常数且a ≠0).其中________就是反比例函数.(填序号)2个方法:画反比例函数图象的方法 x … -6 -5 -4 -3 -2 -11 2 3 4 5 6 … y … 1 1、2 1、5 2 3 6 -6 -3 -2 -1、5 -1、2-1 … 解析式;(2)画出这个函数的图象.求反比例函数解析式的方法5.已知反比例函数y =x k 的图象与一次函数y =x +b 的图象在第一象限内相交于点A(1,-k +4).试确定这两个函数的解析式.6.如图,已知A(-4,n),B(2,-4)就是一次函数y =kx +b 的图象与反比例函数y =x m 的图象的两个交点.求:(1)反比例函数与一次函数的解析式;(2)直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)方程kx +b -x m =0的解(请直接写出答案);(4)不等式kx +b -x m <0的解集(请直接写出答案).(第6题)2个应用反比例函数图象与性质的应用7.画出反比例函数y =x 6的图象,并根据图象回答问题:(1)根据图象指出当y =-2时x 的值;(2)根据图象指出当-2<x<1且x ≠0时y 的取值范围;(3)根据图象指出当-3<y<2且y ≠0时x 的取值范围.反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时).(1)写出y 关于x 的函数解析式,并求出自变量的取值范围.(2)若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内?1个技巧:用k 的几何性质巧求图形的面积9.如图,A,B 就是双曲线y =x k (k ≠0)上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C 、若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A 、34B 、38C .3D .4(第9题)(第10题)10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x 2与y=-x 4的图象于A,B 两点,C 就是y 轴上任意一点,则△ABC 的面积为________.11.如图就是函数y =x 3与函数y =x 6在第一象限内的图象,点P 就是y =x 6的图象上一动点,PA ⊥x 轴于点A,交y =x 3的图象于点C,PB ⊥y 轴于点B,交y =x 3的图象于点D 、(1)求证:D 就是BP 的中点;(2)求四边形ODPC 的面积.(第11题)答案1.解:(1)∵A(m,6),B(3,n)两点在反比例函数y =x 6(x>0)的图象上,∴m =1,n =2,即 A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 的图象上,∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8、(第1题)(2)根据图象可知使kx +b<x 6成立的x 的取值范围就是0<x<1或x>3、(3)如图,分别过点A,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E,C,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D(4,0).∵A(1,6),B(3,2),∴AE =6,BC =2、∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8、2.(1)证明:∵点A,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,∴∠AOB =∠DCA =90°、在Rt △AOB 与Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA 、(2)解:在Rt △ACD 中,∵CD =2,DA =,∴AC ==1、∴OC =OA +AC =2+1=3、∴D 点坐标为(3,2).∵点E 为CD 的中点,∴点E 的坐标为(3,1).∴k =3×1=3、(3)解:点G 在反比例函数的图象上.理由如下:∵△BFG 与△DCA 关于某点成中心对称,∴△BFG ≌△DCA 、∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°、∵OB =AC =1,∴OF =OB +BF =1+2=3、∴G 点坐标为(1,3).∵1×3=3,∴点G(1,3)在反比例函数的图象上.3.解:∵BC ∥OA,AB ∥x 轴,∴四边形ABCO 为平行四边形.∴AB =OC =3、设Aa 6,则Ba 6,∴(a -3)·a 6=-3、∴a =2、∴A(2,3),B(-1,3).∵OC =3,C 在x 轴负半轴上,∴C(-3,0),设直线BC 对应的函数解析式为y =kx +b,则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29、解方程组,3得y1=3,x1=-1,.3∴D23、设直线AD 对应的函数解析式为y =mx +n,则,3解得.9∴直线AD 对应的函数解析式为y =83x +49、∴E49、∴OE =49、4、415 点拨:因为C(0,2),A(4,0),由矩形的性质可得P(2,1),把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x 2、因为D 点的横坐标为4,所以AD =42=21、因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3、所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415、5.(1)证明:∵BE ∥AC,AE ∥OB,∴四边形AEBD 就是平行四边形.∵四边形OABC 就是矩形,∴DA =21AC,DB =21OB,AC =OB 、∴DA =DB 、∴四边形AEBD 就是菱形.(2)解:如图,连接DE,交AB 于F,∵四边形AEBD 就是菱形,∴DF =EF =21OA =23,AF =21AB =1、∴E ,19、设所求反比例函数解析式为y =x k ,把点E ,19的坐标代入得1=29,解得k =29、∴所求反比例函数解析式为y =2x 9、(第5题) (第7题)6.D7.解:(1)如图,过点D 作x 轴的垂线,垂足为F 、∵点D 的坐标为(4,3),∴OF =4,DF =3、∴OD =5、∴AD =5、∴点A 的坐标为(4,8).∴k =xy =4×8=32、(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32(x>0)的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′、∵DF =3,∴D ′F ′=3、∴点D ′的纵坐标为3、∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332、∴FF ′=332-4=320、∴菱形ABCD 沿x 轴正方向平移的距离为320、8.解:(1)∵正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为(2,2),∴C(0,2).∵D 就是BC 的中点,∴D(1,2).∵反比例函数y =x k (x >0,k ≠0)的图象经过点D,∴k =2、(2)当P 在直线BC 的上方,即0<x <1时,∵点P(x,y)在该反比例函数的图象上运动,∴y =x 2、∴S 四边形CQPR =CQ ·PQ =x ·-22=2-2x;当P 在直线BC 的下方,即x >1时,同理求出S 四边形CQPR =CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41、1.B 2、C3.①③④4.解:(1)反比例函数:y =-x 6、(2)如图所示.(第4题)5.解:∵反比例函数y =x k 的图象经过点A(1,-k +4),∴-k +4=1k ,即-k +4=k,∴k =2,∴A(1,2).∵一次函数y =x +b 的图象经过点A(1,2),∴2=1+b,∴b =1、∴反比例函数的解析式为y =x 2,一次函数的解析式为y =x +1、6.解:(1)将B(2,-4)的坐标代入y =x m ,得-4=2m ,解得m =-8、∴反比例函数的解析式为y =x -8、∵点A(-4,n)在双曲线y =x -8上,∴n =2、∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2、(2)令y =0,则-x -2=0,x =-2、∴C(-2,0).∴OC =2、∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6、(3)x 1=-4,x 2=2、(4)-4<x<0或x>2、7.解:如图,由观察可知:(1)当y =-2时,x =-3;(2)当-2<x<1且x ≠0时,y<-3或y>6;(3)当-3<y<2且y ≠0时,x<-2或x>3、(第7题)点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会瞧图.8.解:(1)库存原料为2×60=120(吨),根据题意可知y 关于x 的函数解析式为y =x 120、由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围就是x>2、(2)根据题意,得y ≥24,所以x 120≥24、解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:(1)由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.(2)要使机器不停止运转,需y ≥24,解不等式即可.反比例函数与几何的综合应用及答案(第9题)9.B 点拨:如图,过点B 作BE ⊥x 轴于点E,∵D 为OB 的中点,∴CD 就是△OBE的中位线,则CD =21BE 、设Ax k ,则B2x k ,CD =4x k ,AD =x k -4x k 、∵△ADO 的面积为1,∴21AD ·OC =1,即214x k ·x =1、解得k =38、10.311.(1)证明:∵点P 在双曲线y =x 6上,∴设P 点坐标为,m 6、∵点D 在双曲线y =x 3上,BP ∥x 轴,D 在BP 上,∴D 点坐标为,m 3、∴BD =m 3,BP =m 6,故D 就是BP 的中点.(2)解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6、∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3、。